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A real sequence (bk)∞k=0 is called totally positive if all minors of the
infinite matrix ‖bj−i‖∞i,j=0 are nonnegative (here bk = 0 for k < 0). In this

paper, we investigate the problem of describing the set of sequences (ak)∞k=0

such that for every totally positive sequence (bk)∞k=0 the sequence (akbk)∞k=0

is also totally positive. We obtain the description of such sequences (ak)∞k=0

in two cases: when the generating function of the sequence
∑∞

k=0 akz
k has at

least one pole, and when the sequence (ak)∞k=0 has not more than 4 nonzero
terms.
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1. Introduction

We start with the definition of multiply positive and totally positive sequences.

Definition 1.1. A real sequence (ak)
∞
k=0 is called m-times positive (m ∈ N),

if all minors of the infinite matrix∥∥∥∥∥∥∥∥∥∥∥

a0 a1 a2 a3 . . .
0 a0 a1 a2 . . .
0 0 a0 a1 . . .
0 0 0 a0 . . .
...

...
...

...
. . .

∥∥∥∥∥∥∥∥∥∥∥
(1.1)

of orders less than or equal to m are nonnegative. The class of m-times positive
sequences is denoted by TPm, the class of the generating functions of m-times
positive sequences (f(x) =

∑∞
k=0 akx

k) is denoted by T̃Pm.

© Olga Katkova and Anna Vishnyakova, 2024

https://doi.org/10.15407/mag20.03.06


354 Olga Katkova and Anna Vishnyakova

Definition 1.2. A real sequence (ak)
∞
k=0 is called totally positive if all minors

of the infinite matrix (1.1) are nonnegative. The class of totally positive sequences
is denoted by TP∞. The class of the generating functions of totally positive
sequences is denoted by T̃P∞.

Multiply positive sequences (also called Pólya frequency sequences) were in-
troduced by Fekete in 1912 (see [7]) in connection with the problem of exact
calculation of the number of positive zeros of a real polynomial. Multiply pos-
itive and totally positive sequences arise in many areas of mathematics and its
applications, see, for example, [2, 10,20].

The class TP∞ was completely described by Aissen, Schoenberg, Whitney
and Edrei in [1] (see also [10, p. 412]).

Theorem ASWE. A function f ∈ T̃P∞ if and only if

f(z) = Czqeγz
∞∏
k=1

(1 + αkz)

(1− βkz)
, (1.2)

where C ≥ 0, q ∈ Z, γ ≥ 0, αk ≥ 0, βk ≥ 0,
∑∞

k=1(αk + βk) <∞.

Theorem ASWE gives the description of the class TP∞ in terms of indepen-
dent parameters C, q, γ, αk, βk. It is easy to see that the class TP2 consists of the
sequences (ak)

∞
k=0 of the form an = e−ψ(n), where ψ : N ∪ {0} → (−∞,+∞] is

a convex function. In [19] the description of the subclass of TP3, which consists
of the sequences all of whose sections belong to TP3, in terms of independent
parameters was obtained. The problem of the description of the classes TPm,
3 ≤ m <∞, in terms of independent parameters has not been solved until now.

By theorem ASWE a polynomial p(z) =
∑n

k=0 akz
k, ak ≥ 0, has only real

non-positive zeros if and only if (a0, a1, . . . , an, 0, 0, . . .) ∈ TP∞.
In general, the problem of understanding whether a given polynomial has

only real zeros is not trivial. Often such problems are very difficult. However,
in 1926, J. I. Hutchinson found the following simple sufficient condition in terms
of coefficients for an entire function with positive coefficients to have only real
zeros.

Theorem A (J.I. Hutchinson, [9]). Let f(x) =
∑∞

k=0 akx
k, ak > 0 for all

k. Then
a2n−1

an−2an
≥ 4 for all n ≥ 2, if and only if the following two conditions are

fulfilled:

(i) the zeros of f(x) are all real, simple and negative, and

(ii) the zeros of any polynomial
∑n

k=m akx
k, m < n, formed by taking any number

of consecutive terms of f(x), are all real and non-positive.

For some extensions of Hutchinson’s results see, for example, [3, §4] and [16].
The question about whether or not a given polynomial has only real zeros is

of great importance in many areas of mathematics. So, the problem to describe
the set of operators that preserve this set of polynomials is of the great interest.
In connection with this problem, we define multiplier sequences.
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Definition 1.3. A sequence (γk)
∞
k=0 of real numbers is called a multiplier

sequence if, whenever a real polynomial P (x) =
∑n

k=0 akz
k has only real zeros,

the polynomial
∑n

k=0 γkakz
k has only real zeros. The class of multiplier sequences

is denoted by MS.

A simple example of a multiplier sequence is the following sequence: γk =
k, k = 0, 1, 2, . . .. For an arbitrary polynomial P (x) =

∑n
k=0 akz

k with real
coefficients and only real zeros we have

∑n
k=0 kakz

k = zP ′(z), and this polynomial
obviously also has only real zeros.

The full description of the set of multiplier sequences was given by G. Pólya
and J. Schur in 1914. To formulate this famous result, we need the notion of the
Laguerre-Pólya class of entire functions.

Definition 1.4. A real entire function f is said to be in the Laguerre-Pólya
class of type I, written f ∈ L-PI, if it can be expressed in the following form

f(z) = czneβz
∞∏
k=1

(
1 +

z

xk

)
, (1.3)

where c ∈ R, β ≥ 0, xk > 0, n is a nonnegative integer, and
∑∞

k=1 x
−1
k <∞.

Note that the product on the right-hand side can be finite or empty (in the
latter case, the product equals 1).

This class is essential in the theory of entire functions since the polynomials
with only real and nonpositive zeros converge locally uniformly to these and only
these functions. The following prominent theorem provides an even stronger
result.

Theorem B (E. Laguerre and G. Pólya, see, for example, [8, p. 42–46]
and [14, Chap. VIII, §3]).

(i) Let (Pn)∞n=1, Pn(0) = 1, be a sequence of real polynomials having only real
negative zeros which converges uniformly on the disc |z| ≤ A,A > 0. Then
this sequence converges locally uniformly in C to an entire function from the
class L-PI.

(ii) For any f ∈ L-PI there is a sequence of real polynomials with only real
nonpositive zeros, which converges locally uniformly to f .

The following theorem fully describes multiplier sequences.

Theorem C (G. Pólya and J. Schur, cf. [22], [21, pp. 100–124], and [17,
pp. 29–47]). Let (γk)

∞
k=0 be a given real sequence. The following three statements

are equivalent.

1. (γk)
∞
k=0 is a multiplier sequence.

2. For every n ∈ N the polynomial Pn(z) =
∑n

k=0

(
n
k

)
γkz

k has only real zeros of
the same sign.
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3. The power series Φ(z) :=
∑∞

k=0
γk
k! z

k converges absolutely in the whole com-
plex plane and the entire function Φ(z) or the entire function Φ(−z) admits
the representation

czneβz
∞∏
k=1

(
1 +

z

xk

)
, (1.4)

where c ∈ R, β ≥ 0, n ∈ N ∪ {0}, 0 < xk ≤ ∞,
∑∞

k=1
1
xk
<∞.

Strikingly, the following fact is an obvious consequence.

Corollary of Theorem C. The sequence (γ0, γ1, . . . , γl, 0, 0, . . .) is a multi-
plier sequence if and only if the polynomial P (z) =

∑l
k=0

γk
k! z

k has only real zeros
of the same sign.

As we mentioned before, the set of polynomials with nonnegative coefficients
having only real nonpositive roots is a subset of the set T̃P∞. In this paper,
we discover an analog of the multiplier sequences for the set of totally positive
sequences. To formulate the problem, we need the next definition.

Definition 1.5. Let A = (ak)
∞
k=0 be a nonnegative sequence. We define the

following linear convolution operator on the set of real sequences:

ΛA((bk)
∞
k=0) = (akbk)

∞
k=0.

The following problem was posed by Alan Sokal during the inspiring AIM
workshop “Theory and applications of total positivity”, July 24-July 28, 2023
(see [24] for more details).

Problem 1.6. Describe the set of nonnegative sequences A = (ak)
∞
k=0, such

that the corresponding convolution operator ΛA preserves the set of TP∞-
sequences: for every (bk)

∞
k=0 ∈ TP∞ we have ΛA((bk)

∞
k=0) ∈ TP∞.

For some questions connected with the problem above see [6] by A. Dyachenko
and A. Sokal (see also previous works of A. Dyachenko [4, 5]).

We consider the multiplier sequence Γ = (k)∞k=0 and the corresponding con-
volution operator ΛΓ((bk)

∞
k=0) = (kbk)

∞
k=0. As we mentioned earlier, this operator

preserves the set of finite totally positive sequences (in other words, the set of
coefficients of polynomials with nonnegative coefficients and only real zeros). But
this operator does not preserve the set of all totally positive sequences. Indeed, let
us consider the function f(z) = 1

(1−z)(2−z) =
∑∞

k=0 bkz
k (we have bk = 1− 1

2k+1 ).

By theorem ASWE, (bk)
∞
k=0 ∈ TP∞. But

∑∞
k=0 kbkz

k = zf ′(z) = z(3−2z)
(1−z)2(2−z)2 .

This function has a positive zero, so the sequence of its coefficients is not a
TP∞-sequence.

We will denote by A the generating function of a sequence A = (ak)
∞
k=0 :

A(z) =
∑∞

k=0 akz
k.

Suppose that the sequence A has the property that the corresponding convo-
lution operator ΛA preserves the set of TP∞-sequences. Then, since the constant
sequence of all ones is the TP∞-sequence, by theorem ASWE, the generating
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function A(x) is a meromorphic function having the representation (1.2). The
following theorem gives the full description of the generating functions of TP∞-
preservers that have at least one pole.

Theorem 1.7. Let A = (ak)
∞
k=0 be a nonnegative sequence, and suppose its

generating function is a meromorphic function with at least one pole. Then for
every (bk)

∞
k=0 ∈ TP∞ we have ΛA((bk)

∞
k=0) ∈ TP∞ if and only if A(z) = C

1−βz ,
C > 0, β > 0.

It remains to describe TP∞-preservers whose generating functions are entire
functions. We start with an obvious case of one or two term sequences. Let us
consider a nonnegative sequence A = (ak)

∞
k=0, such that a0 ≥ 0, a1 ≥ 0, and ak =

0 for k ≥ 2. Then, obviously, for every (bk)
∞
k=0 ∈ TP∞ we have ΛA((bk)

∞
k=0) ∈

TP∞. The case of three term sequences is also simple. The following statement
is obvious.

Statement 1.8. Let A = (ak)
∞
k=0 be a nonnegative sequence, such that ak >

0 for k = 0, 1, 2, and ak = 0 for k ≥ 3. Then for every (bk)
∞
k=0 ∈ TP∞ we have

ΛA((bk)
∞
k=0) ∈ TP∞ if and only if A(z) = a0 + a1z + a2z

2 has only real (and
negative) zeros. Moreover, ΛA : TP∞ → TP∞ if and only if ΛA : TP2 → TP∞.

The following theorem gives the description of TP∞-preservers whose gener-
ating functions are polynomials of degree 3.

Theorem 1.9. Let A = (ak)
∞
k=0 be a nonnegative sequence, such that ak >

0 for 0 ≤ k ≤ 3, and ak = 0 for k ≥ 4. Then for every (bk)
∞
k=0 ∈ TP∞ we have

ΛA((bk)
∞
k=0) ∈ TP∞ if and only if both polynomials

∑3
k=0 akx

k and
∑3

k=1 akx
k

have only real (and nonpositive) zeros. Moreover, ΛA : TP∞ → TP∞ if and only
if ΛA : TP3 → TP∞.

Using the methods analogous to those that were used in the proof of Theo-
rem 1.9, we can prove the following statement.

Theorem 1.10. Let A = (ak)
∞
k=0 be a nonnegative sequence, such that ak >

0 for 0 ≤ k ≤ 4, and ak = 0 for k ≥ 5. Then for every (bk)
∞
k=0 ∈ TP∞ we have

ΛA((bk)
∞
k=0) ∈ TP∞ if and only if the three polynomials

∑4
k=0 akx

k,
∑4

k=1 akx
k

and
∑4

k=2 akx
k have only real (and nonpositive) zeros. Moreover, ΛA : TP∞ →

TP∞ if and only if ΛA : TP4 → TP∞.

We will not present the proof of the above result here, since it is very cumber-
some and does not provide a complete solution to the problem of the description
of all entire TP∞-preservers.

The following example was given by Alan Sokal.

Example 1.11. Let f be an entire function of the form f(z) =
∑∞

k=0 akz
k

with a0 = a1 = 1, ak = 1
qk−1
2 qk−2

3 ··· q2k−1qk
for k ≥ 2, where (qk)

∞
k=2 is a sequence

of arbitrary parameters under the following conditions: qk ≥ 4 for all k. Sup-
pose that (bk)

∞
k=0 ∈ TP∞ is an arbitrary sequence. For an entire function (A ∗
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B)(z) =
∑∞

k=0 akbkz
k we have (an−1bn−1)2

(an−2bn−2)(anbn)
=

a2n−1

an−2an

b2n−1

bn−2bn
≥ 4 for all n ≥ 2,

since
a2n−1

an−2an
= qn ≥ 4 by our assumption, and

b2n−1

bn−2bn
≥ 1, because every TP∞-

sequence is, in particular, a 2-times positive sequence. Thus, using Theorem A
by Hutchinson, we get (A ∗B)(z) ∈ TP∞.

We formulate the following conjecture, which is consistent with Theorems 1.9,
1.10 and Example 1.11.

Conjecture 1.12. Let A = (ak)
∞
k=0 be a nonnegative sequence. Then this se-

quence is a TP∞-preserver, i.e. for every (bk)
∞
k=0 ∈ TP∞ we have ΛA((bk)

∞
k=0) ∈

TP∞ if and only if for every l ∈ N ∪ {0} the formal power series
∑∞

k=l akz
k is

an entire function from the L-PI class (in particular, it has only real nonpositive
zeros).

We note that entire functions whose Taylor sections have only real zeros were
studied in various works (see, for example, [12, 13]), but entire functions whose
remainders have only real zeros have been studied less (some results can be found
in the very interesting survey [18]). We mention here a way to construct such
a function. The entire function ga(z) =

∑∞
j=0 z

ja−j
2
, a > 1, is called the par-

tial theta-function. The survey [23] by S. O. Warnaar contains the history of
investigation of the partial theta-function and some of its main properties. The
paper [11] answers the question: for which a > 1 do the functions ga belong to
the class L-PI. In particular, in [11] it is proved that there exists a constant
q∞ ≈ 3.23363666 . . . , such that ga ∈ L-PI if and only if a2 ≥ q∞. In [15] the
following theorem is proved. Let f(z) =

∑∞
k=0 akz

k with a0 = a1 = 1, ak =
1

qk−1
2 qk−2

3 ··· q2k−1qk
for k ≥ 2, where (qk)

∞
k=2 is a sequence of arbitrary parameters

under the following conditions: q2 ≥ q3 ≥ q4 ≥ · · · and limn→∞ qn ≥ q∞. Then
f ∈ L-PI. Using this theorem we conclude that such an entire function f has all
remainders with only real zeros.

2. Proof of Theorem 1.7

Suppose at first that A(z) = C
1−βz , C > 0, β > 0. Then we have A(z) =∑∞

k=0Cβ
kzk, whence for every B = (bk)

∞
k=0 ∈ TP∞ with the generation function

B, the generation function of ΛA((bk)
∞
k=0) is equal to

∑∞
k=0Cβ

kbkz
k = CB(βz) ∈

T̃P∞. The sufficiency is proved.
Let us prove necessity. Let A = (ak)

∞
k=0 be a sequence such that the corre-

sponding convolution operator ΛA preserves the set of TP∞-sequences, and A is
not identical zero.

Definition 2.1. For a nonnegative sequence A = (ak)
∞
k=0 with the generating

function A(z) =
∑∞

k=0 akz
k and a nonnegative sequence B = (bk)

∞
k=0 with the

generating function B(z) =
∑∞

k=0 bkz
k we will denote by A ∗ B the generating

function of the sequence ΛA((bk)
∞
k=0) :

(A ∗B)(z) =
∞∑
k=0

akbkz
k.
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We mention some simple properties of the generating functions of TP∞-
preservers.

Lemma 2.2. Suppose that a sequence A = (ak)
∞
k=0 is such that for every

(bk)
∞
k=0 ∈ TP∞ we have ΛA((bk)

∞
k=0) ∈ TP∞. Then the following are true:

(1) A(z) ∈ T̃P∞.
(2) A′(z) ∈ T̃P∞.
(3) (zA(z))′ ∈ T̃P∞.

(4)
1

1− c
(A(z)− cA(cz)) ∈ T̃P∞ for all c ∈ (0, 1) ∪ (1,∞).

(5)
1

1− c
(A(z)−A(cz)) ∈ T̃P∞ for all c ∈ (0, 1) ∪ (1,∞).

(6) (A(z)− d

d+ 1
a0) ∈ T̃P∞ for all d ≥ 0.

(7) For all n ∈ N ∪ {0} we have (A(z)−
n∑
k=0

akz
k) ∈ T̃P∞.

Proof of Lemma 2.2. (1) We choose the sequence B = (bk)
∞
k=0 ∈ TP∞ such

that bk ≡ 1, B(z) = 1
1−z . We have (A ∗B)(z) = A(z) ∈ T̃P∞.

(2) We choose the sequence B = (bk)
∞
k=0 ∈ TP∞ such that bk = k,B(z) =

z
(1−z)2 . We have (A ∗B)(z) = zA′(z) ∈ T̃P∞.

(3) We choose the sequence B = (bk)
∞
k=0 ∈ TP∞ such that bk = k+ 1, B(z) =

1
(1−z)2 . We have (A ∗B)(z) = (zA(z))′ ∈ T̃P∞.

(4) We choose the sequence B = (bk)
∞
k=0 ∈ TP∞ such that bk = ck+1−1

c−1 , c ∈
(0, 1) ∪ (1,∞), B(z) = 1

(1−z)
1

(1−cz) . We have (A ∗ B)(z) = 1
1−c(A(z) − cA(cz)) ∈

T̃P∞.
(5) We choose the sequence B = (bk)

∞
k=0 ∈ TP∞ such that bk = ck−1

c−1 , c ∈
(0, 1) ∪ (1,∞), B(z) = z

(1−z)
1

(1−cz) . We have (A ∗ B)(z) = 1
1−c(A(z) − A(cz)) ∈

T̃P∞.
(6) We choose the sequence B = (bk)

∞
k=0 ∈ TP∞ such that b0 = 1, bk = d +

1 for k ≥ 1, d > 0, B(z) = 1+dz
1−z . We have (A ∗ B)(z) = (1 + d)(A(z) − d

d+1a0) ∈
T̃P∞.

(7) We choose the sequence B = (bk)
∞
k=0 ∈ TP∞ such that bk = 0 for k =

0, 1, . . . , n, and bk = 1 for k ≥ n+ 1, B(z) = zn+1

1−z . We have (A ∗B)(z) = A(z)−∑n
k=0 akz

k ∈ T̃P∞. The lemma is proved.

By Lemma 2.2(1), A(z) ∈ T̃P∞, whence by theorem ASWE we have

A(z) = Czqeγz
∞∏
k=1

1 + αkz

1− βkz
, (2.1)

were C > 0, q ∈ N ∪ {0}, γ ≥ 0, αk ≥ 0, βk ≥ 0,
∑∞

k=1(αk + βk) <∞.
By Lemma 2.2(2), A′(z) ∈ T̃P∞. By the assumption of Theorem 1.7, the

function A has at least one pole. Suppose A has at least 2 different positive
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poles. Since A does not have positive zeros, then A′ has a positive zero (between
poles), which is impossible. Thus, A has one (maybe, multiple) pole, and we have

A(z) = Czqeγz
∏∞
k=1(1 + αkz)

(1− βz)m
=:

F (z)

(1− βz)m
,

were C > 0, q ∈ N ∪ {0}, γ ≥ 0, αk ≥ 0, β > 0,
∑∞

k=1 αk <∞.
Since F is an entire function with nonnegative Taylor coefficients, we have

M(r, F ) = max|z|≤r |F (z)| = F (r). If F is not a nonnegative constant, then

limx→+∞ F (x) = +∞. If limx→+∞
F (x)

(1−βx)m = +∞, then A′ has a positive zero on

(β,+∞), which is impossible. We conclude that

A(z) =
Czq

∏n
k=1(1 + αkz)

(1− βz)m
=:

P (z)

(1− βz)m
,

were C > 0, q ∈ N ∪ {0}, αk ≥ 0, β > 0, n ∈ N ∪ {0}, q + n ≤ m.
Suppose that m = 2s, s ∈ N. By Lemma 2.2(5), (A ∗ B)(z) = 1

1−c(A(z) −
A(cz)) ∈ T̃P∞, c 6= 1. For c > 1 we have (A∗B)(z) = 1

c−1

(
P (cz)

(1−βcz)2s −
P (z)

(1−βz)2s

)
.

The function (A ∗ B) has two different poles: 1
βc <

1
β . Since P (x) > 0 for x >

0, and c > 1, we have limx→ 1
βc

+0(A ∗ B)(x) = +∞, and limx→ 1
β
−0(A ∗ B)(x) =

−∞, so (A ∗B) has a root in the interval
(

1
βc ,

1
β

)
. This contradicts the fact that

A ∗B ∈ T̃P∞. Thus, m = 2s+ 1, s ∈ N ∪ {0}.
Suppose that A(z) = P (z)

(1−βz)2s+1 with degP = 2s+ 1. Then limx→+∞A(x) =

−L, L > 0. By Lemma 2.2(4), (A ∗ B)(z) = 1
c−1(cA(cz) − A(z)) ∈ T̃P∞, c 6= 1.

For c > 1 we have (A ∗ B)(z) = 1
c−1

(
cP (cz)

(1−βcz)2s+1 − P (z)
(1−βz)2s+1

)
. We observe that

limx→ 1
β
+0(A ∗ B)(x) = +∞, and limx→+∞(A ∗ B)(x) = 1

c−1(−cL + L) < 0. So,

(A ∗ B) has a root in the interval
(

1
β ,+∞

)
. This contradicts the fact that A ∗

B ∈ T̃P∞. Thus, degP < 2s+ 1.
We have proved that A(z) = P (z)

(1−βz)n , where degP < n, n = 2s + 1, s ∈
N ∪ {0}, and P is a polynomial with nonnegative coefficients and all nonpositive
roots. It remains to prove that s = 0.

We observe that

A(z) =
B0

(1− βz)n
− B1

(1− βz)n−1
+ · · ·+ (−1)n−1

Bn−1
(1− βz)

, (2.2)

where P (z) = B0 −B1(1− βz) + · · ·+ (−1)n−1(1− βz)n−1 = B0 + βB1(z− 1
β ) +

β2B2(z− 1
β )2 + · · ·+βn−1Bn−1(z− 1

β )n−1, whence βjBj =
P (j)( 1

β
)

j! > 0 for all j =
0, 1, · · · , n− 1.

Lemma 2.3. Let k ∈ N, k ≥ 2, Ak,β(z) = 1
(1−βz)k , and Fγ,δ(z) = eγz

(1−δz) , γ >

0, δ > 0. Then

(Ak,β ∗ Fγ,δ)(z) =
(k − 1)!eγβz

(1− δβz)k
Q2k−2(z),
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where Q2k−2(z) is a polynomial of degree at most 2k − 2 of the form

Q2k−2(z) =

k−1∑
s=0

k−1∑
t=k−s−1

(γβ)k−1−s(δβ)t−k+s+1

(k − 1− s)!(k − 1− t)!t!
zt(1− δβz)2k−t−s−2.

Proof. We have

Ak,β(z) =
1

(k − 1)!βk−1

(
1

1− βz

)(k−1)
=

1

(k − 1)!βk−1

∞∑
j=0

βj(zj)(k−1)

=
1

(k − 1)!βk−1

∞∑
j=k−1

βjj(j − 1) · · · (j − k + 2)zj−k+1

=
1

(k − 1)!βk−1

∞∑
s=0

βs+k−1(s+ k − 1)(s+ k − 2) · · · (s+ 1)zs

=
1

(k − 1)!

∞∑
s=0

βs(s+ k − 1)(s+ k − 2) · · · (s+ 1)zs.

For a function G(z) =
∑∞

s=0 dsz
s we obtain

(Ak,β ∗G)(z) =
1

(k − 1)!

∞∑
s=0

βs(s+ k − 1)(s+ k − 2) · · · (s+ 1)dsz
s

=
1

(k − 1)!

(
zk−1G(βz)

)(k−1)
.

Thus, for G(z) = Fγ,δ(z) we have

(Ak,β ∗ Fγ,δ)(z) =
1

(k − 1)!

(
eγβzzk−1(1− δβz)−1

)(k−1)
.

Whence we get

(Ak,β ∗ Fγ,δ)(z) =
1

(k − 1)!

×
k−1∑
s=0

s∑
l=0

(k − 1)!

(k − 1− s)!(s− l)!l!
(eγβz)(k−1−s)(zk−1)(s−l)((1− δβz)−1)(l)

=
k−1∑
s=0

s∑
l=0

(
1

(k − 1− s)!(s− l)!l!
(γβ)k−1−seγβz

× (k − 1)!

(k − s+ l − 1)!
zk−s+l−1l!(δβ)l

1

(1− δβz)l+1

)
=

(k − 1)!eγβz

(1− δβz)k
k−1∑
s=0

s∑
l=0

(
1

(k − 1− s)!(s− l)!(k − s+ l − 1)!

× zk−s+l−1(γβ)k−1−s(δβ)l(1− δβz)k−l−1
)
.
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Changing the summation index l in the second sum by k−s+ l−1 = t, we obtain

(Ak,β ∗ Fγ,δ)(z) =
(k − 1)!eγβz

(1− δβz)k

×

(
k−1∑
s=0

k−1∑
t=k−s−1

(γβ)k−1−s(δβ)t−k+s+1

(k − 1− s)!(k − 1− t)!t!
zt(1− δβz)2k−t−s−2

)

=:
(k − 1)!eγβz

(1− δβz)k
Q2k−2(z),

where Q2k−2 is a polynomial of degree at most 2k − 2, since deg(zt(1 −
δβz)2k−t−s−2) = 2k − s− 2. The lemma is proved.

By (2.2) we have

A(z) = B0An,β(z)−B1An−1,β(z) + . . .+ (−1)n−1Bn−1A1,β(z),

where B0 > 0, B1 > 0, . . . , Bn−1 > 0.
So, using Lemma 2.3, we get

(A ∗ Fγ,δ)(z) = B0(An,β ∗ Fγ,δ)(z)−B1(An−1,β ∗ Fγ,δ)(z) + · · ·
+ (−1)n−1Bn−1(A1,β ∗ Fγ,δ)(z)

= B0
(n− 1)!eγβz

(1− δβz)n
Q2n−2(z)−B1

(n− 2)!eγβz

(1− δβz)n−1
Q2n−4(z)

+B2
(n− 3)!eγβz

(1− δβz)n−2
Q2n−6(z)− · · ·+ (−1)n−1Bn−1

0!eγβz

(1− δβz)
Q0(z)

=
eγβz

(1− δβz)n
(B0(n− 1)!Q2n−2(z)−B1(n− 2)!Q2n−4(z)(1− δβz)

+ B2(n− 3)!Q2n−6(z)(1− δβz)2 − · · ·+ (−1)n−1Bn−10!Q0(z)(1− δβz)n−1
)

=:
eγβz

(1− δβz)n
H2n−2(z), (2.3)

where the degree of a polynomial H2n−2 is at most 2n− 2.
Since Fγ,δ(z) = eγz

(1−δz) ∈ T̃P∞ for all γ > 0, δ > 0, by our assumption we

conclude that (A∗Fγ,δ) ∈ T̃P∞, whence the polynomialH2n−2 has all nonnegative
coefficients and all nonpositive roots. We denote by

H2n−2(z) =:
2n−2∑
s=0

hsz
s, hs ≥ 0.

For n > 1 we have 2n − 3 > 0, and we want to evaluate h2n−3. Note that z2n−3

can be found only in the terms B0(n− 1)!Q2n−2(z) and B1(n− 2)!Q2n−4(z)(1−
δβz) of formula (2.3). By (3.5),

Q2n−2(z) =

n−1∑
s=0

n−1∑
t=n−s−1

(γβ)n−1−s(δβ)t−n+s+1

(n− 1− s)!(n− 1− t)!t!
zt(1− δβz)2n−t−s−2.
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We observe that deg(zt(1− δβz)2n−t−s−2) = 2n− s− 2 < 2n− 3 for s > 1, so we
will search for the term z2n−3 in the summands with s = 0 and s = 1. We have

Q2n−2(z) =
(γβ)n−1(δβ)0

((n− 1)!)2
zn−1(1− δβz)n−1

+
(γβ)n−2(δβ)0

((n− 2)!)2
zn−2(1− δβz)n−1 +

(γβ)n−2(δβ)1

(n− 2)!(n− 1)!
zn−1(1− δβz)n−2

+
n−1∑
s=2

n−1∑
t=n−s−1

(γβ)n−1−s(δβ)t−n+s+1

(n− 1− s)!(n− 1− t)!t!
zt(1− δβz)2n−t−s−2.

Thus, gathering the terms with z2n−3 in the first 3 summands of the above
formula, we obtain the term with z2n−3 in B0(n− 1)!Q2n−2(z) :

B0(n− 1)!

(
(γβ)n−1(δβ)0

((n− 1)!)2
(−1)n−2(n− 1)(δβ)n−2

+
(γβ)n−2(δβ)0

((n− 2)!)2
(−1)n−1(δβ)n−1 +

(γβ)n−2(δβ)1

(n− 2)!(n− 1)!
(−1)n−2(δβ)n−2

)
= B0

(−1)n−2(γβ)n−2(δβ)n−2

(n− 2)!
(γβ − δβ(n− 1) + δβ)

= B0
(−1)n−2(γβ)n−2(δβ)n−2

(n− 2)!
(γβ − δβ(n− 2)).

By (3.5),

Q2n−4(z)(1− δβz)

= (1− δβz)
n−2∑
s=0

n−2∑
t=n−s−2

(γβ)n−2−s(δβ)t−n+s+2

(n− 2− s)!(n− 2− t)!t!
zt(1− δβz)2n−t−s−4.

We observe that deg(zt(1 − δβz)2n−t−s−4) = 2n − s − 4 < 2n − 4 for s ≥ 1, so
we will search for the term z2n−4 in the summands with s = 0 and multiply it by
(−δβz). Thus, the term with z2n−3 in (−B1(n− 2)!Q2n−4(z)(1− δβz)) equals

−B1(n− 2)!
(−1)n−1(γβ)n−2(δβ)n−1

((n− 2)!)2
= B1

(−1)n(γβ)n−2(δβ)n−1

(n− 2)!
.

Finally, we get

h2n−3 = B0
(−1)n−2(γβ)n−2(δβ)n−2

(n− 2)!
(γβ − δβ(n− 2))+B1

(−1)n(γβ)n−2(δβ)n−1

(n− 2)!

=
(−1)n−2(γβ)n−2(δβ)n−2

(n− 2)!
(B0γβ −B0(n− 2)δβ+B1δβ).

Since n = 2s+ 1, s ∈ N ∪ {0}, and β > 0, γ > 0, δ > 0, we obtain

signh2n−3 = −sign(B0γβ −B0(n− 2)δβ −B1δβ) = −1

for γ > 0 being large enough and δ > 0 being small enough. We get a contradic-
tion. Thus, n = 1 and A(z) = C

1−βz , C > 0, β > 0.
Theorem 1.7 is proved. �
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3. Proof of Theorem 1.9

Let us prove the necessity. Let A = (ak)
∞
k=0 be a nonnegative sequence, such

that ak > 0 for 0 ≤ k ≤ 3, and ak = 0 for k ≥ 4. Suppose that the operator ΛA

preserves the set of the TP∞-sequences. Since the sequence B1 = (1, 1, 1, 1, . . .) ∈
TP∞, we have ΛA(B1) = (a0, a1, a2, a3, 0, 0, 0, . . . ) ∈ TP∞, whence the polyno-
mial

∑3
k=0 akx

k has only real (and nonpositive) zeros. Further, since the sequence
B2 = (0, 1, 1, 1, 1, . . .) ∈ TP∞, we have ΛA(B2) = (0, a1, a2, a3, 0, 0, 0, . . . ) ∈
TP∞, whence the polynomial

∑3
k=1 akx

k has only real (and nonpositive) zeros.
The necessity is proved.

Let us prove the sufficiency. Obviously, (ck)
∞
k=0 ∈ TP∞ if and only if

(Cλkck)
∞
k=0 ∈ TP∞ for C > 0, λ > 0. Thus, without loss of generality we

can assume that a0 = a1 = 1. Then we can rewrite our sequence A in the form(
1, 1, 1a ,

1
a2b
, 0, 0, 0, . . .

)
, where a =

a21
a0a2

= 1
a2
, b =

a22
a1a3

=
a22
a3
.

So, by assumption both the polynomial

P (x, a, b) = 1 + x+
x2

a
+
x3

a2b
, a > 0, b > 0. (3.1)

and the polynomial

T (x, a, b) = x+
x2

a
+
x3

a2b
. (3.2)

have only real non-positive zeros.
Note that

P (x, a, b) = 1 + T (x, a, b). (3.3)

Denote by

F (y, a, b) = 1 + ay

(
1 + y +

y2

b

)
(3.4)

and by

t(y, b) = y + y2 +
y3

b
= y(1 + y +

y2

b
). (3.5)

We have
F (y, a, b) = 1 + at(y, b). (3.6)

Statement 3.1. Both P and T have only real zeros if and only if both F and
t have only real zeros.

Proof. Statement 3.1 follows from the two identities below.

F (y, a, b) = P (ay, a, b)

and

t(y, b) =
1

a
T (ay, a, b).

The following fact is obvious.

Statement 3.2. The polynomials T (x, a, b) and t(y, b) have only real zeros
if and only if b ≥ 4.
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From now on we will assume that

b ≥ 4. (3.7)

Consider the derivative of the polynomial F (y, a, b).

F ′(y, a, b) = a

(
1 + 2y +

3

b
y2
)

(3.8)

Denote by

α1(b) :=
b

3

(
−1 +

√
1− 3

b

)
(3.9)

and

α2(b) :=
b

3

(
−1−

√
1− 3

b

)
(3.10)

the roots of F ′(y, a, b). It follows from (3.7) that

α1(b)

b
=

1

3

(
−1 +

√
1− 3

b

)
≥ −1

6
. (3.11)

Since all roots of F (y, a, b) are real, α2(b) < α1(b), and limy→+∞ F (y, a, b) =
+∞, it is clear that

F (α1(b), a, b) ≤ 0, (3.12)

and that

F (α2(b), a, b) ≥ 0. (3.13)

The inequality (3.13) can be improved in the following way.

Statement 3.3. We have

F (α2(b), a, b) ≥ 1. (3.14)

Proof. It follows from (3.5) that

t′(y, b) =
1

a
F ′(y, a, b). (3.15)

Therefore, α1(b) from (3.9) and α2(b) from (3.10) are roots of t′(y, b) too. By our
assumption, t(y, b) has only real roots. Since limy→−∞ t(y, b) = −∞, we have

t (α2(b), b) ≥ 0. (3.16)

By virtue of (3.6), the following is true

F (α2(b), a, b) = 1 + at (α2(b), b) ≥ 1.

Statement 3.3 is proved.
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In notations introduced in (3.1) and (3.2) the sufficiency in Theorem 1.9 could
be equivalently reformulated in the following form.

Statement 3.4. Assume that both P (x, a, b) and T (x, a, b) have only real

non-positive zeros, and G(x) =
∑∞

k=0 ckx
k ∈ T̃P∞. Then P ∗G ∈ T̃P∞.

First, consider the case when c0 = 0. If additionally c1 = 0, the Statement
3.4 is obvious.

Let c1 6= 0. Since G(x) ∈ T̃P∞, and therefore, G(x) ∈ T̃P 2, we conclude that

c22 − c1c3 ≥ 0. (3.17)

Since T (x, a, b) has only real zeros we have b ≥ 4 (see (3.7)). Thus,

bc22 − 4c1c3 ≥ 0. (3.18)

The last inequality means that the polynomial

P ∗G(x, a, b) = c1x+
c2
a
x2 +

c3
a2b

x3

has only real roots, that is by theorem ASWE P ∗ G ∈ T̃P∞. So, in this case
Statement 3.4 is true.

From now on we will assume that c0 6= 0. For G(x) =
∑∞

k=0 ckx
k we denote

by

pk =
ck−1
ck

, k ∈ N, (3.19)

and by

qk+1 =
pk+1

pk
, k ∈ N. (3.20)

Then we have

G(x) = c0

(
1 +

x

p1
+

x2

p1p2
+ · · ·+ xk

p1p2 · · · pk
+ · · ·

)
= c0

(
1 +

x

p1
+

(
x

p1

)2 1

q2
+

(
x

p1

)3 1

q22q3
+ · · ·

+

(
x

p1

)k 1

qk2q
k−1
3 · · · q2k−1qk

+ · · ·

)
. (3.21)

Denote by

g(y) = 1 + y +
y2

q2
+

y3

q22q3
+ . . .+

yk

qk2q
k−1
3 · · · q2k−1qk

+ · · · , (3.22)

so that by (3.21)

g(y) =
1

c0
G(p1y) ∈ T̃P∞. (3.23)
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Statement 3.5. If g(y) = 1 + y +
∑∞

k=2
yk

qk−1
2 qk−2

3 ··· qk
∈ T̃P∞, then

q2 ≥ 1, q3 ≥ 1, q22q3 − 2q2q3 + 1 ≥ 0. (3.24)

Proof. By the definition, the statement g(y) ∈ T̃P∞ means that all minors
of the matrix 

1 1 1
q2

1
q22q3

1
q32q

2
3q4

. . .

0 1 1 1
q2

1
q22q3

. . .

0 0 1 1 1
q2

. . .
...

...
...

...
...

...

 (3.25)

are nonnegative. The first statement of (3.24) is equivalent to the fact that∣∣∣∣1 1
q2

1 1

∣∣∣∣ ≥ 0.

The second statement of (3.24) follows from the fact that∣∣∣∣∣ 1q2 1
q22q3

1 1
q2

∣∣∣∣∣ ≥ 0.

The third statement of (3.24) can be easily obtained from the inequality below∣∣∣∣∣∣∣
1 1

q2
1

q22q3

1 1 1
q2

0 1 1
q2

∣∣∣∣∣∣∣ ≥ 0.

Statement 3.5 is proved.

By (3.1) we have

(P ∗G)(x, a, b) = c0

(
1 +

x

p1
+

(
x

p1

)2 1

q2a
+

(
x

p1

)3 1

(q2a)2q3b

)
. (3.26)

Denote by

Fq(y, a, b) = 1 + q2ay + q2ay
2 +

q2a

q3b
y3 = 1 + q2ay

(
1 + y +

y2

q3b

)
. (3.27)

By (3.26) we have

Fq(y, a, b) =
1

c0
(P ∗G)(yp1q2a, a, b). (3.28)

Now we can equivalently reformulate Statement 3.4 in the following way.

Statement 3.6. Assume that both F (y, a, b) and t(y, b) from (3.4) and (3.5)

have only real non-positive zeros, and g(y) from (3.22) belongs to T̃P∞. Then

Fq(y, a, b) ∈ T̃P∞.
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Proof. We will show that

Fq

(
α1(b)

q2
, a, b

)
≤ 0, (3.29)

and
Fq(α2(b), a, b) ≥ 0. (3.30)

Since limx→+∞ Fq(x, a, b) = +∞ and limx→−∞ Fq(x, a, b) = −∞, Statement 3.6
follows from (3.29) and (3.30).

Let us prove (3.29). It follows from (3.27) that

Fq

(
α1(b)

q2
, a, b

)
= 1 + aα1(b) +

a

q2
(α1(b))

2 +
a

bq22q3
(α1(b))

3 , (3.31)

and from (3.4) that

Fq(α1(b), a, b)− Fq
(
α1(b)

q2
, a, b

)
= a (α1(b))

2

(
1− 1

q2

)
+
a

b
(α1(b))

3

(
1− 1

q22q3

)
. (3.32)

By (3.11) we have

Fq(α1(b), a, b)− Fq
(
α1(b)

q2
, a, b

)
≥ a (α1(b))

2

((
1− 1

q2

)
− 1

6

(
1− 1

q22q3

))
=
a (α1(b))

2

6q22q3

(
5q22q3 − 6q2q3 + 1

)
. (3.33)

Note that by the first statement of (3.24) we obtain(
5q22q3 − 6q2q3 + 1

)
−
(
q22q3 − 2q2q3 + 1

)
= 4q2q3(q2 − 1) ≥ 0. (3.34)

It follows from (3.33) and the third statement of (3.24) that

Fq(α1(b), a, b)− Fq
(
α1(b)

q2
, a, b

)
≥ a (α1(b))

2

6q22q3

(
q22q3 − 2q2q3 + 1

)
≥ 0. (3.35)

Thus, by virtue of (3.12) we conclude that

Fq

(
α1(b)

q2
, a, b

)
≤ Fq(α1(b), a, b) ≤ 0.

So, (3.29) is proved.
Let us prove (3.30). It follows from (3.27) and the second statement of (3.24)

that

Fq(α2(b), a, b) = 1 + q2aα2(b)

(
1 + α2(b) +

(α2(b))
2

q3b

)

> 1 + q2aα2(b)

(
1 + α2(b) +

(α2(b))
2

b

)
.
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By (3.4) and (3.14) we have

Fq(α2(b), a, b) > 1 + q2(F (α2(b), a, b)− 1) ≥ 1. (3.36)

So, (3.30) and thereby Statement 3.6 is proved.

Theorem 1.9 is proved. �

Acknowledgments. The authors are indebted to Professor Alan Sokal for
posing the problem and for the inspiring discussions during the AIM workshop
“Theory and applications of total positivity”, July 24-July 28, 2023 (see [24] for
more details). We are also very grateful to the American Institute of Mathemat-
ics and to the organizers of this remarkable workshop Shaun Fallat, Dominique
Guillot, and Apoorva Khare for the possibility to participate in the workshop,
to meet the colleges and to discuss many interesting and important questions on
total positivity. We are very grateful to the referee for the careful reading of the
text and valuable comments and remarks.

References

[1] M. Aissen, A. Edrei, I.J. Schoenberg, and A. Whitney, On the Generating Functions
of Totally Positive Sequences, J. Anal. Math. 2 (1952), 93–109.

[2] T. Ando, Totally positive matrices, Linear Alg. & Its Appl. 90 (1987), 165–219.

[3] T. Craven and G. Csordas, Complex zero decreasing sequences, Methods Appl.
Anal. 2 (1995), 420–441.

[4] A. Dyachenko, Total Nonnegativity of Infinite Hurwitz Matrices of Entire and Mero-
morphic Functions, Complex Anal. Oper. Theory 8 (2014), 1097–1127.

[5] A. Dyachenko, Hurwitz matrices of doubly infinite series, Linear Algebra Appl. 530
(2017), 266–287.

[6] A. Dyachenko and A. Sokal, Total-positivity characterization of the Laguerre–Pólya
class LP+. Oberwolfach Rep. (Eds. K. Driver, O. Holtz, and A. Sokal) 19 (2022),
No. 1, 657–681.
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the Laguerre–Pólya class, Eur. J. Math. 10 (2024), Art. No. 10, 14 pp.

[17] N. Obreschkov, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB
Deutscher Verlag der Wissenschaften, Berlin, 1963.

[18] I.V. Ostrovskii, On Zero Distribution of Sections and Tails of Power Series, Israel
Math. Conference Proceedings, 15 (2001), 297–310.

[19] I.V. Ostrovskii and N.A. Zheltukhina, Parametric representation of a class of mul-
tiply positive sequences, Complex Variables, Theory and Application, 37 (1998),
457–469.

[20] A. Pinkus, Spectral properties of totally positive kernels and matrices, Total Posi-
tivity and its Applications (Eds. M. Gasca and C.A. Micchelli), Kluwer Acad. Publ.
(1996), 477–511.
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Аналог послiдовностей множникiв для множини
тотально додатних послiдовностей

Olga Katkova and Anna Vishnyakova

Дiйсна послiдовнiсть (bk)∞k=0 називається тотально додатною, якщо
всi мiнори нескiнченної матрицi ‖bj−i‖∞i,j=0 є невiд’ємними (тут bk = 0

для k < 0). У цiй статтi ми дослiджуємо проблему опису множини по-
слiдовностей (ak)∞k=0, таких, що для кожної тотально додатної послiдов-
ностi (bk)∞k=0 послiдовнiсть (akbk)∞k=0 також є тотально додатною. Ми
отримуємо опис таких послiдовностей (ak)∞k=0 у двох випадках: коли
твiрна функцiя послiдовностi

∑∞
k=0 akz

k має принаймнi один полюс, а
також коли послiдовнiсть (ak)∞k=0 має не бiльше чотирьох ненульових
членiв.

Ключовi слова: тотально додатна послiдовнiсть, кратно додатна по-
слiдовнiсть, многочлени з усiма дiйсними коренями, послiдовнiсть мно-
жникiв, клас Лагерра–Полiа
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