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1. Introduction

This paper concerns the problem of classifying real meromorphic functions in
the plane which, together with some of their derivatives, have only real zeros and
poles [10,13,14]. Here a meromorphic function f is called real if f(R) ⊆ R∪{∞},
and it is known that if f is real entire and f and f ′′ have only real zeros then f
belongs to the Laguerre–Polya class LP , as conjectured by Wiman and proved
in [2, 27, 32]. For the meromorphic case, the following conjecture was advanced
in [10].

Conjecture 1.1 ([10]). Let f be a real transcendental meromorphic function
in the plane with at least one pole, and assume that all zeros and poles of f , f ′,
and f ′′ are real, and that all poles of f are simple. Then f satisfies

f(z) = C tan(az + b) +Dz + E, a, b, C,D,E ∈ R. (1.1)

In the absence of the assumption that f has only simple poles, further exam-
ples arise for which f , f ′, and f ′′ have only real zeros and poles [12]. Conjec-
ture 1.1 is known to be true if any of the following additional hypotheses holds:

(a) f ′ omits some finite value [10,15,19,21,23,29,31];

(b) f has infinitely many poles and f ′′/f ′ has finitely many zeros [24, Theo-
rem 1.5];

(c) f has infinitely many zeros and poles, all real, simple and interlaced — that
is, between any two consecutive poles of f there is a zero, and between
consecutive zeros of f lies a pole [25].
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The following theorem implies a further special case of Conjecture 1.1.

Theorem 1.2. Let f be a real meromorphic function in the plane, such that
f and f ′ have no zeros or poles in C \ R, while f ′′/f has no zeros in C. Then
there exist α1, α2, α3 ∈ R, with α1α2 6= 0, such that g(z) = α1f(α2z+α3) satisfies
one of the following:

(i) g(z) = f1(z) = sin z;

(ii) g(z) = f2(z) = ez;

(iii) g(z) = f3(z) = tan z;

(iv) g(z) = f4(z), where

f4(z) =

∞∑
k=0

zk+1

k!(k + 1)!
= z +

z2

2
+
z3

12
+ · · · (1.2)

solves

zy′′(z) = y(z); (1.3)

(v) g(z) = F1(z) = zQ for some Q ∈ Z \ {0, 1};
(vi) g(z) = F2(z), where

F2(z) =
dn−2

dzn−2
(
zn−1(z − 1)n−1

)
(1.4)

for some integer n ≥ 2, and F2 solves

z(z − 1)y′′(z) = n(n− 1)y(z); (1.5)

(vii) g(z) = F3(z), where F3 is given by

F3(z) = (z −K)Hn

(
K + 1

K − 1
− 2K

(K − 1)z

)
(1.6)

for some integer n ≥ 1 and K ∈ R \ {0, 1}, in which

Hn(w) =
dn

dwn
(
(w − 1)n−1(w + 1)n+1

)
, (1.7)

while F3 solves

z2(z − 1)(z −K)y′′(z) = Kn(n+ 1)y(z); (1.8)

(viii) g(z) = F4(z), where

F4(z) = Hn

(
1− 2

z

)
, (1.9)

in which 1 ≤ n ∈ N and Hn is given by (1.7), while F4 solves

z2(z − 1)y′′(z) = −n(n+ 1)y(z). (1.10)



374 J.K. Langley

Conversely, the equations (1.3), (1.5), (1.8) (for K > 1), and (1.10) all supply
examples satisfying the hypotheses of the theorem. The function f4 in (1.2)
and its connection to Bessel functions will be discussed in Section 2.1, while
the rational functions F2, F3, F4 in (vi), (vii), and (viii), which are linked to
hypergeometric functions, will be treated in detail in Sections 2.2, 2.3, and 2.4.

Of course, the condition that f ′′/f has no zeros means that Theorem 1.2
treats only a very special case of Conjecture 1.1, albeit without the assumption
that f is transcendental and all poles of f are simple, but the fact that the
proofs of all the resolved special cases are lengthy tends to suggest that the
full conjecture is difficult. The result may also be viewed as a special case of the
problem of determining all meromorphic functions f such that f ′′/f has no zeros:
in this direction, it was proved in [17] that if f is entire of order less than 1, or
meromorphic of order less than 1/2, and f ′′/f is transcendental, then f ′′/f has
infinitely many zeros.

Note that the corresponding problem for the case where f is strictly non-
real, that is, f is not a constant multiple of a real meromorphic function, was
completely settled in [9], the main result of which classified all strictly non-real
meromorphic functions f in the plane for which f , f ′, and f ′′ have only real zeros
and poles.

In common with much of the work on non-real zeros of derivatives, this paper
relies heavily on key results and methods developed by B.Ja. Levin and I.V. Os-
trovskii, as set out in the paper [27] and the textbook [5] — in particular, the
factorisation of the logarithmic derivative (Section 3.1) and an integral inequal-
ity linking the Tsuji and Nevanlinna proximity functions (Lemma 3.4).

2. Preliminaries and examples

First, let D be a real entire function, whose zeros xk are all real and simple.
Then a standard application of the Mittag–Leffler theorem gives a real entire
function C such that

eC(z)

D(z)
=
−2

z − xk
+O(|z − xk|)

as z → xk, for each k. The formula g′/g = eC/D then defines a real meromorphic
function g, such that g and g′ have no zeros at all, while for each k there exists
ck ∈ R \ {0} with g(z) = ck(z − xk)−2 + O(1) as z → xk. Hence there exists
a real meromorphic function f with f ′ = g and f ′f ′′ zero-free. However, this
construction of course gives no control over the location of the zeros of f itself.

The remainder of this section will make use of the following standard lemma.

Lemma 2.1. Let P be a polynomial with a simple zero at a ∈ C. If the
equation

P (z)y′′(z) = y(z) (2.1)

has a solution f which is meromorphic in the plane and has f(a) ∈ C, then every
solution which is meromorphic in the plane is a constant multiple of f .
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Proof. It may be assumed that a = 0. The assumptions force f(0) = 0, and
the zero of f at 0 must be simple, because otherwise P = f/f ′′ has a double zero
at a. Hence c1 = f ′(0) 6= 0, and it follows from (2.1) that 2c2 = f ′′(0) 6= 0. A
second solution g may then be obtained by writing(

g

f

)′
(z) =

1

f(z)2
=

1

(c1z + c2z2 + · · · )2
=

1

c21z
2
(1− 2(c2/c1)z + · · · ),

and integration clearly gives rise to a logarithm.

2.1. The equation (1.3). Let f4 be as in (1.2). Then differentiating f4
twice leads to

zf ′′4 (z) =

∞∑
k=1

zk

(k − 1)!k!
=

∞∑
k=0

zk+1

k!(k + 1)!
= f4(z),

after replacing k by k+1, and so f4 is a solution of (1.3). Lemma 2.1, with a = 0,
shows that any solution of (1.3) which is meromorphic in C is a constant multiple
of f4.

It turns out that f4 has a representation in terms of Bessel functions: write
z = w2 and

f4(z) =
∞∑
k=0

w2k+2

k!(k + 1)!
=
w

i

∞∑
k=0

(−1)k(2iw)2k+1

22k+1k!(k + 1)!
=
w

i
J1(2iw),

where J1 is the Bessel function of the first kind of order 1 [11]. This relation can
be used to prove that all zeros of f4 are real and non-positive, but the following
approach applies Green’s transform [11, pp. 286–288] directly to f4 and (1.3).

Suppose then that R > 0 and s ∈ R and Reis is a zero of f4. Set

F (r) = f4(re
is), H(r) = F (r)F ′(r).

This yields, for r > 0, by (1.3),

H ′(r) = |F ′(r)|2+F (r)F ′′(r) = |F ′(r)|2+e2isF (r)f ′′4 (reis) = |F ′(r)|2+
eis|F (r)|2

r
.

Since H(R) = H(0) = 0, integration from 0 to R results in∫ R

0
|F ′(r)|2 dr = −eis

∫ R

0

|F (r)|2

r
dr,

which forces eis = −1, so that Reis lies on the negative real axis.
Next, a straightforward application of the Wiman–Valiron theory [8] in (1.3)

shows that the order of f4 is 1/2, and so a standard generalisation of the Gauss–
Lucas theorem [34] implies that all zeros of f ′4 are also real and non-positive. This
completes the proof of the following.

Lemma 2.2. The real entire function f4 given by (1.2) is a solution of (1.3),
and all zeros of f4 and f ′4 are real and non-positive. Moreover, any solution of
(1.3) which is meromorphic in C is a constant multiple of f4.
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2.2. The equation (1.5). Let n ≥ 2 be an integer, and consider the equa-
tion (1.5). MAPLE gives solutions in terms of hypergeometric functions, but an
explicit solution will be derived as follows. Let F = F2 be given by (1.4) and
write

F (z) =
dn−2

dzn−2
(
zn−1(z − 1)n−1

)
=

dn−2

dzn−2

(
n−1∑
k=0

(n− 1)!

k!(n− 1− k)!
zk+n−1(−1)n−1−k

)

=
n−1∑
k=0

(n− 1)!(k + n− 1)!

k!(n− 1− k)!(k + 1)!
zk+1(−1)n−1−k

=

n−1∑
k=0

akz
k+1, ak ∈ R, a0 6= 0.

It is then clear that F is a polynomial of degree n, with a simple zero at 0, and
that all zeros of F and F ′ lie in [0, 1], by repeated application of the Gauss–Lucas
theorem. Moreover, ak satisfies

ak+1

ak
= −(k + n)(n− 1− k)

(k + 1)(k + 2)
for k = 0, . . . , n− 2.

Hence differentiating F twice yields

z(z − 1)F ′′(z) = (z2 − z)
n−1∑
k=0

(k + 1)kakz
k−1

=

n−1∑
k=0

(k + 1)kakz
k+1 −

n−1∑
k=1

(k + 1)kakz
k

=
n−1∑
k=0

(k + 1)kakz
k+1 −

n−2∑
k=0

(k + 2)(k + 1)ak+1z
k+1

=
n−1∑
k=0

(k + 1)kakz
k+1 +

n−2∑
k=0

(k + n)(n− 1− k)akz
k+1

=

n−1∑
k=0

(k + 1)kakz
k+1 +

n−1∑
k=0

(k + n)(n− 1− k)akz
k+1

=
n−1∑
k=0

(n2 − n)akz
k+1 = n(n− 1)F (z).

Thus F solves (1.5). Applying Lemma 2.1, with a = 0, completes the proof of
the following.

Lemma 2.3. For 2 ≤ n ∈ Z, the real polynomial F2 given by (1.4) has degree
n and solves (1.5). Moreover, all zeros of F2 and F ′2 are real, and any solution
of (1.5) which is meromorphic in the plane must be a constant multiple of F2.
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2.3. The equation (1.8). Let n ≥ 1 be an integer and let K ∈ R \ {0, 1}.
MAPLE gives solutions of (1.8) in terms of hypergeometric functions, and the
following direct determination of a rational solution was found via properties of
the related Jacobi polynomials [30, p. 254]. Using the change of variables

w =
K + 1

K − 1
− 2K

(K − 1)z
, z = φ(w) =

2K

K + 1− (K − 1)w
, (2.2)

write y(z) = (z −K)h (w), so that

y′(z) = h (w) +
2K(z −K)

(K − 1)z2
h′ (w) ,

y′′(z) =
2K

(K − 1)z2
h′ (w) +

2K

(K − 1)z2
h′ (w)

− 4K(z −K)

(K − 1)z3
h′ (w) +

4K2(z −K)

(K − 1)2z4
h′′ (w)

=
4K2

(K − 1)z3
h′ (w) +

4K2(z −K)

(K − 1)2z4
h′′ (w) .

Observe next that, by (2.2),

z − 1

z
=

(K − 1)(w + 1)

2K
,

z −K
z

=
(K − 1)(w − 1)

2
.

Thus substituting for y and y′′ delivers

R(z) = Kn(n+ 1)y(z)− z2(z − 1)(z −K)y′′(z)

= Kn(n+ 1)(z −K)h (w)

− z2(z − 1)(z −K)

(
4K2

(K − 1)z3
h′ (w) +

4K2(z −K)

(K − 1)2z4
h′′ (w)

)
,

= K(z −K)

[
n(n+ 1)h (w)−

(
4K

K − 1

)(
z − 1

z

)
h′ (w)

]
−K(z −K)

[
4K

(K − 1)2

(
(z − 1)(z −K)

z2

)
h′′ (w)

]
= K(z −K)

[
n(n+ 1)h(w)− 2(w + 1)h′(w) + (1− w2)h′′(w)

]
.

Thus y solves (1.8) if and only if h solves

(1− w2)h′′(w)− 2(w + 1)h′(w) + n(n+ 1)h(w) = 0. (2.3)

Lemma 2.4. Let H(w) = Hn(w), with Hn as in (1.7). Then H is a poly-
nomial of degree n and solves (2.3). Moreover, H(−1) = 0, all n zeros of H are
simple, and they all lie in [−1, 1).

Proof. Write (1.7) in the form

H(w) =
dn

dwn
(
(w + 1− 2)n−1(w + 1)n+1

)
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=
dn

dwn

(
n−1∑
k=0

(
n− 1

k

)
(−2)n−1−k(w + 1)n+1+k

)

=

n−1∑
k=0

(
n− 1

k

)
(−2)n−1−k

(n+ 1 + k)!

(k + 1)!
(w + 1)k+1,

which leads to

H(w) =
n−1∑
k=0

bk(w + 1)k+1, bk =
(n− 1)!(n+ 1 + k)!

k!(n− k − 1)!(k + 1)!
(−2)n−1−k, (2.4)

in which b0 6= 0 and

bk+1

bk
=

(n− k − 1)(n+ 2 + k)

(k + 1)(k + 2)(−2)
=

(k + 1− n)(k + 2 + n)

2(k + 1)(k + 2)
(2.5)

for k = 0, . . . , n−2. Substitution of (2.4) into the right-hand side of (2.3), followed
by application of (2.5), delivers

Q(w) = (1− w2)H ′′(w)− 2(w + 1)H ′(w) + n(n+ 1)H(w)

= (2− (w + 1))(w + 1)

n−1∑
k=0

(k + 1)kbk(w + 1)k−1

− 2(w + 1)

n−1∑
k=0

(k + 1)bk(w + 1)k + n(n+ 1)

n−1∑
k=0

bk(w + 1)k+1

= 2
n−1∑
k=1

(k + 1)kbk(w + 1)k

+
n−1∑
k=0

(n(n+ 1)− (k + 1)k − 2(k + 1))bk(w + 1)k+1

= 2

n−2∑
k=0

(k + 2)(k + 1)bk+1(w + 1)k+1

+
n−1∑
k=0

(n(n+ 1)− (k + 2)(k + 1))bk(w + 1)k+1

=
n−2∑
k=0

(k + 1− n)(k + 2 + n)bk(w + 1)k+1

+

n−1∑
k=0

(n(n+ 1)− (k + 2)(k + 1))bk(w + 1)k+1

=
n−1∑
k=0

(k + 1− n)(k + 2 + n)bk(w + 1)k+1

+

n−1∑
k=0

(n(n+ 1)− (k + 2)(k + 1))bk(w + 1)k+1 = 0.
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Thus H(w) is a polynomial solution of (2.3), of degree n, with a simple zero at
−1, since b0 6= 0 in (2.4). Repeated application of the Gauss–Lucas theorem
to G(w) = (w − 1)n−1(w + 1)n+1 shows that all zeros of H(w) lie in [−1, 1].
Moreover, since G has a zero of multiplicity n − 1 at 1, all zeros of E = G(n−1)

lie in [−1, 1) and therefore so do all zeros of H = E′. Finally, all zeros of H in
(−1, 1) are simple, by the existence-uniqueness theorem and (2.3).

Lemma 2.5. With Hn as in (1.7) and n ≥ 1, and with w defined by (2.2), the
function F3(z) in (1.6) is a rational solution of (1.8) with F3(1) = F3(K) = 0 and
all its zeros real and simple, and every solution of (1.8) which is meromorphic
in the plane is a constant multiple of F3. Moreover, F3(z) = P (z)z−n, where P
is a real polynomial with P (0) 6= 0, and P has degree n or n+ 1.

Furthermore, if P has degree n+ 1 and all zeros of P lie in (0,+∞), then F3,
F ′3, and F ′′3 have no zeros or poles in C \ R. In particular, this holds if K > 1.

Proof. First, F3 solves (1.8) and has a pole at z = 0 of order n, since z = 0
corresponds to w =∞ and H has degree n. Clearly, F3 has no other poles in C.

Next, H(−1) = 0 and all n zeros of H are simple and lie in [−1, 1). Since one
of them may be mapped to ∞ by z = φ(w), it follows from (2.2) that F3(∞) 6= 0
and F3 has n or n+ 1 zeros in C. In particular, F3 has zeros at z = 1 and z = K,
which correspond to w = −1 and w = 1 respectively, and any solution of (1.8)
which is meromorphic in the plane is a constant multiple of F3, by Lemma 2.1
with a = K or a = 1.

Now suppose that P has degree n+ 1 and all zeros of P lie in (0,+∞). This
will certainly hold if K > 1, because in this case the function z = φ(w) is finite
and increasing for −1 ≤ w < 1, and maps [−1, 1) to [1,K), so that F3(z) = (z −
K)H (w) inherits all n zeros of H(w), as well as having a zero at z = K. Under
these assumptions, a consideration of leading terms shows that zP ′(z) − nP (z)
has degree n+ 1, and so

F ′3(z) =
zP ′(z)− nP (z)

zn+1

has n+ 1 zeros in C. Of these, n arise from Rolle’s theorem and lie in (0,+∞),
while one lies in (−∞, 0) because, with x ∈ R,

F ′3(x)

F3(x)
∼ 1

x
< 0 as x→ −∞,

F ′3(x)

F3(x)
∼ − n

x
> 0 as x→ 0−.

Thus F3 and F ′3 have no zeros in C \ R, and nor has F ′′3 , because of (1.8).

Taking K = 2 delivers F3(z) = (z−K)Hn(w) = (z−2)Hn(3−4/z) and (with
help from MAPLE) the following:

n = 1, g1(z) =
8(z − 1)(z − 2)

z
;

n = 2, g2(z) =
144(z − 1)(z − 4/3)(z − 2)

z2
;
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n = 3, g3(z) =
384(z − 1)(z − 2)(11z2 − 30z + 20)

z3
.

In these examples, gj , g
′
j , and g′′j have no zeros in C \ R, by Lemma 2.5. On the

other hand, choosing K = −1 leads to F3(z) = (z−K)Hn(w) = (z+1)Hn(−1/z),
as well as:

n = 1, h1(z) =
2(z2 − 1)

z
;

n = 2, h2(z) =
−12(z2 − 1)

z2
;

n = 3, h3(z) =
−24(z2 − 1)(z2 − 5)

z3
;

n = 4, h4(z) =
720(z2 − 1)(z2 − 7/3)

z4
.

Here hj , h
′
j , and h′′j have no zeros in C \R for j = 2, 4, but h′j has non-real zeros

for j = 1, 3.

2.4. The equation (1.10). A solution of (1.10) is obtained by the following
limiting process with K real: let n ≥ 1 and let F3, Hn be as in (1.6) and (1.7),
and set

F4(z) = lim
K→+∞

F3(z)

−K

= lim
K→+∞

(
z −K
−K

)
Hn

(
K + 1

K − 1
− 2K

(K − 1)z

)
= Hn

(
1− 2

z

)
.

Since all zeros of Hn and H ′n lie in [−1, 1), by Lemma 2.4, F4 and F ′4 have no
zeros in C \ [1,+∞), and F4 has a pole of order n at 0. Applying Weierstrass’
theorem yields, since F3 solves (1.8),

F ′′4 (z)

F4(z)
= lim

K→+∞

F ′′3 (z)

F3(z)
=
−n(n+ 1)

z2(z − 1)

as required. Furthermore, F4 has a simple zero at z = 1, inherited from the
simple zero of Hn at w = −1, which completes the proof of the following.

Lemma 2.6. With Hn as in (1.7) and n ≥ 1, the function F4(z) =
Hn (1− 2/z) is a rational solution of (1.10) with a simple zero at 1, and ev-
ery solution of (1.10) which is meromorphic in the plane is a constant multiple
of F4. Furthermore, F4, F ′4, and F ′′4 have no zeros or poles in C \ R.

Calculating F4(z) = Hn(1− 2/z) using MAPLE delivers:

n = 1, p1(z) =
4(z − 1)

z
;

n = 2, p2(z) =
24(z − 1)(z − 2)

z2
;

n = 3, p3(z) =
192(z − 1)(z2 − 5z + 5)

z3
.
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3. Lemmas needed for the proof of Theorem 1.2

Lemma 3.1. Let g be a real meromorphic function in the plane, of order at
most 1, and with infinitely many zeros, all but finitely many of them real, and
assume that g has finitely many poles. Then

lim
y→+∞
y∈R

log |g(iy)|
log y

= +∞.

Proof. It is enough to prove this when g is real entire, with only real zeros,
and with g(0) 6= 0. The hypotheses then imply that

g(z) = eαz+β
∞∏
n=1

(
1− z

an

)
ez/an ,

with α, β, an real. As y → +∞ with y ∈ R, this gives

2 log |g(iy)| ≥ 2

∞∑
n=1

log

∣∣∣∣1− iy

an

∣∣∣∣−O(1) =
∞∑
n=1

log

(
1 +

y2

a2n

)
−O(1)

≥
∑
|an|≤

√
y

log (1 + y)−O(1) ≥ n(
√
y, 1/g) log y −O(1).

Lemma 3.2 ([4]). Let D ⊆ C be a domain and let F be a family of meromor-
phic functions f on D such that f and f ′′ have no zeros in D. Then the family
{f ′/f : f ∈ F} is normal on D.

Next, suppose that G is a transcendental meromorphic function in the plane,
and that G(z) → a ∈ C ∪ {∞} as z → ∞ along a path γ; then the inverse G−1

is said to have a transcendental singularity over the asymptotic value a [1, 28].
If a ∈ C then for each ε > 0 there exists a component Ω = Ω(a, ε,G) of the
set {z ∈ C : |G(z) − a| < ε} such that γ \ Ω is bounded: these components
are referred to as neighbourhoods of the singularity [1]. Two such paths γ, γ′ on
which G(z)→ a determine distinct singularities if the corresponding components
Ω(a, ε,G), Ω′(a, ε,G) are disjoint for some ε > 0. The singularity is called direct
[1] if Ω(a, ε,G), for some ε > 0, contains finitely many zeros of G−a, and indirect
otherwise. A direct singularity is called logarithmic if there exists ε > 0 such that
w = log 1/(G(z) − a) is a conformal bijection from Ω(a, ε,G) to the half-plane
Rew > log 1/ε. Finally, transcendental singularities over ∞ may be classified
using 1/G, and a transcendental singularity will be referred to as lying in an
open set D if Ω(a, ε,G) ⊆ D for some ε > 0.

The next lemma combines [20, Lemma 2.4] and [23, Lemma 2.2], and links
asymptotic values approached on paths in the upper half-plane H+ with the
growth of the Tsuji characteristic T(r, g) = m(r, g) + N(r, g) for functions g that
are meromorphic on the closed upper half-plane [2, 5, 35].

Lemma 3.3 ([20,23]). Let L 6≡ 0 be a real meromorphic function in the plane
such that T(r, L) = O(log r) as r →∞, and let F (z) = z − 1/L(z). Assume that
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at least one of L and 1/L has finitely many non-real poles. Then there exist
finitely many α ∈ C such that F (z) or L(z) tends to α as z tends to infinity
along a path in C \ R.

Moreover, there exists at most one direct transcendental singularity of F−1

lying in H+.

The following result of Levin and Ostrovskii [27] (see also [5, Ch. 6, Lemma
5.2] and [20, Lemma 2.4]) will be required.

Lemma 3.4 ([27]). Let G be a meromorphic function in the plane: then, for
each R ≥ 1,

1

2π

∫ +∞

R

1

r3

∫ π

0
log+ |G(reiθ)| dθ dr ≤

∫ +∞

R

m(r,G)

r2
dr.

If, in addition, G is real meromorphic with finitely many poles, and satisfies
T(r,G) = O(log r) as r →∞, then T (R,G) = O(R logR) as R→ +∞.

Lemma 3.5. There exists a positive constant c0 such that if the function ψ
maps the upper half-plane H+ analytically into itself then, for r ≥ 1 and θ ∈
(0, π),

|ψ(i)| sin θ
5r

< |ψ(reiθ)| < 5r|ψ(i)|
sin θ

and

∣∣∣∣ψ′(reiθ)ψ(reiθ)

∣∣∣∣ ≤ c0
r sin θ

. (3.1)

Both of these estimates are standard: the first is essentially just Schwarz’
lemma [26, Chap. I.6, Theorem 8′], while the second follows from Bloch’s theorem
applied to logψ.

3.1. The Levin–Ostrovskii factorisation. The following constructions
are standard [2, 27]. Suppose that (uk), (vk) are sequences satisfying uk < vk <
uk+1 for −∞ ≤ M < k < N ≤ +∞. Then there exists k0 ∈ N such that uk and
vk have the same sign for |k| ≥ k0, and

ψ(z) =
∏
|k|≥k0

1− z/vk
1− z/uk

converges on C by the alternating series test. Furthermore, ψ satisfies, for z in
the upper half-plane H+,

argψ(z) =
∑
|k|≥k0

arg
1− z/vk
1− z/uk

=
∑
|k|≥k0

arg
vk − z
uk − z

∈ (0, π).

This leads to the Levin–Ostrovskii factorisation [2, 27] of the logarithmic
derivative of a real entire function f with real zeros. If f has finitely many
zeros, set ψ(z) = 1, while if f has infinitely many zeros uk then zeros of f ′ given
by Rolle’s theorem can be labelled vk so that uk < vk < uk+1, whereupon ψ may
be constructed as above. It follows that f ′/f = Pψ, where P is real meromorphic
with finitely many poles and either ψ ≡ 1 or ψ(H+) ⊆ H+.
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4. Proof of Theorem 1.2: first steps

Let f be as in the hypotheses and write

L =
f ′

f
, F (z) = z − f(z)

f ′(z)
, F ′ =

ff ′′

(f ′)2
. (4.1)

Lemma 4.1. Let 0 < δ < π/2 and δ < σ < π − δ.

(I) If rL(reiσ) is bounded as r → +∞ then zL(z) is bounded as z → ∞ with
δ < arg z < π − δ.

(II) If limr→+∞ rL(reiσ) = 0, then zL(z) → 0 uniformly as z → ∞ with δ <
arg z < π − δ.

Proof. The functions uR(z) = RL(Rz), R ≥ 1, form a normal family on the
domain D1 = {z ∈ C : 1/2 < |z| < 2, δ/2 < arg z < π − δ/2}: this follows from
Lemma 3.2 applied to the functions f(Rz). Take a sequence Rn → +∞ such that
(uRn) converges locally spherically uniformly on D1. In case (I), (uRn) cannot
have ∞ as limit, while in case (II), the limit function must vanish identically, by
the identity theorem.

Lemma 4.2. Poles of F in C coincide with zeros of L = f ′/f , all of which
are real and simple. All zeros of F ′ in C are real zeros of f and super-attracting
fixpoints of F ; furthermore, simple zeros of F ′ in C are zeros of f which are not
zeros of f ′′, while multiple zeros of F ′ in C have multiplicity 2 and are common
simple zeros of f and f ′′.

Proof. This is standard, and all assertions follow from (4.1). First, any mul-
tiple zero of L = f ′/f would be a zero of f ′′, and hence of f , and thus a pole of
f ′/f , an obvious contradiction. Next, zeros of F ′ are zeros of f or f ′′, and hence
of f . But multiple zeros of f are not zeros of F ′, and so all zeros of F ′ must
be simple zeros of f , and since f ′′/f has no zeros they cannot be zeros of f ′′ of
multiplicity greater than 1.

Define the sets W+ and W− using

H+ = {z ∈ C : Im z > 0}, W± = {z ∈ H+ : ±F (z) ∈ H+}. (4.2)

The next lemma is fairly standard and goes back to Sheil-Small [32].

Lemma 4.3. Let x0 ∈ R be a zero of f ′/f . If (f ′/f)′(x0) < 0 then x0 ∈
∂W−, while if (f ′/f)′(x0) > 0 then x0 ∈ ∂W+. Poles of f are repelling fixpoints
of F and lie in ∂W+ \ ∂W−.

Proof. The first two assertions hold since as z → x0 from within H+ the sign
of Im (−f(z)/f ′(z)) is the same as that of Im (f ′(z)/f(z)). Furthermore, if x1 is
a pole of f of multiplicity m1 then F (x1) = x1 and F ′(x1) = 1 + 1/m1 > 1.
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Lemma 4.4. The following statements hold.

(i) If F is transcendental and has finitely many asymptotic values then all but
finitely many zeros of f are simple.

(ii) If F is rational and either F (∞) = ∞ or ∞ is not a multiple point of F ,
then all zeros of f in C are simple.

Proof. This uses standard facts involving iteration [33]. To prove (i), observe
that a multiple zero of f is an attracting, but not super-attracting, fixpoint of
F , and so under iteration of F attracts a critical or asymptotic value of F , while
zeros of F ′ in C are fixpoints of F . Now (ii) follows since the only singular values
of F−1 are the values taken by F at multiple points in C∪ {∞}, all of which are
fixpoints of F by Lemma 4.2 and the assumptions of (ii).

Denote by ∂D the boundary of a domain D with respect to C.

Lemma 4.5. Let C,D be domains with C ⊆ D ⊆ H+ and R ⊆ ∂D, such
that F maps C univalently onto D. Then ∂C contains at most one point which
is a pole of f .

Proof. Suppose that y1, y2 ∈ ∂C are distinct poles of f . Each yj is a real
repelling fixpoint of F and the branch of F−1 mapping D to C extends by reflec-
tion to a small neighbourhood Uj of yj , with an attracting fixpoint at yj . The
iterates (F−1)n of F−1 : D → C ⊆ D ⊆ H+ form a normal family on D, but as
n→∞ they tend to the constant yj on D ∩ Uj , a contradiction.

Lemma 4.6. Let A be a component of W+, and suppose that a closed interval
[a, b] lies in ∂A ∩ R, with a < b and f(a), f(b) ∈ {0,∞}, and with f(x) 6= 0,∞
on (a, b). Then one of the following holds:

(A) f(a) 6= f(b) and L = f ′/f has no zeros in (a, b);

(B) f(a) = f(b) = ∞, the function L has exactly one zero c in (a, b), and c
satisfies L′(c) > 0, while F does not map A univalently onto H+.

Proof. Observe first that all zeros of L in C are simple, by Lemma 4.2,
and that if f(a) = f(b) = ∞ then F cannot map A univalently onto H+, by
Lemma 4.5. Moreover, if f(a) 6= f(b) then L = f ′/f has an even number of zeros
in (a, b). It follows that if neither (A) nor (B) holds then there exists at least one
zero d of L in (a, b) with L′(d) < 0, contradicting Lemma 4.3.

Lemma 4.7. Let A be a component of W+ which is mapped univalently onto
H+ by F , and assume that x1 ∈ ∂A∩R is a zero of L = f ′/f . Then at least one
of (−∞, x1] and [x1,+∞) lies in ∂A.

Proof. Assume the contrary. Since all multiple points of F in C are zeros of
f , by Lemma 4.2, it is possible to start at x1 and follow R in each direction until
the first encounter with a zero or pole of f , giving a closed interval [a, b] ⊆ ∂A ∩
R, with a < x1 < b, satisfying the hypotheses of Lemma 4.6; this is impossible,
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since alternative (A) is incompatible with the existence of x1 and (B) with F
mapping A univalently onto H+.

Lemma 4.8. Let A be a component of W+. Then A is unbounded.

Proof. Assume the contrary: since F has no critical values in C \ R, the
mapping F : A→ H+ is univalent and onto. Thus F must have a pole on ∂A ∩
R, which contradicts Lemma 4.7.

Lemma 4.9. Let A be a bounded component of W−. Then −F maps A
univalently onto H+, and ∂A consists of a closed interval [a, b], where −∞ <
a < b < +∞ and f(a) = f(b) = 0, together with a Jordan curve λ which joins a
to b via H+. Moreover, ∂A contains precisely one zero x0 ∈ (a, b) of L = f ′/f .

Proof. First, F must have a pole on ∂A, and so on ∂A ∩ R. Second, the
mapping is univalent since F has no critical values in C \ R. Finally, the nature
of the boundary follows from the absence of bounded components of W+.

Definition 4.10. A finite chain D of bounded components of W− will mean
the following:

(a) D is the union of N ∈ N bounded components C1, . . . , CN of W−, each as
in Lemma 4.9;

(b) the boundary of each Cj consists of a closed interval [aj , bj ], where −∞ <
aj < bj < +∞, together with a Jordan curve λj which joins aj to bj via H+;

(c) the boundaries of the Cj are disjoint except that bj−1 = aj .

Such a finite chain D will be called maximal if D′ = D whenever D′ is a finite
chain of bounded components of W− with D ⊆ D′.

Lemma 4.11. Let D be a maximal finite chain of bounded components of
W− as in Definition 4.10. Then a2 = b1, . . . , aN = bN−1 are common simple
zeros of f and f ′′, and double zeros of F ′, and there exists a component A of W+

such that

λ1 ∪ · · · ∪ λN ⊆ ∂A.

Moreover, if x∗ = a1 or x∗ = bN then x∗ satisfies exactly one of the following:
(i) x∗ is a simple zero of F ′ and a simple zero of f , but not a zero of f ′′; (ii) x∗

is a double zero of F ′, and a common zero of f and f ′′, lying on the boundary of
an unbounded component B of W−.

Proof. This follows from the maximality of D and Lemmas 4.2 and 4.9.

5. The case where f is a rational function

Proposition 5.1. Assume that f is a rational function which satisfies the
hypotheses of Theorem 1.2. Then there exist α1, α2, α3 ∈ R with α1α2 6= 0 such
that g(z) = α1f(α2z + α3) is one of the functions Fj in (v)–(viii) of Theorem
1.2.
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The whole of this section will be occupied with the proof of Proposition 5.1.
First, f/f ′′ is a polynomial and

L(z) =
f ′(z)

f(z)
=
m

z
+O(|z|−2) as z →∞, (5.1)

where m is the number of zeros minus the number of poles, counting multiplicities,
of f in the finite plane. Further, F (∞) exists and is real or infinite, and all
components of W± are mapped univalently onto H+ by ±F .

5.1. The case where m 6= 0, 1. Assume that m 6= 0, 1 in (5.1): then

f ′′(z)

f(z)
= L′(z) + L(z)2 =

m(m− 1)

z2
+O(|z|−3) as z →∞. (5.2)

Thus f/f ′′ has degree 2 and so has either one real double zero, or two simple real
zeros.

Suppose that f/f ′′ has a double zero. Then applying a real translation in the
z plane leads to f(z)/f ′′(z) = cz2 for some real constant c, and comparison with
(5.2) forces f to satisfy

z2y′′(z) = m(m− 1)y(z),

which has linearly independent solutions zdj , where d1 = m 6= 0, 1 and d2 = 1−
m 6= 0, 1. If f is a constant multiple of zdj , for some j, then clearly f satisfies
conclusion (v) of Theorem 1.2. The only remaining possibility in this subcase is
that there exist a1, a2 ∈ C \ {0} with

f(z) = a1z
m + a2z

1−m = zm(a1 + a2z
1−2m).

Since f has only real zeros, the odd integer 1 − 2m must be ±1, and either
possibility gives m = 0 or m = 1, a contradiction.

Assume next that f/f ′′ has two simple zeros, which implies that f has no
poles in C and is a polynomial of degree n ≥ 2. A real linear change of variables
then leads to

z(z − 1)f ′′(z) = df(z), d ∈ R \ {0}.

A comparison of leading terms shows that d = n(n− 1), giving equation (1.5), so
that f satisfies conclusion (vi) of Theorem 1.2, by Lemma 2.3.

5.2. The case m = 1. Suppose that m = 1 in (5.1): if f has no poles in C
then evidently f is a linear function, contradicting the assumption that f ′′/f has
no zeros. Assume for the remainder of this section that f has at least one pole
in C. Then a real linear re-scaling delivers c ∈ R \ {0} and q ≥ 1 such that, as
z →∞ and ζ = 1/z → 0,

f(z) = z
(

1 +
c

zq+1
+ · · ·

)
, J(ζ) =

1

f(1/ζ)
= ζ(1−cζq+1+· · · ) = ζ−cζq+2+· · · .
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The flower theorem from complex dynamics [33] (see [3, Lemma 10] for a conve-
nient statement of the theorem as applied here) gives q+ 1 components Uj of the
Fatou set of J , each with 0 ∈ ∂Uj and containing a critical value ζj of J , such
that the iterates Jn tend to 0 on Uj . Moreover the Uj can be labelled so that, as
n→ +∞,

arg Jn(ζj)→
2πj − arg c

q + 1
.

Since all critical values of J belong to R ∪ {∞}, because those of f do, while
J(R ∪ {∞}) ⊆ R ∪ {∞}, this gives a contradiction unless q = 1.

It follows that, again as z →∞,

f(z) = z + c/z + · · · , f ′(z) = 1− c/z2 + · · · , f ′′(z) = 2c/z3 + · · · ,
f(z)

f ′(z)
=
z(1 + c/z2 + · · · )

1− c/z2 + · · ·
= z(1 + 2c/z2 + · · · ) = z + 2c/z + · · · ,

F (z) = −2c/z + · · · , f ′′(z)

f(z)
= 2c/z4 + · · · . (5.3)

Hence W+ and W− have one unbounded component A between them. Moreover,
all zeros of f are simple by Lemma 4.4.

Since f has at least one pole in C, Lemmas 4.3, 4.5, and 4.8 imply that A
is a component of W+ and f has exactly one pole x0 in C, of order n say, and
hence n + 1 zeros in C, all simple. Furthermore, each of these simple zeros u of
f is a multiple point of F and so lies in ∂W+ ∩ ∂W−. Because W− has only
bounded components, each u belongs to the boundary of a maximal finite chain
D of bounded components of W− as in Definition 4.10.

Take such a maximal finite chain D: then the unique pole x0 of f does not
lie on ∂D, by Lemma 4.3. Moreover, with the notation of Definition 4.10 and
Lemma 4.11, a1 and bN are simple poles of f ′′/f , but the intermediate points
aj = bj−1, j = 2, . . . , N , are neither zeros nor poles of f ′′/f . Hence the closure
of each such D contributes exactly 2 to the number of poles of f ′′/f in C. Since
f ′′/f has a double pole at x0, and no zeros in C, (5.3) implies that there exists
precisely one maximal finite chain D.

Hence among the n + 1 zeros of f , precisely n − 1 are also zeros of f ′′, and
f/f ′′ has degree 4 and two simple zeros at the ends a1, bN of D, plus one double
zero at x0. Since x0 ∈ ∂A \ ∂D, a real linear change of independent variable
makes it possible to assume that x0 = 0 and ∂D ∩ R = [1,K] for some K > 1.
Hence f satisfies

z2(z − 1)(z −K)f ′′(z) = df(z), d ∈ R,

and expanding about z = 0 shows that d = Kn(n + 1), giving equation (1.8).
Lemma 2.5 then implies that f satisfies conclusion (vii) of Theorem 1.2. This
completes the discussion of the case m = 1.

5.3. The case m = 0. Suppose that m = 0 in (5.1): then f has as many
zeros as poles in C, counting multiplicities. Moreover, f(∞) is finite and real but
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non-zero, and it may be assumed that f(∞) = 1. Further, there exist c ∈ R \ {0}
and s ≥ 1 such that, as z →∞,

f(z)− 1 ∼ cz−s, L(z) =
f ′(z)

f(z)
∼ f ′(z) ∼ −csz−1−s, F (z) ∼ z1+s

cs
, (5.4)

as well as
f ′′(z)

f(z)
= L′(z) + L(z)2 ∼ cs(s+ 1)z−2−s. (5.5)

Thus F has a pole of multiplicity 1 + s ≥ 2 at infinity and so a super-attracting
fixpoint there. Moreover, Lemma 4.4 again implies that all zeros of f are simple.
Assume that W+ has p components, all necessarily unbounded by Lemma 4.8,
and W− has q unbounded components, while the polynomial f/f ′′ has r zeros in
C arising from zeros of f , all of which must be simple zeros of f which are not
zeros of f ′′.

Each component C of W+ has at most one pole of f on its boundary, by
Lemma 4.5, and so precisely one, by Lemma 4.3 and the Denjoy–Wolff theorem
[33] applied to the inverse function F−1 : H+ → C, coupled with the fact that
∞ is a super-attracting fixpoint of F (which implies in particular that F is not
a Möbius transformation and C 6= H+). Thus f has poles at precisely p points,
and each is a double zero of f/f ′′. It now follows, in light of (5.4) and (5.5), that

|p− q| ≤ 1, p+ q = 1 + s ≥ 2, 2p+ r = 2 + s = p+ q + 1,

r = q − p+ 1 ∈ {0, 1, 2}. (5.6)

Lemma 5.2. There do not exist x1, x2, x3 ∈ R such that x1 < x2 < x3 and
x1, x3 are poles of f while x2 is a zero of f ′/f .

Proof. Assume that such a triple x1, x2, x3 does exist, and without loss of
generality that f has no poles in (x1, x3). No zero of f ′/f can lie on the boundary
of an unbounded component B of W±, by the univalence of F on B and the fact
that F (∞) = ∞. In particular, by Lemma 4.8, x2 must lie on the boundary of
a bounded component of W−, and hence on the boundary of a maximal finite
chain D of bounded components Cj of W− joined end to end as in Definition
4.10 and its notation. Then, in view of Lemma 4.11, the Cj all border the same
component A of W+, and A is unbounded, with exactly one pole x0 of f on ∂A.
On the other hand, ∂D contains no poles of f , and so x1 < a1 < x2 < bN < x3.

Suppose that x1 6= x0. Then f has no poles in (x1, a1), by the choice of x1
and x3, and x1 lies on the boundary of some component A′ 6= A of W+. Since
a1, which is a zero of f , lies on ∂A, there must exist at least one zero of F ′, and
so of f , in (x1, a1): let c1 be the nearest such zero to a1. Then there must exist
a zero d1 of L = f ′/f with c1 < d1 < a1 and L′(d1) < 0, which forces d1 ∈ ∂W−,
so that d1 lies on the boundary of a bounded component of W−. Because f has
no zeros or poles in (c1, a1), this contradicts the maximality of the finite chain D.

Similar reasoning if x3 6= x0 completes the proof of the lemma.

Lemma 5.3. The integer s in (5.4) satisfies s ≤ 2, and if s = 2, then c < 0.
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Proof. Suppose that s > 2, or s = 2 and c > 0. Then there exist a large
positive R and θj satisfying 0 ≤ θ1 < θ2 < θ3 ≤ π, with the property that
(−1)j+1(f(Reiθj )− 1) is small, real and positive.

Thus Reiθ2 lies on a level curve λ2 in the closed upper half-plane on which
f(z) is real and 0 < f(z) < 1, and following λ2 in the direction of decreasing f
leads to a real zero y2 of f , possibly via one or more real zeros of f ′. Similarly,
for j = 1, 3, the point Reiθj lies on a level curve γj in the closed upper half-plane
on which f(z) is real and 1 < f(z) < +∞. Follow each γj in the direction of
increasing f : then γj must approach a real pole xj of f .

Furthermore, γ1 and γ3 do not meet λ2 at all, and do not meet each other in
the open half-plane H+. Hence it must be the case that x1 > y2 > x3. Thus y2
lies in a unbounded component U of the set {z ∈ C : |f(z)| < 1}, which cannot
contain a zero of f ′, by Lemma 5.2. By the Riemann–Hurwitz formula [33],
or by analytic continuation of f−1, the function f is univalent on U . But this
contradicts the fact that y2, λ2 and the reflection of λ2 across R must all lie
in U .

If s = 1 then r = 1 and p = 1 by (5.6), and f/f ′′ has degree 3, and after a real
linear re-scaling it may be assumed that f has a pole at 0, of order n say, while
the remaining zero of f ′/f ′′ lies at 1. Thus f satisfies (1.10) and is, by Lemma 2.6,
a constant multiple of the function F4 in conclusion (viii) of Theorem 1.2.

Now suppose s = 2 and c < 0. Then q = 2, p = 1, and r = 2 by (5.4) and
(5.6). Hence f/f ′′ has degree 4, with one double zero at the unique pole of f and
two simple zeros. After a linear re-scaling it may be assumed that 0 is a pole of
f of order n, and that the simple zeros of f/f ′′ are 1 and K 6= 0, 1. This leads
to (1.8) and, in view of Lemma 2.5, to conclusion (vii) of Theorem 1.2, which
completes the proof of Proposition 5.1.

6. Continuation of the proof in the transcendental case

Assume henceforth that f is transcendental and satisfies the hypotheses of
Theorem 1.2. Since all zeros and poles of f and f ′′ are real, the Tsuji characteristic
of L = f ′/f satisfies [2]

T(r, L) = O(log r) as r → +∞. (6.1)

Lemma 6.1. The function f/f ′′ is real entire and has order of growth at
most 1. If f/f ′′ is a polynomial then f satisfies conclusion (i), (ii), or (iv) of
Theorem 1.2.

Proof. The growth estimate follows from (6.1) and Lemma 3.4. If f/f ′′ is
a polynomial then f has finitely many poles and a standard application of the
Wiman–Valiron theory [8] implies that f/f ′′ has degree at most 1. If f/f ′′ is
constant then evidently f satisfies conclusion (i) or (ii), whereas if f/f ′′ has
degree 1 a real linear change of variables leads to f satisfying equation (1.3), in
which case Lemma 2.2 delivers conclusion (iv).
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Assume henceforth that f and f/f ′′ are both transcendental. Then Lemmas
3.1 and 6.1 together imply that

lim
y→+∞
y∈R

log |f(iy)/f ′′(iy)|
log y

= +∞. (6.2)

Lemma 6.2. f has infinitely many zeros.

Proof. Suppose that f has finitely many zeros. Then so has f ′′, and hence
f ′/f is a rational function, by the main result of [16], and so is f ′′/f , contrary
to the assumption just made.

Lemma 6.3. f has infinitely many poles.

Proof. Suppose that f has finitely many poles. Then Section 3.1 shows that
L = f ′/f has a representation L = Pψ, where P and ψ are real meromorphic
functions such that ψ(H+) ⊆ H+ and P has finitely many poles. Combining
(3.1) with (6.1) delivers T(r, P ) = O(log r) as r → +∞, and so P has order at
most 1, by Lemma 3.4.

Suppose first that P is transcendental with infinitely many zeros. Then
Lemma 3.1 implies that P (z) tends to infinity as z → ∞ on iR+, faster than
any power of |z|, and so does L(z), by (3.1). The fact that P has real zeros
implies that, again as z →∞ on iR+,

L′(z)

L(z)
=
P ′(z)

P (z)
+
ψ′(z)

ψ(z)
= O(|z|),

f ′′(z)

f(z)
= L(z)2 + L′(z) = L(z)2 +O(|z|)L(z)→∞,

which contradicts (6.2).

Next, if P is transcendental with finitely many zeros then zL(z) tends to 0 on
one of the rays arg z = π/4, 3π/4 and to ∞ on the other, by (3.1), contradicting
Lemma 4.1.

Hence P must be a rational function, and f has finite order [2]. Moreover, it
follows from (3.1) and (6.2) that, as z →∞ on iR+,

L(z)2 + L′(z) = L(z)2 +O

(
1

|z|

)
L(z) =

f ′′(z)

f(z)
= O

(
1

|z|2

)
, zL(z) = O (1) .

Let δ be small and positive. Then Lemma 4.1 implies that, as z → ∞ with δ <
arg z < π− δ, zL(z) is bounded and log |f(z)| = O(log |z|). An application of the
Phragmén–Lindelöf principle now shows that f is a rational function, contrary
to assumption.

Lemma 6.4. The following statements hold for asymptotic values β ∈ C ∪
{∞} of F , that is, values β such that F (z)→ β as z →∞ on a path Γβ.

(i) There exist at most two β ∈ C ∪ {∞} such that Γβ ∩ R is unbounded.
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(ii) There exist finitely many β ∈ C for which Γβ ∩ R is bounded, and F has
finitely many asymptotic values.

(iii) All transcendental singularities of F−1 over finite values are logarithmic.

(iv) F has at most one asymptotic value β ∈ C \ R with Γβ \H+ bounded.

Proof. To prove (i) just note that if Γβ ∩R is unbounded then β ∈ R ∪ {∞}
and it may be assumed that Γβ lies in the closed upper half plane; hence there
is at most one β such that Γβ ∩ R+ is unbounded, and at most one for which
Γβ ∩ R− is unbounded. Next, the first assertion of (ii) follows from Lemma 3.3,
and on combination with (i) shows that F has finitely many asymptotic values.
Since all critical points of F are fixpoints of F , all finite singular values of F−1

are isolated, so that (iii) is a consequence of the argument from [28, p.287]. The
fact that F−1 has at most one direct singularity lying in H+, by Lemma 3.3, then
delivers (iv).

Lemma 6.5. Let D be a neighbourhood of a logarithmic singularity of F−1

over β ∈ R, such that D ∩ R+ is unbounded. Then there exists a ∈ R with
[a,+∞) ⊆ D, and f has finitely many zeros and poles on R+. Moreover, there
cannot exist a neighbourhood E ⊆ C \ R of a transcendental singularity of F−1

over a finite value γ 6= β.

Proof. The first two assertions hold since D is simply connected and sym-
metric with respect to R, while all zeros and poles of f are fixpoints of F .

Next, assume that E and γ do exist, without loss of generality with E ⊆ H+.
There must exist a path tending to infinity in D ∩H+ on which F (z)→ β, and
so F−1 has a direct singularity over γ, lying in H+, by Lemma 6.4, plus one over
∞, which contradicts Lemma 3.3.

Lemma 6.6. The finite asymptotic values of F comprise either a pair β, β,
where β ∈ C \R, or one value β ∈ R. Furthermore, all but finitely many zeros of
f are simple.

Proof. Suppose that β, γ ∈ C are distinct asymptotic values of F : then there
exist simply connected neighbourhoods D,E of logarithmic singularities of F−1

over β, γ respectively, by Lemma 6.4. If D∩R+ and E∩R− are both unbounded
then β, γ are real and Lemma 6.5, applied to f(z) and f(−z), implies that f has
finitely many poles, contrary to assumption.

It may therefore be assumed that either D or E lies in C \R, and hence that
both do, by Lemma 6.5 again. But then it must be the case that one of D,E lies
in H+ and the other in the lower half-plane H−, by Lemma 3.3, and moreover
that γ = β.

The last assertion then follows from Lemma 4.4.

Lemma 6.7. Suppose that f ′/f has finitely many zeros. Then f satisfies
conclusion (iii) of Theorem 1.2.
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Proof. This can be deduced from [19] but the following proof is included in
order to keep the account self-contained. The function f/f ′ has finitely many
poles, and so has order at most 1 by (6.1) and Lemma 3.4. On the other hand,
f/f ′ is transcendental, by Lemma 6.2.

Since all but finitely many zeros of f are simple, by Lemma 6.6, the function
f can be written in the form f = f1/f2, in which f1, f2 are real entire functions
with real zeros and no common zeros, and f1 has order at most 1. Here each
fj has infinitely many zeros, by Lemmas 6.2 and 6.3. Use the Levin–Ostrovskii
factorisation of f ′j/fj to write

f ′

f
=
f ′1
f1
− f ′2
f2

= φ1ψ1 − φ2ψ2,

in which φj and ψj are real meromorphic, while ψj(H
+) ⊆ H+ and φj has finitely

many poles. Since f1 has finite order, (3.1) leads to m(r, φ1) = O(log r) as r →
∞, and so φ1 must be a rational function. It then follows from (3.1), (6.1) and
standard properties of the Tsuji characteristic that T(r, φ2) = O(log r) as r →
+∞ and so φ2 has order at most 1 by Lemma 3.4.

Let δ be small and positive and apply Lemma 3.1 to f/f ′. On combination
with Lemma 4.1 and a standard estimate for f ′1/f1 [6], this yields, as z → ∞
with δ < arg z < π − δ,

zL(z)→ 0,
f ′1(z)

f1(z)
= O (|z|) and

f ′2(z)

f2(z)
= O (|z|) . (6.3)

It then follows in view of (3.1) that log+ |φ2(z)| ≤ 3 log |z| as z →∞ in the same
sector. Since δ may be chosen arbitrarily small, an application of the Phragmén–
Lindelöf principle now shows that φ2 is a rational function, so that f2 has finite
order [2] and so has f .

The next step is to show that f and f ′′ have, with finitely many exceptions,
the same zeros. Since f ′′/f has no zeros, and all but finitely many zeros of f are
simple, it suffices to show that all but finitely many zeros of f are zeros of f ′′.
Suppose then that x1, x2, x3 ∈ R are zeros of f but not of f ′′, such that x1 <
x2 < x3, while |x1| and |x3| are large and x1x3 > 0. Thus x2 is a simple zero of
F ′ and lies on the boundary of a component of A of W−. Hence it is possible to
move along the real axis, away from x2, while remaining on ∂A. Since f cannot
have a pole on ∂A, by Lemma 4.3, it follows that continuing along R in the same
direction until the first encounter with a pole or zero of f gives rise to a closed
interval I ⊆ ∂A, its endpoints being zeros of f . This interval I must then contain
a zero of f ′/f , a contradiction.

Since f ′/f has finitely many zeros and all but finitely many zeros of f are
simple, it now follows that the function

R =
f ′′

ff ′

has finite order and finitely many poles. As z → ∞ in δ < arg z < π − δ,
integration of f ′/f using (6.3), coupled with a standard estimate for f ′′/f ′ from
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[6], yields

log+ |R(z)| ≤ log+
1

|f(z)|
+ log+

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ = O(log |z|).

The Phragmén–Lindelöf principle forces R to be a real rational function, and so
all but finitely many poles of f are simple. Now write R = 2/S and

2ff ′ = Sf ′′, (f2 − Sf ′ + S′f)′ = 2ff ′ − Sf ′′ − S′f ′ + S′f ′ + S′′f = S′′f.

Hence S′′f is the derivative of a meromorphic function and, since f has infinitely
many simple poles, by Lemma 6.3, the rational function S′′ must vanish identi-
cally and f2 − Sf ′ + S′f must be a constant c. This yields a Riccati equation

Sf ′ = f2 + S′f − c = P2(f) = (f −A1)(f −A2), Aj ∈ C, −c = A1A2. (6.4)

If A1 = A2, then 1/S is the derivative of the transcendental meromorphic function
−(f −A1)

−1, which is obviously impossible. Assume that A1 6= A2: then A1, A2

are distinct Picard values, and hence asymptotic values, of f and so A2 = A1 by
Lemma 6.6. Moreover, partial fractions yields

f ′

f −A1
− f ′

f −A2
=
A1 −A2

S
.

Thus S must be constant, since otherwise f is rational, a contradiction. It now
follows from (6.4) that Sf ′ = f2− c and so A1 +A2 = 0. Hence A1 and A2 = A1

are purely imaginary, while −c = A1A2 > 0, and conclusion (iii) of Theorem 1.2
follows easily.

It may be assumed henceforth that

f and f ′/f each have infinitely many zeros and infinitely many poles. (6.5)

7. Non-real asymptotic values

Proposition 7.1. F has no finite non-real asymptotic values.

To prove Proposition 7.1, assume for the remainder of this section that F has
an asymptotic value β ∈ C \ R. Then by Lemma 6.6 and the argument of [28,
p. 287], it may be assumed that the only finite asymptotic values of F are β and
β and that there exists an unbounded component A of W± which contains no β-
points of F , and which is mapped “infinite to one” by F onto H±\{β}, where H−

denotes the open lower half-plane. Moreover, the corresponding transcendental
singularity of F−1 over β is logarithmic, and A is simply connected. The first
main step in the proof of Proposition 7.1 will be accomplished via the following
lemma.

Lemma 7.2. There does not exist a component B of W± such that ±F maps
B univalently onto H+ and F (z)→∞ as z →∞ on a path in B.
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Proof. Assume the contrary, let δ be small and positive, and set

u(z) = log+
δ

|F (z)− β|
(z ∈ A), u(z) = 0 (z 6∈ A),

as well as B(t, u) = max{u(z) : |z| = t}. Then u is subharmonic and non-constant
in the plane and Lemma 3.4 yields, for R ≥ 1,∫ +∞

R

B(r/2, u)

r3
dr ≤ 3

2π

∫ +∞

R

(∫ π

0
u(reiθ) dθ

)
dr

r3

≤ 3

2π

∫ +∞

R

(∫ π

0
log+ 1/|F (reiθ)− β| dθ

)
dr

r3

≤ 3

∫ +∞

R

m(r, 1/(F − β))

r2
dr

≤ 3

∫ +∞

R

T(r, F ) +O(log r)

r2
dr ≤ O

(
logR

R

)
.

Since B(r/2, u) is non-decreasing this yields B(R, u) = O(R logR) as R→ +∞.
Let δ and 1/r0 be small and positive and denote by θA(r), θB(r) the angular

measure of the intersection with the circle |z| = r ≥ r0 of A,B respectively.
Suppose first that θA(r) < π(1 − δ) on a set F1 of upper logarithmic density at
least δ. Then, since A ⊆ H+, all sufficiently large r ∈ F1 satisfy [2, Lemma 2.1]

(1 + o(1)) log r ≥ logB(2r, u) ≥
∫ r

r0

πdt

tθA(t)
−O(1)

≥
∫
[r0,r]∩F1

dt

(1− δ)t
+

∫
[r0,r]\F1

dt

t
−O(1)

≥
∫
[r0,r]∩F1

δ dt

(1− δ)t
+ log r −O(1) ≥

(
δ2

2(1− δ)
+ 1

)
log r,

an evident contradiction.
Hence there exists a set E1 of lower logarithmic density at least 1 − δ on

which θA(r) ≥ π(1− δ) and so θB(r) ≤ πδ, since A,B are evidently not the same
component of W±. The function w = ±iF (z) maps B conformally onto the right
half-plane: let z = G(w) be the inverse mapping, and let γ0 be the image in B
under G of the real interval [1,+∞), starting from z0 = G(1). Then γ0 tends
either to infinity or to a pole of F , and so to infinity since F is univalent on B. Let
r∗ = |z0| and let z = G(X) ∈ γ0, with X ≥ 1 and r = |z| large. Then applying
Koebe’s quarter theorem to G on the disc of centre w ∈ [1, X] and radius w leads
to

log |F (z)| = logX =

∫
[1,X]

|dw|
|w|

=

∫ z

z0

|dz|
|w||G′(w)|

≥
∫ z

z0

|dz|
4|z|θB(|z|)

≥
∫ r

r∗

dt

4tθB(t)

≥
∫
[r∗,r]∩E1

dt

4πδt
≥
(

1− 2δ

4πδ

)
log r ≥ 2 log r,
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in which the second integral is from z0 to z along γ0. This delivers, as z →∞ on
γ0,

|F (z)| = |z(1− 1/zL(z))| ≥ |z|2, zL(z)→ 0.

On the other hand, there evidently exists a path γ1, tending to infinity in A, on
which F (z)→ β and hence zL(z)→ 1. Since L has only real poles, the inverse of
zL(z) must have a direct singularity over∞, lying in H+ and separating γ0 from
γ1. But L has only real zeros, and so the inverse of zL(z) must have a direct
singularity over 0, lying in H+ and separating the singularity over ∞ from γ1.
This contradicts Lemma 3.3.

Because the component A of W± is unbounded and simply connected and
F has no finite real asymptotic values, the boundary of A consists of countably
many pairwise disjoint piecewise analytic simple curves γj , each going to infinity
in both directions and mapped by F onto R or R ∪ {∞}, and if F (γj) = R ∪
{∞} then γj must meet R, since F has only real poles. Suppose that one of these
curves, γ say, lies wholly in H+; then γ is mapped by F onto R and forms part of
the boundary of a component A′ 6= A of W∓. Let z∗ ∈ A′: since F−1 cannot have
two logarithmic singularities lying in H+, by Lemma 3.3, analytic continuation
of a local branch of the inverse of ∓F shows that z∗ lies in a component of W∓

which is mapped univalently onto H+, and which must be A′, so that γ = ∂A′

and F (z) tends to ∞ along a path in A′, contradicting Lemma 6.6. Hence each
γj meets R, and there is only one, because if γj meets R then it must separate
any other γj′ from R.

Thus ∂A consists of a single curve, which is mapped “infinite to one” onto R∪
{∞}, and passes in each direction through infinitely many poles of F , all of which
are real. In particular, F−1({∞}) and ∂A ∩ R are neither bounded above nor
bounded below, and neither W+ nor W− has any unbounded component other
than A. Since W+ has no bounded components, by Lemma 4.7, while f has by
(6.5) infinitely many poles, all of which lie in ∂W+ by Lemma 4.3, it must be the
case that A = W+ and β ∈ H+, and all components of W− must be bounded.

Let K0 = {β + it : 0 ≤ t < +∞}. Then each pole of F on ∂A is the starting
point of a simple curve Λ which tends to infinity in A and is mapped injectively
onto {β + it : 0 < t ≤ +∞} by F . There are infinitely many of these Λ and they
are pairwise disjoint. Moreover, at most finitely many such Λ meet the vertical
line segment I0 = [Reβ, β], because otherwise ReF would be constant on I0 and
on the curves Λ, contradicting the absence of non-real critical points of F . Choose
a component I1 of R \ {Reβ} which contains infinitely many zeros of f : this is
possible by Lemma 6.2. Because ∂A passes in each direction through infinitely
many real poles of F , one of the curves Λ can be chosen to start at a pole y1 ∈
∂A∩ I1 of F and not meet I0. If this curve is labelled K1 then the set H+ \K1 is
the union of two disjoint domains U1, U2, with β ∈ U1 and with infinitely many
zeros of f lying on the boundary of U2.

Lemma 7.3. Choose a simple path Γ = K2 which starts at β, tends to infinity
and lies in U1, such that K2 does not meet K0 except at β itself. If y3 ∈ ∂A ∩
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∂U2 is a pole of F with y3 6= y1, then there exists a path K3 ⊆ A∪ {y3}, starting
at y3 and tending to infinity, which is mapped injectively by F onto K2 ∪ {∞} \
{β}. Moreover, K3 lies in U2 ∪ {y3}.

Proof. Here K2 can be constructed using the fact that K1 does not meet
the line segment I0: just follow I0 vertically downwards from β and then go to
infinity within U1, keeping sufficiently close to the real axis to avoid K1.

The existence of K3 follows from analytic continuation along K2 of the branch
of F−1 which maps ∞ to y3. The path K3 lies in A ∪ {y3} and meets U2, but
cannot meet K1 because K3 and K1 start at different poles of F and

F (K3 ∩K1) ⊆ F (K3) ∩ F (K1) = (K2 ∩K0) ∪ {∞} \ {β} = {∞}.

It follows that K3 ⊆ U2 ∪ {y3}.

Take a zero x1 ∈ ∂U2 of f with |x1| large, which is possible by the choice
of U2. Then x1 is a simple zero of f and a multiple point of F , and x∗ lies on
∂W+ = ∂A. Moreover, F (z) describes R∪{∞} monotonely and “infinite to one”
as the curve ∂A is followed in each direction: let y3, y4 be the first poles of F
which are thereby reached. Since |x1| is large it may be assumed that |y3| and
|y4| are large and y3 < x1 < y4, and that y3, y4 ∈ ∂U2.

Let Ω = H+ \ K2. Then, since F (x1) = x1 ∈ R, the point x1 lies on the
boundary of a component C ⊆ A of F−1(Ω), and F maps C univalently onto
Ω, by analytic continuation of F−1 and the fact that β ∈ K2. Furthermore, the
parts of ∂A described in reaching y3, y4 from x1 belong also to ∂C. In particular,
y3, y4 both lie in ∂U2 ∩ ∂C ∩ ∂A.

Lemma 7.3 gives paths K3,K4 with Kj ⊆ (A∩U2)∪{yj}, each starting at yj
and tending to infinity, mapped by F onto K2 ∪ {∞} \ {β}. Since K2 lies in U1,
and no path in C can cross K3 or K4, it follows that C lies in U2 and thus in Ω.

Now start at y3, which is a simple pole of F in ∂A∩R, and let z follow ∂A in
each direction until the first encounter with a pole of F or a zero or a pole of f :
then z does not leave R as this is done, since all critical points of F are zeros of
f . Neither of the points so reached can be a pole of F , by Lemmas 4.2 and 4.3,
since if zeros of L are not separated by by a zero or pole of f then the values of
L′ at these two zeros must differ in sign. Thus Lemma 4.6 implies that that both
these points must be poles of f , and one of them, y′3 say, lies on the part of the
curve ∂A between y3 and x1, which also lies in ∂C. Doing the same for y4 shows
that ∂C contains at least two distinct poles y′3, y

′
4 of f . But this conclusion is

incompatible with the choice D = Ω in Lemma 4.5, giving a contradiction and
hence completing the proof of Proposition 7.1.

8. Completion of the proof in the transcendental case

Lemma 8.1. All components of W± are mapped univalently onto H+ by ±F ,
and if x1 is a zero of f ′/f with |x1| large, then L′(x1) < 0 and x1 does not lie on
the boundary of a component of W+.
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Proof. This follows from Lemmas 4.3 and 4.7, in conjunction with Proposi-
tion 7.1.

Proposition 8.2. There do not exist sequences xj of zeros of f ′/f and yj of
poles of f both tending to +∞.

Proof. Assume the contrary: then it is possible to choose a large positive X0

and enumerate all the zeros xj of f ′/f and distinct poles yj of f in (X0,+∞) as

X0 < x0 < x1 < x2 < · · · , X0 < y0 < y1 < y2 < · · · .

Let Aj be the component of W+ with yj ∈ ∂Aj . By Lemmas 4.5 and 8.1, it
may be assumed that the Aj are distinct and their boundaries contain no zeros
of f ′/f . It then follows that each Aj contains a path tending to infinity on
which F (z) → ∞. Hence at most finitely many of these Aj also contain a path
tending to infinity on which F (z) tends to a finite real asymptotic value, because
otherwise F−1 would have at least two direct singularities over ∞ lying in H+,
contradicting Lemma 3.3. Thus it may be assumed further, for each j, that ∞
is the one and only asymptotic value approached by F along a path tending to
infinity in Aj .

Similar reasoning shows that it may now also be assumed that each xj lies
on the boundary of a component Bj of W−, these Bj being distinct and mapped
univalently onto H+ by −F . Hence no Bj contains a path tending to infinity on
which F (z) → ∞, and again Lemma 3.3 implies that at most finitely many Bj
contain a path on which F (z) tends to a finite real asymptotic value. Thus each
of these Bj may be assumed to be bounded.

After re-labelling if necessary, poles y1, y2 of f and a zero xm of f ′/f may
be chosen with y1 large and positive and y1 < xm < y2. Then xm lies on the
boundary of a bounded component Bm of W−, and hence on the boundary of a
maximal finite chain D of bounded components of W− as in Definition 4.10 and
its notation, and Lemma 4.11 applies to D, with [a1, bN ] ⊆ ∂D ∩ (y1, y2). Let A
be the component of W+ given by Lemma 4.11: then F maps A univalently onto
H+.

Suppose first that a1, bN are both simple zeros of F ′. Then there exist c1 <
a1 and dN > bN with [c1, a1] ∪ [bN , dN ] ⊆ ∂A. Continue along R leftwards from
a1 and rightwards from bN until the first encounter with a zero or pole of f : this
is possible since y1 < a1 < bN < y2. But then conclusion (A) of Lemma 4.6 must
hold, which gives at least two poles of f on ∂A, contradicting Lemma 4.5.

Hence Lemma 4.11 forces some x∗ ∈ {a1, bN} to be a zero of F ′ of multiplicity
2, lying on the boundary of an unbounded component B of W−. Starting from x∗,
follow the real axis, in the direction away from [a1, bN ], until the first encounter
with a zero or pole of f , again possible since y1 < a1 < bN < y2. Then the point
so reached lies on ∂B and must be a zero of f , by Lemma 4.3. But this gives a
zero of L = f ′/f and hence a pole of F lying on ∂B, so that B is one of the Bj
and hence bounded, a contradiction.
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Lemma 8.3. It may be assumed that:

(I) f has finitely many positive poles but infinitely many negative zeros;

(II) f ′/f has infinitely many positive zeros but finitely many negative zeros;

(III) there exists a large X1 ∈ (0,+∞) such that the zeros of f and f ′/f in
(X1,+∞) are simple and interlaced in the sense that if X1 < a < b and a, b
are zeros of f , then f ′/f has a zero in (a, b), while if if X1 < a < b and
a, b are zeros of f ′/f then f has a zero in (a, b).

Proof. It can certainly be assumed, by (6.5) and an application of Proposi-
tion 8.2 to f(z) and f(−z), that f has finitely many positive poles but infinitely
many negative poles, while f ′/f has finitely many negative zeros and infinitely
many positive zeros. It then follows that f must also have infinitely many negative
zeros, which proves (I) and (II). Together (I) and (II) imply (III), on combination
with Lemmas 4.2, 4.3, 6.6, and 8.1 and the fact that if X1 > 0 is large and two
zeros of f ′/f in (X1,+∞) are not separated by a pole or zero of f or f ′/f then
one of them has (f ′/f)′ > 0.

It is now possible to write
f ′

f
= Pψ, (8.1)

in which: ψ is formed as Section 3.1 using zeros 0 < u1 < u2 < · · · of f and
zeros vj ∈ (uj , uj+1) of f ′/f , and ψ satisfies ψ(H+) ⊆ H+; the function P is real
meromorphic, with finitely many zeros in C, and finitely many positive poles, but
infinitely many negative poles.

Lemma 8.4. The function P has order of growth at most 1 and satisfies

lim
x→+∞
x∈R

log |P (x)|
log x

= −∞.

Proof. The first assertion follows from (6.1), (8.1) and Lemma 3.4, applied
to 1/P . Next, since P is transcendental, applying Lemma 3.1 to 1/P leads to

lim
y→+∞
y∈R

log |P (iy)|
log y

= −∞, lim
y→+∞
y∈R

yL(iy) = 0. (8.2)

Now let δ be small and positive. Then (3.1), (8.1), and Lemma 4.1 imply that
zL(z) → 0 and P (z) → 0 as z → ∞ with δ < | arg z| < π − δ. Because P has
finite order and finitely many poles on R+, it follows from the Phragmén–Lindelöf
principle that P (z)→ 0 as z →∞ with | arg z| ≤ δ. If N1 ∈ N is large then (8.2)
and the Phragmén-Lindelöf principle now show that zN1P (z) tends to 0 on the
sector | arg z| ≤ π/2, which completes the proof.

Since ψ maps H+ into itself there exists a series representation [26]

ψ(z) = az + b+

∞∑
k=1

Ak

(
1

uk − z
− 1

uk

)
,
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in which the uk are the poles of ψ, all of which are positive and zeros of f ,
while a, b, Ak are real and Ak > 0,

∑∞
k=1Aku

−2
k < ∞. On combination with

Lemma 8.4 this implies that if k is large then the residue of f ′/f = Pψ at uk is
−P (uk)Ak = o(u−2k )o(u2k) = o(1), an obvious contradiction. This completes the
proof of Theorem 1.2.
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Спецiальний випадок гiпотези Геллерштайна, Шена
i Вiльямсона

J.K. Langley

У роботi доведено спецiальний випадок гiпотези Геллерштайна, Ше-
на i Вiльямсона щодо недiйсних нулiв похiдних дiйсних мероморфних
функцiй.

Ключовi слова: мероморфна функцiя, недiйснi нулi
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