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1. Introduction

The principal aim of this note on three-coefficient regular Sturm–Liouville op-
erators is a clarification of the following seemingly elementary-sounding question:
“Under which circumstances are eigenvalues simple or twice degenerate?”

To set the stage we recall that three-coefficient regular Sturm–Liouville dif-
ferential expressions are of the form

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ [a, b] ⊂ R, (1.1)

where the coefficients p, q, r satisfy the integrability conditions listed in Hypothe-
sis 2.1. All self-adjoint L2((a, b); rdx)-realizations associated with τ then require
separated or coupled boundary conditions involving the two interval endpoints,
a and b.

Explicitly (see Theorems 2.4 and 2.5), the separated boundary conditions
for elements g in the domain of the underlying self-adjoint operator Tα,β in
L2((a, b); rdx) are of the form

sin(α)g[1](a) + cos(α)g(a) = 0,

sin(β)g[1](b) + cos(β)g(b) = 0, α, β ∈ [0, π), (1.2)(
see (2.2) for the definition of g[1]

)
, and all corresponding self-adjoint operators

Tϕ,R in L2((a, b); rdx) with coupled boundary conditions are of the type(
g(b)

g[1](b)

)
= eiϕR

(
g(a)

g[1](a)

)
, (1.3)
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where ϕ ∈ [0, π], and R is a 2× 2 matrix with real-valued entries and detC2(R) =
1, that is, R ∈ SL(2,R).

Floquet theory in this second-order context, that is, the theory of second-
order periodic differential equations with periodic coefficients p, q, r on R with
period ω > 0 is then naturally associated with the special case ϕ ∈ [0, π], R =
I2, a = 0, and b = ω in (1.3) (see, e.g., [6, Sect. 7.5]).

Next, introducing

Y0(z, x, a) =

(
θ0(z, x, a) φ0(z, x, a)

θ
[1]
0 (z, x, a) φ

[1]
0 (z, x, a)

)
, z ∈ C, x ∈ [a, b], (1.4)

with θ0(z, · , a), φ0(z, · , a) a fundamental system of solutions of τy(z, · ) =
zy(z, · ), normalized by

Y0(z, a, a) = I2, and satisfying detC2(Y0(z, x, a)) = 1, z ∈ C, x ∈ [a, b], (1.5)

the analog of the well-known Floquet discriminant can be defined by

∆R(z) = trC2

(
R−1Y0(λ, b, a)

)/
2

=
[
R1,1φ

[1]
0 (z, b, a) +R2,2θ0(z, b, a)−R2,1φ0(z, b, a)−R1,2θ

[1]
0 (z, b, a)

]/
2,

R = (Rj,k)16j,k62 ∈ SL(2,R), z ∈ C. (1.6)

The principal results of this note then read as follows (see Theorems 3.1
and 3.2):

(i) For any α, β ∈ [0, π) and any ϕ ∈ (0, π), R ∈ SL(2,R), the eigenvalues
of Tα,β and Tϕ,R are simple. (In particular, all eigenvalues in the case of
separated boundary conditions are simple.)

(ii) For λ ∈ R to be a twice degenerate eigenvalue of Tϕ,R, the latter must be of
the form T0,R or Tπ,R for some R ∈ SL(2,R).

(iii) The following items (a)–(c) are equivalent:

(a) λ ∈ R is a twice degenerate eigenvalue of T0,R.

(b) ∆R(λ) = 1 and
.
∆R(λ) = 0; in this case,

..
∆R(λ) < 0.

(c) Y0(λ, b, a) = R.

(iv) The following items (a)–(c) are equivalent:

(a) λ ∈ R is a twice degenerate eigenvalue of Tπ,R.

(b) ∆R(λ) = −1 and
.
∆R(λ) = 0; in this case,

..
∆R(λ) > 0.

(c) Y0(λ, b, a) = −R.

In Section 2 we recall the necessary background on regular three-coefficient
Sturm–Liouville operators. The above results (i)–(iv) on multiplicities of eigen-
values are then contained in our principal Section 3.
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Notation. The inner product in a separable (complex) Hilbert space H is
denoted by ( · , · )H, and it is assumed to be linear with respect to the second
argument. If T is a linear operator mapping (a subspace of) a Hilbert space
into another, then dom(T ) denotes the domain of T . The resolvent set and the
spectrum of a closed linear operator in H will be denoted by ρ( · ) and σ( · ),
respectively. The Banach space of bounded linear operators on H is denoted by
B(H). For p ∈ [1,∞), the corresponding `p-based trace ideals will be denoted by
Bp(H) with norms abbreviated by ‖ · ‖Bp(H). Finally, we abbreviate C± = {z ∈
C | Im(z) ≷ 0}.

2. Background material on regular Sturm–Liouville operators

The following summary of background information on regular three-coefficient
Sturm–Liouville operators is taken from [6, Ch. 4].

Throughout this paper, we suppose that τ is regular, that is, we assume the
following hypotheses:

Hypothesis 2.1. Let [a, b] ⊂ R be a compact interval and suppose that p,
q, r are (Lebesgue) measurable functions on (a, b) such that the following items
(i)– (iii) hold :

(i) r > 0 a.e. on (a, b), r ∈ L1((a, b); dx).

(ii) p > 0 a.e. on (a, b), 1/p ∈ L1((a, b); dx).

(iii) q is real-valued a.e. on (a, b), q ∈ L1((a, b); dx).

To describe minimal and maximal L2((a, b); rdx)-realizations associated with
the regular three-coefficient differential expression τ on the compact interval
[a, b] ⊂ R, where

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ [a, b] ⊂ R, (2.1)

we recall our notation for the first quasi-derivative,

g[1](x) = p(x)g′(x) for a.e. x ∈ (a, b), g ∈ ACloc((a, b)). (2.2)

Definition 2.2. Assume Hypothesis 2.1.

(i) The differential expression τ of the form (2.1) is called regular on [a, b].

(ii) The maximal operator Tmax in L2((a, b); rdx) associated with τ is defined
by

Tmaxf = τf,

f ∈ dom(Tmax) =
{
g ∈ L2((a, b); rdx)

∣∣
g, g[1] ∈ AC([a, b]); τg ∈ L2((a, b); rdx)

}
. (2.3)

The minimal operator Tmin in L2((a, b); rdx) associated with τ is defined by

Tminf = τf,
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f ∈ dom(Tmin) =
{
g ∈ L2((a, b); rdx)

∣∣ g, g[1] ∈ AC([a, b]);

g(a) = g[1](a) = g(b) = g[1](b) = 0; τg ∈ L2((a, b); rdx)
}
.
(2.4)

One recalls the relations,

T ∗min = Tmax, Tmin = T ∗max. (2.5)

In addition, Tmin is symmetric, but Tmax is not.

Lemma 2.3. Assume Hypothesis 2.1 so that τ is regular on [a, b]. Fix z± ∈
C±, then the deficiency indices of Tmin are given by

n±(Tmin) = dim(ker(T ∗min − z±I)) = dim(ker(Tmax − z±I))

= dim
(
[ran(Tmin + z±I)]⊥

)
= 2. (2.6)

Thus, Tmin has a real four parameter family of self-adjoint extensions. In addi-
tion, Tmin is bounded from below, that is, there exists C ∈ R such that

Tmin > CI, (2.7)

that is,

(f, Tminf)L2((a,b);r dx) > C‖f‖2L2((a,b);r dx), f ∈ dom(Tmin). (2.8)

Consequently, all self-adjoint extensions of Tmin in L2((a, b); rdx) are bounded
from below.

All self-adjoint extensions of Tmin in L2((a, b); rdx) can be characterized as
follows:

Theorem 2.4 (See, e.g., [6, Theorem 4.3.6]). Assume Hypothesis 2.1 so that
τ is regular on [a, b]. Given A,B ∈ C2×2, one introduces the operator TA,B in
L2((a, b); rdx) via

TA,Bf = τf,

f ∈ dom(TA,B) =

{
g ∈ dom(Tmax)

∣∣∣∣∣A
(
g(a)

g[1](a)

)
= B

(
g(b)

g[1](b)

)}
. (2.9)

Then the following items (i)– (iii) hold :

(i) TA,B is a self-adjoint extension of Tmin if and only if A and B satisfy

rank(A B) = 2, AJA∗ = BJB∗, J =

(
0 −1
1 0

)
. (2.10)

(ii) For A,B satisfying (2.10) and z ∈ ρ(TA,B), the resolvent of TA,B is of the
form

(
(TA,B − zI)−1f

)
(x) =

∫ b

a
r(x′)dx′GA,B(z, x, x′)f(x′), f ∈ L2((a, b); rdx),
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where the Green’s function GA,B(z, · , · ) is given by

GA,B(z, x, x′) =

{∑2
j,k=1m

−
j,k(z)uj(z, x)uk(z, x

′), a 6 x 6 x′ 6 b,∑2
j,k=1m

+
j,k(z)uj(z, x)uk(z, x

′), a 6 x′ 6 x 6 b,
(2.11)

with {u1(z, · ), u2(z, · )} a fundamental system of solutions of τu = zu and
m±j,k(z), 1 6 j, k 6 2, appropriate constants.

(iii) For A,B satisfying (2.10) and z ∈ ρ(TA,B),

(TA,B − zI)−1 ∈ B1
(
L2((a, b); rdx)

)
, (2.12)

and hence TA,B has purely discrete spectrum (i.e., σess(TA,B) = ∅) with
eigenvalues of multiplicity at most two. Moreover, if σ(TA,B) = {λA,B,j}j∈N,
then ∑

j∈N
[|λA,B,j |+ 1]−1 <∞. (2.13)

Turning to the important special cases of separated and coupled boundary
conditions which together describe all self-adjoint extensions of Tmin, one obtains
the following facts:

Theorem 2.5 (See, e.g., [6, Theorem 4.3.9]). Assume Hypothesis 2.1 so that
τ is regular on [a, b]. Then the following items (i)– (iii) hold :

(i) All self-adjoint extensions Tα,β of Tmin in L2((a, b); rdx) with separated
boundary conditions are of the form

Tα,βf = τf, α, β ∈ [0, π),

f ∈ dom(Tα,β) =
{
g ∈ dom(Tmax)

∣∣ sin(α)g[1](a) + cos(α)g(a) = 0;

sin(β)g[1](b) + cos(β)g(b) = 0
}
. (2.14)

In this case one can choose

A =

(
cos(α) sin(α)

0 0

)
, B =

(
0 0

cos(β) sin(β)

)
(2.15)

in connection with (2.9), (2.10).
Special cases: α = 0, g(a) = 0 is called the Dirichlet boundary condition

at a; α = π
2 , g[1](a) = 0 is called the Neumann boundary condition at a

(analogous facts apply to the endpoint b).

(ii) All self-adjoint extensions Tϕ,R of Tmin in L2((a, b); rdx) with coupled bound-
ary conditions are of the type

Tϕ,Rf = τf,

f ∈ dom(Tϕ,R) =

{
g ∈ dom(Tmax)

∣∣∣∣∣
(
g(b)

g[1](b)

)
= eiϕR

(
g(a)

g[1](a)

)}
, (2.16)
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where ϕ ∈ [0, π], and R is a 2 × 2 matrix with real-valued entries and
detC2(R) = 1, that is, R ∈ SL(2,R). In this case one can choose

A = eiϕR, B = I2 (2.17)

in connection with (2.9), (2.10).
Special cases: ϕ = 0, R = I2, g(b) = g(a), g[1](b) = g[1](a) are called

periodic boundary conditions; similarly, ϕ = 0, R = −I2 (equivalently,
ϕ = π, R = I2), g(b) = −g(a), g[1](b) = −g[1](a) are called antiperiodic
boundary conditions.

(iii) Every self-adjoint extension of Tmin is either of type (i) (i.e., separated) or
of type (ii) (i.e., coupled).

Remark 2.6. In connection with coupled boundary conditions in Theorem
2.5(ii) one notes that the (ϕ,R)-pairs, (0,−R) and (π,R), R ∈ SL(2,R), describe
the same self-adjoint extension, hence one could use the restriction ϕ ∈ [0, π).
However, in certain circumstances, such as in connection with Floquet theory, it
is advantageous to fix R and then vary ϕ ∈ [0, π].

In the following we describe the characteristic equations determining the
eigenvalues of self-adjoint regular Sturm–Liouville problems. For this purpose
we assume that φ0(z, · , a) and θ0(z, · , a) constitute a fundamental system of so-
lutions of τu = zu, which, for fixed x ∈ [a, b], are entire with respect to z ∈ C,
and satisfy the following initial conditions at x = a,

φ0(z, a, a) = θ
[1]
0 (z, a, a) = 0,

θ0(z, a, a) = φ
[1]
0 (z, a, a) = 1, z ∈ C. (2.18)

Next, we introduce

Fα,β(z) = cos(α)
[

sin(β)φ
[1]
0 (z, b, a) + cos(β)φ0(z, b, a)

]
− sin(α)

[
sin(β)θ

[1]
0 (z, b, a) + cos(β)θ0(z, b, a)

]
, α, β ∈ [0, π), z ∈ C,

(2.19)

and

Fϕ,R(z) = −eiϕ
[
R1,1φ

[1]
0 (z, b, a) +R2,2θ0(z, b, a)−R2,1φ0(z, b, a)

−R1,2θ
[1]
0 (z, b, a)− 2 cos(ϕ)

]
, ϕ ∈ [0, π], R ∈ SL(2,R), z ∈ C, (2.20)

and recall the following connection between Tα,β, Tϕ,R and appropriate Fredholm
determinants and traces of resolvents.

Theorem 2.7 (See, e.g., [6, Theorem 12.3.2]). Assume Hypothesis 2.1 and
denote by Tα,β and Tϕ,R the self-adjoint extensions of Tmin as described in cases
(i) and (ii) of Theorem 2.5, respectively.
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(i) Suppose z0 ∈ ρ(Tα,β), α, β ∈ [0, π), then

detL2((a,b);rdx)

(
I − (z − z0)(Tα,β − z0I)−1

)
= Fα,β(z)/Fα,β(z0), z ∈ C. (2.21)

In addition,

trL2((a,b);rdx)

(
(Tα,β − zI)−1

)
= −(d/dz) ln(Fα,β(z)), z ∈ ρ(Tα,β). (2.22)

(ii) Suppose z0 ∈ ρ(Tϕ,R), ϕ ∈ [0, π], R ∈ SL(2,R), then

detL2((a,b);rdx)

(
I − (z − z0)(Tϕ,R − z0I)−1

)
= Fϕ,R(z)/Fϕ,R(z0), z ∈ C. (2.23)

In addition,

trL2((a,b);rdx)

(
(Tϕ,R − zI)−1

)
= −(d/dz) ln(Fϕ,R(z)), z ∈ ρ(Tϕ,R). (2.24)

Thus, one confirms that for all α, β ∈ [0, π),

λ ∈ σ(Tα,β) if and only if Fα,β(λ) = 0. (2.25)

Moreover,

if (2.25) holds, λ is a simple (necessarily discrete) eigenvalue of Tα,β

and
.
Fα,β(λ) 6= 0.

(2.26)

Indeed, by Theorem 2.7(i), Fα,β(z)/Fα,β(z0) is the Fredholm determinant associ-
ated with the trace class operator (z−z0)(Tα,β−z0I)−1, z ∈ C, z0 ∈ ρ(Tα,β), and
hence the multiplicity of every zero of Fα,β( · ) coincides with the multiplicity of
the underlying eigenvalue of Tα,β and thus is necessarily simple. The latter claim
can be shown as follows: The assumption of two linearly independent eigenfunc-
tions yk, k = 1, 2, of Tα,βy = λy for some λ ∈ σ(Tα,β), and the constancy of the
Wronskian W (y1, y2)(x), x ∈ [a, b], permits one to compute the Wronskian at
x = a, say, and hence yields the contradiction

W (y1, y2)(a) = f1(a)f
[1]
2 (a)− f [1]1 (a)f2(a)

=

{
f1(a)[− cot(α)]f2(a) + cot(α)f1(a)f2(a), α ∈ (0, π),

0 · f [1]2 (a)− f [1]1 (a) · 0, α = 0

= 0.

Thus, the eigenvalue λ ∈ σ(Tα,β), α, β ∈ [0, π), is necessarily simple. For an
alternative and a bit shorter argument for this fact, see the proof of Theorem
3.1(iv).

The eigenvalue equation Fα,β( · ) = 0 is also called the characteristic equation
associated with separated self-adjoint boundary conditions.
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Next, we turn to the analogue of (2.25), (2.26) for the case of coupled bound-
ary conditions, that is, with Tα,β, α, β ∈ [0, π), replaced by Tϕ,R, ϕ ∈ [0, π], R ∈
SL(2,R). One then confirms that for all ϕ ∈ [0, π], R ∈ SL(2,R),

λ ∈ σ(Tϕ,R) if and only if Fϕ,R(λ) = 0, (2.27)

and all (necessarily discrete) eigenvalues of Tϕ,R have multiplicity equal to one
or two (once again, since Tϕ,R is self-adjoint and τ has order two). Moreover,

if (2.27) holds and ϕ ∈ (0, π), then λ is a simple eigenvalue of Tϕ,R

and
.
Fϕ,R(λ) 6= 0. (2.28)

Indeed, by Theorem 2.7(ii), Fϕ,R(z)/Fϕ,R(z0) is the Fredholm determinant asso-
ciated with the trace class operator (z − z0)(Tϕ,R − z0I)−1, z ∈ C, z0 ∈ ρ(Tϕ,R),
and hence the multiplicity of every zero of Fϕ,R( · ) coincides with the multiplicity
of the underlying eigenvalue of Tϕ,R and thus is necessarily simple for ϕ ∈ (0, π)
as the following elementary Wronskian argument, assuming the existence of two
linearly independent eigenfunctions yk, k = 1, 2, of Tϕ,Ry = λy for some λ ∈
σ(Tϕ,R), shows:

W (y1, y2)(b) = detC2

((
eiϕR

(
y1(a)

y
[1]
1 (a)

)
eiϕR

(
y2(a)

y
[1]
2 (a)

)))

= e2iϕdetC2

(
R

(
y1(a) y2(a)

y
[1]
1 (a) y

[1]
2 (a)

))

= e2iϕdetC2(R) detC2

((
y1(a) y2(a)

y
[1]
1 (a) y

[1]
2 (a)

))
= e2iϕW (y1, y2)(a) = e2iϕW (y1, y2)(b), (2.29)

employing detC2(R) = 1 and the constancy of the Wronskian of y1 and y2 on
[a, b]. Thus, [

1− e2iϕ
]
W (y1, y2)(b) = 0, (2.30)

implying the contradiction W (y1, y2)( · ) = 0 on [a, b] for ϕ ∈ (0, π). Thus, the
eigenvalue λ ∈ σ(Tϕ,R), ϕ ∈ (0, π), R ∈ SL(2,R), is necessarily simple. Once
again, for an alternative and a bit shorter argument for this fact, see the proof
of Theorem 3.1(v).

Once more, the eigenvalue equation Fϕ,R( · ) = 0 represents the characteristic
equation associated with coupled self-adjoint boundary conditions.

Remark 2.8. As an interesting example of coupled boundary conditions we
briefly mention the case of the Krein–von Neumann extension. In this case one
has

ϕ = 0, RK =

(
θ0(0, b, a) φ0(0, b, a)

θ
[1]
0 (0, b, a) φ

[1]
0 (0, b, a)

)
, (2.31)
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and one confirms that

F0,RK
(z) = −2[DK(z)− 1], z ∈ C, (2.32)

where

DK(z) =
[
φ
[1]
0 (0, b, a)θ0(z, b, a) + θ0(0, b, a)φ

[1]
0 (z, b, a)− φ0(0, b, a)θ

[1]
0 (z, b, a)

− θ[1]0 (0, b, a)φ0(z, b, a)
]/

2, z ∈ C. (2.33)

3. On eigenvalue multiplicities

In this, our principal section, we now take a close look at multiplicities of
eigenvalues of all self-adjoint regular Sturm–Liouville operators.

We will break the discussion into two parts, Theorems 3.1 and 3.2.
To set the stage, we recall the operator TA,B in (2.9) and introduce the quan-

tity
δA,B(z) = detC2(A−BY0(z, b, a)), z ∈ C. (3.1)

Here Y0 abbreviates a particularly normalized fundamental system matrix of so-
lutions of

y′(z, · ) = C(z, · )y(z, · ), y(z, · ) =

(
y(z, · )
y[1](z, · )

)
,

C(z, · ) =

(
0 1/p

q − zr 0

)
a.e. on (a, b), z ∈ C,

(3.2)

given by

Y0(z, x, a) =

(
θ0(z, x, a) φ0(z, x, a)

θ
[1]
0 (z, x, a) φ

[1]
0 (z, x, a)

)
, z ∈ C, x ∈ [a, b], (3.3)

that satisfies

Y0(z, a, a) = I2, detC2(Y0(z, x, a)) = 1, z ∈ C, x ∈ [a, b]. (3.4)

One notes that (3.2) is equivalent to

− (py′(z, · ))′ + [q − zr]y(z, · ) = 0 a.e. on (a, b), z ∈ C. (3.5)

More generally, for yk ∈ C, k = 0, 1,

y′(z, · ) = C(z, · )y(z, · ) a.e. on (a, b), y(z, · ) =

(
y(z, · )
y[1](z, · )

)
,(

y(z, a)

y[1](z, a)

)
=

(
y0
y1

)
; z ∈ C, (3.6)

is equivalent to

− (py′(z, · ))′ + [q − zr]y(z, · ) = 0 a.e. on (a, b),

y[k](z, a) = yk, k = 0, 1; z ∈ C.
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Moreover, any λ ∈ σ(TA,B), which is necessarily a real and discrete eigenvalue
of TA,B (see the first paragraph in the proof of Theorem 3.1 below), has a corre-
sponding eigenfunction y(λ, · ), that is,

− (py′(λ, · ))′ + [q − λr]y(λ, · ) = 0, y(λ, · ) ∈ dom(TA,B), (3.7)

if and only if

y′(λ, · ) = C(λ, · )y(λ, · ) a.e. on (a, b), y(λ, · ) =

(
y(λ, · )
y[1](λ, · )

)
,

Ay(λ, a)−By(λ, b) = [A−BY0(λ, b, a)]y(λ, a) = 0.

(3.8)

With these preliminaries out of the way, we can proceed to the following
result:

Theorem 3.1. Assume Hypothesis 2.1, and recall the definition of TA,B in
(2.10) and (2.9). Then the following items (i)– (v) hold :

(i) λ ∈ C is an eigenvalue of TA,B if and only if δA,B(λ) = 0; in this case,
necessarily λ ∈ R.

(ii) Geometric and algebraic multiplicities of all eigenvalues of TA,B coincide.
The multiplicity of an eigenvalue λ ∈ σ(TA,B) of TA,B equals the number of
linearly independent solutions y

j
, j = 1, 2, of the linear algebraic system

[A−BY0(λ, b, a)]y = 0, y ∈ C2. (3.9)

In particular, each eigenvalue of TA,B has multiplicity at most two.

(iii) λ ∈ σ(TA,B) is an eigenvalue of multiplicity two if and only if A =
BY0(λ, b, a).

(iv) For any α, β ∈ [0, π), all eigenvalues of Tα,β in (2.14), that is, all eigenvalues
in the case of separated self-adjoint boundary conditions, are simple.

(v) For any ϕ ∈ (0, π), R ∈ SL(2,R), the eigenvalues of Tϕ,R in (2.16) are
simple.

Proof. Since TA,B has a trace class, and hence compact, resolvent, see relation
(2.12), its spectrum is purely discrete. In addition, since TA,B is self-adjoint,
σ(TA,B) ⊂ R, and the geometric and algebraic multiplicity of its eigenvalues
coincide. Thus, it suffices to focus on the notion of “multiplicity” alone. The fact
that TA,B is self-adjoint and of second order implies that the multiplicity of its
eigenvalues is at most two, but this fact is also immediate from (3.9).

To prove item (i), suppose λ ∈ R is such that δA,B(λ) = 0. Then [A −
BY0(λ, b, a)]y

0
(λ) = 0 for some 0 6= y

0
(λ) ∈ C2, and hence

y′(λ, · ) = C(λ, · )y(λ, · ) a.e. on (a, b), y(λ, a) = y
0
(λ), (3.10)

has a unique solution y(λ, · ) satisfying

Ay(λ, a)−By(λ, b) = [A−BY0(λ, b, a)]y(λ, a) = [A−BY0(λ, b, a)]y
0
(λ) = 0,

(3.11)
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implying λ ∈ σ(TA,B). Conversely, suppose that λ ∈ σ(TA,B) with associated

eigenvector y(λ, · ). Then y(λ, · ) =

(
y(λ, · )
y[1](λ, · )

)
satisfies

y(λ, b) = Y0(λ, b, a)y(λ, a) a.e. on (a, b), [A−BY0(λ, b, a)]y(λ, a) = 0, (3.12)

with y(λ, a) 6= 0 (since y(λ, · ) is a nontrivial eigenfunction of TA,B). Thus,
δA,B(λ) = 0, completing the proof of item (i).

Regarding item (ii), suppose that [A − BY0(λ, b, a)]y(λ) = 0 has either pre-
cisely one solution 0 6= y

1
(λ) ∈ C2 (up to constant multiples), or two linearly

independent solutions 0 6= y
j
(λ) ∈ C2, j = 1, 2. In either case one then solves

the first-order 2× 2 system

y′(λ, · ) = A(λ, · )y(λ, · ) a.e. on (a, b), y(λ, · ) =

(
y(λ, · )
y[1](λ, · )

)
Ay(λ, a)−By(λ, b) = [A−BY0(λ, b, a)]y(λ, a) = 0, (3.13)

with either
y(λ, a) = y

1
(λ), (3.14)

or
y(λ, a) = y

j
(λ), j = 1, 2, (3.15)

giving rise to a solution y
1
(λ, · ) =

(
y1(λ, · ) y

[1]
1 (λ, · )

)>
of (3.13), or to two

linearly independent solutions (due to constancy of the Wronskian) y
j
(λ, · ) =(

yj(λ, · ) y
[1]
j (λ, · )

)>
, j = 1, 2, of (3.13). This, in turn, gives rise to a solution

y1(λ, · ), or to two linearly independent solutions yj(λ, · ), j = 1, 2, of

− (py′(λ, · ))′ + [q − λr]y(λ, · ) = 0 a.e. on (a, b),

Ay(λ, a)−By(λ, b) = [A−BY0(λ, b, a)]y(λ, a) = 0. (3.16)

Hence, TA,B has either a simple or a twice degenerate eigenvalue λ ∈ σ(TA,B).
Conversely, if TA,B has either a simple or a twice degenerate eigenvalue λ, then

− (py′(λ, · ))′ + [q − λr]y(λ, · ) = 0 a.e. on (a, b) (3.17)

has either one solution y1(λ, · ) or two linearly independent solutions yj(λ, · ),
j = 1, 2, which necessarily satisfy the boundary conditions in dom(TA,B). The
latter being of the form

Ay(λ, a)−By(λ, b) = [A−BY0(λ, b, a)]y(λ, a) = 0, (3.18)

giving rise to either one solution y
1
(λ, a), or necessarily two linearly independent

solutions y
j
(λ, a), j = 1, 2, of (3.18). This proves item (ii).

Next, assume that there are two linearly independent solutions yj(λ, · ), j =
1, 2, of (3.16). Then, as in the proof of item (ii), they give rise to two lin-
early independent solutions y

j
(λ, · ), j = 1, 2, of (3.13). Thus, Y (λ, · ) =
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(y
1
(λ, · ) y

2
(λ, · )) constitutes a 2× 2 fundamental system of solutions of (3.13)

such that
[A−BY0(λ, b, a)]Y (λ, a) = 0. (3.19)

Since Y (λ, a) is invertible, this yields A − BY0(λ, b, a) = 0. Conversely, if A =
BY0(λ, b, a), choosing any basis y

j
, j = 1, 2, in C2, gives rise to two linearly

independent solutions y
j
(λ, · ) of (3.13), satisfying y

j
(λ, a) = y

j
, j = 1, 2, and

hence again gives rise to two solutions yj(λ, · ), j = 1, 2, of (3.16) (employing
once more the equivalence of (3.13) and (3.16)). Thus, TA,B has the eigenvalue
λ of multiplicity two, completing the proof of item (iii).

Arguing by contradiction, we now fix α, β ∈ [0, π) and suppose that λ ∈
σ(Tα,β) has multiplicity two. In this case both θ0(λ, · , a) and φ0(λ, · , a) are eigen-
functions of Tα,β corresponding to the eigenvalue λ. Thus, considering θ0(λ, · , a),
the boundary condition for θ0(λ, · , a) ∈ dom(Tα,β) at x = a yields

sin(α) · 0 + cos(α) · 1 = 0, implying α = π/2. (3.20)

Similarly, regarding φ0(λ, · , a), the boundary condition for φ0(λ, · , a) ∈
dom(Tα,β) at x = a then yields the contradiction

1 = sin(α) · 1 + cos(α) · 0 = 0, since α = π/2, (3.21)

proving item (iv).
Regarding item (v) we may choose B = I2 and A = eiϕ0R0 for some ϕ0 ∈

(0, π), and R0 ∈ SL(2,R). Arguing once again by contradiction, we assume that
λ ∈ σ(Tϕ0,R0) has multiplicity two. Then an application of item (iii) implies that

eiϕI2 = R−10 Y0(λ, b, a). (3.22)

However, R−10 and Y0(λ, b, a) have only real entries contradicting the left-hand
side of (3.22).

As a consequence of Theorem 3.1, TA,B can only have twice degenerate eigen-
values in the case of coupled boundary conditions and then only if TA,B is of the
form T0,R or Tπ,R for some R ∈ SL(2,R).

In the following we will determine the precise circumstances under which a
twice degenerate eigenvalue becomes possible.

To set the stage, we now introduce

∆R(z) = trC2

(
R−1Y0(z, b, a)

)/
2

=
[
R1,1φ

[1]
0 (z, b, a) +R2,2θ0(z, b, a)−R2,1φ0(z, b, a)−R1,2θ

[1]
0 (z, b, a)

]/
2,

R = (Rj,k)16j,k62 ∈ SL(2,R), z ∈ C, (3.23)

which, for R = I2 reduces to the well-known Floquet discriminant.
For the following result we recall that we use the abbreviation

.
= d/dz.

Theorem 3.2. Assume Hypothesis 2.1, recall the definition of Tϕ,R in (2.16),
and let ϕ ∈ [0, π], R ∈ SL(2,R) (cf. Remark 2.6). Then the following items (i)–
(iv) hold :
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(i) λ ∈ C is an eigenvalue of Tϕ,R if and only if ∆R(λ) = cos(ϕ); in this case,
necessarily λ ∈ R.

(ii) For λ ∈ R to be a twice degenerate eigenvalue of TA,B, the latter must be of
the form T0,R or Tπ,R for some R ∈ SL(2,R).

(iii) The following items (a)– (c) are equivalent :

(a) λ ∈ R is a twice degenerate eigenvalue of T0,R.

(b) ∆R(λ) = 1 and
.
∆R(λ) = 0; in this case,

..
∆R(λ) < 0.

(c) Y0(λ, b, a) = R.

(iv) The following items (a)– (c) are equivalent :

(a) λ ∈ R is a twice degenerate eigenvalue of Tπ,R.

(b) ∆R(λ) = −1 and
.
∆R(λ) = 0; in this case,

..
∆R(λ) > 0.

(c) Y0(λ, b, a) = −R.

Proof. Item (i) is an immediate consequence of Theorem 3.1(i), in particular,

δeiϕR,I2(z) = 2eiϕ[cos(ϕ)−∆R(z)], z ∈ C, (3.24)

and hence,
δeiϕR,I2(λ) = 0 is equivalent to ∆R(λ) = cos(ϕ). (3.25)

Similarly, item (ii) is clear from Theorem 3.1 and hence we focus on the proof of
items (iii) and (iv). By Theorem 3.1(iii), items (iii)(a) and (iii)(c) are equivalent,
and so are items (iv)(a) and (iv)(c). Hence, it suffices to prove the equivalence of
items (iii)(b) and (iii)(c) and that of items (iv)(b) and (iv)(c), to which we turn
next.

We start by recalling the fundamental solution Y0(z, · , a) introduced in (3.2)–
(3.4) and note that the function

.
Y0(z, · , a) satisfies the inhomogeneous equation

.
Y ′0(z, x, a) = C(z, x)

.
Y0(z, x, a) +

.
C(z, x)Y0(z, x, a) for a.e. x ∈ [a, b],

.
Y0(z, a, a) = 0,

where C(z, · ) is as in (3.2) and hence

.
C(z, x) =

(
0 0

−r(x) 0

)
for a.e. x ∈ (a, b), z ∈ C. (3.26)

It follows that for z ∈ C, x ∈ [a, b],

.
Y0(z, x, a) = Y0(z, x, a)

∫ x

a
dx′ Y0(z, x

′, a)−1
.
C(z, x′)Y0(z, x

′, a). (3.27)

Then by (3.23) one has

2
.
∆R(z) = trC2

(
R−1

.
Y0(z, b, a)

)
= trC2

(
R−1Y0(z, b, a)

∫ b

a
dxY0(z, x, a)−1

.
C(z, x)Y0(z, x, a)

)
. (3.28)
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If Y0(λ, b, a) = ±R, then ∆R(λ) = ±1 by (3.23) and using the cyclic property
of the trace one derives from (3.28) and (3.26) that

2
.
∆R(λ) = ±

∫ b

a
dx trC2

(
Y0(λ, x, a)−1

.
C(λ, x)Y0(λ, x, a)

)
= ±

∫ b

a
dx trC2

( .
C(λ, x)Y0(λ, x, a)Y0(λ, x, a)−1

)
= ±

∫ b

a
dx trC2

( .
C(λ, x)

)
= 0. (3.29)

Conversely, suppose ∆R(λ) = ±1 and
.
∆R(λ) = 0. It suffice to show that

Q = R−1Y0(λ, b, a)∓ I2 (3.30)

is the zero matrix. By assumption, trC2(R−1Y0(λ, b, a)) = 2∆R(λ) = ±2 and, by
(3.4), detC2(R−1Y0(λ, b, a)) = 1, hence both eigenvalues of R−1Y0(λ, b, a) equal
±1. It follows that detC2(Q) = 0 and trC2(Q) = 0. Next, arguing by contra-
diction, assume that Q 6= 0. Then Q is rank one and hence there are nonzero
vectors u, v ∈ R2 such that Q = uv>. Using the cyclic property of the trace one
notes that 0 = trC2(Q) = v>u so u and v are orthogonal vectors in R2 and hence
v = α(u2,−u1)> for some α 6= 0. Thus,

Q = α(u1, u2)
>(u2,−u1). (3.31)

It follows from (3.3) and (3.26) that

Y0(z, x, a)−1
.
C(z, x)Y0(z, x, a)

= r(x)

(
φ0(z, x, a)θ0(z, x, a) φ0(z, x, a)2

−θ0(z, x, a)2 −φ0(z, x, a)θ0(z, x, a)

)
= r(x)

(
φ0(z, x, a),−θ0(z, x, a)

)>(
θ0(z, x, a), φ0(z, x, a)

)
. (3.32)

Let

f(x) = (u2,−u1)
(
φ0(z, x, a),−θ0(z, x, a)

)>
=
(
θ0(z, x, a), φ0(z, x, a)

)
(u1, u2)

> (3.33)

and note that f(x) is real-valued and f 6= 0 in L2((a, b); rdx) since φ0(z, · , a) and
θ0(z, · , a) are linearly independent and u 6= 0. Then substituting (3.30)–(3.32)
into (3.28) and utilizing the cyclic property of the trace one obtains

0 = 2
.
∆R(λ) =

∫ b

a
dx trC2

(
(Q± I2)Y0(z, x, a)−1

.
C(z, x)Y0(z, x, a)

)
=

∫ b

a
dx trC2

(
QY0(z, x, a)−1

.
C(z, x)Y0(z, x, a)

)
= α

∫ b

a
r(x)dx f(x)2, (3.34)

a contradiction. Thus, Q = 0 and hence Y0(λ, b, a) = ±R.
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Finally, we prove the assertions regarding
..
∆R(λ). If ∆R(λ) = ±1 and.

∆R(λ) = 0, then, as shown above, Y0(λ, b, a) = ±R. Differentiating (3.28) with
respect to z and employing (3.27), Y0(λ, b, a) = ±R, and

..
C(λ, x) = 0, which is a

consequence of (3.26), one obtains

2
..
∆R(λ) = ± trC2

([∫ b

a
dxY0(λ, x, a)−1

.
C(λ, x)Y0(λ, x, a)

]2
−
∫ b

a
dxY0(λ, x, a)−1

.
Y0(λ, x, a)Y0(λ, x, a)−1

.
C(λ, x)Y0(λ, x, a)

+

∫ b

a
dxY0(λ, x, a)−1

.
C(λ, x)

.
Y0(λ, x, a)

)
. (3.35)

Bringing the trace under the integral in the last two terms and using the cyclic
property of the trace to rearrange the order of matrices, one notes that the last
two terms in (3.35) cancel. In addition, noting that trC2(M2) = [trC2(M)]2 −
2detC2(M) for any 2× 2 matrix M , one then obtains

±2
..
∆R(λ) =

[
trC2

(∫ b

a
dxY0(λ, x, a)−1

.
C(λ, x)Y0(λ, x, a)

)]2
− 2detC2

(∫ b

a
dxY0(λ, x, a)−1

.
C(λ, x)Y0(λ, x, a)

)
. (3.36)

A computation as in (3.29) shows that the first term is zero. Thus, using (3.32)
and the Cauchy–Schwarz inequality, one obtains

±
..
∆R(λ) =

(∫ b

a
r(x)dxφ0(λ, x, a)θ0(λ, x, a)

)2

−
(∫ b

a
r(x)dxφ0(λ, x, a)2

)(∫ b

a
r(x)dx θ0(λ, x, a)2

)
6 0. (3.37)

In fact, the inequality must be strict since φ0(λ, · , a) and θ0(λ, · , a) are linearly
independent. Thus,

..
∆R(λ) ≶ 0, completing the proof.

Remark 3.3. Regarding Theorem 3.1 we refer to [17, Lemmas 3.2.2 and 3.2.3],
see also [10, Sects. 3.3, 3.4], [12, Ch. I, § 2]. Somehow, parts (b) and (b) in
Theorem 3.2 appear to have escaped notice in the pertinent literature we are
aware of. For relevant literature in connection with Theorem 3.2 we refer to
[1,5,8,9], [4, Sect. 2.3], and [17, Sects. 4.7 and 4.8]. In connection with Remark 3.4
see also [7]. For additional literature in this connection see, for instance, [15,18].

Remark 3.4. We led the reader through the scenic, but rather long, route
in connection with eigenvalues and their multiplicities in this section. A much
quicker tour, but at the expense of a number of details, relies on the Fredholm
determinant approach. For instance, in the case of coupled boundary conditions,
one infers that

Fϕ,R(z)/Fϕ,R(z0) = [∆R(z)− cos(ϕ)]/[∆R(z0)− cos(ϕ)]
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= detL2((a,b);rdx)

(
I − (z − z0)(Tϕ,R − z0I)−1

)
= detL2((a,b);rdx)

(
(Tϕ,R − zI)(Tϕ,R − z0I)−1

)
=

(
z

z0

)m(0;Tϕ,R) ∏
j∈J

λj∈σ(Tϕ,R)\{0}

(
1− (z/λj)

1− (z0/λj)

)m(λj ;Tϕ,R)

=
∏
j∈J

(
λj − z
λj − z0

)m(λj ;Tϕ,R)

, (3.38)

where J ⊆ N is an appropriate index set and m(λj ;Tϕ,R) represents the multi-
plicity of the eigenvalue λj of Tϕ,R. Thus, λj is a (twice) degenerate eigenvalue

of T0,R if and only if F0,R(λj) = 0 and
.
F0,R(λj) = 0. Since Tϕ,R is a second-order

operator, 1 6 m(λj ;Tϕ,R) 6 2, and thus one also concludes that
..
F0,R(λj) 6= 0.

Thus, some parts of multiplicity theory for eigenvalues of regular Sturm–Liouville
operators follow a bit quicker if one is willing to systematically invoke Fredholm
determinant theory.

Remark 3.5. Theorem 3.2 is patterned after the well-known periodic case, or,
Floquet theory, and the standard Floquet discriminant D now corresponds to the
special case R = I2 in (3.23), that is,

D(z) = ∆I2(z), z ∈ C, (3.39)

see, for instance, [2, Ch. 1], [3, Sect. 3.5], [4, Chs. 1, 2], and [11, Chs. I, II].
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Про кратнiсть власних значень самоспряжених
регулярних операторiв Штурма–Лiувiлля

Fritz Gesztesy, Roger Nichols, and Maxim Zinchenko

Ми надаємо вичерпне дослiдження кратностi власних значень усiх
самоспряжених регулярних задач Штурма–Лiувiлля на компактних iн-
тервалах [a, b] ⊂ R.

Ключовi слова: оператори Штурма–Лiувiлля, кратнiсть власних зна-
чень
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