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Partial Differential Equations in Module of

Copolynomials over a Commutative Ring

S.L. Gefter and A.L. Piven’

Let K be an arbitrary commutative integral domain with identity We
study the copolynomials of n variables, i.e., K-linear mappings from the ring
of polynomials K[x1, . . . , xn] into K. We prove an existence and unique-
ness theorem for a linear differential equation of infinite order which can
be considered as an algebraic version of the classical Malgrange–Ehrenpreis
theorem for the existence of the fundamental solution of a linear differential
operator with constant coefficients. We find the fundamental solutions of
linear differential operators of infinite order and show that the unique solu-
tion of the corresponding inhomogeneous equation can be represented as a
convolution of the fundamental solution of this operator and the right-hand
side. We also prove the existence and uniqueness theorem of the Cauchy
problem for some linear differential equations in the module of formal power
series with copolynomial coefficients.
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1. Introduction

The Poisson formula

u(t, x) =
1

2a
√
πt

∫ ∞
−∞

e−
y2

4a2tQ(x− y) dy

for the solution of the Cauchy problem for the one-dimensional heat equation

∂u(t, x)

∂t
= a2

∂2u(t, x)

∂x2
,

u(0, x) = Q(x)

is very interesting. At first sight, this formula seems to be rather “transcen-
dental”. However, if the initial condition Q(x) is a polynomial of degree m with
integer coefficients and a ∈ Z, then the considered Cauchy problem has the unique
polynomial solution with integer coefficients

u(t, x) =

[m/2]∑
k=0

a2k
Q(2k)(x)

k!
tk.
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The form of this solution shows that it is defined over the ring Z, i.e., to find
it we use only addition and multiplication (unlike the Poisson formula, where
the coefficient a2 is in a denominator of an exponent of power). Thus, in some
sense the Poisson formula has an arithmetic origin. The analogue of the Poisson
formula in the case of the non-invertible operator coefficient a2 and the convergent
power series Q(x) was considered in [9].

Now let K be an arbitrary commutative integral domain with identity. In
the present paper, we consider a purely algebraic version of the Poisson formula
(see Example 6.11) and other similar formulas in the case when the initial con-
dition Q is a copolynomial over K, that is, a K-linear functional on the ring
K[x1, . . . , xn] of polynomials of n variables. General properties of copolynomials
of n variables are considered in Section 2. Recently, the case n = 1 was partially
studied in [6,7,14]. In these papers, copolynomials were called formal generalized
functions (see also [8]). Notice that given properties of copolynomials connected
with the convolution are consequences of general constructions of the theory of
Hopf algebras (see, for example, [20, 26]). In Section 3, differential operators of
infinite order on the module of copolynomials are studied. In Section 4, with
the help of the Laplace transform a connection between copolynomials and for-
mal power series is established (see Propositions 4.2, 4.5 and Theorem 4.3). The
main results of the present paper are contained in Sections 5 and 6. Theorem
5.1 and Corollary 5.2 can be considered as an algebraic version of the classical
Malgrange-Ehrenpreis theorem for the existence of the fundamental solution of a
linear differential operator with constant coefficients (see, for example, [16, The-
orem 7.3.10], [17, Section 10.2])). Moreover, in Theorem 5.1 and Corollary 5.4, it
was shown that the unique solution of the inhomogeneous equation Fu = T with
a linear differential operator F of infinite order can be represented as a convolu-
tion of the fundamental solution of this operator and the right-hand side T from
the module of copolynomials. It should be noticed that unlike the classical theory
(see, for example, [17]), the solution of the inhomogeneous equation Fu = T , and
in particular its fundamental solution in the module of copolynomials are defined
uniquely. In Section 6, the concept of a fundamental solution of the Cauchy
problem for the equation ∂u

∂t = Fu is introduced and studied. The main result of
this section is Theorem 6.9 which states that under the fulfillment of additional
restrictions on the ring K the Cauchy problem ∂u

∂t = (Fu)(t, x), u(0, x) = Q(x)
with a copolynomial Q(x) has a unique solution and furthermore this solution is
a convolution of the fundamental solution of the Cauchy problem and the initial
condition. In Sections 5 and 6, we present meaningful examples which illustrate
the constructed theory.

Notice that differential operators of infinite order on various spaces were stud-
ied in numerous works (see, for example, [2, 10, 11, 19, 22–25]). In the classi-
cal scalar case, the series with respect to the derivatives of the δ-function are
intensively studied because of their applications to differential and functional-
differential equations and the theory of orthogonal polynomials (see, for exam-
ple, [3, 15]).
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We are planning to continue our research, in particular, to introduce and
study a multiplication of copolynomials for the investigation of some nonlinear
partial differential equations in our further paper.

2. Preliminaries

Let K be an arbitrary commutative integral domain with identity and let
K[x1, . . . , xn] be a ring of polynomials with coefficients in K.

Definition 2.1. By a copolynomial over the ring K we mean a K-linear func-
tional defined on the ring K[x1, . . . , xn], i.e., a homomorphism from the module
K[x1, . . . , xn] into the ring K.

We denote the module of copolynomials over K by K[x1, .., xn]′. Thus, T ∈
K[x1, . . . , xn]′ if and only if T : K[x1, . . . , xn] → K and T has the property of
K-linearity: T (ap+ bq) = aT (p) + bT (q) for all p, q ∈ K[x1, . . . , xn] and a, b ∈ K.
If T ∈ K[x1, .., xn]′ and p ∈ K[x1, . . . , xn], then for the value of T on p we use
the notation (T, p). We also write a copolynomial T ∈ K[x1, . . . , xn]′ in the form
T (x), where x = (x1, . . . , xn) is regarded as the argument of polynomials p(x) ∈
K[x1, . . . , xn] subjected to the action of the K-linear mapping T . In this case,
the result of action of T upon p can be represented in the form (T (x), p(x)).

Let N0 be the set of nonnegative integers. For a multi-index α =
(α1, . . . , αn) ∈ Nn0 we put [22, Chap. 1, §1–2]

Dα =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂x
αn
n
, |α| =

n∑
j=1

αj ,

xα = xα1
1 xα2

2 · · ·x
αn
n , α! = α1!α2! · · ·αn!.

For multi-indexes α, β ∈ Nn0 , the relation α ≤ β means that αj ≤ βj for all j =

1, . . . , n. If α ≤ β , then we will use the notation
(
β
α

)
=
∏n
j=1

(
βj
αj

)
.

Let p(x) =
∑
|α|≤m aαx

α ∈ K[x1, . . . , xn]. If h = (h1, . . . , hn), then the
polynomial p(x+ h) ∈ K[x1, . . . , xn][h1, . . . , hn] can be represented in the form

p(x+ h) =
∑
|α|≤m

pα(x)hα,

where pα(x) ∈ K[x1, . . . , xn]. Since in the case of a field with zero characteristic

pα(x) = Dαp(x)
α! , we also assume that, by definition, Dαp(x)

α! = pα(x), |α| ≤ m is

true for any commutative ring K. For m < |α|, we assume that Dαp(x)
α! = 0.

We now introduce the notion of shift for a copolynomial [7, 8]. For T ∈
K[x1, . . . , xn]′ and fixed h = (h1, . . . , hn) ∈ Kn, we define a copolynomial T (x+
h) by the formula

(T (x+ h), p) = (T, p(x− h)), p ∈ K[x1, . . . , xn].
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Definition 2.2. The partial derivative ∂T
∂xj

of a copolynomial T ∈
K[x1, . . . , xn]′ with respect to the variable xj (j = 1, . . . , n) is defined as in
the classical case by the formula(

∂T

∂xj
, p

)
= −

(
T,

∂p

∂xj

)
, p ∈ K[x1, . . . , xn]. (2.1)

By using (2.1), we arrive at the following expression for the derivative DαT :

(DαT, p) = (−1)|α|(T,Dαp), p ∈ K[x1, . . . , xn].

Therefore,

(DαT, p) = 0, where p ∈ K[x1, . . . , xn] and |α| > deg p.

By virtue of the equality(
DαT

α!
, p

)
= (−1)|α|

(
T,
Dαp

α!

)
, p ∈ K[x1, . . . , xn], (2.2)

the copolynomials DαT
α! are well-defined for any T ∈ K[x1, . . . , xn]′ and α ∈ Nn0 .

Example 2.3. The copolynomial δ-function is given by the formula

(δ, p) = p(0), p ∈ K[x1, . . . , xn].

Therefore,

(Dαδ, p) = (−1)|α|(δ,Dαp) = (−1)|α|Dαp(0), α ∈ Nn0 .

Example 2.4. Let K = R and let f : Rn → R be a Lebesgue-integrable
function such that ∫

Rn
|xαf(x)|dx < +∞, α ∈ Nn0 . (2.3)

Then f generates the regular copolynomial Tf :

(Tf , p) =

∫
Rn
p(x)f(x)dx, p ∈ R[x1, . . . , xn].

In this case, unlike the classical theory, all copolynomials are regular [3, Theorem
7.3.4], although a nonzero function f can generate the zero copolynomial (see [7,
Example 2.2] and [8, Remark 1]). Moreover, if f ∈ C1(Rn) and the conditions
(2.3) are satisfied for ∂f

∂xj
(j = 1, . . . , n), then it can be shown that(

∂Tf
∂xj

, p

)
=

∫
Rn
p(x)

∂f

∂xj
dx, p ∈ R[x1, . . . , xn], j = 1, . . . , n.

Remark 2.5. The notion of a copolynomial differs from that of a formal distri-
bution used in the theory of vertex operator algebras (see [4,18]), although there
are some natural connections between these notions.
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We now consider the problem of convergence in the space K[x1, . . . , xn]′.
In the ring K, we consider the discrete topology. Further, in the module of
copolynomials K[x1, . . . , xn]′, we consider the topology of pointwise convergence.
It is easy to show that the last topology is generated by the following metric:

d(T1, T2) =
∞∑
|α|=0

d0((T1, x
α), (T2, x

α))

2|α|
,

where d0 is the discrete metric on K. The convergence of a sequence {Tk}∞k=1

to T in K[x1, . . . , xn]′ means that for every polynomial p ∈ K[x1, . . . , xn] there
exists a number k0 ∈ N such that

(Tk, p) = (T, p), k = k0, k0 + 1, k0 + 2, . . .

The series
∑∞

k=0 Tk converges in K[x1, . . . , xn]′ if a sequence of its partial sums∑N
k=0 Tk converges in K[x1, . . . , xn]′.
The following lemma shows the possibility of the decomposition of an arbi-

trary copolynomial in series about the system Dαδ
α! , α ∈ Nn0 .

Lemma 2.6. Let T ∈ K[x1, . . . , xn]′. Then

T =
∞∑
|α|=0

(−1)|α|(T, xα)
Dαδ

α!
.

Proof. For any multi-index β ∈ Nn0 , we have

∞∑
|α|=0

(−1)|α|(T, xα)

(
Dαδ

α!
, xβ
)

= (−1)|β|(T, xβ)

(
Dβδ

β!
, xβ
)

=
(
T, xβ

)
.

Definition 2.7. If p ∈ K[x1, . . . , xn] and T ∈ K[x1, . . . , xn]′ is a copolyno-
mial, then their convolution T ∗ p is defined naturally as follows:

(T ∗ p)(x) = (T (y), p(x− y)) =
∑
|α|≤m

(−1)|α|(T, yα)
Dαp(x)

α!
,

where m = deg p. Thus T ∗ p is a polynomial with coefficients in K, i.e., T ∗ p ∈
K[x1, . . . , xn].

Remark 2.8. By Definition 2.7, we have δ ∗ p = p.

Definition 2.9. The tensor product T1 ⊗ T2 ∈ K[x1, . . . , xn, y1, . . . , ym]′ of
copolynomials T1 ∈ K[x1, . . . , xn]′ and T2 ∈ K[y1, . . . , ym]′ is defined by the
equality (

T1 ⊗ T2, xαyβ
)

=
(
T1, x

α
)(
T2, y

β
)
, α ∈ Nn0 , β ∈ Nm0 .

Further, with the help of K-linearity, the result of the action (T1 ⊗ T2, p) of the
copolynomial T1 ⊗ T2 to an arbitrary polynomial p ∈ K[x1, . . . , xn, y1, . . . , ym] is
defined.
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Definition 2.10. Let T1, T2 ∈ K[x1, . . . , xn]′. We remind the definition of
their convolution (see [20] and [26, Section 2.1]). If p ∈ K[x1, . . . , xn] and p(x+

y) =
∑
|α|≤m

Dαp(x)
α! yα, then

(T1 ∗ T2, p) = (T1 ⊗ T2, p(x+ y)) =
∑
|α|≤m

(
T1(x),

Dαp(x)

α!

)
(T2(y), yα). (2.4)

Notice that T1 ∗ T2 ∈ K[x1, . . . , xn]′.

The following assertion establishes the commutativity and associativity for
the convolution of copolynomials.

Proposition 2.11. Let T1, T2, T3 ∈ K[x1, . . . , xn]′. Then

T1 ∗ T2 = T2 ∗ T1,
(T1 ∗ T2) ∗ T3 = T1 ∗ (T2 ∗ T3).

Example 2.12. Let T ∈ K[x1, . . . , xn]′. We find the convolution δ ∗ T . For
p ∈ K[x1, . . . , xn], deg p = m, we obtain

(δ ∗ T, p) =
∑
|α|≤m

(
δ,
Dαp(x)

α!

)
(T, yα) =

∑
|α|≤m

(
Dαp

α!

)
(0)(T, yα) = (T, p).

Hence δ ∗ T = T .

Corollary 2.13. The module K[x1, . . . , xn]′ under the convolution operation
is an associative commutative algebra with identity over the ring K.

The following theorem establishes the property of continuity for the convolu-
tion.

Theorem 2.14. Let Tk ∈ K[x1, . . . , xn]′, k ∈ N and Tk → 0, k → ∞ in
the topology of K[x1, . . . , xn]′. Then Tk ∗ S → 0, k → ∞ in the topology of
K[x1, . . . , xn]′ for every copolynomial S ∈ K[x1, . . . , xn]′.

Proof. Indeed, by (2.4), for every polynomial p ∈ K[x1, . . . , xn] of degree m,
we have

(Tk ∗ S, p) =
∑
|α|≤m

(Tk(y), yα)

(
S(x),

Dαp(x)

α!

)
→ 0, k →∞.

Corollary 2.15. Assume that Tk ∈ K[x1, . . . , xn]′, k ∈ N, and the series∑∞
k=1 Tk converges in the topology of K[x1, . . . , xn]′. Then, for every copolyno-

mial S ∈ K[x1, . . . , xn]′, the series
∑∞

k=1(Tk ∗ S) converges in the same topology
and

∞∑
k=1

(Tk ∗ S) =

( ∞∑
k=1

Tk

)
∗ S.
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3. Linear differential operators of infinite order on the module
of copolynomials

We now consider the linear differential operator of infinite order on
K[x1, . . . , xn]′:

F =
∞∑
|α|=0

aαD
α,

where aα ∈ K. This operator acts upon a copolynomial T ∈ K[x1, . . . , xn]′ by
the following rule: if p ∈ K[x1, . . . , xn] and m = deg p, then

(FT, p) =

 ∞∑
|α|=0

aαD
αT, p

 =
∑
|α|≤m

(−1)|α|aα(T,Dαp) =
∑
|α|≤m

aα(DαT, p).

Thus, the differential operator F : K[x1, . . . , xn]′ → K[x1, . . . , xn]′ is well-
defined and for any polynomial p of degree at most m the equality

(FT, p) =
∑
|α|≤m

aα(DαT, p) (3.1)

is true.

Lemma 3.1. The differential operator F : K[x1, . . . , xn]′ → K[x1, . . . , xn]′ is
a continuous K-linear mapping.

Proof. Assume that a sequence of copolynomials {Tk}∞k=0 converges to T in
K[x1, . . . , xn]′. Then there exists k0 = k0(p) ∈ N such that the equality (Tk, p) =
(T, p) is true for all k ≥ k0(p). Let m = deg p and s(p) = max{k0(Dαp) : |α| ≤
m}. Then, by using (3.1), we obtain

(FTk, p) =

 ∑
|α|≤m

aαD
αTk, p

 =
∑
|α|≤m

aα(−1)α(Tk, D
αp)

=
∑
|α|≤m

aα(−1)α(T,Dαp) =

 ∑
|α|≤m

aαD
αT, p

 = (FT, p), k ≥ s(p),

i.e., the sequence {FTk}∞k=0 converges to FT . The lemma is proved.

The following assertion shows that the convolution operation and the differen-
tial operator of infinite order commute. We also show that every such differential
operator is a convolution operator.

Theorem 3.2. Let T1, T2 ∈ K[x1, . . . , xn]′ and let F =
∑∞
|α|=0 aαD

α be a

differential operator of infinite order on K[x1, . . . , xn]′ with coefficients aα ∈ K.
Then

F(T1 ∗ T2) = (FT1) ∗ T2.

Therefore F(T ) = F(δ) ∗ T for all T ∈ K[x1, . . . , xn]′.
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Proof. Let p ∈ K[x1, . . . , xn], m = deg p and let β ∈ Nn0 be an arbitrary
multi-index. By the definition of the convolution,

(Dβ(T1 ∗ T2), p) = (−1)|β|(T1 ∗ T2, Dβp) = (−1)|β|
∑
|α|≤m

(
T1,

Dα+βp

α!

)
(T2, y

α)

=
∑
|α|≤m

(
DβT1,

Dαp

α!

)
(T2, y

α) =
((
DβT1

)
∗ T2, p

)
.

Therefore,

Dβ(T1 ∗ T2) =
(
DβT1

)
∗ T2. (3.2)

By (3.1), for every T ∈ K[x1, . . . , xn]′, the series
∑∞
|β|=0 aβD

βT converges in the

topology of K[x1, . . . , xn]′. Therefore, by Corollary 2.15 and equality (3.2),

(F(T1 ∗ T2)) =

∞∑
|β|=0

aβD
β(T1 ∗ T2) =

∞∑
|β|=0

aβ
((
DβT1

)
∗ T2

)
= (FT1) ∗ T2. (3.3)

Now, substituting T1 = δ, T2 = T into (3.3), we get F(T ) = F(δ) ∗ T . The
theorem is proved.

4. The Laplace transform in the module of copolynomials

Let z = (z1, . . . , zn) and let K
[[
z1, . . . , zn,

1
z1
, . . . , 1

zn

]]
be the module of for-

mal Laurent series with coefficients in K. For the multi-index α = (α1, . . . , αn) ∈
Zn, we put zα = zα1

1 zα2
2 · · · zαnn . For g ∈ K

[[
z1, . . . , zn,

1
z1
, . . . , 1

zn

]]
, g(z) =∑

α∈Zn gαz
α, we naturally define the formal residue

Res(g(z)) = g(−1,...,−1).

Now we define a Laplace transform of a copolynomial T ∈ K[x1, . . . , xn]′.

Definition 4.1. Let T ∈ K[x1, . . . , xn]′. Assume that the ring K contains
the field of rational numbers Q. Consider the following formal power series from
K[[z1, . . . , zn]]:

L(T )(z) = T̃ (z) =

∞∑
|α|=0

(T, xα)

α!
zα.

A power series T̃ (z) will be called the Laplace transform of the copolynomial T .

We can write informally as follows: T̃ (z) =
(
T, e〈z,x〉

)
. It is obvious that

the mapping L : K[x1, . . . , xn]′ → K[[z1, . . . , zn]], L(T ) = T̃ is a continu-
ous isomorphism of K-modules if we consider the standard Krull topology on
K[[z1, . . . , zn]] [12, Section 1, §3, Section 4], i.e., the topology of coefficient-wise
stabilization.
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Proposition 4.2 (The inversion formula or the Parseval identity). Let K ⊃
Q, T ∈ K[x1, . . . , xn]′ and p(x) =

∑
|α|≤m cαx

α ∈ K[x1, . . . , xn]. Then

(T (x), p(x)) = Res(T̃ (z)p̃(z)),

where p̃(z) =
∑
|α|≤m

α!cα
zα+ι

is the Laplace transform of the polynomial p(x).

Proof. It is sufficient to consider the case p(x) = xβ for some multi-index β ∈
Nn0 . We have p̃(z) = β!

zβ+ι
. Therefore,

T̃ (z)p̃(z) =
∞∑
|α|=0

(T, xα)

α!
zα

β!

zβ+ι

and Res(T̃ (z)p̃(z)) = (T, xβ).

The following theorem asserts that the Laplace transform sends the convolu-
tion of copolynomials to the product of their Laplace transforms.

Theorem 4.3. Let T1, T2 ∈ K[x1, . . . , xn]′. Assume that the ring K contains
the field of rational numbers Q. Then

(T̃1 ∗ T2)(z) = T̃1(z)T̃2(z).

Proof. Since for any α ∈ Nn0 ,

(T1 ∗ T2, xα) =
∑
|β|≤|α|

(
T1(x),

Dβxα

β!

)
(T2(y), yβ)

=
∑
β≤α

(
T1(x),

(
α

β

)
xα−β

)
(T2(y), yβ),

we have

(T̃1 ∗ T2)(z) =
∞∑
|α|=0

(T1 ∗ T2, xα)

α!
zα

=

∞∑
|α|=0

∑
β≤α

(
T1(x),

(
α
β

)
α!
xα−β

)
(T2(y), yβ)zα

=
∞∑
|α|=0

∑
β≤α

(
T1(x),

xα−β

(α− β)!

)(
T2(y),

yβ

β!

)
zα = T̃1(z)T̃2(z).

The theorem is proved.

Example 4.4. Suppose that n = 1, K is an arbitrary commutative integral
domain, a ∈ K, and

(Ea, p) =

m∑
k=0

akp(k)(0),
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where p ∈ K[x], m = deg p. Then Ea ∈ K[x]′ and

Ea =
∞∑
j=0

(−1)jajδ(j).

If K = R and a > 0, then

(Ea, p) =

∫ ∞
−∞

p(x)fa(x) dx,

where

fa(x) =

{
1
ae
−x
a , x > 0

0, x < 0.

(see Example 4 in [8]). Let K be again a commutative integral domain such that
K ⊃ Q. If a, b ∈ K, then Ẽa(z) =

∑∞
j=0 a

jzj and (a − b)Ẽa(z)Ẽb(z) = aẼa(z) −
bẼb(z). With the help of Theorem 4.3 we obtain L((a− b)(Ea ∗ Eb)) = ˜aEa − bEb
and

(a− b)(Ea ∗ Eb) = aEa − bEb. (4.1)

Now the convolution equation (4.1) can be checked for an arbitrary commutative
integral domain K (see also Example 1.1 in [5], where the similar equation for
formal Laurent series was considered). Indeed, by Theorem 3.2 and Corollary
2.15, we obtain

(a− b)(Ea ∗ Eb) = (a− b)

 ∞∑
j=0

(−1)jajδ(j)

 ∗( ∞∑
k=0

(−1)kbkδ(k)

)

= (a− b)
∞∑
j=0

∞∑
k=0

(−1)j+kajbk(δ(j) ∗ δ(k))

= (a− b)
∞∑
j=0

∞∑
k=0

(−1)j+kajbkδ(j+k)

= (a− b)
∞∑
j=0

∞∑
l=j

(−1)lajbl−jδ(l) = (a− b)
∞∑
l=0

(−1)l
l∑

j=0

ajbl−jδ(l)

=
∞∑
l=0

(−1)l(al+1 − bl+1)δ(l) = aEa − bEb.

We established a connection between Laplace transform of the copolyno-
mial FT =

∑∞
|α|=0 aαD

αT , where T ∈ K[x1, . . . , xn]′, and the symbol ϕ(z) =∑∞
|α|=0 aαz

α of the differential operator F .

Proposition 4.5. Let K ⊃ Q and let F =
∑∞
|α|=0 aαD

α be a linear differen-

tial operator of infinite order on K[x1, . . . , xn]′ with coefficients aα ∈ K. Then,
for every T ∈ K[x1, . . . , xn]′, the equality

F̃T (z) = ϕ(−z)T̃ (z) (4.2)

holds.
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Proof. By the definition of a Laplace transform, for any multi-index α ∈ Nn0 ,
we have

D̃αT (z) =
∞∑
|β|=0

(DαT, xβ)

β!
zβ =

∑
β≥α

(−1)|α|
(T, xβ−α)

(β − α)!
zβ

= (−z)α
∞∑
|β|=0

(T, xβ)

β!
zβ = (−z)αT̃ (z).

Multiplying this equality by aα and summing all α ∈ Nn0 , we obtain (4.2).

5. Fundamental solution of a linear differential operator of in-
finite order

Let T ∈ K[x1, . . . , xn]′ be a copolynomial and let F =
∑∞
|α|=0 aαD

α be a

linear differential operator of infinite order on K[x1, . . . , xn]′ with coefficients
aα ∈ K. Consider the following differential equation:

Fu = T. (5.1)

We prove an existence and uniqueness theorem for equation (5.1) and continuous
dependence for the unique solution of this equation on T . By I, denote the
identity mapping of K[x1, . . . , xn]′.

Theorem 5.1. Let a0 be an invertible element of the ring K. Then the linear
differential operator F of infinite order is bijective and its inverse operator F−1
is a continuous mapping. Moreover,

F−1 = a−10

∞∑
k=0

(I − a−10 F)k, (5.2)

where the series in the right-hand side of (5.2) converges in the topology of
K[x1, . . . , xn]′. In particular, for any copolynomial T ∈ K[x1, . . . , xn]′, there ex-
ists a unique solution u ∈ K[x1, . . . , xn]′ of equation (5.1). This solution admits
representations

u = F−1(T ) = F−1(δ) ∗ T

and continuously depends on T in the topology of K[x1, . . . , xn]′.

Proof. We have the following representation of the operator F :

F = a0

I − n∑
j=1

∂

∂xj
Gj

 , (5.3)

where Gj (j = 1, . . . , n) are some linear differential operators. For every k ∈ N,
we have  n∑

j=1

∂

∂xj
Gj

k

=
∑
|α|=k

k!

α!
DαGα1

1 · · · G
αn
n .
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Now, for every copolynomial T ∈ K[x1, . . . , xn]′ and polynomial p ∈ K[x1, . . . , xn]
of degree m, we have

∞∑
k=0


 n∑
j=1

∂

∂xj
Gj

k

T, p

 =

 ∞∑
k=0

∑
|α|=k

k!

α!
DαGα1

1 · · · G
αn
n T, p


=

∞∑
|α|=0

(
|α|!
α!

DαGα1
1 · · · G

αn
n T, p

)
=
∑
|α|≤m

(−1)|α|
(
|α|!
α!
Gα1
1 · · · G

αn
n T,Dαp

)
.

Therefore the series
∑∞

k=0

(∑n
j=1

∂
∂xj
Gj
)k
T converges for any copolynomial T ∈

K[x1, . . . , xn]′, the operator I −
∑n

j=1
∂
∂xj
Gj is bijective and its inverse operator

has the form I − n∑
j=1

∂

∂xj
Gj

−1 =
∞∑
k=0

 n∑
j=1

∂

∂xj
Gj

k

.

Now (5.3) implies the bijectivity of the operator F and

F−1 = a−10

∞∑
k=0

 n∑
j=1

∂

∂xj
Gj

k

= a−10

∞∑
k=0

(I − a−10 F)k. (5.4)

Thus the representation (5.2) is true for the inverse operator F−1. Hence, the
differential equation (5.1) has a unique solution u ∈ K[x1, . . . , xn]′ and, more-
over, u = F−1T . By equality (5.4) and Corollary 2.15, we obtain the following
representation for this solution:

u = F−1T = a−10

∞∑
k=0

 n∑
j=1

∂

∂xj
Gj

k

T = a−10

∞∑
k=0

 n∑
j=1

∂

∂xj
Gj

k

(δ ∗ T )

=

a−10

∞∑
k=0

 n∑
j=1

∂

∂xj
Gj

k

δ

 ∗ T = F−1(δ) ∗ T

(see also Example 2.12).
The continuity of the operator F−1 follows from the continuity of the convo-

lution (see Theorem 2.14). The theorem is proved.

Corollary 5.2. Let a0 be an invertible element of the ring K. Then the
differential equation Fu = δ has the unique solution

E = F−1δ. (5.5)

Definition 5.3. The copolynomial defined by (5.5) is called the fundamental
solution of the linear differential operator F .
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Theorem 5.1 implies the following assertion.

Corollary 5.4. Let a0 be an invertible element of the ring K. Then the
unique solution of equation (5.1) is the convolution of the fundamental solution
E and the copolynomial T : u = E ∗ T .

Remark 5.5. In all previous results a0 was supposed to be an invertible element
of the ring K. It should be noticed that this condition is necessary for the
existence of the fundamental solution of the differential operator F . Indeed, if
E is the fundamental solution of this operator, then applying the left- and right-
hand sides of equation FE = δ to 1, we get that a0(E , 1) = 1, i.e., a0 is an
invertible element of the ring K.

Remark 5.6. Let a0 be an invertible element of K. Then the differential
operator F : K[x1, . . . , xn] → K[x1, . . . , xn] is bijective and for any polynomial
p ∈ K[x1, . . . , xn] the differential equation

Fu = p

has a unique solution u ∈ K[x1, . . . , xn], moreover, deg u ≤ deg p. Furthermore,
this solution is a convolution of the fundamental solution E of the differential
operator F and the polynomial p: u = E ∗ p. The proof of this assertion is
similar to that of Theorem 5.1.

Example 5.7. Let n = 1 and a ∈ K. Consider the linear differential operator
F = a d

dx + I on K[x]′. By Corollary 5.2, the operator F has the fundamental
solution

Ea = F−1δ =

(
I + a

d

dx

)−1
δ =

∞∑
j=0

(−1)jajδ(j),

i.e., adEadx + Ea = δ (see Example 4.4). If K = R and a > 0, then we obtain
that the fundamental solution Ea regarded as a regular copolynomial coincides
with the classical fundamental solution 1

a θ(x)e−x/a of the differential operator
F , where θ(x) is the Heaviside function (see also Examples 4 and 5 in [8]).

Example 5.8. The linear differential operator of infinite order F =∑∞
k=0

(∑n
j=1

∂
∂xj

)k
has the inverse operator I −

∑n
j=1

∂
∂xj

. Therefore E = δ −∑n
j=1

∂δ
∂xj

is the fundamental solution of the operator F . By Theorem 5.1, for

every copolynomial T ∈ K[x1, . . . , xn]′, the differential equation of infinite order

∞∑
k=0

 n∑
j=1

∂

∂xj

k

u = T

has a unique solution u = F−1T = T −
∑n

j=1
∂T
∂xj

.
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Example 5.9. Let c be an invertible element of the ring K. In the module
K[x1, x2, x3]

′, we consider the Helmholtz equation

4E + cE = δ, (5.6)

where 4 = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
is the Laplace operator. By Theorem 5.1, equation

(5.6) has the unique solution (see (5.2)):

E = (cI +4)−1δ =
∞∑
k=0

(−1)kc−k−14kδ. (5.7)

For any β = (β1, β2, β3) ∈ N3
0 and k ∈ N0, we have

4kxβ =
∑
|α|=k

k!

α!
D2αxβ, xβ = xβ11 x

β2
2 x

β3
3 .

Therefore,

(4|α|δ, xβ) = (δ,4|α|xβ) =

{
|α|!(2α)!

α! , β = 2α,

0, β 6= 2α.

Substituting this expression into (5.7), we obtain

(E , xβ) =

{
(−1)|α| |α|!(2α)!

α!c|α|+1 , β = 2α,

0, β 6= 2α.

This formula gives the fundamental solution of the Helmholtz operator4+cI. In
the case K = R and c > 0, this solution is connected with classical fundamental

solutions − 1
4π

e±i
√
c|x|

|x| , (|x| =
√
x21 + x22 + x23) of the Helmholtz operator by the

equalities

(E , xβ) = lim
b→+0

∫
R3

e−b|x|
(
−cos(

√
c|x|)

4π|x|

)
xβ dx, β ∈ N3

0, (5.8)

where the integral in the right-hand side of (5.8) is calculated with the help of
converting it to the spherical coordinates.

Example 5.10. Let a, c ∈ K and let c be an invertible element of the ring K.
We find the fundamental solution of the linear differential operator F = ∂

∂t −
a ∂2

∂x2
+ cI. We have

F = c

(
I −

(
ac−1

∂2

∂x2
− c−1 ∂

∂t

))
.

Taking into account (5.2) and (5.5), we obtain the following expression for the
fundamental solution of the operator F :

E = F−1δ =

∞∑
k=0

c−k−1
(
a
∂2

∂x2
− ∂

∂t

)k
δ
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=

∞∑
k=0

c−k−1
k∑
j=0

(
k

j

)
(−1)jak−j

∂2k−jδ

∂tj∂x2k−2j
.

This implies that for every s, l ∈ N0,

(E , xmtl) =

{
(2s)!(l+s)!

s! asc−l−s−1, m = 2s,

0, m = 2s+ 1.

This result can also be obtained with the help of the Laplace transform.
Assume that the ring K contains the field of rational numbers Q. We apply the
Laplace transform to both sides of the equation

∂E
∂t
− a∂

2E
∂x2

+ cE = δ(t, x).

By Proposition 4.5, we obtain

(c− az22 − z1)Ẽ(z1, z2) = 1.

Since c is an invertible element of the ring K, the polynomial c− az22 − z1 is an
invertible element of the ring K[[z1, z2]]. Then

Ẽ(z1, z2) =
1

c− az22 − z1
=
∞∑
k=0

c−k−1
k∑
j=0

(
k

j

)
ak−jzj1z

2k−2j
2 .

Let p(t, x) = xmtl. Then p̃(z1, z2) = m!l!
zl+1
1 zm+1

2

and

Ẽ(z1, z2)p̃(z1, z2) =
∞∑
k=0

c−k−1
k∑
j=0

(
k

j

)
ak−jm!l!zj−l−11 z2k−2j−m−12 .

Thus, by Proposition 4.2, we obtain

(E(t, x), p(t, x)) = Res(Ẽ(z1, z2)p̃(z1, z2)) =

{
(2s)!(l+s)!

s! asc−l−s−1, m = 2s,

0, m = 2s+ 1.

Now, let K = R, a > 0 and c > 0. Notice that∫ ∞
0

dt

∫ ∞
−∞

tle−ctxm
e−

x2

4at

√
4πat

dx =

{
(2s)!(l+s)!

s! asc−l−s−1, m = 2s,

0, m = 2s+ 1.

Thus, in the space R[t, x]′, the fundamental solution of the differential operator

F , regarded as a regular copolynomial, coincides with the function θ(t)e−ct√
4πat

e−
x2

4at .

Example 5.11. We find the fundamental solution of the differential operator
F = ∂2

∂x∂t + ∂
∂x −

∂
∂t − I. By Definition 5.3, it is a solution of the differential

equation
∂2E
∂x∂t

+
∂E
∂x
− ∂E
∂t
− E = δ.
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Then the sequence Csl = (E , xstl) (l, s ∈ N0) is a solution of the following problem
for the difference equation:

Csl = slCs−1,l−1 − sCs−1,l + lCs,l−1, s, l ∈ N,
Cs0 = (−1)s+1s!, C0l = −l!, s, l ∈ N0.

This problem has the unique solution

Csl = (−1)s+1l!s!, s, l = 0, 1, 2, . . .

We notice that

−
∫ ∞
0

dt

∫ 0

−∞
e−t+xtlxs dx = (−1)s+1l!s!.

Therefore, in the space R[t, x]′, the fundamental solution of the differential
operator F , regarded as a regular copolynomial, coincides with the function
−θ(t)θ(−x)ex−t.

Example 5.12. We find the fundamental solution of the transport operator
F = ∂

∂t +
∑n

i=1 si
∂
∂xi

+ I, where si ∈ K. Taking into account (5.2) and (5.5), we
obtain the expression for the fundamental solution of the differential operator F :

E(t, x) = (F−1δ)(t, x) =
∞∑
k=0

(−1)k

(
∂

∂t
+

n∑
i=1

si
∂

∂xi

)k
δ(t, x)

=

∞∑
k=0

(−1)k
k∑
j=0

(
k

j

)
∂j

∂tj

(
n∑
i=1

si
∂

∂xi

)k−j
δ(t, x)

=

∞∑
k=0

(−1)k
k∑
j=0

(
k

j

)
∂j

∂tj

∑
|α|=k−j

|α|!
α!

sαDαδ(t, x), s = (s1, . . . , sn).

Then, for every l ∈ N0 and β ∈ Nn0 , we have

(E , tlxβ) =
∞∑
k=0

(−1)k
k∑
j=0

(
k

j

) ∑
|α|=k−j

|α|!
α!

sα(−1)|α|+j
∂j

∂tj
Dα(tlxβ)

∣∣∣∣
t=0
x=0

= sβ(|β|+ l)!.

Now, let K = R. Notice that∫ ∞
0

e−ttl(δ(x− ts), xβ) dt = sβ(|β|+ l)!, l ∈ N0, β ∈ Nn0 , s ∈ Rn.

Thus a connection between the fundamental solution of the transport oper-
ator and the classical fundamental solution θ(t)e−tδ(x − ts) of this operator is
established:

(E , tlxβ) =

∫ ∞
0

e−ttl
(
δ(x− ts), xβ

)
dt, l ∈ N0, β ∈ Nn0 .
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Example 5.13. Now we consider the m-th order ordinary linear differential
equation in the module K[x]′ of copolynomials of one variable

m∑
j=0

aj
dju

dxj
= T, (5.9)

where aj ∈ K, j = 0, . . . ,m, a0 6= 0, am 6= 0, and T, u ∈ K[x]′ are known and
unknown copolynomials of one variable. This equation is a particular case of
equation (5.1) with the differential operator F =

∑m
j=0 aj

dj

dxj
. Assume that a0 is

an invertible element of the ring K. Then, by Theorem 5.1, equation (5.9) has a
unique solution. This solution has the form

u = a−10

∞∑
k=0

(I − a−10 F)kT. (5.10)

Now, for every k ∈ N0, we have

(I − a−10 F)k = (−1)k
dk

dxk

 m∑
j=1

a−10 aj
dj−1

dxj−1

k

= (−1)k
∑
|γ|=k

k!

γ!
a−k0 aγ11 · · · a

γm
m

dk+
∑m
j=1(j−1)γj

dxk+
∑m
j=1(j−1)γj

.

Substituting this expression into (5.10), we obtain the following representation
for the unique solution of equation (5.9):

u(x) =
∞∑
k=0

∑
|γ|=k

(−1)k
k!

γ!
a−k−10 aγ11 · · · a

γm
m T (k+

∑m
j=1(j−1)γj)(x).

(see [13, Section 4], where a similar formula was obtained in another situation).
In particular, the first-order equation a1u

′(x) + a0u(x) = T (x) has the unique
solution

u(x) =
∞∑
k=0

(−1)ka−k−10 ak1T
(k)(x),

and the second-order equation a2u
′′(x) +a1u

′(x) +a0u(x) = T (x) has the unique
solution

u(x) =

∞∑
k=0

k∑
j=0

(−1)k
(
k

j

)
a−k−10 ak−j1 aj2T

(k+j)(x)

=

∞∑
j=0

∞∑
k=j

(−1)k
(
k

j

)
a−k−10 ak−j1 aj2T

(k+j)(x)

=

∞∑
j=0

∞∑
k=0

(−1)k+j
(
k + j

j

)
a−j−k−10 ak1a

j
2T

(k+2j)(x)
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=
∞∑
s=0

[s/2]∑
j=0

(−1)s−j
(
s− j
j

)
aj−s−10 as−2j1 aj2

T (s)(x)

(see Formula (4.10) in [7]).

6. Fundamental solution of the Cauchy problem for a linear
differential equation in the module of copolynomials

6.1. Formal power series over the module of copolynomials. The
module of formal power series of the form u(t, x) =

∑∞
k=0 uk(x)tk with coefficients

uk(x) ∈ K[x1, . . . , xn]′ will be denoted by K[x1, . . . , xn]′[[t]].
The partial derivative with respect to t of the series u(t, x) ∈ K[x1, . . . , xn]′[[t]]

is defined by the formula

∂u

∂t
=
∞∑
k=1

kuk(x)tk−1.

The partial derivatives Dα with respect to variables x1, . . . , xn of the series
u(t, x) ∈ K[x1, . . . , xn]′[[t]] are defined as follows:

Dαu(t, x) =

∞∑
k=0

(Dαuk)(x)tk.

The action of the K-linear operator A : K[x1, . . . , xn]′ → K[x1, . . . , xn]′ on a for-
mal power series u(t, x) =

∑∞
k=0 uk(x)tk ∈ K[x1, . . . , xn]′[[t]] is defined coefficient-

wisely:

(Au)(t, x) =

∞∑
k=0

(Auk)(x)tk.

It is obvious that if A is an invertible K-linear operator on the module
K[x1, . . . , xn]′, then its extension on the module K[x1, . . . , xn]′[[t]] is also in-
vertible.

We denote by (u(t, x), p(x)) the action of u(t, x) ∈ K[x1, . . . , xn]′[[t]] on p(x) ∈
K[x1, . . . , xn], which is defined coefficient-wisely:

(u(t, x), p(x)) =

∞∑
k=0

(uk(x), p(x))tk.

Thus, (u(t, x), p(x)) ∈ K[[t]].

Definition 6.1. Let u(t, x) =
∑∞

k=0 uk(x)tk ∈ K[x1, . . . , xn]′[[t]]. The convo-
lution of a copolynomial T ∈ K[x1, . . . , xn]′ and a formal power series u(t, x) is
also defined coefficient-wisely:

(T ∗ u)(t, x) =
∞∑
k=0

(T ∗ uk(x))tk,

Thus, (T ∗ u)(t, x) ∈ K[x1, . . . , xn]′[[t]].
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6.2. The Cauchy problem for a linear partial differential equation in
the module of copolynomials. Let F =

∑∞
|α|=0 aαD

α be a linear differential

equation of infinite order on K[x1, . . . , xn]′ with coefficients aα ∈ K. In the
module K[x1, . . . , xn]′[[t]], we consider the Cauchy problem

∂u(t, x)

∂t
= (Fu)(t, x), (6.1)

u(0, x) = Q(x) ∈ K[x1, . . . , xn]′. (6.2)

The following example shows that if a0 is invertible, then this Cauchy problem
may have no solutions.

Example 6.2. Let K = Z, F = I and Q(x) = δ(x). Then the Cauchy problem
(6.1), (6.2) is written in the form

∂u(t, x)

∂t
= u(t, x), (6.3)

u(0, x) = δ(x). (6.4)

Any solution of this problem can be represented in the form of a formal power se-
ries u(t, x) =

∑∞
k=0 uk(x)tk with coefficients uk(x) ∈ Z[x1, . . . , xn]′. Substituting

this representation into (6.3), (6.4), we get

u0(x) = δ(x), (k + 1)uk+1(x) = uk(x), k = 0, 1, 2, . . .

This implies 2(u2, 1) = 1, which contradicts the condition (u2, 1) ∈ Z.

The following theorem shows that in the case a0 = 0 the Cauchy problem
(6.1), (6.2) has a unique solution.

Theorem 6.3. Let a0 = 0 and let the ring K be of characteristic 0. Then,
for any copolynomial Q ∈ K[x1, . . . , xn]′, the formal power series

u(t, x) =
∞∑
k=0

(FkQ)(x)

k!
tk (6.5)

is well-defined and it is a unique solution of the Cauchy problem (6.1), (6.2).
Furthermore, for every t ∈ K, the series (6.5) converges in the topology of the
module K[x1, . . . , xn]′.

Proof. First, we show that K[x1, . . . , xn]′ is a torsion-free Z-module (see the
definition in [1, Section VII, §2]). Suppose that an element T ∈ K[x1, . . . , xn]′

satisfies the equality kT = 0 for some natural k. Then (kT, p) = k(T, p) =
0 for every polynomial p ∈ K[x1, . . . , xn]. Since the integral domain K is of
characteristic 0, we have (T, p) = 0, i.e., T = 0.

Further, we prove that the formal power series (6.5) is well-defined and it is a
unique solution of the Cauchy problem (6.1), (6.2). Since a0 = 0, we obtain the
following representation for the operator F :

F =

n∑
j=1

∂

∂xj
Gj ,
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where Gj (j = 1, . . . , n) are some differential operators.Therefore,

Fk = k!
∑
|α|=k

DαGα1
1 · · · Gαnn
α!

, k ∈ N.

Since copolynomials
DαGα11 ···G

αn
n Q

α! are well-defined (see (2.2)), the element FkQ in
the module K[x1, . . . , xn]′ is divided by k!. In its turn, the module K[x1, . . . , xn]′

is a torsion-free Z-module and we get

FkQ
k!

=
∑
|α|=k

DαGα1
1 · · · Gαnn Q

α!
, k ∈ N. (6.6)

By Theorem 2.3 [6], the series (6.5) is well-defined, the Cauchy problem (6.1),
(6.2) has a unique solution and this solution has the form (6.5). Now we show
that for any t ∈ K the series (6.5) converges in K[x1, . . . , xn]′. We consider

the partial sums uN (t, x) =
∑N

k=0
(FkQ)(x)

k! tk of this series and show that they
are stabilized on every polynomial. By equalities (2.2) and (6.6), for any p ∈
K[x1, . . . , xn] we have

(uN (t, x), p(x)) =

N∑
k=0

∑
|α|=k

(
DαGα1

1 · · · Gαnn Q

α!
, p

)
tk

=

N∑
k=0

∑
|α|=k

(−1)|α|
(
Gα1
1 · · · G

αn
n Q,

Dαp

α!

)
tk

=

m∑
k=0

∑
|α|=k

(−1)|α|
(
Gα1
1 · · · G

αn
n Q,

Dαp

α!

)
tk

=
m∑
k=0

(
(FkQ)(x)

k!
, p(x)

)
tk, N ≥ m,

where m = deg p. The theorem is proved.

Remark 6.4. The condition that K has the characteristic 0 is essential for a
uniqueness of the solution of the Cauchy problem (6.1), (6.2) even for a0 = 0. In-
deed, let K = Z/2Z. This is a field of characteristic 2. Then the Cauchy problem
(6.1), (6.2) for Q(x) = 0 has a solution u(t, x) =

∑∞
k=0 uk(x)tk, where u0(x) =

u1(x) = 0, u2k(x) is an arbitrary element of K[x1, . . . , xn]′ and u2k+1(x) =
(Fu2k)(x) for any k ∈ N. Therefore the considered Cauchy problem has non-
trivial solutions.

Example 6.2 shows that the Cauchy problem (6.1), (6.2) may have no solutions
when a0 6= 0. The following theorem shows that under an additional restriction
on the ring K there exists a solution of this problem even when a0 6= 0.
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Theorem 6.5. The following conditions are equivalent:

1. For any linear differential operator F =
∑∞
|α|=0 aαD

α of infinite order with

coefficients aα ∈ K and for any copolynomial Q ∈ K[x1, . . . , xn]′ there exists
a solution of the Cauchy problem (6.1), (6.2).

2. The ring K contains the field of rational numbers.

Furthermore, a solution of this Cauchy problem is unique and it has the
form (6.5).

Proof. 2⇒1. Since the ring K contains the field of rational numbers, this
ring is of characteristic 0 and 1

k! ∈ K for any k ∈ N. Arguing as in the proof
of Theorem 6.3, we obtain that the module K[x1, . . . , xn]′ is also a torsion-free
Z-module and the element FkQ is divided by k! in the module K[x1, . . . , xn]′

for any k ∈ N. By Theorem 2.3 [6], the series (6.5) is well-defined, the Cauchy
problem (6.1), (6.2) has a unique solution and this solution has the form (6.5).

1⇒2. Suppose that for any copolynomial Q ∈ K[x1, . . . , xn]′ and for any
differential operator F =

∑∞
|α|=0 aαD

α of infinite order with coefficients aα ∈ K
there exists a solution u(t, x) =

∑∞
k=0 uk(x)tk of the Cauchy problem (6.1), (6.2).

We put a0 = 1 and Q(x) = δ(x). Then coefficients uk(x) of the corresponding
solution u(t, x) satisfy the equalities

u0(x) = δ(x), (k + 1)uk+1(x) = (Fuk)(x), k = 0, 1, 2, . . .

Therefore, (k + 1)(uk+1, 1) = (uk, 1) and (k + 1)!(uk+1, 1) = k!(uk, 1) = 1 for
any k ∈ N0. This implies that elements k! ∈ N, regarded as elements of K,
are invertible. Therefore 1

k! ∈ K, k ∈ N. Then K contains the field of rational
numbers.

Theorems 6.3 and 6.5 lead to the following assertion.

Corollary 6.6. Assume that one of the following two conditions is satisfied:

1. The ring K is of characteristic 0 and a0 = 0.

2. The ring K contains the field of rational numbers.

Then the Cauchy problem

∂u(t, x)

∂t
= (Fu)(t, x), u(0, x) = δ(x),

has a unique solution in the module K[x1, . . . , xn]′[[t]]. This solution has the form

EC(t, x) =
∞∑
k=0

(Fkδ)(x)

k!
tk. (6.7)

Definition 6.7. The formal power series EC(t, x) ∈ K[x1, . . . , xn]′[[t]] defined
in (6.7) is called the fundamental solution of the Cauchy problem (6.1), (6.2).

Arguing as in the proof of Theorem 6.5, we obtain the following criterion of
the existence of a fundamental solution of the Cauchy problem (6.1), (6.2) for
any differential operator F =

∑∞
|α|=0 aαD

α of infinite order.
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Theorem 6.8. The following conditions are equivalent:

1. There exists a fundamental solution of the Cauchy problem (6.1), (6.2) for any
linear differential operator F =

∑∞
|α|=0 aαD

α of infinite order with coefficients
aα ∈ K.

2. The ring K contains the field of rational numbers.

Moreover, a fundamental solution of this Cauchy problem is unique and it has
the form (6.7).

The following assertion shows that, under the assumptions of Corollary 6.6,
the unique solution of the Cauchy problem (6.1), (6.2) is represented as the
convolution of the fundamental solution EC(t, x) and the copolynomial Q.

Theorem 6.9. Let the assumptions of Corollary 6.6 hold. Then a unique
solution of the Cauchy problem (6.1), (6.2) can be represented in the form

u(t, x) = EC(t, x) ∗Q.

Proof. Indeed, a unique solution of the Cauchy problem (6.1), (6.2) is defined
by (6.5). On the other hand, in view of Definition 6.1 and Theorem 3.2, we have

EC(t, x) ∗Q =

∞∑
k=0

(Fkδ) ∗Q
k!

tk =

∞∑
k=0

Fk(δ ∗Q)

k!
tk =

∞∑
k=0

FkQ
k!

tk = u(t, x)

(see also Example 2.12).

Corollary 6.10. Let the assumptions of Theorem 6.3 hold. Then, for every
fixed t ∈ K, the sum of the series (6.5) continuously depends on Q in the topology
of the module K[x1, . . . , xn]′.

Proof. Indeed, for every t ∈ K, the fundamental solution EC(t, x) is a copoly-
nomial and by Theorem 6.9 the sum of the series (6.5) can be represented as a
convolution of copolynomials EC(t, x) and Q(x). Now the assertion of the corol-
lary follows from Theorem 2.14.

Example 6.11. Let the ring K be of characteristic 0 and let a ∈ K. In the
module K[x1, . . . , xn]′[[t]], we consider the heat equation

∂u(t, x)

∂t
= a4u(t, x), 4 =

n∑
j=1

∂2

∂x2j
, (6.8)

which is a particular case of equation (6.1) with the differential operator F =
a4. The assumptions of Theorems 6.3, 6.9 and Corollary 6.6 are satisfied. By
Theorem 6.3, for any Q ∈ K[x1, . . . , xn]′, the Cauchy problem (6.8), (6.2) has a
unique solution and this solution has the form (see (6.5)):

u(t, x) =

∞∑
k=0

ak
4kQ

k!
tk. (6.9)
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By Corollary 6.6, the fundamental solution of this Cauchy problem exists and
has the form

EC(t, x) =

∞∑
k=0

ak
4kδ

k!
tk. (6.10)

As in Example 5.9, for any multi-index β ∈ Nn0 and k ∈ N, we obtain

4kxβ

k!
=
∑
|α|=k

D2αxβ

α!
.

Therefore, (
4|α|δ
|α|!

, xβ

)
=

(
δ,
4|α|xβ

|α|!

)
=

{
(2α)!
α! , β = 2α,

0, β 6= 2α.

Substituting this expression into (6.10), we obtain the following representation
for the fundamental solution of the Cauchy problem (6.8), (6.2):

(EC(t, x), xβ) =

{
(2α)!
α! (at)|α|, β = 2α,

0, β 6= 2α.
(6.11)

Now, let K = R and a > 0. We show that in the space R[x1, . . . , xn]′ for
every t > 0 the sum of the series (6.10), regarded as a regular copolynomial, has
the form

∞∑
k=0

ak
4kδ

k!
tk =

1

(
√

4πat)n
e−
|x|2
4at , |x|2 =

n∑
j=1

x2j .

For this purpose, we first note that

1√
4πat

∫ ∞
−∞

yke−
y2

4at dy =

{
(2l)!
l! a

ltl, k = 2l,

0, k = 2l + 1.

Now, taking into account (6.11), we obtain

(EC(t, x), xβ) =

{
(2α)!
α! (at)|α|, β = 2α

0, β 6= 2α
=

1

(
√

4πat)n

∫
Rn
xβe−

|x|2
4at dx.

Example 6.12. Assume that the ring K contains the field of rational numbers,
a ∈ K and Q(x) ∈ K[x1, . . . , xn]′. In the module K[x1, . . . , xn]′[[t]], we consider
the Cauchy problem for the inhomogeneous heat equation

∂v(t, x)

∂t
= a4v(t, x) +Q(x), (6.12)

v(0, x) = 0. (6.13)

It is easy to see that if v(t, x) ∈ K[x1, . . . , xn]′[[t]] is a solution of the Cauchy
problem (6.12), (6.13), then the formal power series

u(t, x) =
∂v(t, x)

∂t
(6.14)
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is a solution of the Cauchy problem (6.8), (6.2). The unique solution of the
Cauchy problem (6.8), (6.2) has the form (6.9) (see Example 6.11). From (6.9),
(6.14) and (6.13), we uniquely restore the formal power series v(t, x),

v(t, x) =
∞∑
k=0

ak
4kQ

(k + 1)!
tk+1. (6.15)

Since
4kQ

(k + 1)!
=
∑
|α|=k

D2αQ

α!(k + 1)
∈ K[x1, . . . , xn]′, k ∈ N,

this series is well-defined. Substituting (6.15) into (6.12) and (6.13), we see that
the series v(t, x) is a solution of the Cauchy problem (6.12), (6.13). The unique-
ness of a solution of the Cauchy problem (6.12), (6.13) follows from Theorem 6.5.

Example 6.13. Assume that K is of characteristic 0 and s1, . . . , sn ∈ K. We
find the fundamental solution of the Cauchy problem for the transport equation

∂u

∂t
=

n∑
j=1

sj
∂u

∂xj
. (6.16)

Equation (6.16) is a particular case of equation (6.1) with the differential operator
F =

∑n
j=1 sj

∂
∂xj

. By Corollary 6.6, the fundamental solution of the Cauchy

problem (6.16),(6.2) has the form

EC(t, x) =
∞∑
k=0

(∑n
j=1 sj

∂
∂xj

)k
δ

k!
tk =

∞∑
k=0

tk
∑
|α|=k

sαDαδ

α!
,

where s = (s1, . . . , sn). Since for any β ∈ Nn0 ,(
Dαδ

α!
, xβ
)

=

{
(−1)|β|, β = α,

0, β 6= α,

we obtain by virtue the definition of the shift of a copolynomial(
EC(t, x), xβ

)
= (−1)|β|t|β|sβ =

(
δ(x+ ts), xβ

)
.

Hence the fundamental solution of the Cauchy problem for equation (6.16) coin-
cides with the copolynomial δ(x+ ts).

6.3. Connections between fundamental solutions. We assume that
F =

∑∞
|α|=0 aαD

α is a linear differential operator of infinite order on

K[x1, . . . , xn]′ with coefficients aα ∈ K and a0 is an invertible element of the
ring K. We also assume that the ring K contains the field of rational numbers.
By Corollaries 5.2 and 6.6, the differential operator F and the Cauchy problem
(6.1), (6.2) have the fundamental solutions E(x) and EC(t, x). Furthermore, by
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Theorem 5.1, the operator F is invertible. Theorem 5.1 and Corollary 5.2 imply
that the differential operator ∂

∂t − F : K[t, x1, . . . , xn]′ → K[t, x1, . . . , xn]′ is also
invertible and this operator also has a fundamental solution which will be denoted
by Ẽ(t, x).

At first, we give the connections between fundamental solutions E(x) and
EC(t, x). By definitions of the fundamental solutions of an operator and a Cauchy
problem (see equalities (5.5) and (6.7)), we obtain the formula

E(x) = (F−1EC)(0, x),

which expresses the fundamental solution of the operator F through the funda-
mental solution of the Cauchy problem (6.1), (6.2). With the help of (5.5) and
(6.7), we obtain the formula

EC(t, x) =
∞∑
k=0

(Fk+1E)(x)

k!
tk,

which expresses the fundamental solution of the Cauchy problem (6.1), (6.2)
through the fundamental solution of the operator F .

Now we establish the connections between fundamental solutions Ẽ(t, x) and
E(x). We have

∂

∂t
−F = F

(
F−1 ∂

∂t
− I
)
.

Then the operator
(
F−1 ∂∂t − I

)
: K[t, x1, . . . , xn]′ → K[t, x1, . . . , xn]′ is invertible

and we have the operator equality(
∂

∂t
−F

)−1
=

(
F−1 ∂

∂t
− I
)−1
F−1. (6.17)

Applying (6.17) to the copolynomial δ(t, x) = δ(t) ⊗ δ(x) ∈ K[t, x1, . . . , xn]′, we
obtain the formulas

Ẽ(t, x) =

(
F−1 ∂

∂t
− I
)−1
F−1(δ(t)⊗ δ(x))

=

(
F−1 ∂

∂t
− I
)−1

(δ(t)⊗ (F−1δ)(x))

=

(
F−1 ∂

∂t
− I
)−1

(δ(t)⊗ E(x))

=

(
F−1 ∂

∂t
− I
)−1

(δ(t)⊗ (F−1EC)(0, x)),

which express the fundamental solution of the operator ∂
∂t − F through either

the fundamental solution of the operator F or the fundamental solution of the
Cauchy problem (6.1), (6.2). Moreover, we obtain the formula

δ(t)⊗ E(x) =

(
F−1 ∂

∂t
− I
)
Ẽ(t, x),

which implicitly expresses the fundamental solution of the operator F through
the fundamental solution of the operator ∂

∂t −F .
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Диференцiальнi рiвняння з частинними похiдними у
модулi кополiномiв над комутативним кiльцем

S.L. Gefter and A.L. Piven’

Нехай K є довiльною комутативною областю цiлiсностi з одиницею.
Дослiджуються кополiноми n змiнних, тобто K-лiнiйнi вiдображення з
кiльця полiномiв K[x1, . . . , xn] у кiльце K. Доводиться теорема iснува-
ння та єдиностi розв’язку для лiнiйного диференцiального рiвняння не-
скiнченного порядку, яку можна розглядати як алгебраїчну версiю кла-
сичної теореми Мальгранжа–Еренпрайса iснування фундаментального
розв’язку лiнiйного диференцiального оператора зi сталими коефiцiєнта-
ми. Знайдено фундаментальнi розв’язки лiнiйних диференцiальних опе-
раторiв нескiнченного порядку та показано, що єдиний розв’язок вiдпо-
вiдного неоднорiдного рiвняння може бути поданий як згортка фунда-
ментального розв’язку цього оператора та правої частини. Також дове-
дено теорему iснування та єдиностi розв’язку задачi Кошi для деяких
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лiнiйних диференцiальних рiвнянь у модулi формальних степеневих ря-
дiв iз кополiномiальними коефiцiєнтами.

Ключовi слова: кополiном, фундаментальний розв’язок, згортка, δ-
функцiя, диференцiальний оператор нескiнченного порядку, задача Ко-
шi, перетворення Лапласа
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