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The L2-Norm of the Euler Class for

Foliations on Closed Irreducible Riemannian

3-Manifolds

Dmitry V. Bolotov

An upper bound for the L2-norm of the Euler class e(F) of an arbi-
trary transversely orientable foliation F of codimension one, defined on a
three-dimensional closed irreducible orientable Riemannian 3-manifold M3,
is given in terms of constants bounding the volume, the radius of injectivity,
the sectional curvature of M3 and the modulus of mean curvature of the
leaves. As a consequence, we get only finitely many cohomological classes
of the group H2(M3) that can be realized by the Euler class e(F) of a two-
dimensional transversely oriented foliation F whose leaves have the modulus
of mean curvature which is bounded above by the fixed constant H0.
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1. Introduction

Let (M3, g) be a closed oriented three-dimensional Riemannian manifold and
F be a transversely oriented C∞-smooth foliation of codimension one on M3.
Recall that a foliation F is taut if its leaves are minimal submanifolds of M3

for some Riemannian metric on M3. D. Sullivan [24] gave a description of taut
foliations, namely, he proved that a foliation is taut if and only if each leaf of F
is intersected by a transversal closed curve, which is equivalent to the condition
that F does not contain generalized Reeb components (see bellow).

We previously proved the following result [2].

Theorem 1.1. Let V0 > 0, i0 > 0,K0 ≥ 0 be fixed constants, and M3 be a
closed oriented three-dimensional Riemannian manifold with the following prop-
erties:

1. the volume Vol(M3) ≤ V0;

2. the sectional curvature K of M satisfies the inequality K ≤ K0;

3. min
{

inj
(
M3
)
, π

2
√
K0

}
≥ i0, where inj

(
M3
)

is the injectivity radius of M3.

Let us set

H0 =


min

{
2
√

3i20
V0

, 3

√
2
√

3
V0

}
if K0 = 0,

min
{

2
√

3i20
V0

, x0

}
if K0 > 0,
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where x0 is the root of the equation

1

K0
arccot2 x√

K0
− V0

2
√

3
x = 0.

Then any smooth transversely oriented foliation F of codimension one on M3

such that the modulus of the mean curvature H of its leaves satisfies the inequality
|H| < H0, should be taut, in particular, have minimal leaves for some Riemannian
metric on M3.

Notice that if M3 admits a taut foliation, then M3 is irreducible [18]. Let us
recall that a 3-manifold M3 is called irreducible if each embedded sphere bounds
a ball in M3. In particular, π2(M3) = 0 (see [12]).

W. Thurston proved in [27] (see also [10]) that if M2 ⊂ M3 is a closed
embedded orientable surface which is different from S2, then the Euler class e(F)
of a transversely oriented taut foliation F on M3 satisfies∣∣e(F)

[
M2
]∣∣ ≤ −χ(M2

)
. (1.1)

Here, by the Euler class of the foliation F , we mean the Euler class of the distri-
bution tangent to F .

Since any integer homology class H2

(
M3;Z

)
can be represented by a closed

oriented surface (see subsection 2.2), the inequality above bounds the possible
values of the cohomology class e(F) on the generators ofH2

(
M3;Z

)
, and therefore

the number of cohomological classes H2
(
M3;Z

)
, realized as Euler classes e(F),

is finite.
In this paper, we estimate from above the L2-norm of the Euler class of

foliations on closed Riemannian 3-manifolds with leaves having a mean curvature
bounded in absolute value by some positive constant. Below we prove the main
theorem.

Theorem 1.2. Let V0 > 0, i0 > 0, H0 > 0, k0 ≤ K0 be fixed constants. Sup-
pose

(
M3,F

)
to be a closed oriented irreducible three-dimensional Riemannian

manifold equipped by a two-dimensional transversely oriented foliation F , whose
leaves have the modulus of the mean curvature H bounded above by the constant
H0, and M3 satisfies the following conditions:

1. the volume Vol
(
M3
)
≤ V0;

2. the sectional curvature K of M satisfies the inequality k0 ≤ K ≤ K0;

3. if K0 > 0, then

min

{
inj
(
M3
)
,

π

2
√
K0

}
≥ i0,

if K0 ≤ 0, then
inj
(
M3
)
≥ i0,

where inj
(
M3
)

is the injectivity radius of M3.

Then there exists a constant C1(V0, i0, k0,K0, H0) such that the L2-norm

‖e(F)‖L2 ≤ C1.
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Corollary 1.3. For any closed oriented Riemannian 3-manifold M3 there
are only finitely many cohomological classes of the group H2

(
M3;R

)
that can

be realized by the Euler class e(F) of a two-dimensional transversely oriented
foliation F whose leaves have the modulus of the mean curvature bounded above
by the fixed constant H0.

Remark 1.4. In Theorem 1.2, the Euler class e(F) is assumed to be real,
i.e., the image of the integer Euler class via the homomorphism H2

(
M3;Z

)
→

H2
(
M3;R

)
is induced by the embedding of the coefficients Z ↪→ R. Clearly,

e(F) ∈ H2(M3;Z)R ⊂ H2
(
M3;R

)
, where H2

(
M3;Z

)
R is an integer lattice in

H2
(
M3;R

)
. Recall also that the real cohomology groups are isomorphic to the

de Rham cohomology groups and we can represent the real Euler class through
a closed differential form, in particular, the harmonic form (see subsection 2.2).

Remark 1.5. As follows from Myers’s theorem [17], if k0 > 0, then π1

(
M3
)

is
finite and H1

(
M3;R

) ∼= H2
(
M3;R

)
≡ 0, which implies e(F) = 0. Thus we can

suppose that k0 ≤ 0.

Remark 1.6. The foliation F does not contain a sphere as a leaf since in this
case, by Reeb’s stability theorem (see [26]), M3 ' S2×S1, which contradicts the
irreducibility of M3.

2. Background material

2.1. Geometrical inequalities

2.1.1. Inequalities associated with a generalized Reeb component.
A subset of the foliated manifold (M,F) is called a saturated set if it consists
of leaves of the folation F . A saturated set A of a three-dimensional compact
orientable manifold M3 with a given transversely orientable foliation F of codi-
mension one is called a generalized Reeb component if A is a connected three-
dimensional manifold with a boundary ∂A and any transversal to F vector field
restricted to ∂A is directed either everywhere inwards or everywhere outwards
of the generalized Reeb component A. In particular, the Reeb component R
(see [26]) is a generalized Reeb component. It is clear that ∂A consists of a finite
set of compact leaves of the foliation F . It is not difficult to show that ∂A is a
family of tori (see [11]).

The next result is due to G. Reeb.

Theorem 2.1 ([22]). Let (M3, g) be a closed oriented three-dimensional Rie-
mannian manifold and F be a smooth transversely oriented foliation of codimen-
sion one on M . Then

dχ = 2Hµ, (2.1)

where χ is the volume form of the foliation F , and µ is the volume form on M3.

Corollary 2.2. Let M3 be a closed oriented three-dimensional Riemannian
manifold with a given transversely oriented smooth foliation F of codimension
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one. Suppose that F contains a generalized Reeb component A and the modulus
of the mean curvature H of the foliation F is bounded above by |H| ≤ H0. Then

Area(∂A) ≤ 2H0 Vol(A) and Area(∂A) ≤ H0 Vol(M3). (2.2)

Proof. According to the Stokes theorem and (2.1), we get

0 < Area(∂A) =

∣∣∣∣∫
∂A
χ

∣∣∣∣ =

∣∣∣∣∫
A
dχ

∣∣∣∣ = 2

∣∣∣∣∫
A
Hµ

∣∣∣∣ ≤ 2

∫
A
H0µ = 2H0 Vol(A).

Let B = M3 \ intA. Then B is also a generalized Reeb component and we have

Area(∂B = ∂A) =

∣∣∣∣∫
∂B
χ

∣∣∣∣ =

∣∣∣∣∫
B
dχ

∣∣∣∣ = 2

∣∣∣∣∫
B
Hµ

∣∣∣∣ ≤ 2

∫
B
H0µ = 2H0 Vol(B).

It follows that

2 Area(∂A) ≤ 2H0(Vol(A) + Vol(B)) ≤ 2H0 Vol(M3),

which implies the result.

Corollary 2.3. The generalized Reeb component A is an obstruction to the
foliation F being taut.

Remark 2.4. The converse is also true. If the foliation is not taut, then it
contains a generalized Reeb component (see [11]).

2.1.2. Systolic inequalities. Recall that the systole, denoted by sys, in
a Riemannian manifold M with non-trivial fundamental group is the length of
the smallest loop in M that is not null-homotopic in M . Under the condition of
closeness M , such a loop exists and is necessary a closed geodesic. The proof does
not differ from the proof of the existence of a closed geodesic in its free homotopy
class (see [7, Chapter 12]).

The Loewner theorem below gives an upper bound on the systole in a Rie-
mannian two-dimensional torus.

Theorem 2.5 (Loewner [21]). Let T 2 be a two-dimensional torus with an
arbitrary Riemannian metric on it. Then

sys2 ≤ 2√
3

Area
(
T 2
)
, (2.3)

where sys (abbreviated from systole) is the length of the shortest closed noncon-
tractible geodesic on T 2.

Due to Gromov, the generalization of this theorem is the following:

Theorem 2.6 ([15, Chap. 6]). Let T 2 be a two-dimensional torus with an
arbitrary Riemannian metric on it. Then there exists a pair of closed geodesics
on T 2 of respective length λ1, λ2 such that

λ1λ2 ≤
2√
3

Area
(
T 2
)
, (2.4)

and whose homotopy classes form a generating set of π1

(
T 2
)

= Z2.
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Corollary 2.7. Let T 2 be a Riemannian torus for which

sys ≥ C0, Area
(
T 2
)
≤ S0

for some positive constants C0, S0. Then there exists a pair of closed geodesics
on T 2 whose homotopy classes form a generating set of π1

(
T 2
)

= Z2 and whose
lengths λ1, λ2 do not exceed some constant C

(
C0, S0

)
.

Proof. From (2.4), it immediately follows that

λi ≤
2√
3

Area
(
T 2
)

sys
≤ C :=

2S0√
3C0

, i = 1, 2. (2.5)

The corollary is proved.

The concept of systole can be generalized to foliations.

Definition 2.8. Let
(
M,F

)
be a foliated manifold. Following [13, Chapter

VII], we call a loop f : S1 →M integral for F if f
(
S1
)

is contained in some leaf
L of F . In this case, L is referred to as the support of f .

Definition 2.9. The integral loop supported by L is referred to as essential
if the loop f : S1 → L represents nontrivial element of the fundamental group
π1

(
L
)

and inessential otherwise.

We recently proved the following theorem.

Theorem 2.10 ([3]). Let
(
M,F

)
be a foliated closed Riemannian manifold

containing a leaf with a nontrivial fundamental group. Then there is an integral
essential loop lsys in M with smallest length among all integral essential loops in(
M,F

)
, which is necessary a closed geodesic in its support.

Definition 2.11. Denote by sys
(
F
)

the length of the geodesic lsys from
Proposition 2.10.

2.1.3. Comparison inequalities. Recall the following comparison theorem
for normal curvatures.

Theorem 2.12 ([4, 22.3.2.]). Let p ∈ M and β : [0, r] → M be a radial
geodesic of the ball B

(
p, r
)

of radius r centered at the point p of the Riemannian
manifold M . Let β

(
r
)

be a point not conjugate with p along β. Let the radius r
be such that there are no conjugate points in the space of constant curvature K0

within the radius of length r. Then if at each point β
(
t
)

the sectional curvatures K
of the manifold M do not exceed K0, then the normal curvature kSn of the sphere
S
(
p, r
)

at the point β
(
r
)

with respect to the normal −β′ is not less than the normal
curvature k0

n of the sphere of radius r in the space of constant curvature K0.

Let M3 be a 3-manifold satisfying the condition of Theorem 1.2. Notice that
all normal curvatures of the sphere S

(
r
)
⊂M3 of radius r are positive, provided

that r < i0 and the normal to the sphere S
(
r
)

is directed inside the ball B
(
r
)

which it bounds.
(
The sphere S

(
r
)

indeed bounds the ball since r < inj
(
M3
)

by definition.
)

We will call such a normal inward.
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Definition 2.13. We call a hypersurface S ⊂M3 of the Riemannian manifold
M3 the supporting hypersurface to the subset A ⊂ M3 at the point p ∈ ∂A ∩ S
with respect to the normal np ⊥ TpS if S cuts some spherical neighborhood Bp
of the point p into two components, and A ∩Bp is contained in that component
to which the normal np is directed. We call the sphere S

(
r
)
⊂ M3

(
r < i0

)
the supporting sphere to the set A ⊂ M3 at the point q ∈ A ∩ S

(
r
)

if it is the
supporting sphere to A at the point q with respect to the inward normal.

The following lemma is obvious.

Lemma 2.14 ([2, Lemma 4]). Assume that the sphere S
(
r0

) (
r0 < i0

)
is

the supporting sphere to the surface F ⊂ M3 at the point q. Then kSn
(
v
)
≤

kFn
(
v
)
∀v ∈ TqS

(
r0

)
, where kSn

(
v
)

and kFn
(
v
)

denote corresponding normal cur-
vatures of S

(
r0

)
and F at the point q in the direction v.

As a consequence of Lemma 2.14 and Theorem 2.12, we obtain the following
inequalities at the touching point q:

0 < H0
r ≤ Hr

(
q
)
≤ H

(
q
)
, (2.6)

where H0
r and Hr are mean curvatures of the spheres S

(
r
)

bounding the ball of
radius r, r < i0, in the space of constant curvature K0 and the manifold M3

respectively, and H is the mean curvature of the surface F .

2.2. Harmonic maps to the circle and harmonic forms. Let M3 be a
closed oriented Riemannian 3-manifold. Recall that

H1
(
M3;Z

) ∼= [M3, S1
]
, (2.7)

and each cohomological class a ∈ H1
(
M3;Z

)
can be obtained as an image of the

generator [S1]∗ ∈ H1
(
S1;Z

) ∼= Z under the homomorphism f∗ : H1
(
S1;Z

)
→

H1
(
M3;Z

)
induced by the mapping f : M3 → S1 uniquely defined up to homo-

topy. Recall also that the group H2

(
M3;Z

) PD∼= H1
(
M3;Z

)
does not contain a

torsion and we can identify H1
(
M3;Z

)
with the integer lattice H1

(
M3;Z

)
R ⊂

H1
(
M3;R

)
and H2

(
M3;Z

)
with H2

(
M3;Z

)
R ⊂ H2

(
M3;R

)
. Observe that the

Poincaré duality H1
(
M3;R

) PD∼= H2

(
M3;R

)
induces the Poincaré duality of inte-

ger lattices H1
(
M3;Z

)
R

PD∼= H2

(
M3;Z

)
R.

Let us identify S1 with the unit-length circle R/Z with natural parameter
θ. If f is a smooth function, then the preimage f−1

(
θ
)

of a regular value θ ∈
S1 is a smooth

(
not necessarily connected

)
oriented submanifold M2 ⊂ M3,

which we identify with the image of the embedding i : M2 ↪→ M3. The singular
homology class

[
M2, i

]
:= i∗

[
M2
]
∈ H2

(
M3;Z

)
R corresponding to the singular

cycle
(
M2, i

)
is Poincaré dual to the cohomology class a ∈ H1

(
M3;Z

)
R, where

[M2] ∈ H2

(
M2;R

)
denotes a fundamental class of M2 which is the generator of

the group Z ∼= H2

(
M2;Z

)
R ⊂ H2

(
M2;R

) ∼= R.
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Remark 2.15. Note that by Sard’s theorem, the set of regular values of f has
a full measure in S1 and it is also an open set in S1 since M3 is compact. The
same is true for any smooth map g : N → L of the smooth compact manifolds N
and L [19].

Now we should recall that each homotopy class in [M3, S1] can be represented
by the harmonic mapping [9]. Let u : M3 → S1 be a harmonic map representing
the nontrivial class [u] ∈ [M3, S1] ∼= H1

(
M3;Z

)
. Observe that α = u∗dθ, θ ∈

S1, is a harmonic 1-form
(
i.e., dα = δα = 0

)
on M3 corresponding to the integer

lattice class [u] ∈ H1
(
M3;Z

)
R.

On the space of differential k-forms Ωk
(
M3
)
, k ∈ {0, 1, 2, 3}, one can introduce

the L2-norm:

‖α‖L2 =

√∫
M3

α ∧ ∗α =

√∫
M3

|α|2, (2.8)

where ∗ denotes the Hodge star operator, and |αp| =
√
∗
(
αp ∧ ∗αp

)
, p ∈M3. In

the 3-dimensional vector space TpM
3 each k-form αp is simple and |αp| coincides

with the comass norm
|αp| = maxαp

(
e1, . . . , ek

)
,

where the maximum is taken over all orthogonal frames of vectors
(
e1, . . . , ek

)
in

TpM
3.

We also use the L∞-norm on Ω∗
(
M3
)

defined as follows:

‖α‖L∞ = max
p∈M3

|αp|.

The norm (2.8) induces the L2-norm on the de Rham cohomology of M3 as
follows. Let a ∈ Hk

(
M3;R

)
, then we set

‖a‖L2 := inf
α

{
‖α‖L2 : α ∈ Ωk

(
M3
)

is a smooth closed k-form representing a
}
.

From de Rham - Hodge theory, it follows that ‖a‖L2 = ‖α‖L2 , where α is the
unique harmonic form

(
dα = δα = 0

)
representing the class a ∈ Hk

(
M3;R

)
.

Using Poincaré duality Hi

(
M3;R

) PD∼= H3−i(M3;R
)
, we can introduce the

L2-norm on H2

(
M3;R

)
setting

‖b‖L2 = ‖PD
(
b
)
‖L2 , b ∈ Hi

(
M3;R

)
.

On the other hand, the non-degenerate Kronecker pairing

〈·, ·〉 : Hk
(
M3;R

)
×Hk

(
M3;R

)
→ R,

induced by integration of closed forms over cycles, allows us to define the L2-norm
‖·‖∗L2 on Hk

(
M3;R

) ∼= (Hk
(
M3;R

))∗
dual to the L2-norm ‖·‖L2 on Hk

(
M3;R

)
.

As was shown in [1],

PD :
(
H i
(
M3;R

)
, ‖ · ‖L2

)
→
(
H3−i

(
M3;R

)
, ‖ · ‖∗L2

)
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is an isometry for i = 1, 2.
Notice that

PD
(
[α ∧ β]

)
= PD

(
[β ∧ α]

)
=
〈
[α], PD

(
[β]
)〉

=
〈
[β], PD

(
[α]
)〉
,

where α ∈ Ω1
(
M3
)

and β ∈ Ω2
(
M3
)

are closed forms. Since the set of integer-
directed rays from 0 ∈ H1

(
M3;R

)
is everywhere dense set in H1

(
M3;R

)
, we

have

‖b‖L2 = ‖PD
(
b
)
‖∗L2 = sup

a6=0

〈
a, PD

(
b
)〉

‖a‖L2

= sup
[Σ] 6=0

〈b, [Σ]〉
‖[Σ]‖L2

, (2.9)

where b ∈ H2
(
M3,R

)
, a ∈ H1

(
M3,Z

)
R and Σ is a compact oriented surface

embedded in M3 such that PD
(
a
)

= [Σ].
Let us recall the following inequality (see [20, 7.1.13,7.1.17, 9.2.7, 9.2.8]). If

α is a harmonic 1-form on closed Riemannian manifold Mn, then

‖α‖L∞ ≤ Λn(k,D)‖α‖2. (2.10)

Here, ‖α‖2 =
‖α‖L2√

Vol
(
Mn
) , D > 0 is the constant satisfying the inequality

Diam
(
Mn

)
≤ D, and k ≤ 0 is the constant satisfying the inequality Ric

(
M3
)
≥(

n− 1
)
k.

In the three-dimensional case, we have n = 3. In addition, we can put ν = 3(
see [20, 7.1.13,7.1.17, 9.2.7]

)
.

Remark 2.16. In [8], C.B. Croke gave an estimate for the diameter of a closed
Riemannian manifold, which we adapt to the three-dimensional case:

Diam
(
M3
)
≤

27πVol
(
M3
)

8 inj
(
M3
)2 .

In particular, if M3 satisfies the conditions of Theorem 1.2, we can take

D =
27

8
π
V0

i20
.

Moreover, we can put k = k0

(
see Remark 1.5

)
, and thus we have

Λ3

(
k,D

)
= Λ

(
V0, i0, k0

)
. (2.11)

The following Stern’s theorem estimates an average Euler characteristic of a
surface dual to the harmonic mapping of M3 into the circle.

Theorem 2.17 ([25]). Let u : M3 → S1 be a harmonic map to the unit-

length circle representing the nontrivial class [u] ∈ [M3, S1] ∼= H1
(
M3;Z

) PD∼=
H2

(
M3;Z

)
. Then

2π

∫
θ∈S1

χ
(
Σθ

)
≥ 1

2

∫
θ∈S1

∫
Σθ

(
|du|−2|Hess

(
u
)
|2 +RM3

)
, (2.12)

where Σθ = u−1θ, θ ∈ S1, and RM3 is the scalar curvature of M3.
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Remark 2.18. For a regular value θ ∈ S1 of u : M3 → S1, each connected
component Σi

θ of Σθ represents a non-trivial homology class in H2

(
M3
) (

see [25]
)
,

and since M3 is assumed to be irreducible, χ
(
Σi
θ

)
≤ 0.

As a corollary, Stern obtained the following useful estimate.

Corollary 2.19 ([25]).∫
θ∈S1

χ
(
Σθ

)
≥ − 1

4π
‖α‖L2‖R−‖L2 , (2.13)

where R− := min{0, R} is a non-positive part of the scalar curvature R and α =
u∗dθ.

2.3. Novikov’s theorem and a vanishing cycle. Let
(
M3,F

)
be a fo-

liated closed 3-manifold. An integral loop α : S1 → M3 is a vanishing cycle if
there exists a homotopy A : S1 × I → M3 through integral loops At := A|S1×t
for F such that A0 = α and At is inessential for 0 < t ≤ 1. A vanishing cycle α
is non-trivial if α is essential.

The following well-known Novikov’s theorem gives us topological obstructions
to the existence of taut foliations.

Theorem 2.20 ([18]).

1. For a closed orientable smooth 3-manifold M3 and a transversely orientable
C2-smooth foliation F of codimension one on M3, the following are equivalent.

a) The foliation F has a Reeb component.

b) There is a leaf L of F that is not π1-injective. That is, the inclusion i :
L → M3 induces a homomorphism i∗ : π1

(
L
)
→ π1

(
M3
)

with nontrivial
kernel.

c) Some leaf of F contains a nontrivial vanishing cycle.

2. The support of the nontrivial vanishing cycle is a torus bounding a Reeb com-
ponent.

The construction underlying the proof of Novikov’s theorem is as follows. Let
a simple closed integral regular curve α : S1 →M3 belongs to the leaf L ∈ F and
represents the nontrivial element of Ker

(
i∗ : π1

(
L
)
→ π1

(
M3
))

. We can find an
immersion p : D →M3 of the two-dimensional disk D such that p

(
∂D
)

= α. This
immersion can be brought to a general position by a small perturbation

(
modulo

∂D
)
. It means that the induced foliation F ′ := p−1

(
F ∩ p

(
D
))

has only Morse
singularities

(
saddles and centers

)
. Moreover, by a small perturbation, we can

obtain not more than one singular point on a single leaf
(
see [6, Lemma 9.2.1.]

)
.

The resulting foliation outside the singular points on D can be oriented
(
see

Subsection 2.4
)
. Therefore, there is a smooth vector field X tangent to F ′ with

zeros corresponding to the singular points of F ′. Recall that a separatrix coming
out of a singular point and returning to it, together with the singular point

(
a
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saddle
)
, is called a separatrix loop. By the construction, a saddle singular point

of F ′ belongs to at most two separatrix loops.
The idea of general position described above can be extended to arbitrary

immersed compact surfaces. In particular, the following theorem holds.

Theorem 2.21 ([5, Theorem 7.1.10], [6, 9.2.A]). Let M3 be an oriented closed
3-manifold with a smooth transversely oriented foliation F on it. Then for any
Cq-mapping f : N2 →M3 of a compact oriented surface N2 such that in the case
of ∂N2 6= ∅, we have f |∂N2 either is transverse to F or has an image in a leaf
L of F , and for any δ > 0 there exists a δ-close to f Cq -immersion p : N2 →
M3 in Cq

(
N2,M3

)
-topology, q ≥ 2, such that:

I. The induced foliation F ′ := p−1
(
F ∩ p

(
N2
))

has only Morse singularities.

II. There is at most one singular point on one leaf.

III. In the case of ∂N2 6= ∅, we have p|∂N2 either is transverse to F or has image
in a leaf L of F .

An immersion p satisfying the properties I–III of Theorem 2.21 will be referred
to as an immersion of general position.

Definition 2.22. Let us identify the closed orbits and separatrix loops of F ′
with the images of the corresponding loops f : S1 → N2 which bypass them once
along the trajectories of the vector field X. The loops f : S1 → N2 are referred
to as essential if the integral loop p ◦ f is essential and inessential otherwise.
Note that due to Reeb’s stability theorem, inessential closed orbits have a “good
neighborhood”, i.e., a neighborhood consisting of inessential closed orbits.

Fig. 2.1: Pinched annulus P.

Definition 2.23. Let p : N2 → M3 be an immersion of general position
described above. Let us denote by P a subset of N2, which is topologically a
disk with a boundary that is either a closed orbit or a separatrix loop of F ′, or
it is a pinched annulus

(
see Fig. 2.1

)
consisting of two separatrix loops with a

common saddle point. Suppose that ∂P has a ”good collar” in P, i.e., a collar
consisting of inessential closed orbits of F ′. Clearly, the p-image of ∂P represents
a vanishing cycle. We call O := ∂P the vanishing cycle too.

One of S.P. Novikov’s key observations in [18] was the proof of the existence
of a nontrivial vanishing cycle O inside of

(
D,F ′

) (
see above

)
.
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2.4. Euler class of foliations. Here we describe Thurston’s construction
for calculating the Euler class e

(
F
)

of a transversely oriented codimension one
foliation F on a closed oriented 3-manifold M3 [27]. Let p : N2 →

(
M3,F

)
be

an immersion of general position of a closed oriented surface N2. The induced
foliation F ′ = p−1

(
F ∩p

(
N2
))

on N2 can be oriented outside the singular points.
To verify this, let us take a normal vector field n to the foliation F , and for all
x = p

(
z
)
∈ p
(
N2
)

consider the orthogonal projection n′
(
x
)

of the normal n
(
x
)

to
F on the tangent plane p∗

(
Tz
(
N2
))

, which in the case where z is not a singular
point uniquely determines the unit tangent vector e′ to the leaf L′z ∈ F ′, z ∈
L′z, such that the frame

{
e′, p−1

∗
n′

|n′|

}
defines a positive orientation of Tz

(
N2
)
.

Now we can define a smooth vector field X on N2 tangent to F ′ whose zeros
correspond to the singular points of F ′ putting

X = |n′|e′. (2.14)

Remark 2.24. It is easy to define a vector field X⊥ orthogonal to F ′ with
respect to the induced Riemannian metric on N2. The vector field X⊥ has the
same singular points as X and the integral curves of X⊥ define a foliation F ′⊥
orthogonal to F ′ on N2.

The pair
(
N2, p

)
can be understood as a singular cycle if we fix some triangula-

tion on N2. Let the singular homology class
[
N2, p

]
:= p∗

[
N2
]
∈ H2

(
M3;Z

)
R ⊂

H2

(
M3;R

)
correspond to the singular cycle

(
N2, p

)
, where [N2] denotes a fun-

damental class of N2. As W. Thurston showed in [27], to calculate the value
of the Euler class e

(
TF
)
∈ H2

(
M3,Z

)
R of the foliation F on the singular ho-

mology class
[
N2, p

]
∈ H2

(
M3;Z

)
R, it suffices to calculate the total index of

singular points of the vector field X on N2 taking into account the orientation of
p∗
(
Tq
(
N2
))

at singular points.
(
We apply Thurston’s results to immersed sub-

manifolds rather than embedded ones, where the same ideas work automatically.
)

Since M3 is oriented, we can uniquely choose a unit normal vector m ∈ T
p
(
q
)M3

to the plane p∗
(
Tq
(
N2
)
, q ∈ N2, which defines the orientation of p∗

(
Tq
(
N2
))

coming from the orientation of Tq
(
N2
)
.

We say that a singular point q ∈ N2 is of negative type if m(p(q)) = −n(p(q)).
If m(p(q)) = n(p(q)), then the type of a singular point is called positive.

We denote by IN the sum of indices of singular points of negative type, and
by IP the sum of indices of singular points of positive type. The value of the
Euler class e

(
TF
)

on the singular homology class [N2, p] is calculated as follows:

e
(
TF
)(

[N2, p]
)

= e
(
p∗
(
TF
))(

[N2]
)

= IP − IN . (2.15)

Recall that the Poincaré–Hopf theorem states that

χ
(
N2
)

= IP + IN . (2.16)
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3. Preliminary results

3.1. An upper bound for the number of Reeb components of a
bounded mean curvature foliation. The results of these subsections are rep-
resented in [3]. For the sake of completeness, we give them in a slightly more
general form.

Let us prove the following theorem.

Theorem 3.1. Let M3 be a closed oriented three-dimensional Riemannian
manifold satisfying the conditions 1–3 of Theorem 1.2. Let F be a codimension
one transversely oriented foliation on M3, whose leaves have a modulus of mean
curvature bounded above by the fixed constant H0.

Then

sys
(
F
)
≥ C0 :=



2 min
{
i0,

1√
K0

arccot H0√
K0

}
if K0 > 0,

2 min
{
i0,

1
H0

}
if K0 = 0,

2 min
{
i0,

1√
−K0

arccoth H0√
−K0

}
if K0 < 0

and H0 >
√
−K0,

2i0 if K0 < 0

and H0 ≤
√
−K0.

(3.1)

Proof. Case 1:
sys
(
F
)

2 ≥ i0. The result follows immediately.

Case 2:
sys
(
F
)

2 < i0. Let lsys be an integral closed geodesic which is not
null-homotopic in its support and whose length sys = sys

(
F
)
< 2i0. Then there

is an immersion
p : D → intB(r), r ∈

(sys

2
, i0

)
of a disk D which is in general position with respect to F and such that p

(
∂D
)

=
lsys. As noted in subsection 2.3, there is a vanishing cycle which belongs to

T 2 ∩ p
(
D
)
⊂ intB(r),

where T 2 ∈ F is a torus bounding a Reeb component R.
Let r ∈

( sys
2 , i0

)
be a regular value of the mapping

prr| (intB(i0))∩T 2 :
(

intB(i0)
)
∩ T 2 → R (3.2)

such that prr(r, φ1, φ2) = r, where (r, φ1, φ2) is a normal coordinate system in
the ball B(i0).

In the case S(r) ∩ T 2 6= ∅ , from [2, Proposition 2] it follows that the sphere
S(r) is a supporting sphere with respect to the inward normal at the tangent
point q for some inner leaf of the Reeb component R.

It should be noticed that due to Sard’s theorem , the set of regular values of
the mapping (3.2) has a full measure in the interval

( sys
2 , i0

)
and the value r can

be taken arbitrarily close to sys
2 .
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In the case S(r) ∩ T 2 = ∅, we achieve the tangency of the sphere S(r) and
T 2 by decreasing the radius r, and the sphere S(r) becomes supporting for the
torus T 2.

It follows from (2.6) that

H0
r ≤ H0,

where

H0
r =


√
K0 cot

(
r
√
K0

)
if K0 > 0,

1
r , if K0 = 0,
√
−K0 coth

(
r
√
−K0

)
if K0 < 0.

Observe that H0 must satisfy
√
−K0 < H0 if K0 < 0.

Hence we conclude that sys
(
F
)

must satisfy the inequality

sys
(
F
)
≥


2√
K0

arccot H0√
K0

if K0 > 0,
2
H0

if K0 = 0,
2√
−K0

arccoth H0√
−K0

if K0 < 0.

Combining Case 1 and Case 2, we obtain the result.

From Theorem 3.1 it follows:

Corollary 3.2. The number of Reeb components of the foliation F does not

exceed
4H0 Vol

(
M3
)

√
3C2

0

.

Proof. From Theorem 2.5 and Corollary 2.2, we have

√
3

2
C2

0 ≤ Area
(
∂R
)
≤ 2H0 Vol

(
R
)
. (3.3)

It follows from (3.3) that Vol(R) ≥
√

3C2
0

4H0
. Since the interiors of Reeb com-

ponents do not intersect, the number of Reeb components does not exceed
4H0 Vol(M3)√

3C2
0

.

3.2. Choosing a regular value of the harmonic mapping u :M3 → S1

Lemma 3.3. Let M3 from Theorem 1.2 and u : M3 → S1 be a harmonic
map to the unit-length circle S1 representing the nontrivial class [u] ∈ [M3, S1] ∼=
H1
(
M3;Z

)
. Let µ be the standard Lebesgue measure on S1. Let us denote

A =

{
θ ∈ S1

∣∣∣∣ −χ(Σθ

)
≤ 1

2π
‖α‖L2‖R−‖L2

}
, (3.4)

where α = u∗dθ and Σθ = u−1θ, θ ∈ S1. Then µ
(
A
)
> 1

2 .
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Proof. If we assume that the statement of Lemma 3.3 is not true, then, taking
into account Remark 2.18, we get

µ

({
θ ∈ S1

∣∣∣∣ −χ(Σθ

)
>

1

2π
‖α‖L2‖R−‖L2

})
≥ 1

2

and ∫
θ∈S1

−χ
(
Σθ

)
>

1

4π
‖α‖L2‖R−‖L2 ,

which contradicts to (2.13).

It follows from Corollaries 2.7 and 2.2 that every torus T 2
j bounding the Reeb

component of Rj ∈ F contains a simple closed smooth curve γj which is non-
homologous to zero in Rj and has a length bounded above by the constant C =
2H0 Vol

(
M3
)

√
3C0

. For convenience, we introduce the following notations:

Γ :=
⊔
j

γj , T :=
⊔
j

T 2
j , R :=

⊔
j

Rj .

By Corollary 3.2, we obtain the following upper bound on the length of Γ:

l
(
Γ
)
≤ CΓ := C

4H0 Vol
(
M3
)

√
3C2

0

=
8H2

0 Vol
(
M3
)2

3C3
0

. (3.5)

Lemma 3.4. Let u : M3 → S1 be a harmonic map to the unit-length circle
S1, and µ denote the standard measure length on a curve. Let us denote

B :=
{
θ ∈ S1

∣∣∣ card
(
u|Γ
)−1(

θ
)
≤ 2CΓ‖α‖L∞

}
, (3.6)

where α = u∗dθ. Then µ
(
B
)
> 1

2 .

Proof. First, note that ‖α‖L∞ is equal to the norm ‖du‖L∞ = maxp∈M3 |du|p.
Assume that the statement of Lemma 3.4 is not true. Then we have

µ
({
θ ∈ S1

∣∣∣ card
(
u|Γ
)−1(

θ
)
> 2CΓ‖α‖L∞

})
≥ 1

2
. (3.7)

Since Γ is compact, it follows from Remark 2.15 that the set of regular values
reg
(
u|Γ
)

of the function u|Γ is an open and everywhere dense set in S1.
(
A value

is considered regular if its preimage is empty.
)

Recall that nonempty open sets
in S1 are either all S1 or a finite or countable disjoint union of open intervals in
S1:

reg
(
u|Γ
)

=
⊔
ω∈Ω

Jω, (3.8)

where Ω is either a finite or a countable indexing set, and Jω either is an open
interval in S1 for each ω ∈ Ω or is the entire circle S1. Clearly, in the last case,
Ω = {ω}.
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Since the mapping u|Γ : Γ → S1 is a covering map on each preimage(
u|Γ
)−1(

Jω
)
, then, by assumption (3.7), there is a subset Ω′ ⊂ Ω such that the

cardinality of the covering
(
u|Γ
)−1(

Jω
)
→ Jω, ω ∈ Ω′, is greater than 2CΓ‖du‖L∞

and

µ

( ⊔
ω∈Ω′

Jω

)
≥ 1

2
. (3.9)

Due to (3.7) and (3.9), the additivity of µ implies

l
(
Γ
)

= µ
(
Γ
)
≥ µ

( ∑
ω∈Ω′

(
u|Γ
)−1(

Jω
))

=
∑
ω∈Ω′

µ
((
u|Γ
)−1(

Jω
)

> 2CΓ‖du‖L∞
∑
ω∈Ω′

1

‖du‖L∞
µ
(
Jω
)

= 2CΓ

∑
ω∈Ω′

µ
(
Jω
)
≥ CΓ, (3.10)

which contradicts to (3.5) and proves Lemma 3.4.

From Lemmas 3.3 and 3.4, we immediately obtain the following corollary.

Corollary 3.5. Let u : M3 → S1 be a harmonic map to the unit-length circle
S1. Then we can find the value θ0 ∈ A ∩ B such that θ0 is a regular value for
u, u|T, u|Γ.

Proof. Since µ
(
S1
)

= 1, by the measure property, we have

µ
(
A ∪B

)
= µ

(
A
)

+ µ
(
B
)
− µ

(
A ∩B

)
≤ µ

(
S1
)
≤ 1,

which implies µ
(
A ∩B

)
> 0. The rest follows from Remark 2.15.

Let us emphasize the following properties of Σθ0 :

• −χ
(
Σθ0

)
≤ 1

2π‖α‖L2‖R−‖L2 .

• If x ∈ Σθ0 ∩ Γ, then Γ t Σθ0 at the point x.

• If Σθ0 ∩T 6= ∅, then Σθ0 t T.

Definition 3.6. Denote by C = {Cj} the disjoint finite family
(
possibly

empty
)

of circles such that Σθ0 ∩T =
⊔
j Cj .

Corollary 3.7. The number of those circles of the family C that represent
the nontrivial kernel ker

(
i∗ : H1

(
T;Z

)
→ H1

(
R;Z

))
does not exceed 2CΓ‖α‖L∞,

where i∗ is a homomorphism induced by the embedding i : T ↪→ R.

Proof. The proof follows immediately from the definition of the set B
(
see

Lemma 3.4
)

and the fact that Γ necessarily intersects each of the circles in the
family C, which represents the nontrivial kernel ker

(
i∗ : H1

(
T;Z

)
→ H1

(
R;Z

))
.

The corollary is proved.

Proposition 3.8. Let i : M2 ↪→ M3 be an embedding such that i
(
M2
)

=
Σθ0 = u−1

(
θ0

)
, where θ0 ∈ S1 from Corollary 3.5. Then there is an embedding

of general position i′ : M2 ↪→ M3 with the image Σ′θ0 := i′
(
M2
)

satisfying the
following properties:
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1) Σ′θ0 'M
2, in particular, −χ

(
Σ′θ0
)
≤ 1

2π‖α‖L2‖R−‖L2;

2) if Σ′θ0 ∩T 6= ∅, then Σ′θ0 t T and the intersection Σ′θ0 ∩T is a disjoint union
of circles C′ =

⊔
j C
′
j;

3) the number of those circles of the family C′ that represent the nontrivial kernel
ker
(
i∗ : H1

(
T;Z

)
→ H1

(
R;Z

))
does not exceed 2CΓ‖α‖L∞, where α = u∗dθ;

4)
[
M2, i′

]
=
[
M2, i

]
∈ H2

(
M3;Z

)
.

Proof. For simplicity, we identify M2 with i
(
M2
)
. Let us consider a tubular

neighborhoodW ⊂M3 of the submanifoldM2 such thatW∩T consists of disjoint
tubular neighborhoods {Wj ' Cj×R} in T of the finite family of circles C = {Cj}
defined in Definition 3.6. Since M2 and M are orientable, W is diffeomorphic
to the trivial normal bundle νM2 over M2. We can identify W with the direct

product M2 × R, where M2 corresponds to the zero section M2 ' M2 × 0
iW
↪→

M2 × R ' W . Identify the pair
(
W,
⊔
jWj

)
with the pair of linear bundles(

νM2, νM2|tjCj
)
.

Let p : W → M2 be a projection along the fibers of W . Recall that the
identity component Diff2

0

(
M2,M2

)
of C2-diffeomorphisms Diff2

(
M2,M2

)
is

open in C2
(
M2,M2

) (
see [14]

)
and its preimage under the continuous mapping

C2
(
M2,W

) p∗→ C2
(
M2,M2

)
, which is defined by p∗

(
f
)

= p ◦ f , is an open
neighborhood V1 of the zero section iW : M2 → W

(
see [19]

)
. Clearly, V1

consists of some family of embeddings M2 →W transversal to the fibers of W .

Since T ∩W is a closed subset of W , the subset of C2
(
M2,W

)
transversal

to T∩W is open in C2
(
M2,W

)
- topology

(
see [19]

)
. Denote it by V2. Let i′W :

M2 →W satisfy the conditions I and II of Theorem 2.21 and i′W ∈ V1 ∩V2. Let
us put i′ := iW ◦ i′W , where iW : W ↪→ M3 is a natural embedding. Denote by
Σ′θ0 the image i′

(
M2
)
⊂ M3. From the properties of V1 and V2, it follows that

each fiber of W transversely intersects the embedded submanifold Σ′θ0 exactly at
one point, and thus the parts 1 and 2 immediately follow. Since the fibers of
the bundle Wj are the fibers of W , then Σ′θ0 t Wj , and Σ′θ0 ∩Wj is a circle C ′j
transversal to the fibers of Wj for each j. Therefore C ′j is homotopic to Cj in Wj .
If the circles Cj and C ′j are equipped with the corresponding orientations, then

[Cj ] = [C ′j ] ∈ H1

(
T;Z

)
. Now the statement of part 3 immediately follows from

Corollary 3.7. Since an arbitrary diffeomorphism belonging to Diff2
0

(
M2,M2

)
induces the identity isomorphism of H2

(
M2;Z

)
and the embeddings i and i′,

up to such a diffeomorphism differ in deformation along the fibers W , part 4 is
proved.

3.3. Surgeries. Let i′ : M2 ↪→ M3 be an embedding of general position
from Proposition 3.8 and l1 ∈M2 be an inessential closed orbit of F ′ = i′−1

(
F ∩

i′
(
M2
))

such that 0 6= [l1] ∈ π1

(
M2, y1

)
, y1 ∈ l1. Since l1 is inessential, due

to the Jordan-Schönflies theorem, i′
(
l1
)

bounds a disk in its support L ∈ F .
Moreover, due to Reeb’s stability theorem, there is a good neighborhood Vl1 '
l1 ×

(
− ε, ε

)
in M2, i.e., a neighborhood fibered by the inessential closed orbits

l1 × t, t ∈
(
− ε, ε

)
.
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Let us choose a nonzero value ε1 ∈
(
0, ε
)

and produce a surgery on M2 cutting
out V1 ' l1×

(
−ε1, ε1

)
⊂ l×

(
−ε, ε

)
' Vl1 and gluing the disks D1

⊔
D−1 instead.

Denote by M2
1 the obtained manifold. Then we find the next inessential closed

orbit l2 ⊂ M2
1

(
if it exists

)
with the good collar Vl2 ' l2 ×

(
− ε, ε

)
such that

0 6= [l2] ∈ π1

(
M2

1 , y2

)
, y2 ∈ l2. Choosing a nonzero value ε2 ∈

(
0, ε
)
, we make

a surgery cutting out V2 ' l2 ×
(
− ε2, ε2

)
⊂ l2 ×

(
− ε, ε

)
' Vl2 and gluing the

disks D2
⊔
D−2 instead. We obtain a new manifold M2

2 . Then we select the next
curve l3 ⊂ M2

2 with the same properties and follow the same steps as above up
to getting a manifold M2

i .
Let {D±i}, i ∈ {1, . . . , ρ}, be a family of the disjoint disks surgically pasted

instead of the cut out annuli Vi ' li ×
(
− εi, εi

)
⊂ li ×

(
− ε, ε

)
, where li ⊂M2

i−1

is an inessential closed orbit such that 0 6= [li] ∈ π1

(
M2
i−1, yi

)
, yi ∈ li. Denote

l±i = ∂D±i. Let us endow M2
ρ with the structure of an differentiable oriented

manifold joining the differentiable structures and corresponding orientations of
disks

⊔ρ
i=1D±i and M2 \

⊔ρ
i=1 Vi with a differentiable structure and an agreed

orientation of a tubular neighborhood of the boundary ∂
(
M2\

⊔ρ
i=1 Vi

) (
see [14]

)
.

Let us extend i′|M2
ρ\int

⊔ρ
i=1D±i

= i′|M2\
⊔ρ
i=1 Vi

to all of M2
ρ by embeddings

h±i : D±i → M3 such that h±i
(
D±i

)
= D±i, where D±i ⊂ L±i ∈ F are disks in

the corresponding leaves of F such that i′
(
l±i
)

= ∂D±i, i ∈ {1, . . . , ρ}.
Let us consider arbitrarily small disjoint foliated neighborhoods U±i of D±i.

Applying an isotopy to h±i that is supported in D±i and has a value in U±i,
which pushes out D±i to the side to which i′

(
Vi
)

belongs to, we can obtain a
smooth immersion i′ρ : M2

ρ → M3 of general position that is a continuation of

i′|M2
ρ\int

⊔ρ
i=1D±i

such that the induced foliation i′ρ
−1(F ∩ i′ρ(D±i)) on each D±i

consists of inessential closed orbits surrounding a center, and the immersion i′ρ is
still transversal to T.

Lemma 3.9. We have [M2
ρ , i
′
ρ] = [M2, i′] ∈ H2

(
M3;Z

)
.

Proof. The singular cycles
(
M2, i′

)
and

(
M2
ρ , i
′
ρ

)
differ by the sum of spherical

cycles ⊕ρi=1

(
S2
i , gi

)
, where S2

i is identified with an annulus Ai ∼= V̄i to which two
disks D±i are glued by identifying the boundaries. Put gi|Ai = i′ and gi|D±i =
i′ρ. From the irreducibility of M3 it follows that gi can be extended to a mapping
of the ball Gi : D3

i →M3. Taking into account the orientation coming from M2

and M2
ρ , on the level of singular chains we have ∂

(
⊕ρi=1

(
D3
i , Gi

))
= ⊕ρi=1

(
S2
i , gi

)
,

which implies the result.

Remark 3.10. To estimate the number ρ of necessary surgeries, we note that
if an inessential closed orbit lk belongs to the toric component T 2 ⊂ M2

k−1 and
represents a nontrivial element of π1

(
T 2
)
, then the surgery of T 2 along lk results

in a sphere S2 and the singular cycles
(
T 2, i′k−1

)
, and

(
S2, i′k

)
are homologous.

But M is supposed to be irreducible and therefore
(
S2, i′k

)
and

(
T 2, i′k−1

)
are

homologous to zero which is impossible
(
see Remark 2.18

)
. Thus, we conclude

that
ρ ≤ g

(
M2
)
− 1, (3.11)

where g
(
M2
)

is the sum of the genera of the connected components of M2.



152 Dmitry V. Bolotov

Definition 3.11. Denote by
(
N2, p

)
the singular cycle

(
M2
ρ , i
′
ρ

)
, where ρ is

the maximal number of surgeries described above. As usual, let F ′ denote the
induced foliation p−1

(
F ∩ p

(
N2
))

.

Remark 3.12. By the construction, taking into account the Jordan-Schönflies
theorem, each inessential closed orbit of F ′ must bound a disk in N2.

Everywhere below, let N2,F ′ and p satisfy Definition 3.11.

3.4. Maximal vanishing cycles. Let O = ∂P ⊂ N2 be a vanishing cycle(
see Definition 2.23

)
. Notice that P is uniquely defined by O because an ambigu-

ity can arise only when O is a closed orbit of F ′ and the connected component of
N2 containing O is a sphere, which is impossible. In this case, we will understand
by P

(
O
)

the set P from Definition 2.23 bounded by the vanishing cycle O.

Let us introduce the notion of the maximal vanishing cycle.

Definition 3.13. A vanishing cycle Omax ⊂ N2 is called maximal if

P
(
Omax

)
⊂ P

(
O
)

implies Omax = O.

From Definition 3.13 there immediately follows:

Lemma 3.14. Omax is either an essential closed orbit of F ′, whose p-image is
a nontrivial vanishing cycle, or it is singular, i.e., consisting of separatrix loops.

Proof. Indeed, otherwise due to Reeb’s stability theorem, Omax is an inessen-
tial closed orbit having a good collar consisting of inessential closed orbits con-
taining a vanishing cycle O = ∂P

(
O
)

different from Omax such that P
(
Omax

)
⊂

P
(
O
)
, which is impossible.

Remark 3.15. If Omax is essential, then by Theorem 2.20, p
(
O
)
∈ T 2, where

T 2 is the boundary torus of a Reeb component R and p∗[Omax] ∈ ker
(
i∗ :

π1

(
T 2
)
→ π1

(
R
))

.
(
By the class [O], we mean the class of the loop f : S1 → N2

which bypasses O once along the trajectories of the vector field tangent to F ′.
)

Since the immersion p is transverse to T by the construction, then Omax must
be a regular vanishing cycle, i.e., a closed orbit of F ′. Therefore, when Omax is
singular, it must be inessential. In particular, if Omax consists of two separatrix
loops O1 and O2, i.e., P

(
Omax

)
is a pinched annulus, then Omax can be of two

types:

A) Both O1 and O2 are inessential.

B) Both O1 and O2 are essential and p∗[O1] = −p∗[O2] ∈ π1

(
L
)
, where L ∈ F

is a a support of p
(
Omax

)
. Using the Jordan–Schönflies theorem, one can see

that p
(
Omax

)
must bound a pinched annulus in L.

Lemma 3.16. Let B ⊂ N2 be a disk of N2 bounded by an inessential closed
orbit of F ′. Then B ⊂ P

(
Omax

)
for some maximal vanishing cycle Omax.
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Proof. Due to Reeb’s stability theorem, each inessential closed orbit l0 of F ′
has a good neighborhood homeomorphic to

(
− ε, ε

)
× l0, where ls = s × l0 is

an inessential closed orbit of F ′. Let U =
⋃
tBt, t ∈ T , be the union of disks

containing B, obtained by adding to B annuli consisting of the union of inessential
closed orbits. Let lt = ∂Bt. Clearly, the family of disks {Bt} is linearly ordered
by the inclusion t1 < t2 ⇔ Bt1 ⊂ Bt2 .

It should be noticed that ∂Ū cannot be a center since N2 does not contain
a connected component homeomorphic to S2. Observe also that ∂Ū consists of
orbits of F ′ which are not inessential closed orbits because such closed orbits have
good neighborhoods and cannot belong to ∂Ū .

Notice also that ∂Ū is a saturated set, i.e., it consists of leaves of F ′
(
see [23]

)
.

If the closure ∂Ū contains a regular leaf r ∈ F ′ to which other leaves of ∂Ū are
accumulated, then there exists a small transversal τ to F ′ through r that contains
the interval J connecting two points a ∈ lt1 , b ∈ lt2 , between which there are
points of ∂Ū . But it is impossible because F ′⊥ is not degenerated on lt and lt
separates N2. Therefore, if τ leaves Bt, it never returns to Bt.

We conclude that ∂Ū consists at most of a finite union O :=
⊔
iOi of es-

sential closed orbits or separatrix loops of F ′. The claim is to show that O is
connected and is a vanishing cycle. Denote by U :=

⊔
i Ui a disjoint union of

tube neighborhoods Ui of Oi. Clearly, Ū \U is compact and is contained inside
of Bt0 for some t0 ∈ T . Since U \ Bt0 is connected, we immediately conclude
that O is connected. From the orientability of N2, it follows that O divides U
into connected components, the closure of each of them in N2 has a nonempty
boundary consisting of orbits of O. Since U \ Bt0 is connected, it can belong
only to one of these connected components and thus, by the definition, O is a
vanishing cycle. The result follows from the finiteness of both the set of singular
points and the number of essential regular vanishing cycles of F ′.

Lemma 3.17. Let Pmax = P
(
Omax

)
and P ′max = P

(
O′max

)
, where Omax and

O′max are maximal vanishing cycles. Then either Pmax = P ′max or Pmax ∩P ′max =
∅. In particular, Pmax in Lemma 3.16 is unique.

Proof. It is enough to suppose that Omax and O′max are different. Otherwise
we obtain a contradiction sinceN2 does not contain S2 as a connected component.
One of the following cases takes place for Omax ∩ O′max:

(i) ∅;

(ii) a saddle point;

(iii) a separatrix loop.

In the case (i) or (ii), at least one of Pmax or P ′max must be a disk and Omax∪
O′max must be two separatrix loops with a common saddle point s. By Remark
3.15, O and O′ are inessential and therefore, due to Reeb’s stability theorem,
there exists an external good collar V of Pmax ∪ P ′max.

(
Note that Pmax ∪ P ′max

is homeomorphic to either a disk or a bouquet of two disks.
)

Let l ⊂ V be an
inessential closed orbit. Clearly, l bounds a disk B containing Pmax ∪ P ′max.
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Applying Lemma 3.16, we find a vanishing cycle O such that Pmax ∪ P ′max ⊂
P
(
O
)
, which contradicts the maximality of both Omax and O′max.

Let us consider the case (i). We suppose that there exists a ∈ intP ∩ intP ′.
Since P and P ′ are connected, P ′max 6⊂ Pmax and Pmax 6⊂ P ′max, we have Omax ∩
P ′max 6= ∅ and O′max ∩Pmax 6= ∅. Taking into account the condition

(
i
)

and the
connectivity of Omax and O′max, we obtain

Omax ⊂ intP ′max and O′max ⊂ intPmax.

Let l ⊂ Pmax be an inessential closed orbit of a good collar of Omax, which bounds
a disk B inside of Pmax such that a∪O′max ⊂ intB. Since P ′max 6⊂ B, for reasons
similar to the above, we conclude that l ⊂ intP ′max. By the Jordan–Schönflies
theorem, l bounds a disk B′ ⊂ intP ′max. On the other hand, l bounds B ⊂ Pmax.
Since O′max ⊂ intB, we conclude that B 6= B′ which implies that B ∪ B′ ' S2.
But this contradicts to the fact that N2 does not contain connected components
homeomorphic to the sphere. Thus, it follows that intP ∩ intP ′ = ∅ which
implies the result.

Corollary 3.18. Each center of F ′ belongs to the unique Pmax = P
(
Omax

)
.

Proof. A center F ′ has a punctured neighborhood consisting of inessential
closed orbits and the result immediately follows from Lemmas 3.16 and 3.17.

Lemma 3.19. Let Pmax = P
(
Omax

)
⊂ N2 be a pinched annulus. Then the

separatrix loops of Omax are essential and their p-images bound a pinched annulus
in the leaf L ∈ F containing p

(
Omax

)
.

Proof. According to Remark 3.15, it is enough to show that there is no max-
imal vanishing cycle Omax consisting of inessential separatrix loops.

Suppose that the separatrix loops ofOmax are inessential. Then, due to Reeb’s
stability theorem, they have good exterior collars with respect to the pinched
annulus Pmax. By Remark 3.12, each closed orbit of this collar must bound a
disk in N2. Since there are no connected components of N2 homeomorphic to S2,
one of such disks contains Omax. We conclude that Omax ⊂ intP

(
O
)

for some
vanishing cycle O, which contradicts the maximality of Omax.

4. Proof of main theorem

4.1. The reducing of the number of singular points. Assume that
{Pkmax = P

(
Okmax

)
, k ∈ K} is a family of disks and pinched annuli in N2 bounded

by maximal vanishing cycles of F ′, where K denotes a finite
(
possibly empty

)
indexing set. Let {Vk ⊂ Pkmax, k ∈ K} denote good collars of Okmax and {lk ⊂
Vk, k ∈ K} be fixed inessential closed orbits of F ′ inside of good collars. Suppose
that Vk is small enough for p|Vk to be an embedding. By Remark 3.12, Definition
2.9 and the Jordan-Schönflies theorem, each lk bounds a disk Bk in N2, and
p
(
lk
)

bounds a disk Dk ⊂ Lk ∈ F in the supporting leaf Lk ∈ F . We redefine
the mapping p|Bk by the embedding hk : Bk → M3 such that hk|lk = p|lk and
hk
(
Bk
)

= Dk.
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Let us consider arbitrarily small foliated neighborhoods Uk of Dk. Applying
an isotopy to hk that is supported in Bk and has values in Uk, which pushes out
Dk to the side inverse to p

(
Vk
)
∩ Uk, we can obtain a smooth immersion p′ :

N2 → M3 of general position which is a continuation of p|N2\int
⊔
k Bk

such that

the induced foliation p′−1(F ∩ p′(Bk)) on each Bk consists of inessential closed
orbits surrounding a center ck.

Lemma 4.1. We have
[
N2, p

]
=
[
N2, p′

]
∈ H2

(
M3;Z

)
.

Proof. For each k ∈ K, let S2
k :=

(
B1
k

⊔
B2
k

)
/
(
∂B1

k ∼ ∂B2
k

)
' S2 be two

copies of Bk with naturally identified boundaries. Let us define a spheroid gk :
S2
k →M3, where gk|B1

k
= p|B1

k
and gk|B2

k
= p′

B2
k
. Since M is irreducible, gk can be

extended to a mapping of the ball Φk : D3
k → M3 such that S2

k = ∂D3
k. Taking

into account the orientations of Bi
k, i = 1, 2, coming from the orientation of Bk,

on the level of singular chains we obtain ∂
(
D3
k,Φk

)
=
(
S2
k , gk

)
. It means that(

N2, p
)
−
(
N2, p′

)
= ∂

(
⊕k
(
D3
k,Φk

))
which implies the result.

Definition 4.2. Let us denote F ′′ := p′−1
(
F ∩ p′

(
N2
))
.

Let K′ ⊂ K be such that{
Pkmax = P

(
Okmax

)
, k ∈ K′ ⊂ K

}
is a family of disks or pinched annuli such that each Okmax is singular with a
saddle sk. Let

(
Pmax,Omax, V, l, L,D,B,U, h, c, s

)
be an arbitrary element of

{
(
Pkmax,Okmax, Vk, lk, Lk, Dk, Bk, Uk, hk, ck, sk

)
, k ∈ K′}. From Remark 3.15 and

Lemma 3.19, it follows that p′
(
Omax

)
also bounds respectively a disk or a pinched

annulus in its support L ∈ F , which we denote by Dmax.
Suppose that Dmax is a pinched annulus. Then Dmax ⊂ A ⊂ L , where A '

S1 ×
(
0, 1
)

is an annular neighborhood of Dmax in the leaf L and Dmax is a
deformation retract of A. Since the collar V of Omax can be taken arbitrarily
small, we can assume that the normal relative to F collar N ' A× [0, 1

)
of A =

A× 0 contains p′
(
V
)

and the foliation F ∩N is transversal to the interval fibers
{∗ × [0, 1

)
}. The embedding

S1 := S1 × 1/2 ↪→ S1 ×
(
0, 1
)
' A

extends to the embedding S1 × [0, 1
)
↪→ A × [0, 1

)
' N transversal to F ∩

N . The image of this embedding we also denote by S1 × [0, 1
)
. Clearly, the

foliation F ∩ N is obtained from the foliation F ∩
(
S1 × [0, 1

))
by multiplying

it by the interval
(
0, 1
)
. Since leaves of F ∩

(
S1 × [0, 1

))
are homeomorphic to

intervals or circles representing the generator of π1

(
S1× [0, 1

)) ∼= Z, the foliation
F ∩ N consists of leaves that are either homeomorphic to annuli, which are a
deformation retract of N , or contractible. It follows that each leaf L of F ∩ N
induces a monomorphism of fundamental groups with respect to the embedding
L −→ N . Therefore, since the loop p′

(
l
)

is free homotopic to the loop p′
(
Omax

)
inside of N , and the loop p′

(
Omax

)
is null-homotopic in A, the loop p′

(
l
)

is null-
homotopic in N and therefore it is null-homotopic in its support L ∈ F ∩N .

(
L∩
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Fig. 4.1: The foliated ball B3 and the pinched ball Q3

.

N can be disconnected.
)

Thus, by the Jordan–Schönflies theorem, p′
(
l
)

bounds
a disc in L. Since there is no leaves of F homeomorphic to the sphere, this disc
should coincide with the disk D.

For the case when Dmax is a disk, we denote by A an open disk in L containing
Dmax. Then, due to Reeb’s stability theorem, the induced foliation F ∩N of the
normal collar N ' A × [0, 1

)
containing p′

(
V
)

is homeomorphic to the product
foliation {A × ∗, ∗ ∈ [0, 1

)
}, i.e., is a foliation by disks and, by the Jordan–

Schönflies theorem, p′
(
l
)

also bounds the disc D in its support L ∈ F ∩N .

Since U is an arbitrarily small neighborhood ofD, we can assume that p′
(
B
)
⊂

N . Let us denote Bmax := p′
(
B ∪ V

)
.

By the construction, in the case when Dmax is a pinched annulus, Dmax ∪
Bmax bounds a ball Q3 with two identified points, which we call a pinched ball.
Using the same reasoning as for the disk D, we can show that the foliation F ∩
Q3 = {Dt, t ∈ [0, 1]} is a foliation by disks excepting the cases t = 0, D0 = Dmax,
and t = 1, D1 = p′

(
c
)
. By the diffeomorphism, we can represent

(
N,F ∩N

)
in

R3 in such a way that the foliation F ∩ N becomes transverse to the vertical
direction and Dmax belongs to the horizontal plane

(
see Fig. 4.1

)
.
(
Recall that

F is transversely oriented.
)

If Dmax is homeomorphic to a disk, then Dmax ∪ Bmax bounds the ball B3.
By the diffeomorphism, we can represent

(
N,F ∩ N

)
in R3 in such a way that

the foliation F ∩N becomes the level set of the height function and is a foliation
by disks that degenerate to a point

(
see Fig. 4.1

)
.

Taking into account the form of a surface in general position with respect
to the foliation in the neighborhood of singular points, in both cases we can see
that the directions of the normal vector field n to the foliation F and the normal
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vector field m to Bmax at the singular points p′
(
s
)

and p′
(
c
)

either simultaneously
coincide or are simultaneously opposite

(
see Fig. 4.1

)
. Thus the types of the

singular points s and c coincide. Since, by Lemma 3.17, the saddle point s
belongs to only one Pmax. Hence we conclude that when calculating the Euler
class, the pair of singular points s and c can be eliminated because their total
index in the sum (2.15) is equal to zero.

4.2. Estimation of the L2-norm of the Euler class e
(
F
)
. Notice that

the surgeries made in Section 3.3 do not generate new
(
i.e., not coming from(

M2,F ′
))

essential closed orbits of
(
N2,F ′

)
. Moreover, the surgeries increase

the Euler characteristic. Taking into account Proposition 3.8, Remark 3.15 and
Corollary 3.18, we conclude that the number of centers of F ′′ which are not
eliminated above

(
see subsection 4.1

)
, i.e., centers corresponding to maximal

regular vanishing cycles, does not exceed 2CΓ‖α‖L∞ . Since

−χ
(
N2
)
≤ −χ

(
M2
)
≤ 1

2π
‖α‖L2‖R−‖L2 ,

using (2.15) and (2.16), considering the singularities eliminated above, we get the
following estimate:

|e
(
TF
)([

N2, p′
])
| ≤ 1

2π
‖α‖L2‖R−‖L2 + 4CΓ‖α‖L∞ . (4.1)

Taking into account (2.9), (2.10), and (2.11), we obtain

‖e
(
TF
)
‖L2 ≤

1

2π
‖R−‖L2 + 4CΓ

Λ√
Vol

(
M3
) .

Since R− ≥ 6k0, together with (3.5) this implies

‖e
(
TF
)
‖L2 ≤ −

3

π
k0

√
V0 +

32H2
0V

3
2

0

3C3
0

Λ,

where the constant C0 is defined in (3.1). Thus, putting

C1 := − 3

π
k0

√
V0 +

32H2
0V

3
2

0

3C3
0

Λ,

we obtain the statement of Theorem 1.2. �
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[8] C.B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Éc.
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L2-норма класу Ейлера шарувань на замкнених
незвiдних рiманових 3-многовидах

Dmitry V. Bolotov

Через сталi, що обмежують об’єм, радiус iн’єктивностi, секцiйну кри-
визну многовиду та модуль середньої кривини шарiв, наведено верхню
межу L2-норми класу Ейлера e(F) довiльного трансверсально орiєнто-
ваного шарування F ковимiрностi один, визначеного на тривимiрному
замкненому незвiдному орiєнтованому рiмановому тривимiрному много-
видi M3. Як наслiдок, маємо тiльки скiнченну кiлькiсть когомологiчних
класiв групи H2(M3), якi можуть бути реалiзованi класом Ейлера e(F)
двовимiрного трансверсально орiєнтованого шарування F , шари якого
мають модуль середньої кривини, обмежений зверху фiксованою кон-
стантою H0.

Ключовi слова: 3-вимiрний многовид, шарування, клас Ейлера, сере-
дня кривина

mailto:bolotovo@ilt.kharkov.ua

	Introduction
	Background material
	Geometrical inequalities
	Harmonic maps to the circle and harmonic forms.
	Novikov's theorem and a vanishing cycle.
	Euler class of foliations.

	Preliminary results
	An upper bound for the number of Reeb components of a bounded mean curvature foliation.
	Choosing a regular value of the harmonic mapping u:M3->S1
	Surgeries.
	Maximal vanishing cycles.

	Proof of main theorem
	The reducing of the number of singular points.
	Estimation of the L2-norm of the Euler class e(F).


