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The L?2-Norm of the Euler Class for
Foliations on Closed Irreducible Riemannian
3-Manifolds

Dmitry V. Bolotov

An upper bound for the L?-norm of the Euler class e(F) of an arbi-
trary transversely orientable foliation F of codimension one, defined on a
three-dimensional closed irreducible orientable Riemannian 3-manifold M3,
is given in terms of constants bounding the volume, the radius of injectivity,
the sectional curvature of M3 and the modulus of mean curvature of the
leaves. As a consequence, we get only finitely many cohomological classes
of the group H2(M?3) that can be realized by the Euler class e(F) of a two-
dimensional transversely oriented foliation F whose leaves have the modulus
of mean curvature which is bounded above by the fixed constant Hy.
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1. Introduction

Let (M3, g) be a closed oriented three-dimensional Riemannian manifold and
F be a transversely oriented C*°-smooth foliation of codimension one on M3.
Recall that a foliation F is taut if its leaves are minimal submanifolds of M?
for some Riemannian metric on M3. D. Sullivan [24] gave a description of taut
foliations, namely, he proved that a foliation is taut if and only if each leaf of F
is intersected by a transversal closed curve, which is equivalent to the condition
that F does not contain generalized Reeb components (see bellow).

We previously proved the following result [2].

Theorem 1.1. Let Vy > 0,i9 > 0, Kg > 0 be fized constants, and M3 be a
closed oriented three-dimensional Riemannian manifold with the following prop-
erties:

1. the volume Vol(M?3) < Vp;
2. the sectional curvature K of M satisfies the inequality K < Kj;

3. min {inj (M3), ﬁ} > 19, where inj (M3) is the injectivity radius of M3.
Let us set
2
min § 230 3/ L i 1¢, — o,
Hy = Ry
min{ Volo,aro} if Ko >0,

© Dmitry V. Bolotov, 2025


https://doi.org/10.15407/mag21.02.01

136 Dmitry V. Bolotov

where xq is the root of the equation

1 x %
— arccot? 0

Y =
Koy v Ky 2\/§

Then any smooth transversely oriented foliation F of codimension one on M3
such that the modulus of the mean curvature H of its leaves satisfies the inequality
|H| < Hy, should be taut, in particular, have minimal leaves for some Riemannian
metric on M3.

Notice that if M3 admits a taut foliation, then M3 is irreducible [18]. Let us
recall that a 3-manifold M?3 is called irreducible if each embedded sphere bounds
a ball in M3. In particular, m(M3) = 0 (see [12]).

W. Thurston proved in [27] (see also [10]) that if M2 C M?3 is a closed
embedded orientable surface which is different from S2, then the Euler class e(F)
of a transversely oriented taut foliation F on M? satisfies

|e(F) [M?]] < —x(M?). (1.1)

Here, by the Euler class of the foliation F, we mean the Euler class of the distri-
bution tangent to F.

Since any integer homology class Ha (M 3 Z) can be represented by a closed
oriented surface (see subsection 2.2), the inequality above bounds the possible
values of the cohomology class e(F) on the generators of Hy (M 3, Z), and therefore
the number of cohomological classes H? (M 3. Z), realized as Euler classes e(F),
is finite.

In this paper, we estimate from above the L?-norm of the Euler class of
foliations on closed Riemannian 3-manifolds with leaves having a mean curvature
bounded in absolute value by some positive constant. Below we prove the main
theorem.

Theorem 1.2. Let Vy > 0, ig > 0, Hy > 0, kg < Ky be fixed constants. Sup-
pose (M?’,]:) to be a closed oriented irreducible three-dimensional Riemannian
manifold equipped by a two-dimensional transversely oriented foliation F, whose
leaves have the modulus of the mean curvature H bounded above by the constant
Hy, and M3 satisfies the following conditions:

1. the volume Vol (M?) < Vp;

2. the sectional curvature K of M satisfies the inequality ko < K < Kj;
3. if Ky >0, then

min {inj (M?’), 2;70} > g,
if Ko <0, then
inj (M?) > o,
where inj (M?’) is the injectivity radius of M3.
Then there exists a constant C1(Vy,io, ko, Ko, Ho) such that the L?>-norm

le(F)llz2 < Ch.
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Corollary 1.3. For any closed oriented Riemannian 3-manifold M3 there
are only finitely many cohomological classes of the group H? (M3;R) that can
be realized by the Euler class e(F) of a two-dimensional transversely oriented
foliation F whose leaves have the modulus of the mean curvature bounded above
by the fized constant Hy.

Remark 1.4. In Theorem 1.2, the Euler class e(F) is assumed to be real,
i.e., the image of the integer Euler class via the homomorphism H? (M 3 Z) —
H? (M 3;R) is induced by the embedding of the coefficients Z < R. Clearly,
e(F) € H*(M?3;Z)r C H?*(M?R), where H*(M?;Z), is an integer lattice in
H? (M 3 R). Recall also that the real cohomology groups are isomorphic to the
de Rham cohomology groups and we can represent the real Euler class through
a closed differential form, in particular, the harmonic form (see subsection 2.2).

Remark 1.5. As follows from Myers’s theorem [17], if ko > 0, then m; (M?) is
finite and Hy (M?;R) = H?(M?;R) = 0, which implies e(F) = 0. Thus we can
suppose that kg < 0.

Remark 1.6. The foliation F does not contain a sphere as a leaf since in this
case, by Reeb’s stability theorem (see [26]), M3 ~ S? x S, which contradicts the
irreducibility of M3.

2. Background material

2.1. Geometrical inequalities

2.1.1. Inequalities associated with a generalized Reeb component.
A subset of the foliated manifold (M, F) is called a saturated set if it consists
of leaves of the folation F. A saturated set A of a three-dimensional compact
orientable manifold M? with a given transversely orientable foliation F of codi-
mension one is called a generalized Reeb component if A is a connected three-
dimensional manifold with a boundary 0A and any transversal to F vector field
restricted to OA is directed either everywhere inwards or everywhere outwards
of the generalized Reeb component A. In particular, the Reeb component R
(see [26]) is a generalized Reeb component. It is clear that 0A consists of a finite
set of compact leaves of the foliation F. It is not difficult to show that JA is a
family of tori (see [11]).

The next result is due to G. Reeb.

Theorem 2.1 ([22]). Let (M3, g) be a closed oriented three-dimensional Rie-
mannian manifold and F be a smooth transversely oriented foliation of codimen-

sion one on M. Then
dx = 2Hp, (2.1)

where x is the volume form of the foliation F, and p is the volume form on M?.

Corollary 2.2. Let M3 be a closed oriented three-dimensional Riemannian
manifold with a given transversely oriented smooth foliation F of codimension
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one. Suppose that F contains a generalized Reeb component A and the modulus
of the mean curvature H of the foliation F is bounded above by |H| < Hy. Then

Area(DA) < 2Ho Vol(A) and  Area(9A) < Hy Vol(M?). (2.2)
Proof. According to the Stokes theorem and (2.1), we get

/ X’: /dx‘:2
A A

Let B = M3\ int A. Then B is also a generalized Reeb component and we have
/ X‘ = / dx‘ =2 / H,u’ < 2/ Hop = 2H, Vol(B).
OB B B B
It follows that

2 Area(dA) < 2Ho(Vol(A) + Vol(B)) < 2H, Vol(M?),

0 < Area(0A) =

/H,u‘ < 2/ Hop = 2Hy Vol(A).
A A

Area(0B = 0A) =

which implies the result. O

Corollary 2.3. The generalized Reeb component A is an obstruction to the
foliation F being taut.

Remark 2.4. The converse is also true. If the foliation is not taut, then it
contains a generalized Reeb component (see [11]).

2.1.2. Systolic inequalities. Recall that the systole, denoted by sys, in
a Riemannian manifold M with non-trivial fundamental group is the length of
the smallest loop in M that is not null-homotopic in M. Under the condition of
closeness M, such a loop exists and is necessary a closed geodesic. The proof does
not differ from the proof of the existence of a closed geodesic in its free homotopy
class (see [7, Chapter 12]).

The Loewner theorem below gives an upper bound on the systole in a Rie-
mannian two-dimensional torus.

Theorem 2.5 (Loewner [21]). Let T? be a two-dimensional torus with an
arbitrary Riemannian metric on it. Then

sys? < 2 Area (Tz), (2.3)

V3

where sys (abbreviated from systole) is the length of the shortest closed noncon-
tractible geodesic on T?.

Due to Gromov, the generalization of this theorem is the following:

Theorem 2.6 ([15, Chap. 6]). Let T? be a two-dimensional torus with an
arbitrary Riemannian metric on it. Then there exists a pair of closed geodesics
on T? of respective length \i, Ao such that

2

My < — Area (T7?), 2.4

e s o7 rea (T7) (2.4)
2

and whose homotopy classes form a generating set of m (T2) = 7°.
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Corollary 2.7. Let T? be a Riemannian torus for which
sys > Cy, Area (TQ) <S8

for some positive constants Cy, Sy. Then there exists a pair of closed geodesics
on T? whose homotopy classes form a generating set of m (TQ) = 72 and whose
lengths A1, Ao do not exceed some constant C(C’o, So).

Proof. From (2.4), it immediately follows that

A T?
)\iglL()§03: 27507 i=1,2. (2.5)
V3 sys V3G

The corollary is proved. O

The concept of systole can be generalized to foliations.

Definition 2.8. Let (M, F) be a foliated manifold. Following [13, Chapter
VII], we call a loop f : S' — M integral for F if f (S 1) is contained in some leaf
L of F. In this case, L is referred to as the support of f.

Definition 2.9. The integral loop supported by L is referred to as essential
if the loop f : S — L represents nontrivial element of the fundamental group
™ (E) and inessential otherwise.

We recently proved the following theorem.

Theorem 2.10 ([3]). Let (M,F) be a foliated closed Riemannian manifold
containing a leaf with a nontrivial fundamental group. Then there is an integral
essential loop lsys in M with smallest length among all integral essential loops in
(M, ]-'), which is necessary a closed geodesic in its support.

Definition 2.11. Denote by sys (.7-") the length of the geodesic lgys from
Proposition 2.10.

2.1.3. Comparison inequalities. Recall the following comparison theorem
for normal curvatures.

Theorem 2.12 ([4, 22.3.2.]). Let p € M and S : [0,7] — M be a radial
geodesic of the ball B(p, r) of radius r centered at the point p of the Riemannian
manifold M. Let ﬂ(r) be a point not conjugate with p along 3. Let the radius r
be such that there are no conjugate points in the space of constant curvature Ky
within the radius of length r. Then if at each point ﬂ(t) the sectional curvatures K
of the manifold M do not exceed Ky, then the normal curvature k:g of the sphere
S(p, 7") at the point 5(7") with respect to the normal — 3 is not less than the normal
curvature kO of the sphere of radius v in the space of constant curvature K.

Let M3 be a 3-manifold satisfying the condition of Theorem 1.2. Notice that
all normal curvatures of the sphere S (7“) C M?3 of radius r are positive, provided
that r < 79 and the normal to the sphere S (T) is directed inside the ball B(r)
which it bounds. (The sphere S (7") indeed bounds the ball since r < inj (M 3)
by deﬁnition.) We will call such a normal inward.
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Definition 2.13. We call a hypersurface S C M3 of the Riemannian manifold
M3 the supporting hypersurface to the subset A C M? at the point p € AN S
with respect to the normal n, L 7,5 if S cuts some spherical neighborhood B,
of the point p into two components, and AN B, is contained in that component
to which the normal n, is directed. We call the sphere S’(T) c M3 (r < io)
the supporting sphere to the set A C M3 at the point ¢ € AN S(T) if it is the
supporting sphere to A at the point ¢ with respect to the inward normal.

The following lemma is obvious.

Lemma 2.14 ([2, Lemma 4]). Assume that the sphere S(ro) (7“0 < io) i
the supporting sphere to the surface F C M3 at the point q. Then kﬁ(v) <
kE (v) Vv € TqS(To), where k2 (v) and kI (v) denote corresponding normal cur-
vatures of S(ro) and F' at the point q in the direction v.

As a consequence of Lemma 2.14 and Theorem 2.12, we obtain the following
inequalities at the touching point ¢:

0< HY < H,(q) < H(g). 2.6

where HE and H, are mean curvatures of the spheres S (r) bounding the ball of
radius r, 7 < ip, in the space of constant curvature K, and the manifold M3
respectively, and H is the mean curvature of the surface F.

2.2. Harmonic maps to the circle and harmonic forms. Let M?3 be a
closed oriented Riemannian 3-manifold. Recall that

oY (M3 z) = [M3, 5], (2.7)

and each cohomological class a € H' (M 3, Z) can be obtained as an image of the
generator [S]* € H'(S';Z) = 7Z under the homomorphism f* : H'(S';Z) —
H' (M 3 Z) induced by the mapping f : M3 — S! uniquely defined up to homo-

PD
topy. Recall also that the group Hs (M3; Z) ~ ft (M3; Z) does not contain a
torsion and we can identify H'! (M3; Z) with the integer lattice H'! (M3; Z)R C
H! (M?’;R) and HQ(M?);Z) with HQ(M3;Z)R C HQ(M?’;R). Observe that the

PD
Poincaré duality H* (M 3 R) =~ H, (M 3 R) induces the Poincaré duality of inte-

ger lattices H' (M3; Z)R P:“? Ho (M3; Z)R.

Let us identify S' with the unit-length circle R/Z with natural parameter
0. If f is a smooth function, then the preimage f~! (0) of a regular value 0 €
S1 is a smooth (not necessarily connected) oriented submanifold M? C M3,
which we identify with the image of the embedding i : M? < M?3. The singular
homology class [M 2 z] = Iy [M 2] € Hy (M ?’;Z)]R corresponding to the singular
cycle (M 2, z) is Poincaré dual to the cohomology class a € H'! (M 3, Z)R, where
[M?] € Hy(M?;R) denotes a fundamental class of M? which is the generator of
the group Z = HQ(M2;Z)R - HQ(M2;R) = R.
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Remark 2.15. Note that by Sard’s theorem, the set of regular values of f has
a full measure in S' and it is also an open set in S' since M3 is compact. The

same is true for any smooth map g : N — L of the smooth compact manifolds N
and L [19].

Now we should recall that each homotopy class in [M?3, S1] can be represented
by the harmonic mapping [9]. Let u : M3 — S! be a harmonic map representing
the nontrivial class [u] € [M?,S'] = H'(M?;Z). Observe that a = u*df, 6 €
51, is a harmonic 1-form (i.e.7 da = da = 0) on M? corresponding to the integer
lattice class [u] € H' (M3 Z).

On the space of differential k-forms QF (Mg)7 k € {0,1,2,3}, one can introduce

the L2-norm:
|2 = \//M3 a A xa = \//M3 |2, (2.8)

where * denotes the Hodge star operator, and |a,| = *(ap A *ap), pe M3 In

the 3-dimensional vector space T, M? each k-form a, is simple and || coincides
with the comass norm
lay,| = maxap(el, ol ek),

where the maximum is taken over all orthogonal frames of vectors (61, ceey ek) in
T,M3.
We also use the L*>°-norm on Q* (M 3) defined as follows:

(67 = Imax |Qyp].
oz = max o)

The norm (2.8) induces the L?-norm on the de Rham cohomology of M3 as
follows. Let a € H* (MS; R), then we set

lallz2 == inf {||la||2 : a € QF (M3) is a smooth closed k-form representing a}.
«

From de Rham - Hodge theory, it follows that ||a|/;2 = ||a||z2, where « is the
unique harmonic form (da =da = 0) representing the class a € H* (M 3 R).

PD .
Using Poincaré duality H; (M 3;R) =~ 3 (M S;R), we can introduce the
L?-norm on Hy (M3; R) setting

18]l 2 = |1PD(b)|2, b € Hi(M?;R).
On the other hand, the non-degenerate Kronecker pairing

() + H¥(M?*R) x H,(M*%R) - R,
induced by integration of closed forms over cycles, allows us to define the L?-norm
1152 on Hy (M3 R) = (H"’(M?’; }R))* dual to the L2-norm ||-||;2 on Hk(M3; R).
As was shown in [1],

PD: (H'(M%R), |- ||r2) = (Hs—i(M*R), || -[I72)
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is an isometry for i = 1, 2.
Notice that

PD([a A p]) = PD([8 A a]) = ([, PD([5])) = ([8], PD([o])),

where a € Q! (M3) and 3 € Q? (M?’) are closed forms. Since the set of integer-
directed rays from 0 € H! (M 3;]R) is everywhere dense set in H' (M 3;R), we
have

oz = 1PD(E) 155 = sup 2L gy XD
az0  llallz2 =20 121112
where b € H? (Mg,R), a € H! (M?’,Z)IR and X is a compact oriented surface
embedded in M3 such that PD(a) = [3].
Let us recall the following inequality (see [20, 7.1.13,7.1.17, 9.2.7, 9.2.8]). If
« is a harmonic 1-form on closed Riemannian manifold M"™, then

(2.9)

lallLoe < An(k, D)2 (2.10)

lleell 2
Vol (Mm)
Diam (M ") < D, and k < 0 is the constant satisfying the inequality Ric (M 3) >
(n — 1)k:.
In the three-dimensional case, we have n = 3. In addition, we can put v = 3
(see [20, 7.1.13,7.1.17, 9.2.7]).

Here, |al2 = , D > 0 is the constant satisfying the inequality

Remark 2.16. In [8], C.B. Croke gave an estimate for the diameter of a closed
Riemannian manifold, which we adapt to the three-dimensional case:

27 Vol (M?)

Diam (M?3) < .
fom (%) 8inj (M3)”

In particular, if M3 satisfies the conditions of Theorem 1.2, we can take

Moreover, we can put k = kg (see Remark 1.5), and thus we have
As(k,D) = A(Vp,io, ko). (2.11)

The following Stern’s theorem estimates an average Euler characteristic of a
surface dual to the harmonic mapping of M? into the circle.

Theorem 2.17 ([25]). Let u : M3 — St be a harmonic map to the unit-

PD
length circle representing the nontrivial class [u] € [M®,5Y] = H'(M%Z) =
HQ(MS;Z). Then

27r/ X(Ze)zlf / (Jdu|~?| Hess (u) > + Rayso)), (2.12)
9est 2 Joest Jx,

where Yo = u~'0, € S', and Rys is the scalar curvature of M3.
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Remark 2.18. For a regular value € S! of u : M3 — S', each connected
component Eé of ¥y represents a non-trivial homology class in Ho (M 3) (see [25]),
and since M3 is assumed to be irreducible, X(Eé) <0.

As a corollary, Stern obtained the following useful estimate.

Corollary 2.19 ([25]).

1
) > —— R o, 2.13
[ x®0) = ~ el IR (213)

where R~ := min{0, R} is a non-positive part of the scalar curvature R and oo =

u*do.

2.3. Novikov’s theorem and a vanishing cycle. Let (M3,f) be a fo-
liated closed 3-manifold. An integral loop o : S' — M3 is a vanishing cycle if
there exists a homotopy A : S' x I — M?3 through integral loops A; := A|g1
for F such that Ay = « and A; is inessential for 0 < ¢t < 1. A vanishing cycle «
is non-trivial if « is essential.

The following well-known Novikov’s theorem gives us topological obstructions
to the existence of taut foliations.

Theorem 2.20 ([18]).

1. For a closed orientable smooth 3-manifold M? and a transversely orientable
C?-smooth foliation F of codimension one on M3, the following are equivalent.

a) The foliation F has a Reeb component.

b) There is a leaf L of F that is not m-injective. That is, the inclusion i :
L — M3 induces a homomorphism i, : m (L) — m (M3) with nontrivial
kernel.

c) Some leaf of F contains a nontrivial vanishing cycle.

2. The support of the nontrivial vanishing cycle is a torus bounding a Reeb com-
ponent.

The construction underlying the proof of Novikov’s theorem is as follows. Let
a simple closed integral regular curve o : ST — M? belongs to the leaf L € F and
represents the nontrivial element of Ker (z* 1M (L) — T (M 3)) We can find an
immersion p : D — M? of the two-dimensional disk D such that p(@D) = «. This
immersion can be brought to a general position by a small perturbation (modulo
aD). It means that the induced foliation F’ := p~! (.7-" N p(D)) has only Morse
singularities (saddles and centers). Moreover, by a small perturbation, we can
obtain not more than one singular point on a single leaf (see [6, Lemma 9.2.1.]).
The resulting foliation outside the singular points on D can be oriented (see
Subsection 2.4). Therefore, there is a smooth vector field X tangent to F’ with
zeros corresponding to the singular points of F’. Recall that a separatrix coming
out of a singular point and returning to it, together with the singular point (a
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saddle), is called a separatrix loop. By the construction, a saddle singular point
of 7' belongs to at most two separatrix loops.

The idea of general position described above can be extended to arbitrary
immersed compact surfaces. In particular, the following theorem holds.

Theorem 2.21 ([5, Theorem 7.1.10], [6, 9.2.A]). Let M3 be an oriented closed
3-manifold with a smooth transversely oriented foliation F on it. Then for any
Cl-mapping f : N> — M? of a compact oriented surface N? such that in the case
of ON? # @, we have flan2 either is transverse to F or has an image in a leaf
L of F, and for any 6 > 0 there exists a d-close to f C9 -immersion p : N> —
M3 in C4 (NQ,M?’) -topology, q > 2, such that:

I.  The induced foliation F' := pil(}'ﬂp(NQ)) has only Morse singularities.
II. There is at most one singular point on one leaf.

II1. In the case of ON? # @, we have p|yn2 either is transverse to F or has image
in aleaf L of F.

An immersion p satisfying the properties I-11I of Theorem 2.21 will be referred
to as an immersion of general position.

Definition 2.22. Let us identify the closed orbits and separatrix loops of F’
with the images of the corresponding loops f : S' — N? which bypass them once
along the trajectories of the vector field X. The loops f : S' — N? are referred
to as essential if the integral loop p o f is essential and inessential otherwise.
Note that due to Reeb’s stability theorem, inessential closed orbits have a “good
neighborhood”, i.e., a neighborhood consisting of inessential closed orbits.

/A 7 IR

///\5 // \ \[\ N\
71 AR
i1 | ] \\\1\\\\\‘ \\
I nll) RIVAN
LU /A |
‘\‘ \\ \\ \\ / ////:‘A}/ /
\\ \ \ A ///\‘/J/// /
\\ \\ S A /
\\\\ N -~ // ///

N

Fig. 2.1: Pinched annulus P.

Definition 2.23. Let p : N> — M3 be an immersion of general position
described above. Let us denote by P a subset of N2, which is topologically a
disk with a boundary that is either a closed orbit or a separatrix loop of F’, or
it is a pinched annulus (see Fig. 2.1) consisting of two separatrix loops with a
common saddle point. Suppose that 0P has a "good collar” in P, i.e., a collar
consisting of inessential closed orbits of . Clearly, the p-image of OP represents
a vanishing cycle. We call O := JP the vanishing cycle too.

One of S.P. Novikov’s key observations in [18] was the proof of the existence
of a nontrivial vanishing cycle O inside of (D,]—" ! ) (see above).
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2.4. Euler class of foliations. Here we describe Thurston’s construction
for calculating the Euler class e(f) of a transversely oriented codimension one
foliation F on a closed oriented 3-manifold M? [27]. Let p : N* — (M?®,F) be
an immersion of general position of a closed oriented surface N2. The induced
foliation F/ = p~1 (]:ﬂp(NQ)) on N? can be oriented outside the singular points.
To verify this, let us take a normal vector field n to the foliation F, and for all
T = p(z) € p(NQ) consider the orthogonal projection n’ (35) of the normal n(z:) to
F on the tangent plane p, (TZ (N 2)), which in the case where z is not a singular
point uniquely determines the unit tangent vector €’ to the leaf £, € F', z €

L', such that the frame {e/ ,p;l%} defines a positive orientation of 7% (N?).
Now we can define a smooth vector field X on N? tangent to F' whose zeros

correspond to the singular points of 7’ putting
X = |n|e. (2.14)

Remark 2.24. It is easy to define a vector field X1 orthogonal to F’ with
respect to the induced Riemannian metric on N2. The vector field X+ has the
same singular points as X and the integral curves of X define a foliation F'*
orthogonal to F’ on N?2.

The pair (N 2, p) can be understood as a singular cycle if we fix some triangula-
tion on N?2. Let the singular homology class [NQ,p] = Ds [NQ] € Hy (M3; Z)R -
H (M 3. IR{) correspond to the singular cycle (N 2, p), where [N?] denotes a fun-
damental class of N2. As W. Thurston showed in [27], to calculate the value
of the Euler class e(T]-') € H? (M 3,Z)R of the foliation F on the singular ho-
mology class [NQ,p] € Ho (M?’;Z)R, it suffices to calculate the total index of
singular points of the vector field X on N? taking into account the orientation of
D (Tq (N 2)) at singular points. (We apply Thurston’s results to immersed sub-
manifolds rather than embedded ones, where the same ideas work automatically.)
Since M? is oriented, we can uniquely choose a unit normal vector m € Tp (q) M3

to the plane p, (Tq (Nz), g € N2, which defines the orientation of p, (Tq (Nz))
coming from the orientation of 7, (N 2).

We say that a singular point ¢ € N? is of negative type if m(p(q)) = —n(p(q)).
If m(p(q)) = n(p(q)), then the type of a singular point is called positive.

We denote by In the sum of indices of singular points of negative type, and
by Ip the sum of indices of singular points of positive type. The value of the
Euler class e(T F ) on the singular homology class [N2, p] is calculated as follows:

e(TF)([N?,p]) = e(p*(TF))([N?) = Ip — In. (2.15)
Recall that the Poincaré-Hopf theorem states that

X(N?) =1Ip+ Iy. (2.16)
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3. Preliminary results

3.1. An upper bound for the number of Reeb components of a
bounded mean curvature foliation. The results of these subsections are rep-
resented in [3]. For the sake of completeness, we give them in a slightly more
general form.

Let us prove the following theorem.

Theorem 3.1. Let M3 be a closed oriented three-dimensional Riemannian
manifold satisfying the conditions 1-3 of Theorem 1.2. Let F be a codimension
one transversely oriented foliation on M?®, whose leaves have a modulus of mean
curvature bounded above by the fized constant Hy.

Then
(2 min 19, ﬁ arccot \/}%} if Ko >0,
2 min < io, - if Ko =0,
. . 1 H, .
sys (]—') > O = 2 min 1 g, e o arccoth \/—TQ)} if K(;< 0 (3.1)
and Ho > v/ — Ky,
2ig if Ko <0
and H() < —K().
Proof. Case 1: Sysgf) > 1g9. The result follows immediately.

]:

Case 2: sysg ) < ig. Let lsys be an integral closed geodesic which is not
null-homotopic in its support and whose length sys = sys (.7-" ) < 2ig. Then there
is an immersion

. Sys .
p: D —intB(r), re€ (7,20)
of a disk D which is in general position with respect to F and such that p(E)D) =
lsys. As noted in subsection 2.3, there is a vanishing cycle which belongs to

T?Np(D) C int B(r),

where T2 € F is a torus bounding a Reeb component R.
Let r € (Sg—s, io) be a regular value of the mapping

prr| (int B(ip))NT2 * (int B(Zo)) NT? >R (32)

such that pr.(r, ¢1,¢2) = r, where (1, ¢1, ¢2) is a normal coordinate system in
the ball B(ip).

In the case S(r)NT? # @ , from [2, Proposition 2] it follows that the sphere
S(r) is a supporting sphere with respect to the inward normal at the tangent
point g for some inner leaf of the Reeb component R.

It should be noticed that due to Sard’s theorem , the set of regular values of
the mapping (3.2) has a full measure in the interval (%, io) and the value r can

be taken arbitrarily close to ==.



Fuler class of bounded mean curvature foliations on 3-Manifolds 147

In the case S(r) NT? = @, we achieve the tangency of the sphere S(r) and
T? by decreasing the radius r, and the sphere S(r) becomes supporting for the
torus T°2.
It follows from (2.6) that
H) < Hy,

where

v/ Kqcot (T‘\/ Ko) if Kg> 0,
H) =<1 if Ko=0,

IS

v/ —Kj coth (T\/ —Ko) if Ko < 0.

Observe that Hy must satisfy /—Kg < Hy if Ky < 0.
Hence we conclude that sys (]—" ) must satisfy the inequality

_2 Ho ;
NGO arccot NG if Ko >0,
sys(F) > { if Ko =0,
2 Ho -
Ve o arccoth T if Ky <0.
Combining Case 1 and Case 2, we obtain the result. O

From Theorem 3.1 it follows:

Corollary 3.2. The number of Reeb components of the foliation F does not
4Hy Vol (M3)

exceed NETer

Proof. From Theorem 2.5 and Corollary 2.2, we have

?Cg < Area (aR) < 2Hy Vol (R) (3.3)

2

It follows from (3.3) that Vol(R) > \ﬁgo. Since the interiors of Reeb com-

ponents do not intersect, the number of Reeb components does not exceed

4Ho Vol(M?3) 0
Vv3ez

3.2. Choosing a regular value of the harmonic mapping v : M3 — S!

Lemma 3.3. Let M3 from Theorem 1.2 and u : M3 — S be a harmonic
map to the unit-length circle S* representing the nontrivial class [u] € [M3, S'] =
H' (M3;Z). Let 11 be the standard Lebesque measure on S*. Let us denote

A:{@eSl

1 _
~x(£0) < 5ol IR s | (3.4)

where o = u*df and Y9 =u~'0, 6 € S*. Then ,u(A) > %
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Proof. If we assume that the statement of Lemma 3.3 is not true, then, taking
into account Remark 2.18, we get

1 _ 1
u({oest | x> gollalali e ) = 5
and .
—x (2 — R~
| (=) > ol 1R e
which contradicts to (2.13). O

It follows from Corollaries 2.7 and 2.2 that every torus T]2 bounding the Reeb
component of R; € F contains a simple closed smooth curve «; which is non-
homologous to zero in R; and has a length bounded above by the constant C' =
2Hy Vol (M3)

V3Co

. For convenience, we introduce the following notations:
2
U= |y T:=|]77, R:=|]|R;
J J J

By Corollary 3.2, we obtain the following upper bound on the length of I':

4Ho Vol (M®)  8HZVol (M?3)?
Vg 3G§

I(T) <Cr:=C (3.5)

Lemma 3.4. Let u : M? — S be a harmonic map to the unit-length circle
S, and p denote the standard measure length on a curve. Let us denote

B .= {9 e st ‘ card (ulp) " (6) < 2cp|ya|\Lw} , (3.6)

where o = u*df. Then ,u(B) > %

Proof. First, note that [|a||ze is equal to the norm ||du||Le = max,¢pss |dulp.
Assume that the statement of Lemma 3.4 is not true. Then we have

_ 1

" ({e e St ‘ card (ulr) ™ (0) > 20r||a||Loo}) > 2. (3.7)

Since T is compact, it follows from Remark 2.15 that the set of regular values

reg (u|r) of the function u|r is an open and everywhere dense set in S*. (A value

is considered regular if its preimage is empty.) Recall that nonempty open sets

in S are either all S! or a finite or countable disjoint union of open intervals in
St

reg (ulr) = |_| Ju, (3.8)

wel
where () is either a finite or a countable indexing set, and J, either is an open
interval in S! for each w € € or is the entire circle S*. Clearly, in the last case,

Q= {w}.
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Since the mapping ulr : I' — S! is a covering map on each preimage
(u|r)_1 (Jw), then, by assumption (3.7), there is a subset ' C € such that the
cardinality of the covering (u]p)_l (Ju) = Ju, w € @, is greater than 2CT ||du)| L

and
1
u( | | Jw> > (3.9)
welY
Due to (3.7) and (3.9), the additivity of 4 implies
-1 -1
UT) = () = (3 (ule) ™ (L)) = D a((ulr) ™ (o)
wel) wel)!
1
> 20p|dull Y o —p(Je) =20 Y p(ds) = Cr. (3.10)
weY ” uHLOO weY
which contradicts to (3.5) and proves Lemma 3.4. O

From Lemmas 3.3 and 3.4, we immediately obtain the following corollary.

Corollary 3.5. Let u: M3 — S' be a harmonic map to the unit-length circle
S1. Then we can find the value 8y € A N B such that Oy is a reqular value for
u, u|, ulr.

Proof. Since ,u(S 1) = 1, by the measure property, we have
n(AUB) = p(A) +p(B) — u(ANB) < p(S') <1,
which implies u(A N B) > 0. The rest follows from Remark 2.15. O

Let us emphasize the following properties of ¥, :

o —X(3) < gllallz2| B e
o Ifz €3y NT, then I' th Xy, at the point x.
o If EGOQT#@, then EgomT.

Definition 3.6. Denote by C = {C;} the disjoint finite family (possibly
empty) of circles such that X9, N T = [ | ; Cj.

Corollary 3.7. The number of those circles of the family C that represent
the nontrivial kernel ker (i, : Hy(T;Z) — H1(R;Z)) does not exceed 2Cr ||| oo,
where i, s a homomorphism induced by the embedding i : T — R.

Proof. The proof follows immediately from the definition of the set B (see
Lemma 3.4) and the fact that I' necessarily intersects each of the circles in the
family C, which represents the nontrivial kernel ker (i* : Hy (T; Z) — H; (R; Z))
The corollary is proved. O

Proposition 3.8. Let i : M? < M? be an embedding such that Z(MZ) =
Yo, = u_l(t%), where 0y € S from Corollary 3.5. Then there is an embedding
of general position i’ : M? — M3 with the image ¥, =1 (M?) satisfying the
following properties:
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1) By ~ M?, in particular, —x(2f,) < el 2 1R || 125

2) if Xy N'T # &, then X T and the intersection Xy N'T is a disjoint union
of circles C' = | |; C};

3) the number of those circles of the family C' that represent the nontrivial kernel
ker (i, : Hi(T;Z) — Hy(R;Z)) does not exceed 2Cr||cv|| o, where o = u*d);

4) [M?,i'] = [M?,i] € Hy(M3;Z).

Proof. For simplicity, we identify M? with Z(M 2). Let us consider a tubular
neighborhood W C M? of the submanifold M? such that WNT consists of disjoint
tubular neighborhoods {W} ~ C; xR} in T of the finite family of circles C = {C;}
defined in Definition 3.6. Since M? and M are orientable, W is diffeomorphic
to the trivial normal bundle vM? over M?2. We can identify W with the direct

product M? x R, where M? corresponds to the zero section M? ~ M? x 0 &
M? x R ~ W. Identify the pair (W, L]j Wj) with the pair of linear bundles
(VMZ,VMQIUJ.C].).

Let p : W — M? be a projection along the fibers of W. Recall that the
identity component Dif f02 (M 2 M 2) of C?-diffeomorphisms Dif f? (M 2 M 2) is
open in C? (M 2 M 2) (see [14]) and its preimage under the continuous mapping
C’Q(MQ,W) A C’Q(M2,M2), which is defined by p*(f) = po f, is an open
neighborhood V; of the zero section iy : M? — W (see [19]). Clearly, V;
consists of some family of embeddings M? — W transversal to the fibers of W.

Since TN W is a closed subset of W, the subset of C? (M 2, W) transversal
to TNW is open in C%(M?, W) - topology (see [19]). Denote it by Va. Let 4}, :
M? — W satisfy the conditions I and I of Theorem 2.21 and z{,v e VinVs. Let
us put i’ := iV o iy, where iV : W < M? is a natural embedding. Denote by
¥p, the image 7' (M?) c M3. From the properties of Vi and V3, it follows that
each fiber of W transversely intersects the embedded submanifold 2’90 exactly at
one point, and thus the parts 1 and 2 immediately follow. Since the fibers of
the bundle W; are the fibers of W, then ¥j th Wj, and ¥ N W; is a circle C;
transversal to the fibers of W; for each j. Therefore C’]’~ is homotopic to C; in Wj.
If the circles C; and C;- are equipped with the corresponding orientations, then
[C)] = [C]] € Hy (T;Z). Now the statement of part 3 immediately follows from
Corollary 3.7. Since an arbitrary diffeomorphism belonging to Dif f2 (M 2 M 2)
induces the identity isomorphism of Hs (M 2;Z) and the embeddings i and 7/,
up to such a diffeomorphism differ in deformation along the fibers W, part 4 is
proved. ]

3.3. Surgeries. Let i/ : M? < M?3 be an embedding of general position
from Proposition 3.8 and [; € M? be an inessential closed orbit of F/ = ¢'~! (.7-" N
i’(MQ)) such that 0 # [l1] € m (M2,y1), y1 € l1. Since [y is inessential, due
to the Jordan-Schonflies theorem, 7’ (ll) bounds a disk in its support L € F.
Moreover, due to Reeb’s stability theorem, there is a good neighborhood V), =~
Iy x ( — £, 5) in M?, i.e., a neighborhood fibered by the inessential closed orbits
L xt te(—ee).



Fuler class of bounded mean curvature foliations on 3-Manifolds 151

Let us choose a nonzero value €; € (0, 5) and produce a surgery on M? cutting
out V] ~ ;] x (—51, 51) Clx (—8, E) ~ V), and gluing the disks Dy | | D—1 instead.
Denote by M? the obtained manifold. Then we find the next inessential closed
orbit ly ¢ M} (if it exists) with the good collar Vj, ~ Iy x ( — ¢,¢) such that
0 # [lo] € m (M%,yg), yo € ly. Choosing a nonzero value g9 € (0,6), we make
a surgery cutting out Vo ~ [y X ( — 52,52) C ly x ( — 5,5) ~ V, and gluing the
disks Dy | | D2 instead. We obtain a new manifold M22 Then we select the next
curve I3 C M22 with the same properties and follow the same steps as above up
to getting a manifold MZ2 .

Let {D4;}, i € {1,...,p}, be a family of the disjoint disks surgically pasted
instead of the cut out annuli V; ~ [; x ( — &, Ei) Cl; x ( —g, 5), where [; C Mf_l
is an inessential closed orbit such that 0 # [l;] € m (Mffl, yi), y; € l;. Denote
l+; = 0D4;. Let us endow M, 3 with the structure of an differentiable oriented
manifold joining the differentiable structures and corresponding orientations of
disks | |/_; Dy; and M 2\ LI?_, V; with a differentiable structure and an agreed
orientation of a tubular neighborhood of the boundary 9(M?\| 7, V;) (see [14]).

Let us extend i’\Mg\int e, D, = a2\ e, v; to all of M? by embeddings
hai : D1; — M3 such that hy; (Dii) = D4;, where Dy; C Ly; € F are disks in
the corresponding leaves of F such that i’(lii) =0Dy;, i €{1,...,p}.

Let us consider arbitrarily small disjoint foliated neighborhoods U4; of D4;.
Applying an isotopy to hi; that is supported in D4; and has a value in Uq;,
which pushes out Dg; to the side to which z’(VZ) belongs to, we can obtain a

smooth immersion i’p : Mg — M3 of general position that is a continuation of

. . . -1 .
i’ M2\int| Jf_, D, such that the induced foliation 7, (.7-" N, (Dii)) on each D4,
consists of inessential closed orbits surrounding a center, and the immersion i; is
still transversal to T.

Lemma 3.9. We have [Mg,i;)] =[M?i] € H2(M3§Z)-

Proof. The singular cycles (M 24! ) and (M p2, z;) differ by the sum of spherical

cycles @f_; (512, gi), where Sg is identified with an annulus 4; = V; to which two
disks D4, are glued by identifying the boundaries. Put g;|4, = ¢’ and g¢i|p., =
i;. From the irreducibility of M3 it follows that g; can be extended to a mapping
of the ball G; : D3 — M3. Taking into account the orientation coming from M?
and M2, on the level of singular chains we have 9(@/_, (D}, G;)) = ®_, (57, i),
which implies the result. O

Remark 3.10. To estimate the number p of necessary surgeries, we note that
if an inessential closed orbit ;, belongs to the toric component T2 C M. ,3_1 and
represents a nontrivial element of m; (TQ), then the surgery of T2 along I, results
in a sphere S? and the singular cycles (T 2,@'2_1), and (52,2'2) are homologous.
But M is supposed to be irreducible and therefore (S%,4}) and (T?,4)_,) are
homologous to zero which is impossible (see Remark 2.18). Thus, we conclude
that

p<g(M?) -1, (3.11)

where g(M 2) is the sum of the genera of the connected components of M?2.
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Definition 3.11. Denote by (NQ,p) the singular cycle (Mg,i;)), where p is
the maximal number of surgeries described above. As usual, let ' denote the

induced foliation p~! (]-" N p(N 2)) .

Remark 3.12. By the construction, taking into account the Jordan-Schonflies
theorem, each inessential closed orbit of 7’ must bound a disk in N2.

Everywhere below, let N2, ' and p satisfy Definition 3.11.

3.4. Maximal vanishing cycles. Let @ = 9P C N? be a vanishing cycle
(See Definition 2.23). Notice that P is uniquely defined by O because an ambigu-
ity can arise only when O is a closed orbit of 7" and the connected component of
N2 containing O is a sphere, which is impossible. In this case, we will understand
by 77((9) the set P from Definition 2.23 bounded by the vanishing cycle O.

Let us introduce the notion of the maximal vanishing cycle.

Definition 3.13. A vanishing cycle Opax C N2 is called maximal if
P (Omax) C P(O) implies Opax = O.
From Definition 3.13 there immediately follows:

Lemma 3.14. O, is either an essential closed orbit of F', whose p-image is
a nontrivial vanishing cycle, or it is singular, i.e., consisting of separatriz loops.

Proof. Indeed, otherwise due to Reeb’s stability theorem, Oy« is an inessen-
tial closed orbit having a good collar consisting of inessential closed orbits con-
taining a vanishing cycle O = 9P ((9) different from O, .« such that P(Omax) -
77((’)), which is impossible. O

Remark 3.15. If Opax is essential, then by Theorem 2.20, p((’)) € T?, where
T? is the boundary torus of a Reeb component R and pi[Omax] € ker (iy :
71 (T?) — m1(R)). (By the class [O], we mean the class of the loop f: ST — N?
which bypasses O once along the trajectories of the vector field tangent to F’ )
Since the immersion p is transverse to T by the construction, then Opax must
be a regular vanishing cycle, i.e., a closed orbit of F'. Therefore, when Opax is
singular, it must be inessential. In particular, if Opax consists of two separatrix
loops O7 and O, i.e., P(Omax) is a pinched annulus, then O can be of two
types:
A) Both O; and Os are inessential.
B) Both O; and O, are essential and p.[01] = —p,[Os] € 71 (L), where £ € F
is a a support of p(OmaX). Using the Jordan—Schonflies theorem, one can see
that p((’)max) must bound a pinched annulus in L.

Lemma 3.16. Let B C N? be a disk of N? bounded by an inessential closed
orbit of F'. Then B C P((’)max) for some mazimal vanishing cycle Opax.



Fuler class of bounded mean curvature foliations on 3-Manifolds 153

Proof. Due to Reeb’s stability theorem, each inessential closed orbit Iy of F’
has a good neighborhood homeomorphic to ( — 8,6) X lg, where Iy = s X [g is
an inessential closed orbit of F'. Let U = |J, By, t € T, be the union of disks
containing B, obtained by adding to B annuli consisting of the union of inessential
closed orbits. Let l; = B;. Clearly, the family of disks {B;} is linearly ordered
by the inclusion ¢ < t9 & By, C DBy,.

It should be noticed that OU cannot be a center since N2 does not contain
a connected component homeomorphic to S2. Observe also that U consists of
orbits of " which are not inessential closed orbits because such closed orbits have
good neighborhoods and cannot belong to OU.

Notice also that OU is a saturated set, i.e., it consists of leaves of 7’ (see [23]).
If the closure QU contains a regular leaf » € F’ to which other leaves of U are
accumulated, then there exists a small transversal 7 to 7’ through r that contains
the interval J connecting two points a € l;,, b € li,, between which there are
points of OU. But it is impossible because F'* is not degenerated on I; and I;
separates N2. Therefore, if 7 leaves By, it never returns to B;.

We conclude that OU consists at most of a finite union O := | |, O; of es-
sential closed orbits or separatrix loops of F’. The claim is to show that O is
connected and is a vanishing cycle. Denote by U := | |, U; a disjoint union of
tube neighborhoods U; of O;. Clearly, U \ U is compact and is contained inside
of By, for some ty € T. Since U \ By, is connected, we immediately conclude
that O is connected. From the orientability of N2, it follows that O divides U
into connected components, the closure of each of them in N? has a nonempty
boundary consisting of orbits of O. Since U \ By, is connected, it can belong
only to one of these connected components and thus, by the definition, O is a
vanishing cycle. The result follows from the finiteness of both the set of singular
points and the number of essential regular vanishing cycles of F'. O

Lemma 3.17. Let Prax = P(Omax) and Pl . = P(O;nax), where Omax and
Ol ax are mazimal vanishing cycles. Then either Pmax = Phax 07 Pmax N Phax =

. In particular, Pnax in Lemma 3.16 is unique.

Proof. It is enough to suppose that O and Oy are different. Otherwise
we obtain a contradiction since N2 does not contain S? as a connected component.
One of the following cases takes place for Opax N O pax:

i) @;
(ii) a saddle point;
(iii) a separatrix loop.

In the case (i) or (ii), at least one of Ppax or P} ., must be a disk and Opyax U
Ol .« must be two separatrix loops with a common saddle point s. By Remark
3.15, O and O’ are inessential and therefore, due to Reeb’s stability theorem,
there exists an external good collar V' of Prax U Play. (Note that Prax U Phay
is homeomorphic to either a disk or a bouquet of two disks.) Let | C V be an

inessential closed orbit. Clearly, | bounds a disk B containing Pmax U Pax-
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Applying Lemma 3.16, we find a vanishing cycle O such that Ppax U Plax C
P(0O), which contradicts the maximality of both Omax and O},

Let us consider the case (i). We suppose that there exists a € int P Nint P’
Since P and P’ are connected, Pl .. ¢ Pmax and Pmax ¢ Prnaxs We have Omax N
Pliax 7 @ and O’ pax N Pmax # @. Taking into account the condition (z) and the

connectivity of Opax and Oy, we obtain
Omax C int PI’naX and O pax C int Prax.

Let I C Puax be an inessential closed orbit of a good collar of Opax, which bounds
a disk B inside of Ppax such that aUO'yax C int B. Since P, ¢ B, for reasons
similar to the above, we conclude that [ C int P} ... By the Jordan-Schonflies
theorem, [ bounds a disk B’ C int P},.. On the other hand, [ bounds B C Ppax.
Since O’ pax C int B, we conclude that B # B’ which implies that B U B’ ~ §2.
But this contradicts to the fact that N2 does not contain connected components
homeomorphic to the sphere. Thus, it follows that int P N int P’ = & which
implies the result. ]

Corollary 3.18. FEach center of F' belongs to the unique Ppax = P(Omax).

Proof. A center F' has a punctured neighborhood consisting of inessential
closed orbits and the result immediately follows from Lemmas 3.16 and 3.17. [

Lemma 3.19. Let Phax = P((’)max) C N? be a pinched annulus. Then the
separatrix loops of Omax are essential and their p-images bound a pinched annulus
in the leaf L € F containing p(OmaX).

Proof. According to Remark 3.15, it is enough to show that there is no max-
imal vanishing cycle Opax consisting of inessential separatrix loops.

Suppose that the separatrix loops of Oy,.x are inessential. Then, due to Reeb’s
stability theorem, they have good exterior collars with respect to the pinched
annulus Pnax. By Remark 3.12, each closed orbit of this collar must bound a
disk in N2. Since there are no connected components of N2 homeomorphic to S2,
one of such disks contains Opax. We conclude that Opax C int 73((’)) for some
vanishing cycle O, which contradicts the maximality of Opax. O

4. Proof of main theorem

4.1. The reducing of the number of singular points. Assume that
{Pk = P(Oﬁlax), k € K} is a family of disks and pinched annuli in N? bounded
by maximal vanishing cycles of F’, where K denotes a finite (possibly empty)
indexing set. Let {Vi C P, k € K} denote good collars of OF_ and {l, C
Vi, k € K} be fixed inessential closed orbits of F' inside of good collars. Suppose
that Vj, is small enough for p|y, to be an embedding. By Remark 3.12, Definition
2.9 and the Jordan-Schénflies theorem, each [, bounds a disk By in N2, and
p(lk) bounds a disk Dy C L; € F in the supporting leaf L, € F. We redefine
the mapping p|p, by the embedding hy : By — M? such that hy|;, = p|;, and
h (Bk) = Dy.
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Let us consider arbitrarily small foliated neighborhoods Uy of Dy. Applying
an isotopy to hy that is supported in By and has values in Uy, which pushes out
D;. to the side inverse to p(Vk) N Uy, we can obtain a smooth immersion p’ :
N? — M3 of general position which is a continuation of p| N2\int |, B, such that

the induced foliation p’ -1 (.7-' Ny (Bk)) on each By consists of inessential closed
orbits surrounding a center cg.

Lemma 4.1. We have [NQ,p] = [Nz,p/] € Hz(MS;Z)-

Proof. For each k € K, let S7 := (B}||B})/(0B} ~ 0B;) ~ 5? be two
copies of By with naturally identified boundaries. Let us define a spheroid g :
S% — M3, where gkl = plp; and gi|p2 = Plge- Since M is irreducible, gj. can be

k

extended to a mapping of the ball &y : D,?; — M3 such that S,? = BD,?;. Taking
into account the orientations of B};, 1 = 1,2, coming from the orientation of By,
on the level of singular chains we obtain G(Dz,q)k) = (S,f, gk). It means that
(N2,p) — (N?,p') = 9( @& (D}, ®))) which implies the result. O

Definition 4.2. Let us denote 7" :=p/~! (F Np/(N?)).
Let K’ C K be such that

[Pl =P(0k,,), ke K C K}

is a family of disks or pinched annuli such that each OF__ is singular with a

saddle s;. Let (PmaX,OmaX,V,l,L,D,B,U, h,c, s) be an arbitrary element of
{(PE oxs OF o Vie, Uy Liey Dy, By, Uy, b, e, si), k € K'}. From Remark 3.15 and
Lemma 3.19, it follows that p’ (Omax) also bounds respectively a disk or a pinched
annulus in its support L € F, which we denote by Dy ax.

Suppose that Dy ax is a pinched annulus. Then Dyax € A C L, where A ~
St ox (O, 1) is an annular neighborhood of Dy, in the leaf L and Dpax is a
deformation retract of A. Since the collar V' of Opax can be taken arbitrarily
small, we can assume that the normal relative to F collar N ~ A x [0,1) of A =
A x 0 contains p/ (V) and the foliation F N N is transversal to the interval fibers
{xx[0,1)}. The embedding

Sti=8"x1/2 5" x (0,1) ~ A

extends to the embedding S x [0, 1) — A x [0, 1) ~ N transversal to F N
N. The image of this embedding we also denote by S x [0, 1). Clearly, the
foliation F N N is obtained from the foliation F N (Sl x [0, 1)) by multiplying
it by the interval (0, 1). Since leaves of F N (51 x [0, 1)) are homeomorphic to
intervals or circles representing the generator of m; (S Lo, 1)) = 7., the foliation
F N N consists of leaves that are either homeomorphic to annuli, which are a
deformation retract of IV, or contractible. It follows that each leaf £ of F N N
induces a monomorphism of fundamental groups with respect to the embedding
L — N. Therefore, since the loop p/(l) is free homotopic to the loop p'(Omax)
inside of N, and the loop p’ (Omax) is null-homotopic in A, the loop p’ (l) is null-
homotopic in N and therefore it is null-homotopic in its support £ € FNN. (Lﬁ



156 Dmitry V. Bolotov

Fig. 4.1: The foliated ball B3 and the pinched ball Q3

N can be disconnected.) Thus, by the Jordan—Schonflies theorem, p’ (l) bounds
a disc in L. Since there is no leaves of F homeomorphic to the sphere, this disc
should coincide with the disk D.

For the case when Dy, is a disk, we denote by A an open disk in L containing
Diax- Then, due to Reeb’s stability theorem, the induced foliation F N N of the
normal collar N ~ A x [0, 1) containing p’ (V) is homeomorphic to the product
foliation {A x %, x € [0, 1)}, i.e., is a foliation by disks and, by the Jordan—
Schonflies theorem, p’ (l) also bounds the disc D in its support £L € FN N.

Since U is an arbitrarily small neighborhood of D, we can assume that p’ (B ) C
N. Let us denote By := p’(B U V).

By the construction, in the case when Dy, is a pinched annulus, Dpax U
Bax bounds a ball Q3 with two identified points, which we call a pinched ball.
Using the same reasoning as for the disk D, we can show that the foliation F N
Q3 = {Dy, t €[0,1]} is a foliation by disks excepting the cases t = 0, Dy = Dpax,
andt =1, Dy =p' (c) By the diffeomorphism, we can represent (N ,FNN ) in
R? in such a way that the foliation F N N becomes transverse to the vertical
direction and Dy ax belongs to the horizontal plane (see Fig. 4.1). (Recall that
F is transversely oriented.)

If Dpax is homeomorphic to a disk, then Dyayx U Bmax bounds the ball B3.
By the diffeomorphism, we can represent (N ,F NN ) in R? in such a way that
the foliation F N N becomes the level set of the height function and is a foliation
by disks that degenerate to a point (see Fig. 4.1).

Taking into account the form of a surface in general position with respect
to the foliation in the neighborhood of singular points, in both cases we can see
that the directions of the normal vector field n to the foliation F and the normal
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vector field m to Bpax at the singular points p’ (s) and p/ (c) either simultaneously
coincide or are simultaneously opposite (see Fig. 4.1). Thus the types of the
singular points s and c¢ coincide. Since, by Lemma 3.17, the saddle point s
belongs to only one Ppax. Hence we conclude that when calculating the FEuler
class, the pair of singular points s and ¢ can be eliminated because their total
index in the sum (2.15) is equal to zero.

4.2. Estimation of the L?-norm of the Euler class e(f). Notice that
the surgeries made in Section 3.3 do not generate new (i.e., not coming from
(M 2 F )) essential closed orbits of (N 2 F ) Moreover, the surgeries increase
the Euler characteristic. Taking into account Proposition 3.8, Remark 3.15 and
Corollary 3.18, we conclude that the number of centers of F” which are not
eliminated above (see subsection 4.1)7 i.e., centers corresponding to maximal
regular vanishing cycles, does not exceed 2Cr||a|p~. Since

1
(V) < —x(M?) < - flallal R e,

using (2.15) and (2.16), considering the singularities eliminated above, we get the
following estimate:

1 .
e(TF) (N ])] < gl R 2 + ACr a1~ (4.1)
Taking into account (2.9), (2.10), and (2.11), we obtain
e(TF) 1z < g IR e + 400 ——
T \/ Vol (M?3)

Since R~ > 6ko, together with (3.5) this implies

3
32H2V,?

3
Ie(TF) i < ~ koW + =gt

where the constant Cj is defined in (3.1). Thus, putting

3
32H3V,?

——A
305

3
Ch:= ——kov/ Vo +
T

we obtain the statement of Theorem 1.2. O
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L?-nopma kiacy Eiisepa mapysaHb Ha 3aMKHEHUX
HE3Bi/THUX pPiMaHOBUX 3-MHOTOBUJAX

Dmitry V. Bolotov

Yepes crauti, o 0OMeKy0Th 06’eM, paJiyc iH €KTUBHOCTI, CEKIIiHY KpU-
BU3HY MHOTOBHJIY Ta MOJYJIb CEPEIHBOI KPUBUHMU IAPiB, HABEJIECHO BEPXHIO
mesky L2-nopmu kmacy Eitrepa e(F) MOBiITBHOTO TpaHCBEpCATLHO OPiEHTO-
BAaHOrO IIapyBaHHS J KOBHUMIPHOCTI OJINH, BU3HAYEHOI'O HA TPUBUMIPHOMY
3aMKHEHOMY HE3BIJHOMY OpI€EHTOBAHOMY PIMAHOBOMY TPUBUMIDHOMY MHOIO-
Bumi M3, K HACTIIOK, MAEMO TiTLKI CKIHUEHHY KiTbKiCTh KOTOMOJIOTITHIX
kiacis rpynu H?(M3), axi MmoxkyTh 6yTH peasizopani kimacom Eitrepa e(F)
JIBOBHMIPHOTO TPAHCBEPCAJIBLHO OPIEHTOBAHOIO IMAPYBAHHSA J, MIAPH SKOTO
MalOTh MOJYJIb CEPEIHBOI KPUBUHU, OOMEXKEHU 3Bepxy (DiKCOBAHOIO KOH-
cranToo H.

KirrowoBi cjroBa: 3-BuMipHEIT MHOTOBUJI, MMapyBaHHs, Kiac Eitnepa, cepe-
JIHS KPUBUHA
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