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Semi-Symmetric Curvature Properties of
Robertson—Walker Spacetimes
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The aim of the present paper is to characterize Robertson—Walker (RW)
spacetimes satisfying certain curvature conditions. A necessary and suffi-
cient condition for a RW spacetime to be Ricci semisymmetric is given. We
prove that a four-dimensional Ricci symmetric RW spacetime is vacuum. We
also study the properties of projective collineation and matter collineation
within the framework of a four-dimensional Ricci symmetric RW spacetime.
Among others, it is proved that a Lorentzian manifold of dimension n > 3 is
a RW spacetime if and only if the spacetime is of quasi-constant curvature.
Finally, some new characteristics of RW spacetimes are obtained.
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1. Introduction

A semi-Riemannian manifold of dimension n is a smooth n-dimensional dif-
ferentiable manifold equipped with a semi-Riemannian metric of signature (p, q),
where n = p + q. A Lorentzian manifold is a subclass of the semi-Riemannian
manifold, that is, a semi-Riemannian manifold M of dimension n > 2 equipped
with a semi-Riemannian metric g of signature (1, n—1) or (n—1, 1) is a Lorentzian
manifold [34]. Lorentzian manifolds have many applications to general relativity
and cosmology. A spacetime is the stage of present modeling of the physical
world: a time oriented Lorentzian manifold.

To describe the gravity of the universe, the curvature tensor Rkij, the Ricci
tensor I;; and the scalar curvature R play an important role. In cosmology, the
observation that the space is isotropic and homogeneous on the universe in the
large scale chooses the Robertson-Walker (RW) metric. In 1995, Alias, Romero
and Sénchez [1] generalized the notion of RW metric to generalized Robertson—
Walker (GRW) metric. A Lorentzian manifold M of dimension n > 3 endowed
with the Lorentzian metric g defined by

ds® = gapda®dab = —(dt)* + o(t)?g;,, (z)dz'dz™, (1.1)
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where ¢ is the time and g}, () is the metric tensor of a Riemannian manifold
M*, is a GRW spacetime. In other words, a GRW spacetime is the warped
product —I x @?M*, where I is an open interval of the real line, ¢ is a smooth
warping function or scale factor such that ¢ > 0 and M* is an (n—1)-dimensional
Riemannian manifold. In particular, if M* is an (n — 1)-dimensional Riemannian
space of constant sectional curvature, then the warped product —I x p?>M* is said
to be a RW spacetime. A RW spacetime complies the cosmological principle, that
is, the spacetime is locally spatially isotropic and locally spatially homogeneous,
although the GRW spacetime is not necessarily spatially homogeneous [14]. In
[5], Brozos—Viazquez, Garcia—Rio and Véazquez—Lorenzo bridged the gap between
RW spacetime and GRW spacetime by providing the following result [5]. A
GRW spacetime is conformally flat if and only if it is a RW spacetime. It is
noticed that the GRW spacetimes include the Friedmann cosmological models,
the Lorentz—Minkowski spacetime, the Einstein—de Sitter spacetimes, the static
Einstein spacetime and the de Sitter spacetimes. For more details of (GRW)
spacetimes, we call [2,9-11,29,32] and their references.

A spacetime M of dimension n > 3 is said to be a perfect fluid spacetime if
the non-vanishing Ricci tensor Ry, of M satisfies the relation

Rab = augup + /Bgaba (12)

where o and (8 are scalar fields, g, is the Lorentzian metric and u, is a 1-
form associated with the unit timelike vector field u® such that u, = ggpub.
The expression (1.2) can be obtained from the following Einstein’s field equation
without cosmological constant:

R
Rab - §gab = "iTabv (13)
where k is a non-zero gravitational constant and 7,; denotes the energy momen-
tum tensor of the spacetime. For a perfect fluid spacetime, the energy momentum
tensor T,; assumes the form

Tab = (p + M)uaub + PYGab, (14)

where 1 and p are the energy density and the isotropic pressure of the fluid. A
perfect fluid spacetime with p = p(u) is an isentropic fluid [20, p. 70]. A RW
spacetime is a perfect fluid spacetime [34]. A four-dimensional GRW spacetime
is a perfect fluid spacetime if and only if it is a RW spacetime [23]. If the energy-
matter content of spacetime is a perfect fluid with fluid velocity u®, then the
Einstein field equations show that the Ricci tensor R, assumes the form (1.2)
and the scalars a and § are linearly related to the pressure p and the energy
density p measured in the locally comoving inertial frame [30]. Shepley and
Taub [38] considered a four-dimensional perfect fluid spacetime with divergence
free Weyl curvature tensor (Cf.;, = 0) and the equation of state p = p(u) and
proved that the spacetime is cc;nformally flat (Cypeq = 0), the flow is shear-
free, geodesic and irrotational, and the metric is RW. In [37], Sharma studied
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a perfect fluid spacetime. He proved that if a four-dimensional perfect fluid
spacetime admits a proper conformal Killing vector field (X3, + Xop = 2pgap)
and the Weyl conformal curvature tensor is divergence free, then the spacetime is
conformally flat. Guilfoyle and Nolan [22] showed that a four-dimensional perfect
fluid spacetime with p 4+ p # 0 is a RW spacetime if and only if it is a Yang
pure spacetime (Cg,.., = 0, R, = 0). If a perfect fluid spacetime satisfying
the Einstein field equétions with p = p(u), p+ p # 0 and a proper conformal
Killing vector field is parallel to the fluid four-velocity, then it is locally a RW
spacetime [16]. In [17], De and Ghosh proved that a conformally flat perfect fluid
spacetime with closed u, possesses a concircular vector field. Mantica, Molinari
and De [30] proved that if a perfect fluid spacetime of dimension n > 3 admits
an irrotational vector field and divergence free Weyl conformal curvature tensor,
then it is a generalized RW spacetime with Einstein fiber. Recently, Chaubey
[13] characterized the perfect fluid spacetime with gradient 7-Ricci soliton and
gradient Einstein solitons. De et al. [18] studied the properties of perfect fluid
spacetime with Yamabe solitons. The properties of the perfect fluid spacetimes
have been noticed in [28, 30, 33].

In [25], the algebraic restrictions on the Ricci tensor in a Ricci recurrent
spacetime are determined. The restriction imposed on the Petrov type of the
Weyl tensor are also given.

The above results motivate us to study some curvature properties of RW
spacetimes. In Section 2, we give some known basic results and definitions. In
the next sections, we prove several results:

Theorem 1.1. A RW spacetime is Ricci semisymmetric if and only if ug cq =
Uq,dc-

Theorem 1.2. A Ricci semisymmetric RW spacetime obeying the Einstein

field equations without cosmological constant is vacuum, and the equation of state
is given by p = —u + 2%‘.

Theorem 1.3. A spacetime of dimension n > 3 is a RW spacetime if and
only if the manifold is of quasi-constant curvature.

Theorem 1.4. A four-dimensional RW spacetime satisfying the FEinstein
field equations without cosmological constant is a Yang pure spacetime.

2. Preliminaries

Let C’gbc denote the conformal curvature tensor on an n-dimensional
Lorentzian manifold M with n > 3, then it is defined as

1
Cz(zibc = Rgbc - m{Rggab - Rlcylgac + Rabég - Racég}
R

+ m{gab(Sg — GacO }, (2.1)

where R = Rg,g® [40]. The Lorentzian manifold M is conformally flat if and
onlyifC(‘fc:Oforn>3.
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The Weyl projective curvature tensor P4 [41] on an n-dimensional Lorentzian

abc
manifold with n > 3 is given by

1
Pc(Libc = Rgbc - E{Rab(sg - Rbcdg}' (22)
A Lorentzian manifold M is projectively flat if and only if Pgbc =0 for n > 2.

In 1972, Chen and Yano [15] introduced the notion of a Riemannian manifold
with quasi-constant curvature. If the curvature tensor Rg.q of the Lorentzian
manifold M of dimension n satisfies the following condition:

Raped = L1(gbc9ad - gbdgac) + 12 (gbcuaud + GadUbUe — GbdUalc — gacubud)

for some smooth functions ¢; and ¢9, then M is called a manifold of quasi-constant
curvature.

In [29], Mantica and Molinari proved that a spacetime is a GRW spacetime
if and only if there exists a timelike unit torse-forming vector field u® (u? = u® -
u, = —1) that is also an eigenvector of the Ricci operator R = Ry.g*. Also,
Mantica and Molinari [31] obtained the expression for the Ricci tensor in a GRW
spacetime,

R —n¢ R—

(= 1)uaub + (n_f)gab —(n— 2)Ccabducud, (2.3)

and Ryu’ = fu, = ¢ is an eigenvalue. We consider a conformally flat GRW
spacetime, which implies that the spacetime is a RW spacetime. Therefore (2.3)
reduces to

Rab =

_R-ng o R-¢
R—n&

The above equation can be expressed as equation (1.2), where oo = =] and 8 =

Rab

(2.4)

%, which implies that the RW spacetime is a perfect fluid spacetime. Also,
antica and Molinari [29] expresse e curvature tensor in a spacetime as
Manti d Molinari [29 d th ture t in a RW ti

2% — R
Ra cd = 7 4N/ oy \YbcYad — ac
ved = T 1)(n_2)(9b Yad — YbdJac)
+ (n_Rl)_(nnf_2)(gbcuaud + JadUpUc — JodUaUc — gacubud)- (25)

The above expression tells us that a RW spacetime is a spacetime of quasi-
constant curvature [15].

An n-dimensional Lorentzian manifold M with n > 3 is said to be:
(i) Ricci symmetric [21] if Rgp. =0,
(ii) semisymmetric [39] if Roped,ef — Rabed,fe = 0,
(iii) Ricci semisymmetric [39] if Rapeq — Rab,de = 0,
(iv) recurrent [36] if Rapede = eRabed, Where o is a non-zero 1-form.
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Let M be a Lorentzian manifold with a Levi-Civita connection V. A continuous
group of local diffeomorphism of M is said to be projective collineation (PC') [4]
if it maps geodesics into geodesics, and the generator of this group is called a
projective vector field. A vector filed V is a PC' if and only if

Ly T, = dypc + 0cpo,

where Ly denotes the Lie derivative operator along V', p, = p 5 and p is a 1-form.
Thus py is locally an exact form. In particular, if Ly 'y, = 0, then the projective
collineation reduces to the affine collineation or affine motion. When the manifold
is flat, the affine collineation satisfies the equation

‘/c,ab = 07

and its solution is V., = Ag.x® + B., where A, and B. are constants and z¢
denotes a local coordinate system. The maximum dimension of the projective
algebra of M is n? + n for which M is projectively flat. Also recall that the
projective vector field V satisfies

LVRd = 6gpa,b - 5gpa,ca

abc
LyRa, = (1 —n)pap
Ly P4 =0. (2.8)

3. Ricci semisymmetric RW spacetime

In [25], Hall characterized Ricci recurrent spacetimes. It is well known that
the Ricci semisymmetry is weaker than the Ricci recurrent spacetime. Thus, we
are interested in studying the Ricci semisymmetric RW spacetimes in this section.

Proof of Theorem 1.1. Suppose that a Lorentzian manifold of dimension n is
Ricci semisymmetric, that is, the Ricci tensor R, satisfies the condition

Rab,cd - Rab,dc =0. (31)
Taking covariant differentiation of (1.2) twice, we get

Rab,cd - Rab,dc = a{(ua,cd - ua,dc)ub + (ub,cd - ub,dc)ua}- (32)

Suppose that the RW spacetime is Ricci semisymmetric. Then, from (3.1) and
(3.2), we infer

(ua,cd - ua,dc)ub + (ub,cd - ub,dc)ua =0
since a # 0. Transvecting the above equation with u’, we get
Uq,cd — Uqa,dc = 0

since uPup g = 0. Conversely, if U cq — Ug e = 0, then from (3.2) it follows that
Rapca — Rap,ac = 0. Hence Theorem 1.1 is proved. O
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It is well known that the Ricci semisymmetric spacetimes are a natural gener-
alization of the semisymmetric, Ricci symmetric and recurrent spacetimes. These
facts along with Theorem 1.1 state the following:

Corollary 3.1. If a RW spacetime is semisymmetric, then
Ug,ecd — Ua,de = 0.

Corollary 3.2. If a RW spacetime is Ricci symmetric, then
Ug,ecd — Ua,de = 0.

Corollary 3.3. If a RW spacetime is recurrent, then
Ug,cd — Ua,de = 0.

Proof of Theorem 1.2. We suppose that a four-dimensional RW spacetime
is Ricci semisymmetric. Then ug,cq — tqde = 0, and the Ricci identity (ugcq —
Ug,de = ubewd) gives

upRY ;=0 = R, =0 = £=0. (3.3)
Hence equation (1.2) infers o = 8 and

Ry, = a{uaub + gab}‘ (3'4)

In view of equations (1.3), (1.4), and (3.4), we conclude that

R 2
Rp=a— o, KL=, and p:—u—i—%. (3.5)
From equations (2.4) and (3.3), we lead o = % and hence equation (3.5) gives

p=—%, that is, p = p(u).

Let us suppose that a four-dimensional RW spacetime is Ricci symmetric
(Rap,e = 0) and therefore ug g — uq,dc = 0. Thus equation (3.3) holds, that is,
ubRZ = 0. Taking the covariant derivative of this equation, we have

b b
’U/b’aRd + ’U/aRd’a = 0,

which gives
ub,ang)l =0 (36)

because Ri’l’a = 0.

In [29], Mantica and Molinari proved that a GRW spacetime admits the unit
timelike torse-forming vector field, up, , = @{uqaup+gap}, which is also an eigenvec-
tor of the Ricci tensor Ry, that is, Rgyub = &u,. Here p denotes the non-vanishing
smooth function.

The above discussions along with equation (3.6) lead to

o{uquy + gap } RG = 0, (3.7)

which implies that RZ = 0. This shows that the Ricci symmetric RW spacetime is
Ricci flat and hence it is vacuum. Thus the proof of Theorem 1.2 is completed. [
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Remark 3.4. For a perfect fluid spacetime, the equation of state w is given by

b
w==.

7

From (3.5), we infer that w = % = —1, which gives the condition for late-

time accelerating universe [20]. Also, in a four-dimensional Ricci symmetric RW
spacetime p = p(u) and hence the fluid is isentropic [26].

Now we consider the projective collineation in a Ricci symmetric RW space-
time. Since equation (3.7) reflects that the Ricci symmetric RW spacetime is
Ricci flat, therefore from (2.7) we infer p,p = 0. If p, # 0, then the projective
collineation is proper and, for the case of n = 4, the metric must be either flat
or a pp-wave [24]. If p, = 0, then V generates an affine collineation, and for
the spacetime the metric is decomposable, or is a pp-wave, or V is a homothetic
Killing vector field. Thus, we summarize the results as:

Theorem 3.5. Let a Ricci symmetric RW spacetime admit a projective
collineation V. Then

(i)  the projective collineation is proper and, for n = 4, the metric is either flat
or a pp-wave, provided p, # 0.

(ii) V generates an affine collineation and the metric is decomposable, or a pp-
wave, or a homothetic Killing vector field, provided p, = 0.

Remark 3.6. To our knowledge, the projective collineation has not been stud-
ied in a RW spacetime, which is a perfect fluid spacetime. In Theorem 3.5, we
characterize PC in a Ricci symmetric RW spacetime.

If a (non trivial) given symmetry vector field V' of M leaves matter tensor
invariant (LyT,, = 0), then we say that M admits a matter collineation. Well
known examples are Killing and homothetic symmetries.

If we assume that a Ricci symmetric RW spacetime satisfies the Einstein field
equations, then (1.3) holds. Since a Ricci symmetric RW spacetime is Ricci flat,
equation (1.3) turns into KTy, = 0, which infers T,;, = 0. Thus, we conclude
that a Ricci symmetric RW spacetime admits matter collineation. It should be
mentioned that Caret et al. [7] obtained the examples of matter collineation in
dust fluids, included Szekeres’s space-time: ds?> = —dt® + e dr? + e(dx? + dy?)
for smooth functions A and p. Hence we state:

Theorem 3.7. FEvery Ricci symmetric RW spacetime admits matter
collineation.

4. Lorentzian manifold of quasi-constant curvature

It can be easily proved that a Lorentzian manifold of dimension n > 3 is of
quasi-constant curvature if and only if

(i) the manifold is conformally flat,
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(ii) the Ricci tensor has the form

R R —no n R—-o
= ——UgUp + ———YGab,
ab (n — 1) ah (n — 1)gab
where Rgu’ = ou,. Since a RW spacetime is of quasi-constant curva-

ture, then a natural question arises whether a Lorentzian manifold of quasi-
constant curvature is a RW spacetime.

Theorem 1.3 gives an affirmative answer to this question.

Proof of Theorem 1.3. Suppose that the Lorentzian manifold possesses quasi-
constant curvature. Then it is conformally flat and hence Cj., , = 0. Also, a RW
spacetime is a perfect fluid spacetime with p + p # 0. Maﬂtica, Molinari and
De [30] proved that a perfect fluid spacetime of dimension n > 4 with p 4+ p #
0 and Cp,;, = 0 is a GRW spacetime. In fact, the above discussions tell us
that a Lorentzian manifold of quasi-constant curvature is a GRW spacetime.
Again, since a manifold is conformally flat, then a GRW spacetime becomes a
RW spacetime, and thus Theorem 1.3 is proved. ]

Next, from (2.4), (3.4), and (1.3), we infer

R—¢ R R —n¢
_ _ = = 4.1
from which it follows that
_nr ¢ (4.2)
2% K '

By equations (4.1) and (4.2), we obtain

po o (n—2)
n—1 2xk(n—1)"

p =
Thus we can state:

Proposition 4.1. In a RW spacetime obeying the FEinstein field equations
without cosmological constant, the equation of state is p = ﬁ — %R.

Proof of Theorem 1.4. For a four-dimensional RW spacetime, we get p+ pu #
0and p = % w— %. In [22], Guilfoyle and Nolan named “Young pure spacetime”
a four-dimensional Lorentzian manifold (M, g) whose metric tensor solves Yang’s
equations Rgp . = Ryep, which implies that the scalar curvature R = const.

In the same paper [22], Guilfoyle and Nolan proved that a four-dimensional
perfect fluid spacetime (M, g) with p + u # 0 is a Yang pure spacetime if and
only if (M, g) is a RW spacetime with p = %u + ¢ for some constant c.

Here, we consider a four-dimensional RW spacetime which is a perfect fluid.
Also the state equation p = % 1+ ¢ holds. Thus our Theorem 1.4 is proved. [
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5. Characterizations of RW spacetimes

5.1. In [35], Prvanovié introduced the notion of extended recurrent manifold

defined as
Rabcd,e = AeRabcd + (/8 - T;Z))AeGabcd
+ g[AaGebcd + AbGaecd + AcGabed + AdGabcd]a

where A, is a closed covector, 1) and 3 are scalar functions with ¢, = A,8 and
Gabed = Yad9be — Jacpd- In [29], Mantica and Molinari proved that an extended
recurrent spacetime with a timelike vector field A, is a RW spacetime.

5.2. A Lorentzian manifold is said to be a pseudosymmetric manifold in
the sense of Chaki [8] if the curvature tensor Ryp.q satisfies the condition

Rabcd,e = 2A6Rabcd + AaRebcd + AbRaecd + AcRabed + AdRabcea

where A, is a non-zero covector. Such a manifold is denoted by (PS),. It is
known that in a conformally flat (PS),, (n > 3),

(’I’L - 1)AaRbc - (TL - 1)AbRac - RAagbc + RAb.gac + Bagbc - Bb.gac = 0, (51)
where B, = R,.A° [8]. Transvecting the above equation by A¢, we obtain
(n — 2)AaBb — (n — 2)AbBa + RAyA, =0 (5.2)

In its turn, transvecting (5.2) with A,, we infer

R
By, =— (t + 7’L—2> Ay, (53)

where t = B, A% and A,A* = —1. After using (5.3) in (5.1) and then transvecting
by A%, it follows that

t R t 2R
Ry = < + > Gbe + ( + > ApAe,

n—1 n-—2 n—1 n-—2

which implies that a conformally flat pseudosymmetric manifold represents a

perfect fluid spacetime. Since the manifold is conformally flat, then C}_;, = 0.
(n=2)t+2(n—1)R

D=2k # 0, therefore such a spacetime becomes

Also, in our case p+ u =
a RW spacetime.

5.3. The f(R,T) gravity, introduced by Harko et al. [27], is a natural ex-
tension of general relativity and f(R) gravity. Here, R and T are the scalar
curvature and the trace of stress energy tensor. They considered that the gravi-
tational Lagrangian is an arbitrary function of R and T, and the field equations
for this theory can be derived by the action of Hilbert-Einstein type variational

=167 | [n T FR.DV (= g)d's,
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where £, denotes the matter Lagrangian density. The field equations for f(R,T)
gravity take the form

(VK" = Va) [ (R, T) + fr(R,T) Ry — 3 f(R, T)gap
= (87 — fr(R,T))Tup — fr(R,T)Ou, (5.4)

where fr(R,T), fr(R,T) represent the partial derivatives of f with respect to R
and T, and V, is the covariant derivative. The stress energy tensor T,; of matter
is defined as

ab \/jg 5(11) I

where the variation of stress energy is

. L

_ !
Oub = JabLm — 2Tup — 29 9ghagh’

Let the spacetime be conformally flat with pressure p, energy density p and four-

velocity u® such that u,u® = —1, and hence u®u,, = 0. We also suppose that
the vector field u® is irrotational, that is, u, — up, = 0. Since there is no unique
definition of the matter Lagrangian, we choose L,, = —p [12]. Let the stress

energy tensor T, and the variation of stress energy for the perfect fluid take the
form

Tab = (p + M)uaub + PYGab (55)

and

@ab = _2Tab — PYab- (56)

It is observed that the field equations depend on the nature of matter. Thus, each
choice of f(R,T) gives a theoretical model. In particular, if we take f(R,T) =
f(R), then the f(R,T) gravity reduces to the f(R) gravity [6].

If we choose f(R,T) = R+ 2f(T), then equations (5.4), (5.5), and (5.6) lead
to

Ry = Augup + Bgap,

where A = [87 +2f'(T)] (p + p) and B = [£ — f(T) + 8wp + 4pf'(T)], which
shows that the spacetime is a conformally flat perfect fluid spacetime. In [30],
Mantica et al. proved the following:

Let M be a spacetime of dimension n > 3, with the Ricci tensor R, =
Augup + Bgab, where A and B are scalar fields, A # 0, and u® is a unit timelike
vector field. If Cgbcd = 0 and uqp = Upq, then M is a GRW spacetime with
UChedq = 0 [24, Theorem 2.1].

Since the spacetime is conformally flat, then Cgb ..q = 0. Thus, the conformally
flat f(R,T) gravity is a RW spacetime. ’
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6. Examples

6.1. Let (z!,22,...,2") € R", where R" stands for an n-dimensional real
number space. Then we define a Lorentzian metric g on R?* as

ds? = gijdz'ds! = ex1+1(dxl)2 + e””l{(d:l:Q)2 + (dz?®)? — (dzh)?}.

The only non-vanishing components of the Christoffel symbols, the curvature
tensors and the Ricci tensors are:

1 1 1 4 1
Fh - 5, P%Q = leas = —%, le14 = %7 F%2 = F?s =1y = 57
1 1 1 1 1
Rosso = —€* 71, Rosp = Raauz = ——€* 7!, Rog=R3yg = —Ryy = —.
4 4 2e
The scalar curvature is r = 261% Here,
1
Ros1 = —=, Rogp=Roo3=Ro4 =0, R331 =——,
2e 2e

1
R332 = R333 = R334 =0, Rya1 = % Ryso = Rya3 = Ryaq = 0. (6.1)
We can also derive that
R99.12 = R9921 = R22,13 = Ra2 31 = 0. (6.2)

In a similar way, we can calculate other second-order derivatives which are zero.
From the non-vanishing components of curvature tensors, we observe that

Ro339.12 — Ra332.21 # 0, Ra33223 — R2332,32 # 0.

From the above calculations, we obtain R;;;, — Rij,u = 0, but Rpijkim —
Rpijkmi 7 0. Thus, the spacetime of dimension four is Ricci semisymmetric but
it is not semisymmetric.

The above expressions of the Ricci tensors and their covariant derivatives
show that the spacetime is Ricci semisymmetric, but it is not Ricci symmetric or
Ricci parallel (Rij,l = 0).

From (6.1) and (6.2), it follows that the spacetime is Ricci semisymmetric,

but not Ricci recurrent. Since Ri2 = 0, but Ri22 = —4—16 # Ao Ryo, where Ay is a
covariant vector. There does not exist any vector Aa such that Ri22 = —ﬁ since
Ri5 =0.

6.2. In [3], the authors proved that under certain condition (for instance,
if dimension is 3), Rpijk im — Rhijk,mi = 0 and Rijim — Rijmi = 0 are equivalent.
Also, in [19], the authors constructed an example of a hypersurface which is Ricci
semisymmetric but not semisymmetric.
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BuaacTtuBocTi HanmiBcuMeTPpUYIHOCTI KPUBUHU
npocropy-dacy Pobeprcona—Bokepa

Uday Chand De, Young Jin Suh, and Sudhakar K. Chaubey

Mertoro 1iei poboTnm € xapakTepusallis MpocTopiB-daciB Pobeprcoma—
Bokepa (PB), 1m0 3a10BOJILHSIIOTE JiesiKi yMOBU Ha KpubuHy. OTpuMaHO He-
obximHi Ta moctaTHi ymoBu Toro, mo PB npocrip-dac € Pivu4i namiBcumerpu-
qyauM. JloBesieno, mo yorupuBumMipuuit Pivdai cumerpuannit PB mpoctip-4uac
€ BaKyyMHIM. TaKo>X MU JOCJIIZKYyEMO BJIACTUBOCTI TPOEKTUBHOI KOJTiHeAITil
Ta KoJiiHeartii MmaTepil B pamMkax doTupuBuMipHoro Pigqi cumerpuaroro PB
npocropy-dacy. [lomik iHIIOro m0BeneHO, IO JIOPEHIEBUNl MHOTOBHUJI PO3-
mipaocTi n > 3 € PB mpoctopom Tosi, i Juiie TO/i, KOJIM TPOCTip-dac Mae
KBazicrasay kpuBuHy. Haperti, orpumano jeski HOBI xapakTepuctuku PB
ITPOCTOPIB-YaCiB.

Kitro4oBi cjioBa: TOpeHIeBUil MHOTOBHU/T, CHMETPUYHUI IIPOCTOP, IPOCTIip-
qac Pobeprcona—Boxkepa, yzarambuenuit mpoctip-uac Pobeprcona—Bokepa,
IIpOCTip-Yac i/ieajbHOl PiMHA, TPOCTIP-Iac KBa3icTaj ol KPUBUHU, TCH30PHU
MIPOEKTUBHOI Ta KOH(POPMHOI KPUBUHI
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