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Semi-Symmetric Curvature Properties of
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The aim of the present paper is to characterize Robertson–Walker (RW)
spacetimes satisfying certain curvature conditions. A necessary and suffi-
cient condition for a RW spacetime to be Ricci semisymmetric is given. We
prove that a four-dimensional Ricci symmetric RW spacetime is vacuum. We
also study the properties of projective collineation and matter collineation
within the framework of a four-dimensional Ricci symmetric RW spacetime.
Among others, it is proved that a Lorentzian manifold of dimension n ≥ 3 is
a RW spacetime if and only if the spacetime is of quasi-constant curvature.
Finally, some new characteristics of RW spacetimes are obtained.
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1. Introduction

A semi-Riemannian manifold of dimension n is a smooth n-dimensional dif-
ferentiable manifold equipped with a semi-Riemannian metric of signature (p, q),
where n = p + q. A Lorentzian manifold is a subclass of the semi-Riemannian
manifold, that is, a semi-Riemannian manifold M of dimension n ≥ 2 equipped
with a semi-Riemannian metric g of signature (1, n−1) or (n−1, 1) is a Lorentzian
manifold [34]. Lorentzian manifolds have many applications to general relativity
and cosmology. A spacetime is the stage of present modeling of the physical
world: a time oriented Lorentzian manifold.

To describe the gravity of the universe, the curvature tensor Rkhij , the Ricci
tensor Rij and the scalar curvature R play an important role. In cosmology, the
observation that the space is isotropic and homogeneous on the universe in the
large scale chooses the Robertson–Walker (RW) metric. In 1995, Aĺıas, Romero
and Sánchez [1] generalized the notion of RW metric to generalized Robertson–
Walker (GRW) metric. A Lorentzian manifold M of dimension n ≥ 3 endowed
with the Lorentzian metric g defined by

ds2 = gabdx
adxb = −(dt)2 + ϕ(t)2g∗lm(x)dxldxm, (1.1)
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where t is the time and g∗lm(x) is the metric tensor of a Riemannian manifold
M∗, is a GRW spacetime. In other words, a GRW spacetime is the warped
product −I × ϕ2M∗, where I is an open interval of the real line, ϕ is a smooth
warping function or scale factor such that ϕ > 0 and M∗ is an (n−1)-dimensional
Riemannian manifold. In particular, if M∗ is an (n−1)-dimensional Riemannian
space of constant sectional curvature, then the warped product −I×ϕ2M∗ is said
to be a RW spacetime. A RW spacetime complies the cosmological principle, that
is, the spacetime is locally spatially isotropic and locally spatially homogeneous,
although the GRW spacetime is not necessarily spatially homogeneous [14]. In
[5], Brozos–Vázquez, Garcia–Rio and Vázquez–Lorenzo bridged the gap between
RW spacetime and GRW spacetime by providing the following result [5]. A
GRW spacetime is conformally flat if and only if it is a RW spacetime. It is
noticed that the GRW spacetimes include the Friedmann cosmological models,
the Lorentz–Minkowski spacetime, the Einstein–de Sitter spacetimes, the static
Einstein spacetime and the de Sitter spacetimes. For more details of (GRW)
spacetimes, we call [2, 9–11,29,32] and their references.

A spacetime M of dimension n ≥ 3 is said to be a perfect fluid spacetime if
the non-vanishing Ricci tensor Rab of M satisfies the relation

Rab = αuaub + βgab, (1.2)

where α and β are scalar fields, gab is the Lorentzian metric and ua is a 1-
form associated with the unit timelike vector field ua such that ua = gabu

b.
The expression (1.2) can be obtained from the following Einstein’s field equation
without cosmological constant:

Rab −
R

2
gab = κTab, (1.3)

where κ is a non-zero gravitational constant and Tab denotes the energy momen-
tum tensor of the spacetime. For a perfect fluid spacetime, the energy momentum
tensor Tab assumes the form

Tab = (p+ µ)uaub + pgab, (1.4)

where µ and p are the energy density and the isotropic pressure of the fluid. A
perfect fluid spacetime with p = p(µ) is an isentropic fluid [20, p. 70]. A RW
spacetime is a perfect fluid spacetime [34]. A four-dimensional GRW spacetime
is a perfect fluid spacetime if and only if it is a RW spacetime [23]. If the energy-
matter content of spacetime is a perfect fluid with fluid velocity ua, then the
Einstein field equations show that the Ricci tensor Rab assumes the form (1.2)
and the scalars α and β are linearly related to the pressure p and the energy
density µ measured in the locally comoving inertial frame [30]. Shepley and
Taub [38] considered a four-dimensional perfect fluid spacetime with divergence
free Weyl curvature tensor (Cabcd,a = 0) and the equation of state p = p(µ) and
proved that the spacetime is conformally flat (Cabcd = 0), the flow is shear-
free, geodesic and irrotational, and the metric is RW. In [37], Sharma studied
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a perfect fluid spacetime. He proved that if a four-dimensional perfect fluid
spacetime admits a proper conformal Killing vector field (Xb,a + Xa,b = 2ρgab)
and the Weyl conformal curvature tensor is divergence free, then the spacetime is
conformally flat. Guilfoyle and Nolan [22] showed that a four-dimensional perfect
fluid spacetime with p + µ 6= 0 is a RW spacetime if and only if it is a Yang
pure spacetime (Cabcde,a = 0, R ,a = 0). If a perfect fluid spacetime satisfying
the Einstein field equations with p = p(µ), p + µ 6= 0 and a proper conformal
Killing vector field is parallel to the fluid four-velocity, then it is locally a RW
spacetime [16]. In [17], De and Ghosh proved that a conformally flat perfect fluid
spacetime with closed ua possesses a concircular vector field. Mantica, Molinari
and De [30] proved that if a perfect fluid spacetime of dimension n > 3 admits
an irrotational vector field and divergence free Weyl conformal curvature tensor,
then it is a generalized RW spacetime with Einstein fiber. Recently, Chaubey
[13] characterized the perfect fluid spacetime with gradient η-Ricci soliton and
gradient Einstein solitons. De et al. [18] studied the properties of perfect fluid
spacetime with Yamabe solitons. The properties of the perfect fluid spacetimes
have been noticed in [28,30,33].

In [25], the algebraic restrictions on the Ricci tensor in a Ricci recurrent
spacetime are determined. The restriction imposed on the Petrov type of the
Weyl tensor are also given.

The above results motivate us to study some curvature properties of RW
spacetimes. In Section 2, we give some known basic results and definitions. In
the next sections, we prove several results:

Theorem 1.1. A RW spacetime is Ricci semisymmetric if and only if ua,cd =
ua,dc.

Theorem 1.2. A Ricci semisymmetric RW spacetime obeying the Einstein
field equations without cosmological constant is vacuum, and the equation of state
is given by p = −µ+ 2αµ

R .

Theorem 1.3. A spacetime of dimension n > 3 is a RW spacetime if and
only if the manifold is of quasi-constant curvature.

Theorem 1.4. A four-dimensional RW spacetime satisfying the Einstein
field equations without cosmological constant is a Yang pure spacetime.

2. Preliminaries

Let Cdabc denote the conformal curvature tensor on an n-dimensional
Lorentzian manifold M with n ≥ 3, then it is defined as

Cdabc = Rdabc −
1

n− 2
{Rdcgab −Rdbgac +Rabδ

d
c −Racδdb }

+
R

(n− 1)(n− 2)
{gabδdc − gacδdb }, (2.1)

where R = Rabg
ab [40]. The Lorentzian manifold M is conformally flat if and

only if Cdabc = 0 for n > 3.
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The Weyl projective curvature tensor P dabc [41] on an n-dimensional Lorentzian
manifold with n ≥ 3 is given by

P dabc = Rdabc −
1

n− 1
{Rabδdb −Rbcδda}. (2.2)

A Lorentzian manifold M is projectively flat if and only if P dabc = 0 for n > 2.

In 1972, Chen and Yano [15] introduced the notion of a Riemannian manifold
with quasi-constant curvature. If the curvature tensor Rabcd of the Lorentzian
manifold M of dimension n satisfies the following condition:

Rabcd = ι1(gbcgad − gbdgac) + ι2(gbcuaud + gadubuc − gbduauc − gacubud)

for some smooth functions ι1 and ι2, then M is called a manifold of quasi-constant
curvature.

In [29], Mantica and Molinari proved that a spacetime is a GRW spacetime
if and only if there exists a timelike unit torse-forming vector field ua (u2 = ua ·
ua = −1) that is also an eigenvector of the Ricci operator Rab = Rbcg

ac. Also,
Mantica and Molinari [31] obtained the expression for the Ricci tensor in a GRW
spacetime,

Rab =
R− nξ
(n− 1)

uaub +
R− ξ

(n− 1)
gab − (n− 2)Ccabdu

cud, (2.3)

and Rabu
b = ξua =⇒ ξ is an eigenvalue. We consider a conformally flat GRW

spacetime, which implies that the spacetime is a RW spacetime. Therefore (2.3)
reduces to

Rab =
R− nξ
(n− 1)

uaub +
R− ξ

(n− 1)
gab. (2.4)

The above equation can be expressed as equation (1.2), where α = R−nξ
(n−1) and β =

R−ξ
(n−1) , which implies that the RW spacetime is a perfect fluid spacetime. Also,

Mantica and Molinari [29] expressed the curvature tensor in a RW spacetime as

Rabcd =
2ξ −R

(n− 1)(n− 2)
(gbcgad − gbdgac)

+
R− nξ

(n− 1)(n− 2)
(gbcuaud + gadubuc − gbduauc − gacubud). (2.5)

The above expression tells us that a RW spacetime is a spacetime of quasi-
constant curvature [15].

An n-dimensional Lorentzian manifold M with n ≥ 3 is said to be:

(i) Ricci symmetric [21] if Rab,c = 0,

(ii) semisymmetric [39] if Rabcd,ef −Rabcd,fe = 0,

(iii) Ricci semisymmetric [39] if Rab,cd −Rab,dc = 0,

(iv) recurrent [36] if Rabcd,e = αeRabcd, where αe is a non-zero 1-form.
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Let M be a Lorentzian manifold with a Levi-Civita connection ∇. A continuous
group of local diffeomorphism of M is said to be projective collineation (PC) [4]
if it maps geodesics into geodesics, and the generator of this group is called a
projective vector field. A vector filed V is a PC if and only if

LV Γabc = δab pc + δac pb,

where LV denotes the Lie derivative operator along V , pb = p ,b and p is a 1-form.
Thus pb is locally an exact form. In particular, if LV Γabc = 0, then the projective
collineation reduces to the affine collineation or affine motion. When the manifold
is flat, the affine collineation satisfies the equation

Vc,ab = 0,

and its solution is Vc = Aacxa + Bc, where Aac and Bc are constants and xa

denotes a local coordinate system. The maximum dimension of the projective
algebra of M is n2 + n for which M is projectively flat. Also recall that the
projective vector field V satisfies

LVR
d
abc = δdcpa,b − δdbpa,c, (2.6)

LVRab = (1− n)pa,b (2.7)

LV P
d
abc = 0. (2.8)

3. Ricci semisymmetric RW spacetime

In [25], Hall characterized Ricci recurrent spacetimes. It is well known that
the Ricci semisymmetry is weaker than the Ricci recurrent spacetime. Thus, we
are interested in studying the Ricci semisymmetric RW spacetimes in this section.

Proof of Theorem 1.1. Suppose that a Lorentzian manifold of dimension n is
Ricci semisymmetric, that is, the Ricci tensor Rab satisfies the condition

Rab,cd −Rab,dc = 0. (3.1)

Taking covariant differentiation of (1.2) twice, we get

Rab,cd −Rab,dc = α{(ua,cd − ua,dc)ub + (ub,cd − ub,dc)ua}. (3.2)

Suppose that the RW spacetime is Ricci semisymmetric. Then, from (3.1) and
(3.2), we infer

(ua,cd − ua,dc)ub + (ub,cd − ub,dc)ua = 0

since α 6= 0. Transvecting the above equation with ub, we get

ua,cd − ua,dc = 0

since ubub,cd = 0. Conversely, if ua,cd − ua,dc = 0, then from (3.2) it follows that
Rab,cd −Rab,dc = 0. Hence Theorem 1.1 is proved.
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It is well known that the Ricci semisymmetric spacetimes are a natural gener-
alization of the semisymmetric, Ricci symmetric and recurrent spacetimes. These
facts along with Theorem 1.1 state the following:

Corollary 3.1. If a RW spacetime is semisymmetric, then

ua,cd − ua,dc = 0.

Corollary 3.2. If a RW spacetime is Ricci symmetric, then

ua,cd − ua,dc = 0.

Corollary 3.3. If a RW spacetime is recurrent, then

ua,cd − ua,dc = 0.

Proof of Theorem 1.2. We suppose that a four-dimensional RW spacetime
is Ricci semisymmetric. Then ua,cd − ua,dc = 0, and the Ricci identity (ua,cd −
ua,dc = ubR

b
acd) gives

ubR
b
acd = 0 ⇒ ubR

b
d = 0 ⇒ ξ = 0. (3.3)

Hence equation (1.2) infers α = β and

Rab = α{uaub + gab}. (3.4)

In view of equations (1.3), (1.4), and (3.4), we conclude that

κp = α− R

2
, κµ =

R

2
, and p = −µ+

2αµ

R
. (3.5)

From equations (2.4) and (3.3), we lead α = R
3 and hence equation (3.5) gives

p = −µ
3 , that is, p = p(µ).

Let us suppose that a four-dimensional RW spacetime is Ricci symmetric
(Rab,c = 0) and therefore ua,cd − ua,dc = 0. Thus equation (3.3) holds, that is,
ubR

b
d = 0. Taking the covariant derivative of this equation, we have

ub,aR
b
d + uaR

b
d,a = 0,

which gives
ub,aR

b
d = 0 (3.6)

because Rbd,a = 0.
In [29], Mantica and Molinari proved that a GRW spacetime admits the unit

timelike torse-forming vector field, ub,a = ϕ{uaub+gab}, which is also an eigenvec-
tor of the Ricci tensorRab, that is, Rabu

b = ξua. Here ϕ denotes the non-vanishing
smooth function.

The above discussions along with equation (3.6) lead to

ϕ{uaub + gab}Rbd = 0, (3.7)

which implies that Rbd = 0. This shows that the Ricci symmetric RW spacetime is
Ricci flat and hence it is vacuum. Thus the proof of Theorem 1.2 is completed.
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Remark 3.4. For a perfect fluid spacetime, the equation of state ω is given by

ω =
p

µ
.

From (3.5), we infer that ω = p
µ = −1

3 , which gives the condition for late-
time accelerating universe [20]. Also, in a four-dimensional Ricci symmetric RW
spacetime p = p(µ) and hence the fluid is isentropic [26].

Now we consider the projective collineation in a Ricci symmetric RW space-
time. Since equation (3.7) reflects that the Ricci symmetric RW spacetime is
Ricci flat, therefore from (2.7) we infer pa,b = 0. If pa 6= 0, then the projective
collineation is proper and, for the case of n = 4, the metric must be either flat
or a pp-wave [24]. If pa = 0, then V generates an affine collineation, and for
the spacetime the metric is decomposable, or is a pp-wave, or V is a homothetic
Killing vector field. Thus, we summarize the results as:

Theorem 3.5. Let a Ricci symmetric RW spacetime admit a projective
collineation V . Then

(i) the projective collineation is proper and, for n = 4, the metric is either flat
or a pp-wave, provided pa 6= 0.

(ii) V generates an affine collineation and the metric is decomposable, or a pp-
wave, or a homothetic Killing vector field, provided pa = 0.

Remark 3.6. To our knowledge, the projective collineation has not been stud-
ied in a RW spacetime, which is a perfect fluid spacetime. In Theorem 3.5, we
characterize PC in a Ricci symmetric RW spacetime.

If a (non trivial) given symmetry vector field V of M leaves matter tensor
invariant (LV Tab = 0), then we say that M admits a matter collineation. Well
known examples are Killing and homothetic symmetries.

If we assume that a Ricci symmetric RW spacetime satisfies the Einstein field
equations, then (1.3) holds. Since a Ricci symmetric RW spacetime is Ricci flat,
equation (1.3) turns into κTab = 0, which infers Tab = 0. Thus, we conclude
that a Ricci symmetric RW spacetime admits matter collineation. It should be
mentioned that Caret et al. [7] obtained the examples of matter collineation in
dust fluids, included Szekeres’s space-time: ds2 = −dt2 + eλdr2 + e%(dx2 + dy2)
for smooth functions λ and %. Hence we state:

Theorem 3.7. Every Ricci symmetric RW spacetime admits matter
collineation.

4. Lorentzian manifold of quasi-constant curvature

It can be easily proved that a Lorentzian manifold of dimension n > 3 is of
quasi-constant curvature if and only if

(i) the manifold is conformally flat,
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(ii) the Ricci tensor has the form

Rab =
R− nσ
(n− 1)

uaub +
R− σ
(n− 1)

gab,

where Rabu
b = σua. Since a RW spacetime is of quasi-constant curva-

ture, then a natural question arises whether a Lorentzian manifold of quasi-
constant curvature is a RW spacetime.

Theorem 1.3 gives an affirmative answer to this question.

Proof of Theorem 1.3. Suppose that the Lorentzian manifold possesses quasi-
constant curvature. Then it is conformally flat and hence Cabcd,a = 0. Also, a RW
spacetime is a perfect fluid spacetime with p + µ 6= 0. Mantica, Molinari and
De [30] proved that a perfect fluid spacetime of dimension n ≥ 4 with p + µ 6=
0 and Cabcd,a = 0 is a GRW spacetime. In fact, the above discussions tell us
that a Lorentzian manifold of quasi-constant curvature is a GRW spacetime.
Again, since a manifold is conformally flat, then a GRW spacetime becomes a
RW spacetime, and thus Theorem 1.3 is proved.

Next, from (2.4), (3.4), and (1.3), we infer

κp =
R− ξ

(n− 1)
− R

2
, p+ µ =

R− nξ
κ(n− 1)

6= 0, (4.1)

from which it follows that

µ =
R

2κ
− ξ

κ
. (4.2)

By equations (4.1) and (4.2), we obtain

p =
µ

n− 1
− (n− 2)

2κ(n− 1)
R.

Thus we can state:

Proposition 4.1. In a RW spacetime obeying the Einstein field equations
without cosmological constant, the equation of state is p = µ

n−1 −
(n−2)

2κ(n−1)R.

Proof of Theorem 1.4. For a four-dimensional RW spacetime, we get p+µ 6=
0 and p = 1

3µ−
R
3κ . In [22], Guilfoyle and Nolan named “Young pure spacetime”

a four-dimensional Lorentzian manifold (M, g) whose metric tensor solves Yang’s
equations Rab,c = Rac,b, which implies that the scalar curvature R = const.

In the same paper [22], Guilfoyle and Nolan proved that a four-dimensional
perfect fluid spacetime (M, g) with p + µ 6= 0 is a Yang pure spacetime if and
only if (M, g) is a RW spacetime with p = 1

3µ+ c for some constant c.

Here, we consider a four-dimensional RW spacetime which is a perfect fluid.
Also the state equation p = 1

3µ+ c holds. Thus our Theorem 1.4 is proved.
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5. Characterizations of RW spacetimes

5.1. In [35], Prvanovié introduced the notion of extended recurrent manifold
defined as

Rabcd, e = AeRabcd + (β − ψ)AeGabcd

+
β

2
[AaGebcd +AbGaecd +AcGabed +AdGabcd],

where Ae is a closed covector, ψ and β are scalar functions with ψ,a = Aaβ and
Gabcd = gadgbc − gacgbd. In [29], Mantica and Molinari proved that an extended
recurrent spacetime with a timelike vector field Aa is a RW spacetime.

5.2. A Lorentzian manifold is said to be a pseudosymmetric manifold in
the sense of Chaki [8] if the curvature tensor Rabcd satisfies the condition

Rabcd,e = 2AeRabcd +AaRebcd +AbRaecd +AcRabed +AdRabce,

where Ae is a non-zero covector. Such a manifold is denoted by (PS)n. It is
known that in a conformally flat (PS)n (n ≥ 3),

(n− 1)AaRbc − (n− 1)AbRac −RAagbc +RAbgac +Bagbc −Bbgac = 0, (5.1)

where Ba = RacA
c [8]. Transvecting the above equation by Ac, we obtain

(n− 2)AaBb − (n− 2)AbBa +RAbAa = 0 (5.2)

In its turn, transvecting (5.2) with Aa, we infer

Bb = −
(
t+

R

n− 2

)
Ab, (5.3)

where t = BaA
a and AaA

a = −1. After using (5.3) in (5.1) and then transvecting
by Aa, it follows that

Rbc =

(
t

n− 1
+

R

n− 2

)
gbc +

(
t

n− 1
+

2R

n− 2

)
AbAc,

which implies that a conformally flat pseudosymmetric manifold represents a
perfect fluid spacetime. Since the manifold is conformally flat, then Cabcd,a = 0.

Also, in our case p+µ = (n−2)t+2(n−1)R
(n−1)(n−2)k 6= 0, therefore such a spacetime becomes

a RW spacetime.

5.3. The f(R, T ) gravity, introduced by Harko et al. [27], is a natural ex-
tension of general relativity and f(R) gravity. Here, R and T are the scalar
curvature and the trace of stress energy tensor. They considered that the gravi-
tational Lagrangian is an arbitrary function of R and T , and the field equations
for this theory can be derived by the action of Hilbert-Einstein type variational

A =
1

16π

∫
[Lm + f(R, T )]

√
(− g)d4x,
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where Lm denotes the matter Lagrangian density. The field equations for f(R, T )
gravity take the form

(gab∇k∇k −∇a∇b)fR(R, T ) + fR(R, T )Rab −
1

2
f(R, T )gab

= (8π − fT (R, T ))Tab − fT (R, T )Θab, (5.4)

where fR(R, T ), fT (R, T ) represent the partial derivatives of f with respect to R
and T , and ∇a is the covariant derivative. The stress energy tensor Tab of matter
is defined as

Tab =
−2√
−g

δ(
√
−g)Lm
δab

,

where the variation of stress energy is

Θab = gabLm − 2Tab − 2glk
∂2Lm
∂gab∂glk

.

Let the spacetime be conformally flat with pressure p, energy density µ and four-
velocity ua such that uau

a = −1, and hence uaua,a = 0. We also suppose that
the vector field ua is irrotational, that is, ua,b−ub,a = 0. Since there is no unique
definition of the matter Lagrangian, we choose Lm = −p [12]. Let the stress
energy tensor Tab and the variation of stress energy for the perfect fluid take the
form

Tab = (p+ µ)uaub + pgab (5.5)

and

Θab = −2Tab − pgab. (5.6)

It is observed that the field equations depend on the nature of matter. Thus, each
choice of f(R, T ) gives a theoretical model. In particular, if we take f(R, T ) =
f(R), then the f(R, T ) gravity reduces to the f(R) gravity [6].

If we choose f(R, T ) = R+ 2f(T ), then equations (5.4), (5.5), and (5.6) lead
to

Rab = Auaub +Bgab,

where A = [8π + 2f ′(T )] (p + µ) and B =
[
R
2 − f(T ) + 8πp+ 4pf ′(T )

]
, which

shows that the spacetime is a conformally flat perfect fluid spacetime. In [30],
Mantica et al. proved the following:

Let M be a spacetime of dimension n ≥ 3, with the Ricci tensor Rab =
Auaub +Bgab, where A and B are scalar fields, A 6= 0, and ua is a unit timelike
vector field. If Cdabc,d = 0 and ua,b = ub,a, then M is a GRW spacetime with
uaCbcda = 0 [24, Theorem 2.1].

Since the spacetime is conformally flat, then Cdabc,d = 0. Thus, the conformally
flat f(R, T ) gravity is a RW spacetime.
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6. Examples

6.1. Let (x1, x2, . . . , xn) ∈ Rn, where Rn stands for an n-dimensional real
number space. Then we define a Lorentzian metric g on R4 as

ds2 = gijdx
idxj = ex

1+1(dx1)2 + ex
1{(dx2)2 + (dx3)2 − (dx4)2}.

The only non-vanishing components of the Christoffel symbols, the curvature
tensors and the Ricci tensors are:

Γ1
11 =

1

2
, Γ1

22 = Γ1
33 = − 1

2e
, Γ1

44 =
1

2e
, Γ2

12 = Γ3
13 = Γ4

14 =
1

2
,

R2332 =
1

4
ex

1−1, R2442 = R3443 = −1

4
ex

1−1, R22 = R33 = −R44 =
1

2e
.

The scalar curvature is r = 3

2ex1+1
. Here,

R22,1 = − 1

2e
, R22,2 = R22,3 = R22,4 = 0, R33,1 = − 1

2e
,

R33,2 = R33,3 = R33,4 = 0, R44,1 =
1

2e
, R44,2 = R44,3 = R44,4 = 0. (6.1)

We can also derive that

R22,12 = R22,21 = R22,13 = R22,31 = 0. (6.2)

In a similar way, we can calculate other second-order derivatives which are zero.
From the non-vanishing components of curvature tensors, we observe that

R2332,12 −R2332,21 6= 0, R2332,23 −R2332,32 6= 0.

From the above calculations, we obtain Rij,lm − Rij,ml = 0, but Rhijk,lm −
Rhijk,ml 6= 0. Thus, the spacetime of dimension four is Ricci semisymmetric but
it is not semisymmetric.

The above expressions of the Ricci tensors and their covariant derivatives
show that the spacetime is Ricci semisymmetric, but it is not Ricci symmetric or
Ricci parallel (Rij, l = 0).

From (6.1) and (6.2), it follows that the spacetime is Ricci semisymmetric,
but not Ricci recurrent. Since R12 = 0, but R12,2 = − 1

4e 6= λ2R12, where λ2 is a
covariant vector. There does not exist any vector λ2 such that R12,2 = − 1

4e since
R12 = 0.

6.2. In [3], the authors proved that under certain condition (for instance,
if dimension is 3), Rhijk,lm −Rhijk,ml = 0 and Rij,lm −Rij,ml = 0 are equivalent.
Also, in [19], the authors constructed an example of a hypersurface which is Ricci
semisymmetric but not semisymmetric.
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Властивостi напiвсиметричностi кривини
простору-часу Робертсона–Вокера

Uday Chand De, Young Jin Suh, and Sudhakar K. Chaubey

Метою цiєї роботи є характеризацiя просторiв-часiв Робертсона–
Вокера (РВ), що задовольняють деякi умови на кривину. Отримано не-
обхiднi та достатнi умови того, що РВ простiр-час є Рiччi напiвсиметри-
чним. Доведено, що чотиривимiрний Рiччi симетричний РВ простiр-час
є вакуумним. Також ми дослiджуємо властивостi проективної колiнеацiї
та колiнеацiї матерiї в рамках чотиривимiрного Рiччi симетричного РВ
простору-часу. Помiж iншого доведено, що лоренцевий многовид роз-
мiрностi n ≥ 3 є РВ простором тодi, i лише тодi, коли простiр-час має
квазiсталу кривину. Нарештi, отримано деякi новi характеристики РВ
просторiв-часiв.

Ключовi слова: лоренцевий многовид, симетричний простор, простiр-
час Робертсона–Вокера, узагальнений простiр-час Робертсона–Вокера,
простiр-час iдеальної рiдини, простiр-час квазiсталої кривини, тензори
проективної та конформної кривини
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