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Dynamic to Quotients of Hyperspaces

Alicia Santiago-Santos and Noé Trinidad Tapia-Bonilla

Let (X, d) be a compact metric space and let n be a positive integer.
Let Cn(X) be the space of all nonempty closed subsets of X with at most
n components and let F1(X) be the space of singletons of X. Given a map
f : X → X, we consider the induced map Cn(f) : Cn(X) → Cn(X) given
by Cn(f)(A) = f(A), for each A ∈ Cn(X). The discrete dynamical system
(X, f) induces the discrete dynamic system (PHSn(X),PHSn(f)), where
PHSn(X) is the quotient space Cn(X)/F1(X) topologized with the quotient
topology. In this paper, we generalize some results from [22] and study some
relationships between the discrete dynamical systems (X, f), (Cn(X), Cn(f))
and (PHSn(X),PHSn(f)).
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1. Introduction

Let (X, d) be a compact metric space. Given a positive integer n, we consider
the hyperspaces 2X , Cn(X) and Fn(X) of X, where 2X consists of all nonempty
and closed subsets of X, Cn(X) consists of all elements of 2X with at most n
components and Fn(X) consists of all elements of 2X with at most n points. All
these hyperspaces are considered with the Hausdorff metric.

Let f : X → X be a map and let n be a positive integer. It can be seen that
f induces a map on the hyperspace 2X denoted by 2f : 2X → 2X and defined
by 2f (A) = f(A), for each A ∈ 2X . The induced maps to other hyperspaces
mentioned, Cn(X) and Fn(X), are simply the restriction of 2f to each of these
hyperspaces denoted by Cn(f) and Fn(f), respectively. In 2008, J. C. Maćıas
introduced the notion of the n-fold pseudo-hyperspace suspension of a continuum
X, denoted by PHSn(X), as the quotient space Cn(X)/F1(X) topologized with
the quotient topology [20]. Later, in [21], J. C. Maćıas and S. Maćıas considered
the induced map PHSn(f) : PHSn(X) → PHSn(X), which they called the
induced map of f on the n-fold pseudo-hyperspace suspension of X. In the same
article, some topological properties of PHSn(f) were studied. Recently, in [29],
the authors proved more results on the n-fold pseudo-hyperspace suspension of
continua and on the induced map PHSn(f).
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Furthermore, given a discrete dynamical system (X, f), one can obtain
associated systems induced by (X, f), some are (2X , 2f ), (Cn(X), Cn(f)) and
(PHSn(X),PHSn(f)), given that it is important to study the connection of
dynamical properties among (X, f) and its hyperspaces. In recent years, vari-
ous interesting results have been obtained in this line of investigation (see, for
example, [1–7,12–14,19,26–28,31]).

In this paper, we generalize some results from [22] and study some connections
between dynamical properties of f and dynamical properties of the induced maps
Cn(f) and PHSn(f). The paper is organized as follows. In Section 2, we recall
basic definitions, introduce some notation and give some basic results. Section
3 is devoted to studying dynamical properties of the induced function Cn(f)
on (Cn(X), τU ), on (Cn(X), τL) and on (Cn(X), τ). Some results given in this
section generalize those obtained by D. Massod and P. Singh in [22]. Section 4 is
divided into two subsections. In the first subsection, some dynamical properties
of f , Cn(f) and PHSn(f) on (Cn(X), τ) and (PHSn(X), τ) are considered. For
instance, we prove that the exactness of f , Cn(f) and PHSn(f) is equivalent. In
the second subsection, some dynamical properties of f , Cn(f) and PHSn(f) on
(Cn(X), τU ) and (PHSn(X), τU ) are considered. More preciously, we study the
relationships between a continuous function f on X in relation to the transitivity
of its extensions Cn(f) and PHSn(f) on (Cn(X), τU ).

2. Definitions, notation and basic result

Throughout the paper, (X, f) denotes a discrete dynamical system, where X
is a compact metric space and f : X → X is a map. A map is a continuous
function and if we need to indicate the topology τ , used on the space, we will
write the dynamical system as ((X, τ), f). The symbol N denotes the set of
positive integers. Given a compact metric space (X, d), a point a ∈ X and ε > 0,
Bd(a, ε) denotes the open ball with center a and radius ε. Moreover, Nd(A, ε) =⋃

a∈ABd(a, ε).

For a compact metric space (X, d) and a positive integer n, we consider the
following hyperspaces of X:

2X = {A ⊆ X | A is closed and nonempty},
Cn(X) = {A ∈ 2X | A has at most n components},
Fn(X) = {A ∈ 2X | A has at most n points}.

We agree that C(X) = C1(X). For A,B ∈ 2X , let

H(A,B) = inf{ε > 0: A ⊆ Nd(B, ε) and B ⊆ Nd(A, ε)}.

Then H is know as the Hausdoff metric in 2X [23, (0.1)].

Let n be a positive integer. The quotient space

PHSn(X) = Cn(X)/F1(X),
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topologized with the quotient topology and known as the n-fold pseudo-
hyperspace suspension of X, was introduced in 2008 by J. Maćıas [20]. Notice
that PHS1(X) corresponds to the hyperspace suspension HS(X) defined by S.
Nadler in [24].

Remark 2.1. A compact metric space X, qnX : Cn(X) → PHSn(X) denotes
the quotient map. Also, Fn

X and Tn
X denote the points qnX(F1(X)) and qnX(X).

Remark 2.2. Note that PHSn(X)\{Fn
X} and PHSn(X)\{Tn

X , F
n
X} are home-

omorphic to Cn(X) \ F1(X) and Cn(X) \ ({X} ∪ F1(X)), respectively, using the
appropriate restriction of qnX .

A map f : X → Y between compact metric spaces and a positive integer n,
the function Cn(f) : Cn(X) → Cn(Y ) defined by Cn(f)(A) = f(A), for all A ∈
Cn(X), is the induced map by f between the n-fold hyperspaces of X and
Y . Note that Cn(f) is continuous [15, 13.3]. Also, we consider the function
PHSn(f) : PHSn(X)→ PHSn(Y ) given by

PHSn(f)(χ) =

{
qnY (Cn(f)((qnX)−1(χ))) if χ 6= Fn

X

Fn
Y if χ = Fn

X

. (2.1)

Note that, by [10, 4.3, p. 126], PHSn(f) is continuous and it is called the
induced map of f on the n-fold pseudo-hyperspace suspensions of X and Y . In
addition, the diagram

-Cn(X) Cn(Y )
Cn(f)

?
PHSn(X)

qnX

?
PHSn(Y )

qnY

-
PHSn(f)

is commutative, that is, qnY ◦ Cn(f) = PHSn(f) ◦ qnX (both pathways around the
diagram give the same result).

In addition, on 2X , we define some topologies.

(1) Upper Vietoris topology: for m ∈ N and any finite collection of non-
empty open sets {U1, U2, . . . , Um}, define

〈U1, U2, . . . , Um〉 =

{
A ∈ 2X | A ⊆

m⋃
i=1

Ui

}
.

The upper Vietoris topology, denoted by τU , has

BU = {〈U1, U2, . . . , Um〉 : m ∈ N and U1, . . . , Um are open subsets of X}

as a basis.
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(2) Lower Vietoris topology: for m ∈ N and any finite collection of non-
empty open sets {U1, U2, . . . , Um}, define

〈U1, U2, . . . , Um〉′ =
{
A ∈ 2X | A ∩ Ui 6= ∅, for each i ∈ {1, . . . ,m}

}
.

The lower Vietoris topology, denoted by τL, has

BL = {〈U,U2, . . . , Um〉′ : m ∈ N and U1, . . . , Um are open subsets of X}

as a basis.

(3) Vietoris topology: for m ∈ N and any finite collection of non-empty open
sets {U1, U2, . . . , Um}, define

〈U1, U2, . . . , Um〉′′ =

{
A ∈ 2X | A ⊆

m⋃
i=1

Ui

and A ∩ Ui 6= ∅ for each i ∈ {1, . . . ,m}

}
.

The Vietoris topology, denoted by τ , has

B =
{
〈U1, U2, . . . , Um〉′′ | m ∈ N and U1, U2, . . . , Um are open subsets of X

}
as a basis.

It can be seen that the Vietoris topology equals the join of upper and lower
Vietoris topologies [30]. The upper and lower Vietoris topologies on Cn(X) are
specified by (Cn(X), τU ) and (Cn(X), τL).

Remark 2.3. Let X be a compact metric space, n be a positive integer, and
let U1, U2, . . . , Um be a finite family of open subsets of X. Then

• 〈U1, U2, . . . , Um〉n denotes the set 〈U1, U2, . . . , Um〉 ∩ (Cn(X), τU );

• 〈U1, U2, . . . , Um〉′n denotes the set 〈U1, U2, . . . , Um〉′ ∩ (Cn(X), τL);

• 〈U1, U2, . . . , Um〉′′n denotes the set 〈U1, U2, . . . , Um〉′′ ∩ (Cn(X), τ).

On the other hand, given a discrete dynamical system (X, f) and x ∈ X, we
define f0 = IdX , where IdX denotes the identity map on X, and for each k ∈ N,
let fk = f ◦ fk−1. The orbit of x under f is the set Orb(x, f) = {fk(x) | k ∈ N∪
{0}}. The set of all limit points of Orb(x, f) is called the ω-limit set of x under
f , and it is denoted by ω(x, f). A subset K of X is said to be invariant under f
if f(K) ⊆ K and strongly invariant under f if f(K) = K.

Definition 2.4. Let (X, f) be a discrete dynamical system. A point x of X
is said to be

1) a fixed point of f if f(x) = x;

2) a periodic point of f if there exists k ∈ N such that fk(x) = x;

3) a recurrent point of f if for every neighborhood U of x there is k ∈ N such
that fk(x) ∈ U ;
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4) a nonwandering point of f if for every neighborhood U of x there is k ∈ N
such that fk(U) ∩ U 6= ∅.

The sets of fixed points, periodic points, recurrent points and nonwandering
points of (X, f) will be denoted by Fix(f), Per(f), Rec(f) and NW(f), respec-
tively.

Remark 2.5. Let (X, f) be a discrete dynamical system. As an immediate
consequence from the above definitions, we infer that

Fix(f) ⊆ Per(f) ⊆ Rec(f) ⊆ NW(f).

As an immediate consequence of Remark 2.5, we infer that

Proposition 2.6. Let (X, f) be a discrete dynamical system. If Per(f) is
dense in X, then Rec(f) and NW(f) are dense in X.

Now we recall the following definition.

Definition 2.7 ([18, 25]). Let (X, f) be a discrete dynamical system. A
subset A is called a transitive subset of (X, f) if for any choice of nonempty open
subset VA of A and nonempty open subset U of X with A ∩ U 6= ∅ there exists
n ∈ N such that fn(VA) ∩ U 6= ∅.

By [29], we have that:

Proposition 2.8. Let (X, f) be a discrete dynamical system. Then, for each
k, s ∈ N, the following statements hold:

1) (Cn(f))k(A) = fk(A) for every A ∈ Cn(X);

2) qnY ◦ (Cn(f))k = (PHSn(f))k ◦ qnX ;

3) ((Cn(f))s)k = (Cn(f))sk;

4) qnY ◦ ((Cn(f))s)k = ((PHSn(f))s)k ◦ qnX .

Given a discrete dynamical system (X, f) and a positive integer n, observe
that F1(X) is a subset of Cn(X) such that F1(X) is strongly invariant under
Cn(f). However, we know that the dynamical system (X, f) induces the dy-
namical system (PHSn(X),PHSn(f)). Thus, we conclude this section with the
following observations.

Remark 2.9. Let (X, f) be a discrete dynamical system and let n be a positive
integer. Consider the discrete dynamical system (PHSn(X),PHSn(f)). Note
that Fn

X ∈ (PHSn(f))−1(Fn
X). Moreover, since Fn

X is a fix point of PHSn(X),
we have that ω(Fn

X ,PHSn(f)) = {Fn
X}.

Now we recall the classes of dynamical systems used in this paper.

Definition 2.10. Let (X, f) be a discrete dynamical system. We say that
f is

1) exact if for each nonempty open subset U of X, there exists k ∈ N such that
fk(U) = X;
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2) mixing if for every pair of nonempty open subsets U and V of X, there
exists N ∈ N such that fk(U) ∩ V 6= ∅ for every k ≥ N ;

3) weakly mixing if for all nonempty open subsets U1, U2, V1 and V2 of X, there
exists k ∈ N such that fk(Ui) ∩ Vi 6= ∅ for each i ∈ {1, 2};

4) transitive if for every pair of nonempty open subsets U and V of X, there
exists k ∈ N such that fk(U) ∩ V 6= ∅;

5) totally transitive if f s is transitive for all s ∈ N;

6) chaotic if it is transitive and Per(f) is dense in X;

7) minimal if there is no proper subset M ⊆ X which is nonempty, closed and
M is invariant under f , i.e., if the orbit of every point of X is dense in X.

Remark 2.11 ([17]). Let (X, f) be a discrete dynamical system. The exactness
of f implies that f is mixing, weakly mixing, totally transitive, transitive and
surjective.

Remark 2.12 ([18]). Let (X, f) be a discrete dynamical system. Then f is
transitive if and only if X is a transitive subset of (X, f).

Remark 2.13. Let (X, f) be a discrete dynamical system and let k ∈ N. If f
is isometric, then for any x, y ∈ X, d(x, y) = d(fk(x), fk(y)).

The following example will be important for our work.

Example 2.14. Let I = [−1, 1] be the unit interval and let f : I → I be given
by

f(x) =


−2(x+ 1) if − 1 ≤ x ≤ −1

2

2x if |x| < 1
2

2(1− x) if 1
2 ≤ x ≤ 1

.

This function is an extension of the tent map. Observe that

f2(x) =



−4(x+ 1) if − 1 ≤ x < −3
4

2(2x+ 1) if − 3
4 ≤ x ≤ −

1
2

−2(2x+ 1) if − 1
2 < x ≤ −1

4

4x if − 1
4 < x < 1

4

2(1− 2x) if 1
4 ≤ x <

1
2

−2(1− 2x) if 1
2 ≤ x ≤

3
4

4(1− x) if 3
4 < x ≤ 1

.

It can be proved that f is not transitive. Thus, by Remark 2.11, we obtain that
f is not exact, not mixing, not totally transitive and not weakly mixing.

By [9, p. 791], we know that f |[0,1] is transitive, but the induced map
C(f |[0,1]) on (Cn(X), τ) is not transitive (see [1, p. 1015]). Therefore, C(f |[0,1])
on (Cn([0, 1]), τ) is not exact, not mixing, not weakly mixing and not totally
transitive.

On the other hand, by [11], we know that f |[0,1] is exact. Thus, by Remark
2.11, we deduce that f |[0,1] is mixing, totally transitive and weakly mixing.
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Now we will prove the following result.

Theorem 2.15. Let (X, f) be a discrete dynamical system and let A be a
nonempty set of X. If C(A) is a transitive subset of ((C(X), τ), C(f)), then A is
a transitive subset of (X, f).

Proof. Suppose that C(A) is a transitive subset of ((C(X), τ), C(f)). We prove
that A is a transitive subset of (X, f). For this, let VA be a nonempty open subset
of A and let U be a nonempty open subset of X such that A∩U 6= ∅. We prove
that there exists n ∈ N such that fn(VA) ∩ U 6= ∅. If VA is a nonempty open
subset of A, then there exists a nonempty open subset V of X such that VA =
V ∩A. Define VA = 〈V 〉′′1∩C(A) and U = 〈U〉′′1. Note that VA is a nonempty open
subset of (C(A), τ) and U is a nonempty open subset of (C(X), τ). Moreover, since
U∩A 6= ∅, we have that U 6= ∅. If C(A) is a transitive subset of ((C(X), τ), C(f)),
then there exists n ∈ N such that (C(f))n(VA) ∩ U 6= ∅. This implies that there
is B ∈ VA and C ∈ U such that (C(f))n(B) = C. In consequence, B ⊆ V ∩ A
and C ⊆ U . Let VA = V ∩A and let c ∈ C. There is b ∈ B such that fn(b) = c.
Thus c ∈ U and b ∈ VA. This implies that fn(b) ∈ fn(VA). Therefore fn(VA) ∩
U 6= ∅. This completes the proof of the theorem.

Theorem 2.16. Let (X, f) be a discrete dynamical system and let A be a
nonempty set of X. If A is a transitive subset of (X, f), then C(A) is a transitive
subset of ((C(X), τU ), C(f)).

Proof. Suppose that A is a transitive subset of (X, f). We prove that C(A)
is a transitive subset of ((C(X), τU ), C(f)). Let VA be a nonempty open subset
of C(A) and let U be a nonempty open subset of C(X). We prove that there
exists n ∈ N such that (C(f))n(VA) ∩ U 6= ∅ and there exists a nonempty open
subset V of C(X) such that VA = V ∩ C(A). Moreover, there exist nonempty
open subsets V1, V2, . . . , Vk, of X such that 〈V1, V2, . . . , Vk〉1 ⊆ V and there exist
nonempty open subsets U1, U2, . . . , Um, of X such that 〈U1, U2, . . . , Um〉1 ⊆ U .
Let U =

⋃m
i=1 Ui and let V =

⋃k
i=1 Vi. Note that U and V are open subsets of

X. Let VA = V ∩A. Since VA is a nonempty open subset of A, U is a nonempty
open subset of X and A is a transitive subset of X, there exists n ∈ N such that
fn(VA) ∩ U 6= ∅. It follows that there is u ∈ U and v ∈ VA such that fn(v) = u.
Observe that {u} ⊆ U , {v} ⊆ V and {v} ⊆ A. Further, {u} ∈ 〈U1, U2, . . . , Um〉1
and {v} ∈ 〈V1, V2, . . . , Vm〉1. Finally, by part 1) of Proposition 2.8, we have that
(Cn(f))n({v}) = {u}. This implies that (Cn(f))n(VA) ∩ U 6= ∅. Therefore, C(A)
is a transitive subset of ((C(X), τU ), C(f)).

As a consequence of Theorem 2.16 and [18, p. 2], we obtain the following
result.

Corollary 2.17. Let (X, f) be a discrete dynamical system and let A be a
nonempty set of X. If A is a transitive subset of (X, f), then C

(
A
)
is a transitive

subset of ((C(X), τU ), C(f)).

As an application of Theorem 2.16, we present the following example.
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Example 2.18. Consider the function f |[0,1] given in Example 2.14. We know

that f |[0,1] is transitive. Moreover, by [18, p. 2, Example 4], we know that
[
1
4 ,

3
4

]
is a transitive subset of (X, f). Thus, by Theorem 2.15, we obtain that C(

[
1
4 ,

3
4

]
)

is a transitive subset of ((C(X), τU ), C(f)).

3. Results on Cn(X)

3.1. Dynamical properties of the induced map Cn(f) on (Cn(X), τU ).
This section is devoted to studying dynamical properties of a discrete dynamical
system ((Cn(X), τU ), Cn(f)). We begin this section with the following result.

Theorem 3.1. Let (X, f) be a discrete dynamical system. Then the following
statements are equivalent:

(1) f is exact;

(2) the induced map Cn(f) on (Cn(X), τU ) is exact for some n ∈ N;
(3) the induced map Cn(f) on (Cn(X), τU ) is exact for each n ∈ N.

Proof. The proof of this result is similar to that of [16, 5, p. 5].

As an immediate consequence of Theorem 3.1 and Remark 2.11, we obtain
the following result.

Corollary 3.2. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is exact, then

(a) Cn(f) on (Cn(X), τU ) is mixing;

(b) Cn(f) on (Cn(X), τU ) is weakly mixing;

(c) Cn(f) on (Cn(X), τU ) is totally transitive;

(d) Cn(f) on (Cn(X), τU ) is transitive;

(e) Cn(f) on (Cn(X), τU ) is surjective.

Theorem 3.3. Let (X, f) be a dinamical system. Then the following state-
ments are equivalent:

(1) f is weakly mixing;

(2) the induced map Cn(f) on (Cn(X), τU ) is weakly mixing for some n ∈ N;
(3) the induced map Cn(f) on (Cn(X), τU ) is weakly mixing for each n ∈ N.

Proof. It is clear that (3) implies (2). Therefore, to complete the proof of the
theorem it suffices to prove that (1) implies (3) and (2) implies (1).

Suppose that f is weakly mixing and n ∈ N. We prove that the induced
map Cn(f) on (Cn(X), τU ) is weakly mixing. For this, we consider nonempty
open subsets U1, U2, V1 and V2 of Cn(X). We see that there exists k ∈ N such
that ((Cn(f)))k(Ui) ∩ Vi 6= ∅ for each i ∈ {1, 2}. There exist nonempty open
subsets Ui1 , Ui2 , . . . , Uim , Vi1 , Vi2 , . . . , Vim of X, for each i ∈ {1, 2}, such that
〈U11 , U12 , . . . , U1m〉n ⊆ U1, 〈U21 , U22 , . . . , U2m〉n ⊆ U2, 〈V11 , V12 , . . . , V1m〉n ⊆ V1
and 〈V21 , V22 , . . . , V2m〉n ⊆ V2. Let U1 =

⋃m
i=1 U1i , U2 =

⋃m
i=1 U2i , V1 =

⋃m
i=1 V1i

and V2 =
⋃m

i=1 V2i . Note that U1, U2, V1 and V2 are open subsets of X. Since



442 Alicia Santiago-Santos and Noé Trinidad Tapia-Bonilla

f is weakly mixing, there exists k ∈ N such that fk(Ui) ∩ Vi 6= ∅ for each i ∈
{1, 2}. Let y1 ∈ V1 and y1 ∈ fk(U1). Moreover, y2 ∈ V2 and y2 ∈ fk(U2). Thus,
there exists u1 ∈ U1 such that fk(u1) = y1 and u2 ∈ U2 such that fk(u2) =
y2. Note that {y1} ⊆ V1, {y2} ⊆ V2, {u1} ⊆ U1 and {u2} ⊆ U2. Hence, {yi} ∈
〈Vi1 , Vi2 , . . . , Vim〉n and {ui} ∈ 〈Ui1 , Ui2 , . . . , Uim〉n, for each i ∈ {1, 2}. Moreover,
fk({ui}) = {yi} for each i ∈ {1, 2}. By part 1) of Proposition 2.8, we have that
(Cn(f))k({ui}) = {yi} for each i ∈ {1, 2}. Hence, ((Cn(f)))k(Ui)∩Vi 6= ∅ for each
i ∈ {1, 2}. Therefore, the induced map Cn(f) on (Cn(X), τU ) is weakly mixing.

Assume that Cn(f) on (Cn(X), τU ) is weakly mixing, for some n ∈ N. We
see that f is weakly mixing. For this end, let U1, U2, V1 and V2 be nonempty
open subsets of X. We see that there exists k ∈ N such that fk(Ui) ∩ Vi 6= ∅
for each i ∈ {1, 2}. It follows that 〈U1〉n, 〈U2〉n, 〈V1〉n and 〈V2〉n are nonempty
open subsets of (Cn(X), τU ). Since Cn(f) is weakly mixing on (Cn(X), τU ), there
exists k ∈ N such that (Cn(f))k(〈Ui〉n) ∩ 〈Vi〉n 6= ∅ for each i ∈ {1, 2}. Thus, for
each i ∈ {1, 2} there exits Bi ∈ 〈Ui〉n such that (Cn(f))k(Bi) ∈ 〈Vi〉n. For each
i ∈ {1, 2}, let bi ∈ Bi such that (Cn(f))k(bi) ∈ (Cn(f))k(Bi) ∈ 〈Vi〉n. By part 1)
of Proposition 2.8, we deduce that fk(bi) ∈ Vi. In consequence, fk(Ui) ∩ Vi 6= ∅.
Therefore, f is weakly mixing.

As an application of Theorem 3.3, we present the following example.

Example 3.4. Consider the function f |[0,1] given in Example 2.14. We know
that f |[0,1] is weakly mixing, Thus, by Theorem 3.3, we obtain that the induced
map Cn(f |[0,1]) on (Cn([0, 1])), τU ) is weakly mixing for each n ∈ N.

As an immediate consequence of Theorem 3.3, we obtain the following result.

Corollary 3.5. Let (X, f) be a discrete dynamical system and let n be an
integer. If f is weakly mixing, then

(a) Cn(f) on (Cn(X), τU ) is totally transitive;

(b) Cn(f) on (Cn(X), τU ) is transitive;

(c) Cn(f) on (Cn(X), τU ) is surjective.

The technique we use to prove the result below is similar to that used in
Theorem 3.3. This result generalizes the theorem of D. Masood and P. Singh [22,
3.1, p. 178].

Theorem 3.6. Let (X, f) be a discrete dynamical system. Then the following
statements are equivalent:

(1) f is transitive;

(2) the induced map Cn(f) on (Cn(X), τU ) is transitive for some n ∈ N;
(3) the induced map Cn(f) on (Cn(X), τU ) is transitive for each n ∈ N.

As an application of Theorem 3.6, we present the following example.

Example 3.7. Consider the function f |[0,1] given in Example 2.14. We know
that f |[0,1] is transitive, but the induced map C(f |[0,1]) on (Cn(X), τ) is not tran-
sitive (see Example 2.14). However, by Theorem 3.6, we obtain that the induced
map Cn(f |[0,1]) on (Cn([0, 1])), τU ) is transitive for each n ∈ N.
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The proof of the next result is similar to that of Theorem 3.3. This result
generalizes the theorem of D. Masood and P. Singh [22, 3.3, p. 178].

Theorem 3.8. Let (X, f) be a discrete dynamical system. Then the following
statements are equivalent:

(1) f is totally transitive;

(2) the induced map Cn(f) on (Cn(X), τU ) is totally transitive for some n ∈ N;
(3) the induced map Cn(f) on (Cn(X), τU ) is totally transitive for each n ∈ N.

As an application of Theorem 3.8, we present the following example.

Example 3.9. Consider the function f |[0,1] given in Example 2.14. We know
that f |[0,1] is totally transitive, Thus, by Theorem 3.6, we obtain that the induced
map Cn(f |[0,1]) on (Cn([0, 1])), τU ) is totally transitive for each n ∈ N.

As an immediate consequence of Theorem 3.8, we obtain the following result.

Corollary 3.10. Let (X, f) be a discrete dynamical system and let n be an
integer. If f is totally transitive, then

(a) Cn(f) on (Cn(X), τU ) is transitive;

(b) Cn(f) on (Cn(X), τU ) is surjective.

The proof of the next result is similar to that of Theorem 3.3.

Theorem 3.11. Let (X, f) be a dynamical system. Then the following state-
ments are equivalent:

(1) f is mixing;

(2) the induced map Cn(f) on (Cn(X), τU ) is mixing for some n ∈ N;
(3) the induced map Cn(f) on (Cn(X), τU ) is mixing for each n ∈ N.

Remark 3.12. Theorem 3.11 is a generalization of Theorem 3.7 of [22].

As an application of Theorem 3.11, we present the following example.

Example 3.13. Consider the function f |[0,1] given in Example 2.14. We know
that f |[0,1] is mixing. Thus, by Theorem 3.11, we obtain that the induced map
Cn(f |[0,1]) on (Cn([0, 1])), τU ) is mixing for each n ∈ N.

As an immediate consequence of Theorem 3.11, we obtain the following result.

Corollary 3.14. Let (X, f) be a discrete dynamical system and let n be an
integer. If f is mixing, then

(a) Cn(f) on (Cn(X), τU ) is weakly mixing;

(b) Cn(f) on (Cn(X), τU ) is totally transitive;

(c) Cn(f) on (Cn(X), τU ) is transitive;

(d) Cn(f) on (Cn(X), τU ) is surjective.

Theorem 3.15. Let (X, f) be a discrete dynamical system. Then the follow-
ing statements are equivalent:
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(1) Per(f) is dense in X;

(2) Per(Cn(f)) on (Cn(X), τU ) is dense for some n ∈ N;
(3) Per(Cn(f)) on (Cn(X), τU ) is dense for each n ∈ N.

Proof. It is clear that (3) implies (2). Therefore, to complete the proof of the
theorem, it suffices to prove that (1) implies (3) and (2) implies (1).

Suppose that Per(f) is dense on X and n ∈ N. We prove that Per(Cn(f)) on
(Cn(X), τU ) is dense. For this, let U be a nonempty open subset of Cn(X). We
see that U ∩ Per(Cn(f)) 6= ∅. There exist nonempty open subsets U1, . . . , Um of
X such that 〈U1, U2, . . . , Um〉n ⊆ U . Let U =

⋃m
i=1 Ui. Note that U is an open

subset of X. Since Per(f) is dense, we have that Per(f)∩U 6= ∅. In consequence,
there exists x ∈ U and k ∈ N such that fk(x) = x. Note that {x} ⊆ U . Hence
{x} ∈ 〈U1, U2, . . . , Um〉n. Moreover, fk({x}) = {x}. By part 1) of Proposition
2.8, we have that (Cn(f))k({x}) = {x}. This implies that U ∩ Per(Cn(f)) 6= ∅.
Therefore Per(Cn(f)) is dense on (Cn(X), τU ).

Assume that Per(Cn(f)) on (Cn(X), τU ) is dense for some n ∈ N. We prove
that Per(f) is dense. For this, let U be a nonempty open subset of X. It
follows that 〈U〉n is a nonempty open subset of (Cn(X), τU ). Since Per(Cn(f)) on
(Cn(X), τU ) is dense, Per(Cn(f))∩〈U〉n 6= ∅. It follows that there exits B ∈ 〈U〉n
and k ∈ N such that (Cn(f))k(B) = B. Let b ∈ B. Observe that (Cn(f))k(b) ∈
(Cn(f))k(B) = B ⊆ U . By part 1) of Proposition 2.8, we have that fk(b) ∈ B ⊆
X. Therefore Per(f) ∩X 6= ∅.

Using Theorem 3.15 and Proposition 2.6, we obtain the following.

Corollary 3.16. Let (X, f) be a discrete dynamical system and let n be an
integer. If Per(f) is dense on X, then the sets Rec(Cn(f)) and NW(Cn(f)) on
(Cn(X), τU ) are dense.

We finish this section with the following result.

Theorem 3.17. Let (X, f) be a discrete dynamical system and let n be an
integer. Then the following statements are equivalent:

(1) f is chaotic;

(2) Cn(f) on (Cn(X), τU ) is chaotic.

Proof. The result is a consequence of Theorems 3.6 and 3.15.

3.2. Dynamical properties of the induced map Cn(f) on (Cn(X), τL).

Theorem 3.18. Let (X, f) be a discrete dynamical system such that X is
pathconnected. Then the following statements are equivalent:

(1) f is mixing; the induced map Cn(f) on (Cn(X), τL) is mixing for some n ∈
N; the induced map Cn(f) on (Cn(X), τL) is mixing for each n ∈ N.

Proof. It is clear that (1) implies (1). Therefore, to complete the proof of the
theorem, it suffices to prove that (1) implies (1) and (1) implies (1).
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Suppose that f is mixing and n ∈ N. We prove that Cn(f) on (Cn(X), τL)
is mixing. We consider the nonempty open subsets U , V of (Cn(X), τL). We
see that there exists N ∈ N such that ((Cn(f)))k(U) ∩ V 6= ∅ for each k ≥ N .
There exist nonempty open subsets U1, U2, . . . , Um, V1, V2, . . . , Vm of X such that
〈U1, U2, . . . , Um〉′n ⊆ U and 〈V1, V2, . . . , Vm〉′n ⊆ V. Note that the pairs (Ui, Vi),
for i ∈ {1, . . . ,m}, consist of nonempty open sets of X. Since f is mixing in X for
each i ∈ {1, . . . ,m}, there exists Ni ∈ N such that fk(Ui) ∩ Vi 6= ∅ for each k ≥
Ni. Let N = max{Ni : i ∈ {1, . . . ,m}}. Thus, fk(Ui)∩Vi 6= ∅, for i ∈ {1, . . . ,m}
and k ≥ N . For each i ∈ {1, . . . ,m} and k ≥ N , there are xik ∈ fk(Ui) ∩
Vi. Define αi : [0, 1] → X given by αi(0) = xik and αi(1) = x(i+1)k

. Let A =⋃m
i=1 αi([0, 1]). Observe that A ∈ 〈V1, V2, . . . , Vm〉′n. Moreover, (Cn(f))k(A) ∈
Cn(f))k(〈U1, U2, . . . , U2m〉′n). Therefore ((Cn(f)))k(U) ∩ V 6= ∅ for each k ≥ N .
In consequence, Cn(f) on (Cn(X), τL) is mixing.

Assume that Cn(f) on (Cn(X), τL) is mixing for some n ∈ N. We see that f
is mixing. For this end, let U and V be nonempty open subsets of X. We see
that there exists N ∈ N such that fk(U) ∩ V 6= ∅ for every k ≥ N . It follows
that 〈U〉′n and 〈V 〉′n are nonempty open subsets of (Cn(X), τL). Since Cn(f) is
mixing on (Cn(X), τL), there exists N ∈ N such that (Cn(f))k(〈U〉′n) ∩ 〈V 〉′n 6= ∅
for every k ≥ N . Fix k ≥ N and let B ∈ 〈U〉′n be such that (Cn(f))k(B) ∈ 〈V 〉′n.
Let b ∈ B. Note that b ∈ U and (Cn(f))k(b) ∈ (Cn(f))k(B) ∈ 〈V 〉n. By part 1)
of Proposition 2.8, we deduce that fk(b) ∈ V . In consequence, fk(U) ∩ V 6= ∅.
Therefore f is mixing.

Remark 3.19. Theorem 3.18 is a generalization of Theorem 3.8 from [22].

As an immediate consequence of Theorem 3.18, we obtain the following result.

Corollary 3.20. Let (X, f) be a discrete dynamical system and let n be an
integer. If X is pathconnected and f is mixing, then

(a) Cn(f) on (Cn(X), τL) is weakly mixing;

(b) Cn(f) on (Cn(X), τL) is totally transitive;

(c) Cn(f) on (Cn(X), τL) is transitive;

(d) Cn(f) on (Cn(X), τL) is surjective.

As an application of Theorem 3.18, we present the following example.

Example 3.21. Consider the function f |[0,1] given in Example 2.14. We know
that f |[0,1] is mixing. Thus, by Theorem 3.18, we obtain that the induced map
Cn(f |[0,1]) on (Cn([0, 1])), τL) is mixing for each n ∈ N.

As an application of Corollary 3.20, we present the following example.

Example 3.22. Consider the function f |[0,1] given in Example 2.14. Let n be
an integer. We know that f |[0,1] is mixing, and thus, by Theorem 3.20, we obtain
that:

(a) Cn(f |[0,1]) on (Cn([0, 1]), τL) is weakly mixing;

(b) Cn(f |[0,1]) on (Cn([0, 1])), τL) is totally transitive;
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(c) Cn(f |[0,1]) on (Cn([0, 1])), τL) is transitive;

(d) Cn(f |[0,1]) on (Cn([0, 1])), τL) is surjective.

3.3. Dynamical properties of the induced map Cn(f) on (Cn(X), τ).
This section is devoted to studying dynamical properties of the discrete dynamical
system ((Cn(X), τ), Cn(f)). We begin this section with the result that can be
proved similarly to that from [3].

Theorem 3.23. Let (X, f) be a dynamical system and let n be an integer.
If f is an isometry, then Cn(f) on (Cn(X), τ) is not transitive.

As a consequence of Theorem 3.23, we have the following result.

Theorem 3.24. Let (X, f) be a discrete dynamical system and let n be an
integer. Let M be one of the following classes of maps: exact, mixing, weakly
mixing, totally transitive, chaotic and minimal. If f is an isometry, then Cn(f)
on (Cn(X), τ) is not in the classM.

Now we introduce the following definition.

Definition 3.25. Let f : X → X and g : Y → Y be two maps. Then f and g
are said to be topologically conjugate if there exists a homeomorphism h : X →
Y such that h ◦ f = g ◦ h. The homeomorphism h is a topological conjugation,
and thus we write f ∼ g.

Therefore, if two maps are topologically conjugate, and we want to understand
the dynamics of one of them, we can study the other one as its dynamics will be
qualitatively the same.

Theorem 3.26. Let (X, f) and (Y, g) be discrete dynamical systems and let n
be a positive integer. If the dynamical systems (X, f) and (Y, g) are topologically
conjugate, then the same holds for the induced dynamical systems (Cn(X), Cn(f))
and (Cn(Y ), Cn(g)) on (Cn(X), τ).

Proof. Let h be a conjugacy between the pairs (X, f) and (Y, g). In con-
sequence, h : X → Y is a homeomorphisms such that h ◦ f = g ◦ h. Define
Cn(h) : Cn(X) → Cn(X), given by Cn(h)(A) = h(A), for each A ∈ Cn(X). Since
h ◦ f = g ◦ h, by part 2) of Proposition 2.8, we have that Cn(h) ◦ Cn(f) = Cn(g) ◦
Cn(h). On the other hand, since h is a homeomorphism by [8, 4.6, p. 801], it
follows that Cn(h) on (Cn(X), τ) is a homeomorphism. Therefore, the induced
dynamical systems (Cn(X), Cn(f)) and (Cn(Y ), Cn(g)) on (Cn(X), τ) are topolog-
ically conjugate.

4. Results on PHSn(X)

4.1. Dynamical properties of the map PHSn(f) on (PHSn(X), τ).
For readers’ convenience, we give the following result in detail. The proofs of
other results of this section are similar to those of Section 4 from [3].
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Theorem 4.1. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If Cn(f) on (Cn(X), τ) is exact, then PHSn(f) on (PHSn(X), τ)
is exact.

Proof. Suppose that Cn(f) on (Cn(X), τ) is exact. We see that PHSn(f) on
(PHSn(X), τ) is also exact. Let U be a nonempty open subset of (PHSn(X), τ).
Since qnX is continuous, we have that (qnX)−1(U) is a nonempty open sub-
set of (Cn(X), τ). On the other hand, since Cn(f) is exact, there exists
k ∈ N such that (Cn(f))k((qnX)−1(U)) = Cn(X). Since qnX is surjective, we
have that qnX(Cn(f)k((qnX)−1(U))) = PHSn(X). Using (2.1), we obtain that
(PHSn(f))k(U) = PHSn(X). Therefore PHSn(f) on (PHSn(X), τ) is ex-
act.

Theorem 4.2 is used in the proof of Corollary 4.4.

Theorem 4.2. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHSn(f) on (PHSn(X), τ) is exact, then f is exact.

Proof. The proof of this result is similar to that given in [3, 4.7, p. 462].

As an application of Theorems 4.1 and 4.2, we present the following example.

Example 4.3. Consider the function given in Example 2.14. By Theorem 4.2,
we obtain that PHSn(f) on (PHSn(I), τ) is not exact and by Theorem 4.1, we
deduce that Cn(f) on (PHSn(I), τ) is not exact.

In the following corollary we establish the relationships between the exactness
of f , Cn(f) and PHSn(f).

Corollary 4.4. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) f is exact;

(2) Cn(f) on (Cn(X), τ) is exact;

(3) PHSn(f) on (PHSn(X), τ) is exact.

Proof. By [22, 3.1, p. 178], we obtain that (1) and (2) are equivalent. Now,
by Theorems 4.1, 4.2, we have that (2) and (3) are equivalent.

As an application of Corollary 4.4, we present the following example.

Example 4.5. Consider the function given in Example 2.14. By Corollary 4.2,
we obtain that PHSn(f |[0,1]) on (PHSn([0, 1]), τ) is exact.

Lemma 4.6 is used in the proof of Corollary 4.10.

Theorem 4.6. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then Cn(f) on (Cn(X), τ) is transitive if and only if PHSn(f)
on (PHSn(X), τ) is transitive.

Proof. The proof of this result is similar to that from [3, 4.10, p. 464].
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As the applications of Theorem 4.6 and Example 3.7, we present the following.

Example 4.7. Consider the function given in Example 2.14. By Example 3.7,
we know that Cn(f |[0,1]) on (Cn([0, 1]), τ) is not transitive. Therefore, by Theorem
4.6, we obtain that PHSn(f |[0,1]) on (PHSn([0, 1]), τ) is not transitive.

Lemma 4.8 is used in the proof of Corollary 4.10.

Theorem 4.8. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHSn(f) on (PHSn(X), τ) is transitive, then f is transitive.

Proof. Supposing that PHSn(f) on (PHSn(X), τ) is transitive, we prove
that f is transitive. For this end, let U and V be nonempty open subsets of
X. Moreover, let U1, U2, V1, V2 be nonempty open subsets of X such that U1 ∪
U2 ⊆ U , V1 ∪ V2 ⊆ V , U1 ∩ U2 = ∅ and V1 ∩ V2 = ∅. Note that 〈U1, U2〉n
and 〈V1, V2〉n are nonempty open subsets of (Cn(X), τ) such that 〈U1, U2〉n ∩
F1(X) = ∅ and 〈V1, V2〉n ∩ F1(X) = ∅. Thus, by Remark 2.2, we have that
qnX(〈U1, U2〉n) and qnX(〈U1, U2〉n) are nonempty open subsets of (PHSn(X), τ).
Since PHSn(f) on (PHSn(X), τ) is transitive, there exists k ∈ N such that
(PHSn(f))k(qnX(〈U1, U2, 〉n)) ∩ qnX(〈V1, V2, 〉n) 6= ∅. In consequence, there exists
A ∈ qnX(〈U1, U2, 〉n) such that (PHSn(f))k(A) ∈ qnX(〈V1, V2, 〉n). It follows that
there exists B ∈ 〈U1, U2, 〉n such that qnX(B) = A, and (PHSn(f))k(qnX(B)) ∈
qnX(〈V1, V2, 〉n). By part 2) of Proposition 2.8, we obtain that qnX((Cn(f))k(B)) ∈
qnX(〈V1, V2〉n). This implies that (Cn(f))k(B) ∈ 〈V1, V2〉n. Therefore fk(B) ⊆ V .
Let b ∈ B. Note that fk(b) ∈ V and b ∈ U . In consequence, fk(b) ∈ fk(U).
Thus, fk(U) ∩ V 6= ∅, and therefore f is transitive.

As an application of Theorem 4.8, we present the following example.

Example 4.9. Consider the function given in Example 2.14. By Theorem 4.8,
we obtain that PHSn(f) on (PHSn(I), τ) is not transitive.

In the following corollary we establish relationships between the transitivity
of f , Cn(f) and PHSn(f).

Corollary 4.10. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Consider the following statements:

(1) f is transitive;

(2) Cn(f) on (Cn(X), τ) is transitive;

(3) PHSn(f) on (PHSn(X), τ) is transitive.

Then (2) and (3) are equivalent, (3) implies (1), (2) implies (1), (1) does not
imply (2), and (1) does not imply (3).

Proof. By Theorem 4.6, we have that (2) and (3) are equivalent. By Theorem
4.8, we obtain that (3) implies (1). Consequently, we deduce that (2) implies (1).

On the other hand, by Example 2.14, it follows that (1) does not imply (2).
Finally, by Examples 2.14 and 4.7, we deduce that (1) does not imply (3).
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Theorem 4.11. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then Cn(f) on (Cn(X), τ) is totally transitive if and only if
PHSn(f) on (PHSn(X), τ) is totally transitive.

Proof. The proof of this result is similar to that given in [3, 4.12, p. 465].

As an application of Theorem 4.11 and Example 3.7, we present the following.

Example 4.12. Consider the function given in Example 2.14. By Example
3.7, we know that Cn(f |[0,1]) on (Cn([0, 1]), τ) is not totally transitive. Therefore,
by Theorem 4.11, we obtain that PHSn(f |[0,1]) on (PHSn([0, 1]), τ) is not totally
transitive.

Theorem 4.13. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHSn(f) on (PHSn(X), τ) is totally transitive, then f is
totally transitive.

Proof. The proof of this result is similar to that given in [3, 4.12, p. 465].

As an application of Theorem 4.13, we present the following example.

Example 4.14. Consider the function given in Example 2.14. By Theorem
4.13, we obtain that PHSn(f) on (PHSn(I), τ) is not totally transitive.

In the following corollary, we establish relationships between the total transi-
tivity of f , Cn(f) and PHSn(f).

Corollary 4.15. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Consider the following statements:

(1) f is totally transitive;

(2) Cn(f) on (Cn(X), τ) is totally transitive;

(3) PHSn(f) on (PHSn(X), τ) is totally transitive.

Then (2) and (3) are equivalent, (3) implies (1), (2) implies (1), (1) does not
imply (2), and (1) does not imply (3).

Proof. By Theorem 4.11, we have that (2) and (3) are equivalent. By Theo-
rem 4.13, we obtain that (3) implies (1), and thus (2) implies (1).

Moreover, by Example 2.14, it follows that (1) does not imply (2). Finally,
by Examples 2.14 and 4.14, it follows that (1) does not imply (3).

Theorem 4.16. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then Cn(f) on (Cn(X), τ) is mixing if and only if PHSn(f) on
(PHSn(X), τ) is mixing.

Proof. The proof of this result is similar to that given in [3, 4.9, p. 463].

As an application of Theorem 4.16, we present the following example.

Example 4.17. Consider the function given in Example 2.14. By Theorem
4.16, we obtain that PHSn(f |[0,1]) on (PHSn([0, 1]), τ) is not mixing.
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Theorem 4.18. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHSn(f) on (PHSn(X), τ) is mixing, then f is mixing.

Proof. The proof of this result is similar to that given in [3, 4.9, p. 463].

As an application of Theorem 4.18, we present the following example.

Example 4.19. Consider the function given in Example 2.14. By Theorem
4.18, we obtain that PHSn(f) on (PHSn(I), τ) is not mixing.

In the following corollary, we establish relationships between the mixing of f ,
Cn(f) and PHSn(f).

Corollary 4.20. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Consider the following statements:

(1) f is mixing;

(2) Cn(f) on (Cn(X), τ) is mixing;

(3) PHSn(f) on (PHSn(X), τ) is mixing.

Then (2) and (3) are equivalent, (3) implies (1), (2) implies (1), (1) does not
imply (2), and (1) does not imply (3).

Proof. By Theorem 4.16, we have that (2) and (3) are equivalent. By The-
orem 4.18, we obtain that (3) implies (1) and we can deduce that (2) implies
(1).

Furthermore, by Example 2.14, it follows that (1) does not imply (2). Finally,
by Examples 2.14 and 4.17, it follows that (1) does not imply (3).

Theorem 4.21. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) Per(f) on (Cn(X), τ) is dense;

(2) Per(Cn(f)) on (Cn(X), τ) is dense.

Proof. The proof of this result is similar to that of Theorem 3.15.

Theorem 4.22. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) Per(Cn(f)) on (Cn(X), τ) is dense;

(2) Per(PHSn(f)) on (PHSn(X), τ) is dense.

Proof. The proof of this result is similar to that given in [3, 4.16, p. 469].

Theorem 4.23. If discrete dynamical systems (X, f) and (Y, g) are topo-
logically conjugate, then the same holds for the induced dynamical systems
(PHSn(X),PHSn(f)) and (PHSn(Y ),PHSn(f)) for each n ∈ N, i.e., the fol-
lowing diagram commutes:
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-PHSn(X) PHSn(X)
PHSn(f)

?
PHSn(Y )

PHSn(h)

?
PHSn(Y )

PHSn(h)

-
PHSn(g)

Proof. Let h be a conjugacy between the pairs (X, f) and (Y, g) and n ∈ N.
By Theorem 3.26, the dynamical system (Cn(X), Cn(f)) and (Cn(Y ), Cn(g)) are
topologically conjugate by the induced map Cn(h) given by Cn(h) = h(A), for
each A ∈ Cn(X). Define PHSn(h) : PHSn(X)→ PHSn(Y ) given by

PHSn(h)(χ) =

{
qnY (Cn(h)((qnX)−1(χ))) if χ 6= Fn

X

Fn
Y if χ = Fn

X

. (4.1)

By [21, p. 31, 4.1], we have that PHSn(h) is a homeomorphism. Then PHSn(h)
is the required topological conjugacy between the discrete dynamical systems
(PHSn(X),PHSn(f)) and (PHSn(Y ),PHSn(g)).

4.2. Dynamical properties of the map PHSn(f) on (PHSn(X), τU ).
This subsection is dedicated to more applications of the results obtained in Section
4.1. We begin this subsection with a consequence of Theorem 3.1 and Corollary
4.4 to obtain the following.

Corollary 4.24. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) f is exact;

(2) Cn(f) on (Cn(X), τU ) is exact;

(3) PHSn(f) on (PHSn(X), τU ) is exact.

As a consequence of Corollary 4.24, we obtain the following result.

Corollary 4.25. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is exact, then PHSn(f) on (PHSn(X), τU ) is mixing, totally
transitive, weakly mixing and transitive.

Corollary 4.26. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) f is transitive;

(2) Cn(f) on (Cn(X), τU ) is transitive;

(3) PHSn(f) on (PHSn(X), τU ) is transitive.

Proof. By Theorem 3.6, we have that (1) and (2) are equivalent, and by
Theorem 4.6, we obtain that (2) and (3) are equivalent.
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Corollary 4.27. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) f is totally transitive;

(2) Cn(f) on (Cn(X), τU ) is totally transitive;

(3) PHSn(f) on (PHSn(X), τU ) is totally transitive.

Proof. By Theorem 3.8, we have that (1) and (2) are equivalent and, by
Theorem 4.11, we obtain that (2) and (3) are equivalent.

As a consequence of Corollary 4.27, we obtain the following results.

Corollary 4.28. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is totally transitive, then

(1) Cn(f) on (Cn(X), τU ) is transitive and surjective;

(2) PHSn(f) on (PHSn(X), τU ) is transitive and surjective.

Corollary 4.29. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:

(1) f is mixing;

(2) Cn(f) on (Cn(X), τU ) is mixing;

(3) PHSn(f) on (PHSn(X), τU ) is mixing.

Proof. By Theorem 3.11, we have that (1) and (2) are equivalent, and by
Theorem 4.16, we obtain that (2) and (3) are equivalent.

As a consequence of Corollary 4.29, we obtain the following results.

Corollary 4.30. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is mixing, then

(1) Cn(f) on (Cn(X), τU ) is weakly mixing, transitive and surjective;

(2) PHSn(f) on (PHSn(X), τU ) is weakly mixing, transitive and surjective.

Corollary 4.31. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent :

(1) Per(f) on X is dense;

(2) Per(Cn(f)) on (Cn(X), τU ) is dense;

(3) Per(PHSn(f)) on (PHSn(X), τU ) is dense.

Proof. By Theorem 3.15, we have that (1) and (2) are equivalen,t and by
Theorem 4.22, we obtain that (2) and (3) are equivalent.

Lastly, we have a direct consequence of Corollary 4.26 and Corollary 4.31 and
obtain the following result.

Theorem 4.32. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following statements are equivalent:

(1) f is chaotic;

(2) Cn(f) on (Cn(X), τU ) is chaotic;

(3) PHSn(f) on (PHSn(X), τU ) is chaotic.
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Conclusion

In this paper, we have shown connections between some dynamical properties
of a discrete dynamical system and dynamical properties of a set-valued discrete
dynamical system associated to it. Specifically, we introduce the dynamical sys-
tem (PHSn(X),PHSn(f)) and study connections between dynamical properties
of f and dynamical properties of the induced maps Cn(f) and PHSn(f). We
obtain the relationships between the following statements:

(1) f ∈M,

(2) Cn(f) ∈M and

(3) (PHSn(X),PHSn(f)) ∈ M, when M is one of the following classes of
maps: exact, mixing, totally transitive, transitive, weakly mixing.

Among other results, we obtain that if Cn(f) on (Cn(X), τ) is exact, then
PHSn(f) on (PHSn(X), τ) is also exact. Moreover, in [22], D. Masood and
P. Singh obtained the results on the induced dynamical system on the discrete
dynamical system ((C(X), τU ), C(f)). In this paper, we generalized some of these
results.

This investigation should be used in further studying connections between
individual and collective dynamics.

Acknowledgements. The authors are very grateful to the referee for
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References

[1] G. Acosta, A. Illanes, and H. Méndez-Lango, The transitivity of induced maps,
Topology Appl. 156 (2009), 1013–1033.

[2] J. Banks, Chaos for induced hyperspace maps, Chaos Solitons Fractals 25 (2005),
681–685.

[3] F. Barragán, A. Santiago-Santos, and J.F. Tenorio, Dynamic properties for the
induced maps on n-fold symmetric product suspensions, Glas. Mat. Ser. III 51
(2016), 453–474.

[4] F. Barragán, A. Santiago-Santos, and J.F. Tenorio, Dynamic properties of the dy-
namical system SFn

m(X), SFn
m(f)), Appl. Gen. Topol. 21 (2020), 17–34.

[5] F. Barragán, A. Santiago-Santos, and J. F. Tenorio, Dynamic properties for the
induced maps on n-fold symmetric product suspensions II, Topology Appl. 288,
(2021), 107484.
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Динамика фактор-гиперпросторiв
Alicia Santiago-Santos and Noé Trinidad Tapia-Bonilla

Нехай (X, d) є компактним метричним простором i нехай and n є цi-
лим додатним числом. Нехай Cn(X) є простором усiх непорожнiх замк-
нених пiдмножин X з не бiльше нiж n компонентами i нехай F1(X)
є простором одно-елементних множин X. Для заданого вiдображення
f : X → X ми розглядаємо iндуковане вiдображення Cn(f) : Cn(X) →
Cn(X), що задається спiввiдношенням Cn(f)(A) = f(A) для кожного A ∈
Cn(X). Дискретна динамiчна система (X, f) iндукує дискретну динамiч-
ну систему (PHSn(X),PHSn(f)), де PHSn(X) є фактор-простором
Cn(X)/F1(X) з вiдповiдною топологiєю фактор-простору. У цiй робо-
тi ми узагальнюємо деякi результати роботи [22] i вивчаємо спiввiдно-
шення мiж дискретними динамiчними системами (X, f), (Cn(X), Cn(f))
i (PHSn(X),PHSn(f)).

Ключовi слова: хаотичне вiдображення, точне вiдображення, пере-
мiшувальне вiдображення, тотально транзитивне вiдображення, тран-
зитивне вiдображення, слабко перемiшувальне вiдображення, гiперпо-
верхня, iндуковане вiдображення, n-кратна псевдогiперпросторова над-
будова
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