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Dynamic to Quotients of Hyperspaces

Alicia Santiago-Santos and Noé Trinidad Tapia-Bonilla

Let (X,d) be a compact metric space and let n be a positive integer.
Let C,,(X) be the space of all nonempty closed subsets of X with at most
n components and let F1(X) be the space of singletons of X. Given a map
f: X — X, we consider the induced map C,(f) : C,(X) — Cp(X) given
by C.(f)(A) = f(A), for each A € C,(X). The discrete dynamical system
(X, f) induces the discrete dynamic system (PHS,(X), PHS.(f)), where
PHS,(X) is the quotient space Cp,(X)/F1(X) topologized with the quotient
topology. In this paper, we generalize some results from [22] and study some
relationships between the discrete dynamical systems (X, f), (Cn(X),Cn(f))
and (PHS,(X), PHS.(f)).
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1. Introduction

Let (X, d) be a compact metric space. Given a positive integer n, we consider
the hyperspaces 2%, C,(X) and F,,(X) of X, where 2% consists of all nonempty
and closed subsets of X, C,(X) consists of all elements of 2% with at most n
components and J,,(X) consists of all elements of 2% with at most n points. All
these hyperspaces are considered with the Hausdorff metric.

Let f: X — X be a map and let n be a positive integer. It can be seen that
f induces a map on the hyperspace 2¥X denoted by 27: 2% — 2% and defined
by 2/(A) = f(A), for each A € 2¥. The induced maps to other hyperspaces
mentioned, C,(X) and F,(X), are simply the restriction of 2/ to each of these
hyperspaces denoted by C,(f) and F,(f), respectively. In 2008, J. C. Macias
introduced the notion of the n-fold pseudo-hyperspace suspension of a continuum
X, denoted by PHS,(X), as the quotient space C,(X)/F1(X) topologized with
the quotient topology [20]. Later, in [21], J. C. Macias and S. Macias considered
the induced map PHS,(f) : PHS,(X) — PHS,(X), which they called the
induced map of f on the n-fold pseudo-hyperspace suspension of X. In the same
article, some topological properties of PHS,,(f) were studied. Recently, in [29],
the authors proved more results on the n-fold pseudo-hyperspace suspension of
continua and on the induced map PHS,(f).
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Furthermore, given a discrete dynamical system (X, f), one can obtain
associated systems induced by (X, f), some are (2X,27), (C,(X),Cn(f)) and
(PHSL(X),PHS,(f)), given that it is important to study the connection of
dynamical properties among (X, f) and its hyperspaces. In recent years, vari-
ous interesting results have been obtained in this line of investigation (see, for
example, [1-7,12-14,19,26-28,31]).

In this paper, we generalize some results from [22] and study some connections
between dynamical properties of f and dynamical properties of the induced maps
Cn(f) and PHS,(f). The paper is organized as follows. In Section 2, we recall
basic definitions, introduce some notation and give some basic results. Section
3 is devoted to studying dynamical properties of the induced function C,(f)
on (Cp(X), 1), on (Cp(X),7r) and on (Cp(X), 7). Some results given in this
section generalize those obtained by D. Massod and P. Singh in [22]. Section 4 is
divided into two subsections. In the first subsection, some dynamical properties
of f, Cn(f) and PHS,(f) on (Cn(X),7) and (PHS,(X), ) are considered. For
instance, we prove that the exactness of f, C,(f) and PHS,(f) is equivalent. In
the second subsection, some dynamical properties of f, C,(f) and PHS,(f) on
(Cn(X), ) and (PHS,(X), ) are considered. More preciously, we study the
relationships between a continuous function f on X in relation to the transitivity
of its extensions C,(f) and PHS,(f) on (Cn(X), 7).

2. Definitions, notation and basic result

Throughout the paper, (X, f) denotes a discrete dynamical system, where X
is a compact metric space and f : X — X is a map. A map is a continuous
function and if we need to indicate the topology 7, used on the space, we will
write the dynamical system as ((X,7), f). The symbol N denotes the set of
positive integers. Given a compact metric space (X, d), a point a € X and € > 0,
Byj(a,€) denotes the open ball with center a and radius e. Moreover, Ny(A,¢€) =

UaeA Bd(av 6)'

For a compact metric space (X,d) and a positive integer n, we consider the
following hyperspaces of X:

2% = {A C X | Ais closed and nonempty},
Cn(X) = {A € 2% | A has at most n components},
Fn(X) = {A € 2% | A has at most n points}.

We agree that C(X) = C1(X). For A, B € 2%, let
H(A,B) =inf{e > 0: A C Ny(B,¢€) and B C Ny(A,€)}.

Then H is know as the Hausdoff metric in 2% [23, (0.1)].
Let n be a positive integer. The quotient space

PHS,(X) =Ch(X)/Fi1(X),
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topologized with the quotient topology and known as the n-fold pseudo-
hyperspace suspension of X, was introduced in 2008 by J. Macias [20]. Notice
that PHS1(X) corresponds to the hyperspace suspension HS(X) defined by S.
Nadler in [24].

Remark 2.1. A compact metric space X, ¢%: Cp(X) — PHS,(X) denotes
the quotient map. Also, F'¢ and T denote the points ¢% (F1(X)) and ¢’} (X).

Remark 2.2. Note that PHS,, (X)\{F%} and PHS,(X)\{T%, F%} are home-
omorphic to Cp(X) \ F1(X) and C,,(X) \ ({X} U F1(X)), respectively, using the
appropriate restriction of ¢’.

A map f: X — Y between compact metric spaces and a positive integer n,
the function C,(f) : Cp(X) — C,(Y) defined by C,(f)(A) = f(A), for all A €
Cn(X), is the induced map by f between the n-fold hyperspaces of X and
Y. Note that C,(f) is continuous [15, 13.3]. Also, we consider the function
PHS,(f) : PHS(X) = PHS,(Y) given by

a3 (Ca(H(a%) 71 00)) i x # FR

] . (2.1)
Fy if x =F%

PHSH(f)(X) = {
Note that, by [10, 4.3, p. 126], PHS,(f) is continuous and it is called the

induced map of f on the n-fold pseudo-hyperspace suspensions of X and Y. In
addition, the diagram

Cn(X) Cn(Y)
a% qy
PHS (X)) ——PHS,(Y)

PHSw(f)

is commutative, that is, ¢§- o Cp(f) = PHSL(f) o ¢’% (both pathways around the
diagram give the same result).
In addition, on 2%, we define some topologies.

(1) Upper Vietoris topology: for m € N and any finite collection of non-
empty open sets {Uy, Us, ..., Up}, define

(U1, Us, ..., Up) = {AGQX |AC UUZ}.
i=1
The upper Vietoris topology, denoted by 7, has
By = {(U1,Us,...,Uy): m €N and Uy, ..., U, are open subsets of X}

as a basis.
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(2) Lower Vietoris topology: for m € N and any finite collection of non-
empty open sets {Uy,Us, ..., Uy}, define

(U1,Us,....Up) ={Ac 2% | ANU; # @, for each i € {1,...,m}}.
The lower Vietoris topology, denoted by 7z, has
Br = {{U,Us,...,Up):méeNand Uy,...,Up, are open subsets of X}

as a basis.

(3) Vietoris topology: for m € N and any finite collection of non-empty open
sets {Uy,Us, ..., Uy}, define

(UL, Uy, ..., Unp)" = {AeryAg Uu
i=1

andAﬂUi#Qforeachie{1,...,m}}.

The Vietoris topology, denoted by 7, has
B= {<U1,U2, oo Up)’ | m e N and Uy, Us, ..., Uy, are open subsets ofX}

as a basis.

It can be seen that the Vietoris topology equals the join of upper and lower
Vietoris topologies [30]. The upper and lower Vietoris topologies on C,(X) are
specified by (Cp,(X), ) and (Cp(X), 71).

Remark 2.3. Let X be a compact metric space, n be a positive integer, and
let U1, Us, ..., U, be a finite family of open subsets of X. Then

o (Uy,Us,...,Up)y denotes the set (U, Us,...,Upn) N (Cn(X), m0);
o (Uy,Us,...,Upy)) denotes the set (Uy,Us, ..., Up) N (Ch(X),T1);
o (Uy,Us,...,Up)” denotes the set (U1, Us,...,Upn)" N (Ch(X),T).

On the other hand, given a discrete dynamical system (X, f) and = € X, we
define fO = Idyx, where Idyx denotes the identity map on X, and for each k € N,
let f¥ = fo f*=1. The orbit of x under f is the set Orb(z, f) = {f*(x) | k € NU
{0}}. The set of all limit points of Orb(z, f) is called the w-limit set of x under
f, and it is denoted by w(z, f). A subset K of X is said to be invariant under f
if f(K) C K and strongly invariant under f if f(K) = K.

Definition 2.4. Let (X, f) be a discrete dynamical system. A point z of X
is said to be
1) a fixed point of f if f(z) = x;
2)  a periodic point of f if there exists k € N such that f*(z) = x;

3) a recurrent point of f if for every neighborhood U of x there is & € N such
that f*(x) € U;
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4)  a nonwandering point of f if for every neighborhood U of x there is k € N
such that f*(U)NU # @.

The sets of fixed points, periodic points, recurrent points and nonwandering
points of (X, f) will be denoted by Fix(f), Per(f), Rec(f) and NW(f), respec-
tively.

Remark 2.5. Let (X, f) be a discrete dynamical system. As an immediate
consequence from the above definitions, we infer that

Fix(f) € Per(f) € Ree(f) € NW(J).
As an immediate consequence of Remark 2.5, we infer that

Proposition 2.6. Let (X, f) be a discrete dynamical system. If Per(f) is
dense in X, then Rec(f) and NW(f) are dense in X.

Now we recall the following definition.

Definition 2.7 ([18,25]). Let (X, f) be a discrete dynamical system. A
subset A is called a transitive subset of (X, f) if for any choice of nonempty open
subset V4 of A and nonempty open subset U of X with ANU # & there exists
n € N such that f*(V4)NU # 2.

By [29], we have that:

Proposition 2.8. Let (X, f) be a discrete dynamical system. Then, for each
k,s € N, the following statements hold:

1) (Calf)*(A) = fH(A) for every A € Co(X);
2) a0 (Cal)) —(PHS (f))’“oq}lc;

3)  ((CalF)))F = (Cul))*;

1) gp o ((CalN)) = ((P”HS (£))*)* o g

Given a discrete dynamical system (X, f) and a positive integer n, observe
that F1(X) is a subset of C,(X) such that F;(X) is strongly invariant under
Cn(f). However, we know that the dynamical system (X, f) induces the dy-
namical system (PHS,,(X), PHS,(f)). Thus, we conclude this section with the
following observations.

Remark 2.9. Let (X, f) be a discrete dynamical system and let n be a positive
integer. Consider the discrete dynamical system (PHS,(X),PHS,(f)). Note
that FE € (PHS,(f)) 1 (F%). Moreover, since F% is a fix point of PHS,(X),
we have that w(Fg, PHS,(f)) = {F%}.

Now we recall the classes of dynamical systems used in this paper.

Definition 2.10. Let (X, f) be a discrete dynamical system. We say that
fis
1)  exact if for each nonempty open subset U of X, there exists k € N such that
Uy =
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2)  mixing if for every pair of nonempty open subsets U and V of X, there
exists N € N such that f*(U) NV # @ for every k > N;

3)  weakly mixing if for all nonempty open subsets Uy, U, V7 and Vs of X, there
exists k € N such that f*(U;) N'V; # @ for each i € {1,2};

4)  transitive if for every pair of nonempty open subsets U and V of X, there
exists k € N such that fF(U)NV # @;

5) totally transitive if f*® is transitive for all s € N;

6) chaotic if it is transitive and Per(f) is dense in X

7)  minimal if there is no proper subset M C X which is nonempty, closed and
M is invariant under f, i.e., if the orbit of every point of X is dense in X.

Remark 2.11 ([17]). Let (X, f) be a discrete dynamical system. The exactness
of f implies that f is mixing, weakly mixing, totally transitive, transitive and
surjective.

Remark 2.12 ([18]). Let (X, f) be a discrete dynamical system. Then f is
transitive if and only if X is a transitive subset of (X, f).

Remark 2.13. Let (X, f) be a discrete dynamical system and let k € N. If f
is isometric, then for any x,y € X, d(x,y) = d(f*(x), f*(y)).

The following example will be important for our work.

Example 2.14. Let I = [—1, 1] be the unit interval and let f: I — I be given
by

—2(x+1) if —1<a<—3
flx)=1q 2z if |zl <3
21—2) if $<az<1

This function is an extension of the tent map. Observe that

(—4(z+1) if —1<z<-3

22z +1) if —2<z< -4
—2(2z+1) if —f<z<—1

fAz) =< 4z if —t<a<i
2(1—2z) if <2<}
—2(1-2z) if f<z<3

41-2) if 2<z<1

It can be proved that f is not transitive. Thus, by Remark 2.11, we obtain that
f is not exact, not mixing, not totally transitive and not weakly mixing.

By [9, p- 791], we know that f[ ) is transitive, but the induced map
C(fljo17) on (Cn(X),7) is not transitive (see [1, p. 1015]). Therefore, C(flj1])
on (Cn([0,1]),7) is not exact, not mixing, not weakly mixing and not totally
transitive.

On the other hand, by [11], we know that f| 1) is exact. Thus, by Remark
2.11, we deduce that f|j ) is mixing, totally transitive and weakly mixing.
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Now we will prove the following result.

Theorem 2.15. Let (X, f) be a discrete dynamical system and let A be a
nonempty set of X. If C(A) is a transitive subset of ((C(X),T),C(f)), then A is
a transitive subset of (X, f).

Proof. Suppose that C(A) is a transitive subset of ((C(X), 7),C(f)). We prove
that A is a transitive subset of (X, f). For this, let V4 be a nonempty open subset
of A and let U be a nonempty open subset of X such that ANU # @. We prove
that there exists n € N such that f"(V4) NU # @. If V4 is a nonempty open
subset of A, then there exists a nonempty open subset V of X such that V =
VNA. Define V4 = (V){NC(A) and U = (U)7. Note that V4 is a nonempty open
subset of (C(A), ) and U is a nonempty open subset of (C(X), 7). Moreover, since
UNA # @, we have that U # @. If C(A) is a transitive subset of ((C(X), 7),C(f)),
then there exists n € N such that (C(f))"(Va) NU # @. This implies that there
is B € V4 and C € U such that (C(f))"(B) = C. In consequence, B C VNA
and C CU. Let V4 =V N A and let ¢ € C. There is b € B such that f"(b) = c.
Thus ¢ € U and b € V4. This implies that f"(b) € f*(Va). Therefore f*(V4) N
U # @. This completes the proof of the theorem. O

Theorem 2.16. Let (X, f) be a discrete dynamical system and let A be a
nonempty set of X. If A is a transitive subset of (X, f), then C(A) is a transitive
subset of ((C(X),1v),C(f)).

Proof. Suppose that A is a transitive subset of (X, f). We prove that C(A)
is a transitive subset of ((C(X),7),C(f)). Let V4 be a nonempty open subset
of C(A) and let U be a nonempty open subset of C(X). We prove that there
exists n € N such that (C(f))"(Va) NU # & and there exists a nonempty open
subset V of C(X) such that V4 = V N C(A). Moreover, there exist nonempty
open subsets Vi, Va, ..., Vi, of X such that (Vi,Va,..., Vi) €V and there exist
nonempty open subsets Uy, U, ..., Uy, of X such that (Uy,Us,...,Upn)1 C U.
Let U =2, U; and let V = Ule Vi. Note that U and V are open subsets of
X. Let V4 =V N A. Since V4 is a nonempty open subset of A, U is a nonempty
open subset of X and A is a transitive subset of X, there exists n € N such that
f"(V4)NU # @. It follows that there is w € U and v € V4 such that f"(v) = u.
Observe that {u} C U, {v} CV and {v} C A. Further, {u} € (U1,Us,...,Un)1
and {v} € (V1,Va,...,V,)1. Finally, by part 1) of Proposition 2.8, we have that
(Cn(f))"({v}) = {u}. This implies that (C,(f))"(Va) NU # &. Therefore, C(A)
is a transitive subset of ((C(X),71),C(f)). O

As a consequence of Theorem 2.16 and [18, p. 2], we obtain the following
result.

Corollary 2.17. Let (X, f) be a discrete dynamical system and let A be a
nonempty set of X. If A is a transitive subset of (X, f), then C (Z) 1S a transitive

subset of ((C(X),1v),C(f)).

As an application of Theorem 2.16, we present the following example.
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Example 2.18. Consider the function f |[071} given in Example 2.14. We know
that f|[p,1) is transitive. Moreover, by [18, p. 2, Example 4], we know that [%, %]
is a transitive subset of (X, f). Thus, by Theorem 2.15, we obtain that C( [i, %])
is a transitive subset of ((C(X),1v),C(f)).

3. Results on C,(X)

3.1. Dynamical properties of the induced map C,(f) on (C,(X), ).
This section is devoted to studying dynamical properties of a discrete dynamical
system ((Cn(X),77),Cn(f)). We begin this section with the following result.

Theorem 3.1. Let (X, f) be a discrete dynamical system. Then the following
statements are equivalent:
(1) f is exact;
(2) the induced map C,(f) on (Cp(X),Tv) is exact for some n € N;
(3) the induced map Cn(f) on (Cn(X),Tv) is exact for each n € N.

Proof. The proof of this result is similar to that of [16, 5, p. 5]. O

As an immediate consequence of Theorem 3.1 and Remark 2.11, we obtain
the following result.

Corollary 3.2. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is exact, then
a) Cn(f) on (Ch(X),1r) is mizing;
b) f) on (Co(X), 1v) is weakly mizing;
c) f) on (Ch(X),1v) is totally transitive;
d) Cu(f) on (Cu(X),7v)
f)

e) Cn(f) on (Cn(X), 1) is surjective.

(X),Tv) is transitive;

o Ron Ron e o

Theorem 3.3. Let (X, f) be a dinamical system. Then the following state-
ments are equivalent:

(1) f is weakly mizing;
(2) the induced map C,(f) on (Cp(X),Tv) is weakly mizing for some n € N;
(3) the induced map C,(f) on (Cp(X),Tv) is weakly mizing for each n € N.

Proof. 1t is clear that (3) implies (2). Therefore, to complete the proof of the
theorem it suffices to prove that (1) implies (3) and (2) implies (1).

Suppose that f is weakly mixing and n € N. We prove that the induced
map Cn(f) on (Cp(X),7y) is weakly mixing. For this, we consider nonempty
open subsets Uy, Us, Vi and Vs of C,(X). We see that there exists k& € N such
that ((Cn(f)))* () NV; # @ for each i € {1,2}. There exist nonempty open
subsets U;,, Uiy, ..., Ui, Vi), Viy,..., Vi, of X, for each i € {1,2}, such that
(Ur,,Uryy ..., U, )n C UL, (Uz,,Usyy ... Us, Yy C Uy (Vi Vig, ooy Vi) €W
and <‘/21,V22, .. -7V2m>n Q Vg. Let U1 = U:ll Uli, U2 = Uzll U2¢> V1 = U:’;l Vh
and Vo = Uf;l Va,. Note that Uj, Uz, Vi and V, are open subsets of X. Since
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f is weakly mixing, there exists k& € N such that f*(U;) N'V; # @ for each i €
{1,2}. Let y; € V1 and y; € f*(Uy). Moreover, yo € Vo and yo € f*(Us). Thus,
there exists u; € Up such that f*(uy) = y; and uy € Uy such that fF(ug) =
y2. Note that {y1} C Vi, {y2} C Vo, {u1} C Uy and {ug} C Us. Hence, {y;} €
(Viy, Vigs -, Vi, o and {w;} € (Ui, Uiy, ..., Ui, )n, for each i € {1,2}. Moreover,
FE({us}) = {y;} for each i € {1,2}. By part 1) of Proposition 2.8, we have that
(Cn(NF({ui}) = {y;} for each i € {1,2}. Hence, ((C,(f)))*(U;)NV; # @ for each
i € {1,2}. Therefore, the induced map C,(f) on (C,(X), ) is weakly mixing.
Assume that Cp(f) on (Cp(X), ) is weakly mixing, for some n € N. We
see that f is weakly mixing. For this end, let Uy, Us, V1 and Vo be nonempty
open subsets of X. We see that there exists & € N such that f*(U;) NV, # @
for each i € {1,2}. It follows that (Uj)n, (U2)n, (Vi)n and (Va), are nonempty
open subsets of (C,(X),7y). Since Cp(f) is weakly mixing on (C,,(X), 7v), there
exists k € N such that (C,,(f))*((U)n) N (Vi)n # @ for each i € {1,2}. Thus, for
each i € {1,2} there exits B; € (U;),, such that (C,(f))*(B;) € (V;)n. For each
i € {1,2}, let b; € B; such that (C,(f))*(b;) € (Co(f))*(Bs) € (Vi)n. By part 1)
of Proposition 2.8, we deduce that f*(b;) € V;. In consequence, f*(U;) NV; # @.
Therefore, f is weakly mixing. O

As an application of Theorem 3.3, we present the following example.

Example 3.4. Consider the function f| 1) given in Example 2.14. We know
that f‘[O,l] is weakly mixing, Thus, by Theorem 3.3, we obtain that the induced
map Cp(fljo,1]) on (Cn([0,1])), 7r) is weakly mixing for each n € N.

As an immediate consequence of Theorem 3.3, we obtain the following result.

Corollary 3.5. Let (X, f) be a discrete dynamical system and let n be an
integer. If f is weakly mizing, then

(a) Cn(f) on (Ch(X), 1) is totally transitive;
(b) Cn(f) on (Cn(X), ) is transitive;
(¢) Cun(f) on (Ch(X),Tr) is surjective.
The technique we use to prove the result below is similar to that used in

Theorem 3.3. This result generalizes the theorem of D. Masood and P. Singh [22,
3.1, p. 178].

Theorem 3.6. Let (X, f) be a discrete dynamical system. Then the following
statements are equivalent:

(1) f is transitive;
(2) the induced map C,(f) on (Cp(X),Tv) is transitive for some n € N;
(3) the induced map Cy,(f) on (Cn(X),Tv) is transitive for each n € N.

As an application of Theorem 3.6, we present the following example.

Example 3.7. Consider the function f|j 1) given in Example 2.14. We know
that f|oq] is transitive, but the induced map C(f](,1)) on (Cn(X), 7) is not tran-
sitive (see Example 2.14). However, by Theorem 3.6, we obtain that the induced
map Cp(fljo,1) on (Cn([0,1])), 7r) is transitive for each n € N.
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The proof of the next result is similar to that of Theorem 3.3. This result
generalizes the theorem of D. Masood and P. Singh [22, 3.3, p. 178].

Theorem 3.8. Let (X, f) be a discrete dynamical system. Then the following
statements are equivalent:

(1) f is totally transitive;
(2) the induced map C,(f) on (Cp(X),Tv) is totally transitive for some n € N;
(3) the induced map Cn(f) on (Cn(X),Tv) is totally transitive for each n € N.

As an application of Theorem 3.8, we present the following example.

Example 3.9. Consider the function f|j ) given in Example 2.14. We know
that f|o1) is totally transitive, Thus, by Theorem 3.6, we obtain that the induced
map Cpn(flj01]) on (Cn([0,1])), 7r) is totally transitive for each n € N.

As an immediate consequence of Theorem 3.8, we obtain the following result.

Corollary 3.10. Let (X, f) be a discrete dynamical system and let n be an
integer. If f is totally transitive, then

(a) Cn(f) on (Cph(X),T1) is transitive;
(b) Cun(f) on (Co(X), ) is surjective.

The proof of the next result is similar to that of Theorem 3.3.

Theorem 3.11. Let (X, f) be a dynamical system. Then the following state-
ments are equivalent:

(1) f is mizing;
(2) the induced map C,(f) on (Co(X), 1) is mizing for some n € N;
(3) the induced map Cy,(f) on (Cp(X),Tv) is mizing for each n € N.

Remark 3.12. Theorem 3.11 is a generalization of Theorem 3.7 of [22].
As an application of Theorem 3.11, we present the following example.

Example 3.13. Consider the function f|o ] given in Example 2.14. We know
that f |[071] is mixing. Thus, by Theorem 3.11, we obtain that the induced map
Cn(fljo,11) on (Cn([0,1])), 7r7) is mixing for each n € N.

As an immediate consequence of Theorem 3.11, we obtain the following result.

Corollary 3.14. Let (X, f) be a discrete dynamical system and let n be an
integer. If f is mixing, then

(a) Cn(f) on (Co(X),my) is weakly mizing;
(b) Cn(f) on (Ch(X), ) is totally transitive;
(¢) Cun(f) on (Cpn(X), 1) is transitive;

(d) Cn(f) on (Cn(X), ) is surjective.

Theorem 3.15. Let (X, f) be a discrete dynamical system. Then the follow-
ing statements are equivalent:
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(1) Per(f) is dense in X;
(2) Per(Cn(f)) on (Ch(X),1r) is dense for some n € N;
(3) Per(Cn(f)) on (Cn(X), ) is dense for each n € N.

Proof. 1t is clear that (3) implies (2). Therefore, to complete the proof of the
theorem, it suffices to prove that (1) implies (3) and (2) implies (1).

Suppose that Per(f) is dense on X and n € N. We prove that Per(C,(f)) on
(Cn(X), 1) is dense. For this, let U be a nonempty open subset of C,(X). We
see that U N Per(C,(f)) # @. There exist nonempty open subsets Uy, ..., Up, of
X such that (U1, Us,...,Un)n CU. Let U = |J;~, U;. Note that U is an open
subset of X. Since Per(f) is dense, we have that Per(f)NU # @. In consequence,
there exists € U and k € N such that f¥(x) = . Note that {z} C U. Hence
{z} € (U1,Us,...,Up)pn. Moreover, f¥({x}) = {x}. By part 1) of Proposition
2.8, we have that (C,(f))*({z}) = {x}. This implies that & N Per(C,(f)) # @.
Therefore Per(C,,(f)) is dense on (Cp(X), 717).

Assume that Per(C,(f)) on (C,(X),7y) is dense for some n € N. We prove
that Per(f) is dense. For this, let U be a nonempty open subset of X. It
follows that (U),, is a nonempty open subset of (Cp,(X), 7¢7). Since Per(Cy(f)) on
(Cn(X), 1r) is dense, Per(C,(f))N{(U)y # @. It follows that there exits B € (U),
and k € N such that (C,(f))*(B) = B. Let b € B. Observe that (C,(f))*(b) €
(Co(f))*(B) = B C U. By part 1) of Proposition 2.8, we have that f¥(b) € B C
X. Therefore Per(f) N X # o. O

Using Theorem 3.15 and Proposition 2.6, we obtain the following.

Corollary 3.16. Let (X, f) be a discrete dynamical system and let n be an
integer. If Per(f) is dense on X, then the sets Rec(Cn(f)) and NW(C,(f)) on
(Cn(X), 1) are dense.

We finish this section with the following result.

Theorem 3.17. Let (X, f) be a discrete dynamical system and let n be an
integer. Then the following statements are equivalent:

(1) f is chaotic;
(2) Cn(f) on (Cn(X),Ty) is chaotic.

Proof. The result is a consequence of Theorems 3.6 and 3.15. ]

3.2. Dynamical properties of the induced map C,(f) on (C,(X), 7).
Theorem 3.18. Let (X, f) be a discrete dynamical system such that X 1is
pathconnected. Then the following statements are equivalent:
(1) f is mizing; the induced map Cn(f) on (Cn(X), L) is mizing for some n €
N; the induced map Cyn(f) on (Co(X), 1) is mizing for each n € N.

Proof. 1t is clear that (1) implies (1). Therefore, to complete the proof of the
theorem, it suffices to prove that (1) implies (1) and (1) implies (1).
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Suppose that f is mixing and n € N. We prove that C,(f) on (Cn(X),7r)
is mixing. We consider the nonempty open subsets U, V of (C,(X),7). We
see that there exists N € N such that ((C.(f))*WU) NV # @ for each k > N.
There exist nonempty open subsets Uy, Us, ..., Uy, V1, Va, ...,V of X such that
(U1,Usy ..., Upn)l, CU and (V1,Va,..., Vi) C V. Note that the pairs (U;, V;),
fori e {1,...,m}, consist of nonempty open sets of X. Since f is mixing in X for
each i € {1,...,m}, there exists N; € N such that f*(U;) N'V; # @ for each k >
N;. Let N = max{N;: i € {1,...,m}}. Thus, f5(U;,)NV; # @, fori € {1,...,m}
and k > N. For each i € {1,...,m} and k > N, there are z;, € f*(U;) N
Vi. Define o;: [0,1] — X given by «;(0) = zi;, and a;(1) = 2(j51),. Let A =
U™, a;([0,1]). Observe that A € (Vi,Va,..., V). Moreover, (Cn(f))*(A) €
Co(F))F((UL, Us, ..., Us, ). Therefore ((Co(f))*(U) NV # & for each k > N.
In consequence, Cp(f) on (Cp(X), 71) is mixing.

Assume that C,,(f) on (Cn(X), 1) is mixing for some n € N. We see that f
is mixing. For this end, let U and V be nonempty open subsets of X. We see
that there exists N € N such that f*(U)NV # @ for every k > N. It follows
that (U)!, and (V)] are nonempty open subsets of (C,,(X), 7). Since Cpn(f) is
mixing on (C,(X),7L), there exists N € N such that (C,(f))*((U),) N (V) # &
for every k > N. Fix k > N and let B € (U), be such that (C,(f))*(B) € (V).
Let b € B. Note that b € U and (C,(f))*(b) € (Cu(f)*(B) € (V),. By part 1)
of Proposition 2.8, we deduce that f*(b) € V. In consequence, fF(U)NV # @.

Therefore f is mixing. O
Remark 3.19. Theorem 3.18 is a generalization of Theorem 3.8 from [22].
As an immediate consequence of Theorem 3.18, we obtain the following result.

Corollary 3.20. Let (X, f) be a discrete dynamical system and let n be an
integer. If X is pathconnected and f is mixing, then

)
X),1r) is transitive;
), TL) is surjective.

As an application of Theorem 3.18, we present the following example.

Example 3.21. Consider the function f|o ] given in Example 2.14. We know
that f |[071] is mixing. Thus, by Theorem 3.18, we obtain that the induced map
Cn(fljo,17) on (Cn([0,1])),71) is mixing for each n € N.

As an application of Corollary 3.20, we present the following example.

Example 3.22. Consider the function f|j ) given in Example 2.14. Let n be
an integer. We know that f|( 1) is mixing, and thus, by Theorem 3.20, we obtain
that:

(a) Ca(fljo)) on (Cu([0,1]),71) is weakly mixing;
(b) Cn(fljo7) on (Ca([0,1])),71) is totally transitive;
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(¢) Cn(fljo)) on (Cu([0,1])), 1) is transitive;
(d) Cu(fljo)) on (Ca([0,1])),71) is surjective.

3.3. Dynamical properties of the induced map C,(f) on (C,(X),7).
This section is devoted to studying dynamical properties of the discrete dynamical
system ((Cn,(X),7),Cn(f)). We begin this section with the result that can be
proved similarly to that from [3].

Theorem 3.23. Let (X, f) be a dynamical system and let n be an integer.
If f is an isometry, then Cp(f) on (Cn(X),T) is not transitive.

As a consequence of Theorem 3.23, we have the following result.

Theorem 3.24. Let (X, f) be a discrete dynamical system and let n be an
integer. Let M be one of the following classes of maps: exact, mizing, weakly
mixing, totally transitive, chaotic and minimal. If f is an isometry, then Cy(f)
on (Cn(X),T) is not in the class M.

Now we introduce the following definition.

Definition 3.25. Let f: X — X and g: Y — Y be two maps. Then f and ¢
are said to be topologically conjugate if there exists a homeomorphism h: X —
Y such that ho f = g o h. The homeomorphism h is a topological conjugation,
and thus we write f ~ g.

Therefore, if two maps are topologically conjugate, and we want to understand
the dynamics of one of them, we can study the other one as its dynamics will be
qualitatively the same.

Theorem 3.26. Let (X, f) and (Y, g) be discrete dynamical systems and let n
be a positive integer. If the dynamical systems (X, f) and (Y, g) are topologically
conjugate, then the same holds for the induced dynamical systems (Cp(X),Cpn(f))
and (Cr(Y),Cn(g)) on (Ch(X),T).

Proof. Let h be a conjugacy between the pairs (X, f) and (Y,g). In con-
sequence, h: X — Y is a homeomorphisms such that ho f = g o h. Define
Cn(h): Ch(X) — Cn(X), given by Cn(h)(A) = h(A), for each A € C,(X). Since
ho f=goh, by part 2) of Proposition 2.8, we have that C,(h) o C,(f) = Cn(g) o
Cn(h). On the other hand, since h is a homeomorphism by [8, 4.6, p. 801], it
follows that C,(h) on (C,(X),7) is a homeomorphism. Therefore, the induced
dynamical systems (C,(X),C,(f)) and (C,(Y),Cn(g)) on (Cn(X),T) are topolog-
ically conjugate. O

4. Results on PHS,(X)

4.1. Dynamical properties of the map PHS,(f) on (PHS,(X),T).
For readers’ convenience, we give the following result in detail. The proofs of
other results of this section are similar to those of Section 4 from [3].
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Theorem 4.1. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If C,(f) on (Cn(X), T) is exact, then PHS,(f) on (PHS(X),T)
18 exact.

Proof. Suppose that C,(f) on (C,(X),7) is exact. We see that PHS,,(f) on
(PHS,(X), 7) is also exact. Let U be a nonempty open subset of (PHS,(X), 7).
Since ¢% is continuous, we have that (¢%)~!(U) is a nonempty open sub-
set of (Cp(X),7). On the other hand, since C,(f) is exact, there exists
k € N such that (Co(f))*((¢%)*(U)) = Cn(X). Since ¢% is surjective, we
have that ¢%(Cn(f)*((g%)~1(U))) = PHS,(X). Using (2.1), we obtain that
(PHS.(f))F(U) = PHS,(X). Therefore PHS,(f) on (PHS,(X),7) is ex-
act. O

Theorem 4.2 is used in the proof of Corollary 4.4.

Theorem 4.2. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHS,(f) on (PHS,(X),T) is exact, then f is exact.

Proof. The proof of this result is similar to that given in [3, 4.7, p. 462]. O
As an application of Theorems 4.1 and 4.2, we present the following example.

Example 4.3. Consider the function given in Example 2.14. By Theorem 4.2,
we obtain that PHS,(f) on (PHS,(I),T) is not exact and by Theorem 4.1, we
deduce that C,,(f) on (PHS,(I),7) is not exact.

In the following corollary we establish the relationships between the exactness

of f, Cp(f) and PHS,(f).

Corollary 4.4. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) f is exact;
(2) Cn(f) on (Cp(X),T) is exact;
(3) PHS.(f) on (PHS,(X),T) is exact.

Proof. By [22, 3.1, p. 178], we obtain that (1) and (2) are equivalent. Now,
by Theorems 4.1, 4.2, we have that (2) and (3) are equivalent. O

As an application of Corollary 4.4, we present the following example.

Example 4.5. Consider the function given in Example 2.14. By Corollary 4.2,
we obtain that PHS,(f|,1)) on (PHS([0,1]),7) is exact.

Lemma 4.6 is used in the proof of Corollary 4.10.

Theorem 4.6. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then C,(f) on (Cn(X),T) is transitive if and only if PHS,(f)
on (PHS,(X), 1) is transitive.

Proof. The proof of this result is similar to that from [3, 4.10, p. 464]. O
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As the applications of Theorem 4.6 and Example 3.7, we present the following.

Example 4.7. Consider the function given in Example 2.14. By Example 3.7,
we know that Cp,(flo,1)) on (Cn([0,1]), 7) is not transitive. Therefore, by Theorem
4.6, we obtain that PHS,(f|j,1)) on (PHSA([0,1]),7) is not transitive.

Lemma 4.8 is used in the proof of Corollary 4.10.

Theorem 4.8. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHS,(f) on (PHSL(X),T) is transitive, then f is transitive.

Proof. Supposing that PHS,(f) on (PHS,(X),7) is transitive, we prove
that f is transitive. For this end, let U and V be nonempty open subsets of
X. Moreover, let Uy, Us, V1, Vo be nonempty open subsets of X such that U; U
U, CU, ViUV CV, U NU; = @ and Vi NV, = @. Note that <U1,U2>n
and (Vi,Va), are nonempty open subsets of (Cn(X),7) such that (U, Us), N
Fi(X) = @ and (V1, Vo), N F1(X) = @&. Thus, by Remark 2.2, we have that
q% ((U1,Usz)r) and ¢% ((Uy,Us)y) are nonempty open subsets of (PHS,(X), 7).
Since PHS,(f) on (PHS,(X),7) is transitive, there exists k& € N such that
(PHSL()* (g% (U1, Uz, )n)) N g% ((Vi, Va,)pn) # @. In consequence, there exists
A € ¢%((U1,Us,)y) such that (PHS,(f))*(A) € ¢%((V1,Va,)n). It follows that
there exists B € (Uy,Us, ), such that ¢%(B) = A, and (PHS,(f))*(¢%(B)) €
q% ((V1,Va,)n). By part 2) of Proposition 2.8, we obtain that ¢% ((Cn(f))*(B)) €
q% ((V1, Va)y,). This implies that (C,(f))*(B) € (V1, Va)n. Therefore f¥(B) C V.
Let b € B. Note that f¥(b) € V and b € U. In consequence, f*(b) € f*(U).
Thus, f¥(U) NV # @, and therefore f is transitive. O

As an application of Theorem 4.8, we present the following example.

Example 4.9. Consider the function given in Example 2.14. By Theorem 4.8,
we obtain that PHS,(f) on (PHS,(I), ) is not transitive.

In the following corollary we establish relationships between the transitivity

of f, Cn(f) and PHS,(f).

Corollary 4.10. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Consider the following statements:

(1) f is transitive;

(2) Cn(f) on (Cn(X),T) is transitive;

(3) PHSL(f) on (PHSn(X),T) is transitive.

Then (2) and (3) are equivalent, (3) implies (1), (2) implies (1), (1) does not
imply (2), and (1) does not imply (3).

Proof. By Theorem 4.6, we have that (2) and (3) are equivalent. By Theorem
4.8, we obtain that (3) implies (1). Consequently, we deduce that (2) implies (1).
On the other hand, by Example 2.14, it follows that (1) does not imply (2).
Finally, by Examples 2.14 and 4.7, we deduce that (1) does not imply (3). O
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Theorem 4.11. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then Cp(f) on (Cp(X),T) is totally transitive if and only if
PHSL(f) on (PHS.(X),T) is totally transitive.

Proof. The proof of this result is similar to that given in [3, 4.12, p. 465]. O
As an application of Theorem 4.11 and Example 3.7, we present the following.

Example 4.12. Consider the function given in Example 2.14. By Example
3.7, we know that Cy(flj0,1) on (Cn([0,1]), 7) is not totally transitive. Therefore,
by Theorem 4.11, we obtain that PHS,(f|jo,17) on (PHS,([0,1]), 7) is not totally
transitive.

Theorem 4.13. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHS,(f) on (PHS,(X),T) is totally transitive, then f is
totally transitive.

Proof. The proof of this result is similar to that given in [3, 4.12, p. 465]. O
As an application of Theorem 4.13, we present the following example.

Example 4.14. Consider the function given in Example 2.14. By Theorem
4.13, we obtain that PHS,(f) on (PHS,(I),7) is not totally transitive.

In the following corollary, we establish relationships between the total transi-
tivity of f, Cp(f) and PHS,(f)-

Corollary 4.15. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Consider the following statements:
(1) f is totally transitive;
(2) Cun(f) on (Cn(X),T) is totally transitive;
(3) PHSL(f) on (PHS,(X),T) is totally transitive.
Then (2) and (3) are equivalent, (3) implies (1), (2) implies (1), (1) does not
imply (2), and (1) does not imply (3).

Proof. By Theorem 4.11, we have that (2) and (3) are equivalent. By Theo-
rem 4.13, we obtain that (3) implies (1), and thus (2) implies (1).

Moreover, by Example 2.14, it follows that (1) does not imply (2). Finally,
by Examples 2.14 and 4.14, it follows that (1) does not imply (3). O

Theorem 4.16. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then Cn(f) on (Cn(X),T) is mizing if and only if PHS,(f) on
(PHSL(X),T) is mizing.

Proof. The proof of this result is similar to that given in [3, 4.9, p. 463]. O
As an application of Theorem 4.16, we present the following example.

Example 4.17. Consider the function given in Example 2.14. By Theorem
4.16, we obtain that PHS,,(flj,1) on (PHS.([0,1]),7) is not mixing.
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Theorem 4.18. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If PHS,(f) on (PHS,(X),T) is mizing, then f is mizing.

Proof. The proof of this result is similar to that given in [3, 4.9, p. 463]. O

As an application of Theorem 4.18, we present the following example.

Example 4.19. Consider the function given in Example 2.14. By Theorem
4.18, we obtain that PHS,(f) on (PHS,(I),7) is not mixing.

In the following corollary, we establish relationships between the mixing of f,

Co(f) and PHS,(f).

Corollary 4.20. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Consider the following statements:

(1) f is mizing;
(2) Cun(f) on (Cp(X),T) is mizing;
(3) PHS.(f) on (PHS,(X),T) is mizing.

Then (2) and (3) are equivalent, (3) implies (1), (2) implies (1), (1) does not
imply (2), and (1) does not imply (3).

Proof. By Theorem 4.16, we have that (2) and (3) are equivalent. By The-
orem 4.18, we obtain that (3) implies (1) and we can deduce that (2) implies

(1).
Furthermore, by Example 2.14, it follows that (1) does not imply (2). Finally,
by Examples 2.14 and 4.17, it follows that (1) does not imply (3). O

Theorem 4.21. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) Per(f) on (Cp(X),T) is dense;
(2) Per(Cn(f)) on (Cn(X),T) is dense.

Proof. The proof of this result is similar to that of Theorem 3.15. O

Theorem 4.22. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) Per(Cn(f)) on (Cn(X),T) is dense;
(2) Per(PHS,(f)) on (PHSn(X),T) is dense.

Proof. The proof of this result is similar to that given in [3, 4.16, p. 469]. O

Theorem 4.23. If discrete dynamical systems (X, f) and (Y,g) are topo-
logically conjugate, then the same holds for the induced dynamical systems
(PHS(X),PHS,(f)) and (PHSw(Y ), PHSw(f)) for each n € N, i.e., the fol-
lowing diagram commutes:
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PHS, (X) 2]

PHS,(X)
PHSn(h) PHSn(h)

PHS,(Y)

PHS,(Y)

Proof. Let h be a conjugacy between the pairs (X, f) and (Y, ¢g) and n € N.
By Theorem 3.26, the dynamical system (C,,(X),Cn(f)) and (Cn(Y),Cn(g)) are
topologically conjugate by the induced map C,(h) given by C,(h) = h(A), for
each A € C,(X). Define PHS,(h): PHS(X) — PHS,(Y) given by

@ (Ca(R)((¢%) 1 (X)) if X # FR

] . (4.1)
Fy if x =Fy%

PHSR(h)(x) = {

By [21, p. 31, 4.1], we have that PHS,,(h) is a homeomorphism. Then PHS,,(h)
is the required topological conjugacy between the discrete dynamical systems

(PHS,(X),PHS,(f)) and (PHS»(Y ), PHS(9))- O

4.2. Dynamical properties of the map PHS,(f) on (PHS,(X), ).
This subsection is dedicated to more applications of the results obtained in Section
4.1. We begin this subsection with a consequence of Theorem 3.1 and Corollary
4.4 to obtain the following.

Corollary 4.24. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) f is exact;
(2) Cn(f) on (Cn(X)vTU) is exact;
(3) PHS.(f) on (PHS,(X),Tv) is exact.

As a consequence of Corollary 4.24, we obtain the following result.

Corollary 4.25. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is exact, then PHS,(f) on (PHS,(X),Tv) is mizing, totally
transitive, weakly mizing and transitive.

Corollary 4.26. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) f is transitive;
(2) Cun(f) on (Cn(X),T1) is transitive;
(3) PHSL(f) on (PHS,(X),Tv) is transitive.

Proof. By Theorem 3.6, we have that (1) and (2) are equivalent, and by
Theorem 4.6, we obtain that (2) and (3) are equivalent. O
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Corollary 4.27. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) f is totally transitive;
(2) Cn(f) on (Cn(X), ) is totally transitive;
(3) PHSL(f) on (PHS,(X),1v) is totally transitive.

Proof. By Theorem 3.8, we have that (1) and (2) are equivalent and, by
Theorem 4.11, we obtain that (2) and (3) are equivalent. O

As a consequence of Corollary 4.27, we obtain the following results.

Corollary 4.28. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is totally transitive, then
(1) Cn(f) on (Cn(X), ) is transitive and surjective;
(2) PHSL(f) on (PHS.(X),Ty) is transitive and surjective.

Corollary 4.29. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent:
(1) f is mizing;
(2) Culf) on (Cu(X), 1v) is mizing;
(3) PHSL(f) on (PHS(X), ) is mizing.

Proof. By Theorem 3.11, we have that (1) and (2) are equivalent, and by
Theorem 4.16, we obtain that (2) and (3) are equivalent. O

As a consequence of Corollary 4.29, we obtain the following results.

Corollary 4.30. Let (X, f) be a discrete dynamical system and let n be a
positive integer. If f is mizing, then
(1) Cun(f) on (Cp(X),v) is weakly mizing, transitive and surjective;
(2) PHSW(f) on (PHS(X),Tr) is weakly mizing, transitive and surjective.
Corollary 4.31. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following are equivalent :
(1) Per(f) on X is dense;
(2) Per(Cp(f)) on (Cn(X), ) is dense;
(3) Per(PHS,(f)) on (PHS(X),y) is dense.

Proof. By Theorem 3.15, we have that (1) and (2) are equivalen,t and by
Theorem 4.22, we obtain that (2) and (3) are equivalent. O

Lastly, we have a direct consequence of Corollary 4.26 and Corollary 4.31 and
obtain the following result.

Theorem 4.32. Let (X, f) be a discrete dynamical system and let n be a
positive integer. Then the following statements are equivalent:
(1) f is chaotic;
(2) Cn(f) on (Cu(X), ) is chaotic;
(3) PHSL(f) on (PHS,(X),Ty) is chaotic.
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Conclusion

In this paper, we have shown connections between some dynamical properties
of a discrete dynamical system and dynamical properties of a set-valued discrete
dynamical system associated to it. Specifically, we introduce the dynamical sys-
tem (PHS»(X), PHS,(f)) and study connections between dynamical properties
of f and dynamical properties of the induced maps C,(f) and PHS,(f). We
obtain the relationships between the following statements:

(1) feM,

(2) Cn(f) € M and

(3) (PHS,(X),PHS,(f)) € M, when M is one of the following classes of
maps: exact, mixing, totally transitive, transitive, weakly mixing.

Among other results, we obtain that if C,(f) on (C,(X),7) is exact, then
PHS,(f) on (PHS,(X),7) is also exact. Moreover, in [22], D. Masood and
P. Singh obtained the results on the induced dynamical system on the discrete
dynamical system ((C(X), 77),C(f)). In this paper, we generalized some of these
results.

This investigation should be used in further studying connections between
individual and collective dynamics.
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Jdunamuka dpakTop-ruiieprnpocTopiB
Alicia Santiago-Santos and Noé Trinidad Tapia-Bonilla

Hexait (X, d) € KOMIIAKTHUM METPUYHUM IIpOCTOpOM 1 Hexail and n € -
JuM omaranM aucsioM. Hexait Cp, (X)) € mpocTopoM ycix HEMOpOXKHIX 3aMK-
HeHMX IijMHOXKUH X 3 He Oijblie HiXK n KOMIOHeHTamn 1 Hexait JFi(X)
€ TIPOCTOPOM OJIHO-eJIEeMeHTHUX MHOKMH X. JImst 3a1aH0ro BimoOparKeHHst
f+ X — X mu posrasgaemo ingykosane Binobpaxenus C,(f) : Cn(X) —
Cpn(X), mo 3amaersea cuissinnomenusam Cp (f)(A) = f(A) mas koxHOro A €
Cn(X). Juckperna nuuamivna cucrema (X, f) IHAYKY€E JUCKPETHY JuHAMIY-
ny cucremy (PHS,(X),PHS.(f)), ne PHS,(X) e dakrop-npocropom
Cn(X)/F1(X) 3 Bimnosignoo tomojoriero gakTop-upocropy. ¥ wiii po6o-
Ti MU y3araJbHIOEMO JIesiKi pe3ysibraTu poboTu [22] i BuBYaeMo CuiBBiIHO-
meHHs MK guckperanmu gauHamivauMu cucreMaMu (X, f), (Cn(X),Cpn(f))

i (PHSH(X),PHS.(f)).

Krro4oBi coBa: XaoTU4YHE BimoOparkeHHsI, TOYHE BiMOOparKeHHs, Iepe-
MilnTyBaJjbHE BiIOOpaXKeHHsI, TOTAJbHO TPAH3UTUBHE BiNOOPaKEHHS, TPAH-
3UTUBHE BimoOpazkeHHsI, C1abKO TepeMilTyBaabHe BilToOpasKeHHs, Tilepro-
BepXH#, IHIyKOBaHe BiT0OpaskKeHHsI, N-KpaTHa MCEBIOTIIEPIIPOCTOPOBA, HAJI-
OysoBa,
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