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Solvability of Strongly Nonlinear Obstacle
Parabolic Problems in Inhomogeneous
Orlicz—Sobolev Spaces
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In this paper, we prove the existence result of solutions for the nonlinear
unilateral problem associated to the parabolic equation

% —diva(z,t,u, Vu) —dive®(z,t,u) = p in Qr =Q x (0,T),

where the lower order term ® satisfies a generalized natural growth condi-
tion described by the appropriate Orlicz function ¥, and the data p is an
integrable source term. No growth restrictions are assumed either on ¥ or
on its complementary ¥. Therefore the solution is natural in this context.
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1. Introduction

In recent years, parabolic equations have got large applications that attract
attention of many researchers in biology, image processing and electro-rheological
fluids modeling.

Let Q be a bounded open subset of RY, N > 2, Qr = Q x (0,7, where T is a
positive real number and W is an Orlicz function. Let A : D(A) C W& “Ly(Qr) —
W_l’ng(QT) be an operator of Leray—Lions type of the form

A(u) = —diva(z,t,u, Vu).

In this paper, we prove an existence theorem of entropy solutions in the setting
of Orlicz spaces for the nonlinear unilateral parabolic problem associated to the
following problem:

9u + A(u) — div®(z,t,u) = p in Qr (1.1)

ot
u(x,0) = up(x) in Q (1.2)
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u=0 on 092 x (0,7), (1.3)
where ug € L'(Q2), u € L'(Qr) and ® satisfies the natural growth condition
——1
[@(x,t,5)] < y(z, 1) + ¥ " (¥(]s]) (1.4)

In the classical Sobolev spaces, in some elliptic cases, Guibé et al. (see [8])
supposed on ® the condition

p—1
1B(x, 5)| < c(m)(l + |s|> . (1.5)
In some parabolic cases (see [15]), they assumed the condition
(¢, 5)| < c(x,t)(l + |s|'Y) (1.6)

with v = %—ii(p —1)and c € L"(Qr) for r > 0.

Parabolic equations in Orlicz spaces have been widely studied since 2005 start-
ing from the works of Meskine et al. (see [17,18]). Later results were obtained,
for instance, in the work of Moussa, Rhoudaf, and Mabdaoui (see [27]), where
the existence of entropy solution for problem (1.1)—(1.3) was studied in the case

p € LY(Qr) under the growth condition
-1
|@(z,t,5)] < y(z,t) - P~ (P(d]s])), (L.7)

where v € L>®(Qr) and P << V.

For unilateral problems, see [5,10,25] and a later result by Rhoudaf et al. [31],
where the existence of a solution for the unilateral problem associated to (1.1)—
(1.3) was rigorously studied under the growth condition

(@ (z,t,5)] < y(x,t)- P (P(s)), (1.8)

where v € L>®(Qr) and P << V.

The main objective of this paper is how to deal with the existence of solutions
for the obstacle problem associated to problem (1.1)—(1.3) in Orlicz spaces under
a less restrictive assumption on the lower order term ®, namely, where ® verifies
condition (1.4). We do not assume any restrictions either on the N-function ¥
or on its complementary W.

The imposed natural growth condition (1.4) on ® leads to serious difficulties
in proving the existence of approximate solutions and studying its convergence.
These difficulties have been overcome by using the convexity of the N-function ¥
and Young’s inequality on suitable quantities. Moreover, we use the very impor-
tant observation that the norm convergence results from the modular convergence
with every A > 0 (see Lemma 2.3).

Let us briefly summarize the contents of this article. In Section 2, we collect
some well-known preliminaries, results and properties of Orlicz—Sobolev spaces
and inhomogeneous Orlicz—Sobolev spaces. Section 3 is devoted to basic assump-
tions, the problem setting and the proof of the main result.
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2. Preliminaries

2.1. Orlicz—Sobolev spaces. Let ¥ : RT™ — RT be a continuous and
convex function with
v(t)

V() >0fort>0, lim——==0, and lim
t—0 ¢ t—+o0

MZ-i-oo.

The function ¥ is said to be an N-function or an Orlicz function. The N-function
complementary to ¥ is defined as

U(t) =sup {st — U(s),s >0}.

We recall that (see [1]),

() <0

(U(t)) <2¥(t) forallt>0 (2.1)
and the Young’s inequality for all s,¢ > 0,
st < W(s) + W(t).
We say that U satisfies the Ag-condition if for some k > 0,
U(2t) < k¥(t) for all >0, (2.2)

and if (2.2) holds only for ¢ > to, then VU is said to satisfy the As-condition near
infinity.

Let ¥y and ¥y be two N-functions. The notation W1 << W9 means that ¥y
grows essentially less rapidly than W, i.e.,

vy
I _
vex0 i Gty =0

that is, the case if and only if

COR0

t—o0 (\Ill)_l(t) =0

Let © be an open subset of RY. The Orlicz class Kg¢(2) (respectively, the
Orlicz space Ly (€2)) is defined as the set of (equivalence class of) real-valued
measurable functions v on €2 such that

/ U(u(z))dr < oo (respectively,/ \P(M)dﬂv < oo for some A > 0> .
Q Q A

Endowed with the Luxemburg norm

HuH\p—inf{)\>O:/ﬂ\I/(u(>\x)) dacgl},

and the so-called Orlicz norm, that is,

lullug = sup /Q fu(z) v(z)| da,

lvllg<
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Lg(Q) is a Banach space and Ky () is a convex subset of Ly (). The closure
in Ly (Q) of the set of bounded measurable functions with compact support in
is denoted by Ey ().

The Orlicz-Sobolev space WLy () (respectively, W!Ey(£2)) is the space of
functions u such that w and its distributional derivatives up to order 1 lie in
Ly () (respectively, Ey(2)).

This is a Banach space under the norm

lullie = 1D%lly.

o<1

Thus, WLy (2) and W!Ey () can be identified with subspaces of the product
of (N + 1) copies of Ly (). Denoting this product by IILy, we will use the weak
topologies o(IILy, [I1Ey) and o(IILy, IILg).

The space W] Ey () is defined as the norm closure of the Schwartz space
D(Q) in W!Eg () and the space W Ly (f2) as the o(IlLy, IIEg) closure of D(Q)
in W!Ly(Q).

We say that a sequence {u,} converges to u for the modular convergence in
WLy (Q) if, for some A > 0,

D®u, — D°
/\II(UAU> dr — 0 forall |of <1.
Q

This implies the convergence for o(IILy, IILy).

If U satisfies the Ag-condition on RT (near infinity only if £ has finite mea-
sure), then the modular convergence coincides with the norm convergence. Recall
that the norm || Dul|y defined on W} Ly () is equivalent to ||ul|1,v (see [21]).

Let WLz () (respectively, W' E5(€)) denote the space of distributions
on €2 which can be written as sums of derivatives of order < 1 of functions in
L3 (Q) (respectively, Eg(€)). It is a Banach space under the usual quotient norm.

If the open € has the segment property, then the space ©(Q2) is dense in
W4 Ly (Q) for the topology o(IILy,I1Lg) (see [21]). Consequently, the action of
a distribution in W' Lg(£2) on an element of W Ly (€2) is well defined. For more
details one can see, for example, [1] or [26].

2.2. Inhomogeneous Orlicz—Sobolev spaces. Let € be a bounded open
subset of RN, T'> 0 and set Q7 =  x (0,1). For each a € NV, denote by D2
the distributional derivative on Q7 of order o with respect to the variable x €
Q. The inhomogeneous Orlicz—Sobolev spaces are defined as follows:

W' Ly(Qr) = {u € Ly(Qr) : Dfu € Ly(Qr) forall |a| <1}
and

W By (Qr) = {u € BEy(Qr) : D{u € By(Qr) forall |af <1}.
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The last space is a subspace of the first one, and both are Banach spaces under

the norm
lull = > IDSullg o,
lal<1

We can easily show that they form a complementary system when 2 satisfies the
segment property. These spaces are considered as subspaces of the product space
IILy(Qr) which have as many copies as there are a-order derivatives, |a| < 1.
We shall also consider the weak topologies o(IILy, I1Eg) and o(II1Ly,IILg)). If
u € WH Ly (Qr), then the function : ¢+ u(t) = u(t,-) is defined on (0,T) with
values in WLy (). If, further, u € WH*Ey(Q7), then the concerned function
is W1 Ey(Q)-valued and strongly measurable. Furthermore, the following imbed-
ding holds: W1*Ey(Qr) C LY(0,T; W'Eg(Q)). The space W12 Ly (Qr) is not
in general separable. If u € W* Ly (Q7), we can not conclude that the function
u(t) is measurable on (0,7"). However, the scalar function ¢t — ||u(t)||w o is in
LY(0,T). The space WOME\I,(QT) is defined as the (norm) closure in W% By (Q7)
of D(Qr). It is proved that when €2 has the segment property, then each element
u of the closure of ©(Qr) with respect to the weak® topology o(IlLy,I1Eg) is
a limit, in W% Ly (Qr), of some subsequence (u,) C D(Qr) for the modular
convergence; i.e., if, for some A > 0, such that for all |a| <1,

Do _ Do
/ W<M>dxdt—>0 as n — 0o.
- A

This implies that (u,) converges to u in Wh* Ly (Qr) for the weak topology
o(IILy,IIEg) . Consequently,

@(QT)U(HL\I,,HEg) — @(QT)U(HL\I,,HLW)'
This space will be denoted by VVO1 “Ly(Qr). Furthermore,

Wy " By (Qr) = Wy Ly (Qr) N T Ey.

We have then the following complementary system:
(Wo " La(Qr), F. Wy Ey(Qr), ),

F being the dual space of VVO1 * By (Qr). Tt is also, except for an isomorphism, the
quotient of IILg by the polar set Wol"rEq, (Qr)* denoted by F = W_l’xL@(QT)
and it is shown that

W Lg(Qr) = {f =Y Difa:fac€ L@(QT)}-

laf<1

This space will be equipped with the usual quotient norm

£l =it Y Il falg oy

laf<1
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where the infimum is taken on all possible decompositions
f =" D%fa fo € Ly(@Qr).
lal<1
The space Fy is then given by
W Lg(Qr) = {f = Difa:fac€ Eq,(QT)}
o<1
and is denoted by Fy = Wb Eg(Qr).

Lemma 2.1. Let Q be an open subset of RV with finite measure. Let ¥, P
and @ be N -functions such that Q << P, and let f : QxR — R be a Carathéodory
function such that, for a.e. x € Q and for all s € R,

[f(z,5)| < c(x) + k1 P10 (kyls)),

where ki, ky are real constants and c(z) € Eg(Q?). Then the Nemytskii operator
Ny, defined by N¢(u)(x) = f(x,u(x)), is strongly continuous from

P <E@ ki) - {u € Ly(Q) : d(u, Ba(Q)) < 132}

into Eg(§).

Lemma 2.2 ([22]). Let ug,u € Ly(Q). If up — u for the modular conver-
gence, then ui, — u for o(Ly, Ly).

Lemma 2.3. If u, — u for the modular convergence with every X > 0 in
Lg(Q), then u, — u strongly in Ly ().

Proof. We will use the Orlicz norm, for all A > 0 we have

[)W(W)d$—>0 as k — oo.

Thus ¥ (M)\_u(x)‘) tends to 0 strongly in L'(€2) and so for a subsequence, still
indexed by k, we can assume that u; — u a.e. in 2. For an arbitrary v € Lg(12),
there exists )\, > 0 such that ¥ (%) € L'(Q). By Young’s inequality and the

convexity of W, we can write

(0a(2) ~ u()o(e)] < ¥ @fue) - u)) + 57 (4.

Applying Vitali’s theorem, we obtain

/Q (un () — u(@))o(e)| dz — 0 for all v € Ly(Q)
and so

lug — ulllw.o = sup /|uk —u(z))v(x)|der — 0 as k — oo,

llv]lg<1

which yields the result. O
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Lemma 2.4 ([21]). Let F : R — R be uniformly lipschitzian, with F(0) = 0.
Let U be an Orlicz function and let u € WLy () (respectively, W Ey(Q2)). Then
F(u) € WLy (Q) (respectively, W' Eg () ). Moreover, if the set of discontinuity
points D of F' is finite, then

! @ a.e. in{x cu(x
O ) = {F() {reQ:u(z) ¢ D)

Ox; 0 a.e. in{xreQ:u(x)e D}.

Lemma 2.5 ([21]). Let F' : R — R be uniformly Lipschitzian, with F(0) =
0, and let ¥ be an Orlicz function. We also assume that the set of discontinu-
ity points D of F' is finite. Then the mapping F : W'Lg(Q) — WLy () is
sequentially continuous with respect to the weak™ topology o(I1Ly,I1Eg).

Lemma 2.6 ([18]). Let Q be a bounded open subset of RN, N > 2, satisfying
the segment property. Then

{UEW&” w(Qr) - geW Y Ly <QT>+L1<QT>}CC<[0,T1,L1<Q>>.

Lemma 2.7 (Integral Poincaré’s type inequality in inhomogeneous Orlicz
spaces [21]). Let Q be a bounded open subset of R™Y and let ¥ be an Orlicz function.
Then there exist two positive constants 6, A > 0 such that

/ U(S|u(z,t)]) dedt < / MU (|Vu(z, t))dzdt  for allu € Wi Ly (Qr).
Qr Qr

Lemma 2.8 ([24, Theorem 13.47]). If f, C Ll(Q) with f, — f € LY(Q) a.e.
nQ, fo, f>0a e inQand [ fn(x)de — [, f(z)dz, then f, — f in L'(Q).

Lemma 2.9 ([22]). Suppose that ) satisfies the segment property and let u €
WLy (Q). Then there exists a sequence (up) C D(Q) such that u, — u for the
modular convergence in Wa Ly (). Furthermore, if u € Wi Ly (2) N L>®(Q), then

[tnlloo < (N + 1) [uf|oo-

Lemma 2.10 (cf. [17]). Let U be an N-function. Let (uy) be a sequence of
WYLy (Qr) such that u, — u weakly in W' Ly(Qr) for o(IlLy,I1Eg) and
ag" = hp + kn in ©'(Qr) with hy, being bounded in W% Lg(Qr) and ky, being
bounded in LY(Qr). Then u, — u strongly in L} (Qr). If, further, u, €

WOL‘TL\I,(QT), then w, — u strongly in L*(Qr).

3. Basic assumptions and main result

Let © be a bounded open subset of RY, N > 2, satisfying the segment
property, and let ¥ be an Orlicz function. Consider the following convex set:

KIZ) = {’LL S Wol’xL\p(QT) tu > ae. in QT}, (3.1)
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where 1) : 2 — R is a measurable function. Define the set
’761’\1’(QT) = {u : Qr — R : u is measurable and Ty (u) € Wol’qu;<QT)} .

On the convex Ky, we assume that

(C1) v+ € Wy Lu(Qr) N L™(Qr),
(C2) for each v € Ky N L>®(Qr), there exists a sequence {v;} C Ky N
Wol’”TE\p(QT) N L*>®(Qr) such that v; — v for the modular convergence,

(C3) Ky N L>¥(Qr) # 2.
Let A : D(A) C Wol’xL\p(QT) — WL L&(Qr) be an operator of Leray—
Lions type of the form
A(u) == —diva(z,t,u, Vu).

This work aims to prove the existence of entropy solutions in the setting of Orlicz
spaces for the nonlinear problem

(Z—? —div a(z,t,u, Vu) — div®(z, t,u) = p in Qr (3.2)
u(z,0) = up(z) in Q (3.3)
w=0 on 90 x (0,T), (3.4)

where a : Qr x R x RV — RY is a Carathéodory function satisfying, for almost
every (z,t) € Qr and for all s € R, &, € RV(€ # 1), the following conditions:

1 ere exists a function ¢(x,t) € Fg(Qr) and some positive constants k1,
H;) Th ists a functi t) € Eg(Qr) and iti tants k
ko, ks, ¢ and an Orlicz function P << ¥ such that

la(@,t,5,€)| < ¢[e(x,t) + kr U™ (Plkels]) + T (W (ks[¢]))]-

(Hz2) a is strictly monotone

(a(:n,t,s,ﬁ) - a(z:,t,s,n)) . (5 — 77) > 0.

(H3) a is coercive, there exists a constant 5 > 0 such that

a(z,t,s,8) - &= BY([E]).
For the lower order term, we assume ® : Q7 x R — RY to be a Caratheodory
function satisfying:
(H4) For all s € R and for almost every = € 2,

1

(2, t,5)] < y(@,t) +0  (¥(ls])),

where v € Eg(Q7).
(Hs) pu € LY(Qr), up is an element of LY(Q).
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Lemma 3.1 ([27]). Under assumptions (Hy1)—(Hs), let (f) be a sequence in
Wy " Ly (Qr) such that

fo=f in Wy"Le(Qr) for o(Ly(Qr), TEF(Qr)),
(a(x,t, fn,an)) s bounded in (L@(QT))N,

lim (a(:c,t, frs Vifn) —alz,t, fr, Vsz)) . (an — Vsz) drdt =0,
n,5=00 Jo.

where x5 denotes the characteristic function of the set Qs = {x €N VSl < s}.

Then

Vin—=Vf ae inQr,
lim a(x,t, fr, V)V frndxdt = / a(z,t, f, V)V fdxdt,

n—o0 QT T

U(|Vfal) = U(VS]) in LNQr).

In what follows, we will use the real function of a real variable, called the
truncation at height k > 0,

s if |s| <k

Tk (s) = max ( - k,mm(k,s)) = {k|§| if |5 > k.

and its primitive is defined by
Tk(s) —/ Tk(t) dt.
0

Note that T}, have the properties: Tj,(s) > 0 and Ty(s) < kls|.

Definition 3.2. A measurable function u defined on Qp is said to be a
solution for the obstacle problem associated to (3.2)—(3.4) if u € 761’\P(QT) with
u > a.ein Qr and Ty (u(-,t)) € L1(Q) for every t € [0,T]. Thus we have

/ka(u ~o)de+ (2 T —v)

T

/ a(x,t,u, Vu)VTi(u — v)) dx dt

T

+ / O(x,t,u)VTi(u—v))dxdt

-

S/ uTk(u—v))dxdt—i—/ka(uo—U(O))d:c, (3.5)

-

and

u(x,0) =up(z) fora.exeQ, (3.6)
for every 7 € [0,T], k > 0 and for all v € Wy Ly(Qr) N L=(Qr) such that
% e W2 Lg(Qr) + LY (Qr), Tx(u(-,t)) € L'(Q) is the primitive function of the
truncation function T}, defined above.
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The main result of this paper is the following theorem.

Theorem 3.3. Suppose that assumptions (C1)—(Cs) and (Hy)—(Hs) hold
true and p € LY(Qr). Then there exists at least one solution for problem (3.2)-
(3.4) in the sense of definition 3.2.

Proof. The proof of the above theorem is divided into four steps.

Step 1: Approximate problems. Let i, be a sequence of regular functions
in C§°(Qr) which converges strongly to u in L'(Qr) and such that [|u,|/; <
||lgell 1. For each n € N*, put

an(x,t,8,8) = a(z,t,T,(s),&) ae (z,t) € Qr, seR, €€ RV,

and
D, (x,t,5) = D(x,t,T,(s)) ae (z,t) € Qr,Vs € R.

And let ug, € C5°(£2) such that
llwonllrr < |luwollrr  and  ug, — up in Ll(Q).

Consider the following approximate problem:

Uy € Kw (37)

% —diva(z,t,up, Vuy) — div®,(z,t,up) = g, in Qr (3.8)
up(z,t =0) =upy, inQ (3.9)

up, =0 on 002 x (0,7). (3.10)

Let zy(x,t, up, Vuy) = an(z,t, un, Vuy,) + @ (z,t,uy,), which satisfies (A1)—(A4)
of [23]. It remains to prove (A4). For this end, we use Young’s inequality techni-
cally as follows:

=1
(@ (2,1, ) Vit < |y, )| Vitn] + T

B B+2
CB+2 B
B+1—-1

B
+ 5 (‘I’(|Tn(un)\))m|vun|

< 2 (9(52h o) + w(vu))

+ T (B;l\lfl(\llﬂTn(un)D)) + T <ﬁ'i1Vun) .

(W (T (un) ) Vn|

(@, £)[|Vun|

While % < 1, using the convexity of ¥ and the fact that ¥ and T ' oW are
increasing functions, one has
B =

|Dy (2, T, up) Vug| < 5+2\I/<

,32
B+2

B+ 2
52

h(w,t)|> ()
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—(B+1—21 B
7 (5‘1’ ((n ))) + (V).

Since v € Eg(Qr), (BHW(J: t)|> € L'(), then we get

D, (x,t, upn)Vuy, > —(/8/8_52 + ,6’f—1> (]VUM) - C, — F,

where F is a fixed L'-function. Using this last inequality and (Hsz), we obtain

Zn(x, t, Uy, Vg )V, > (6 - ﬁﬂ—i2 — 3 f_ 1) (]Vuno - F

52
> Gragen (V) -7

Thus, from [18], the approximate problem (3.7)—(3.10) has at least one weak
solution u, € Wy Ly(Qr).

Step 2: A priori estimates. We prove some results which will be used
later.

Proposition 3.4. Suppose that assumptions (C1)—(Cg) and (Hy)—(Hs) hold
true and let (uy)n be a solution of the approximate problem (3.7)—(3.10). Then,
for all k > 0, there exists a constant Cy, not depending on n, such that

1Tk (wn) g 1y oy < Ci (3.11)

and
klim meas {(z,t) € Qr : |un| > k} = 0. (3.12)
—00

Proof. First, by (C1)—(Cs3), there exists vy € Ky N L®(Q7) N Wol’zE\p(QT).
Testing the approximate problem (3.7)—(3.10) by v = u,, — Tk (u, — vp), one has
for every 7 € (0,7),

<aautn, (up — Uo)> + / a(x,t, up, Vn) VI (uy — vo) de dt
QT T

+ / D, (2, t, up)VTk(uy — vo) de dt = / pn Ty (up — vo)dedt.  (3.13)

T

It follows that

/QTVIC( —vp)( dm+< 1;07 0)>QT

a(x,t, Ti(un), VI (un)) VI (un — o)) dz dt

T

D, (z,t, up)VTg(uy — vg)) da dt

T

+

+

S~
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§/Q ,unTk(un—vo))dacdt—i—/gfk(uno—UO(O))dx.

We have
Th(tn — v0)(1) > 0,
/ T (1o — 1(0)) d < / k| (o — 1(0)) | da < KCh,
Q Q

Ovg

i — <

< 5 , T (u, U0)>QT < kCy,

/ pn T (un — vo) dz dt < k||p|lpr gy < kCs.

T

Seeing that @, (z, t, u, ) VT (uy) is different from zero only on the set {|u,| < k},
where Ty (uy,) = uy, we have

/ a(x, t, un, Vun) VT (uy, — vo) dx dt

T

<[ [, T oo ()] [Vt i
{lun—wvo| <k}
+ / ‘(I)(CC, t, Tk+Hv0||oo (un))vao‘ dx dt + kCy. (3.14)
{lun—vo| <k}

From (Hy4) and then Young’s inequality for an arbitrary 5 > 0 (the constant of

coercivity), using the convexity of ¥ with % < 1, we have

/ a(z,t, U, Vun)VTi(u, —vo) dz dt

T 2(8+2) . 5
< /{|un—vo§k} T(W(:L‘,t) + U (\I/(|Tk+||vo||oo(un)|)))m|vun|dxdt

i /{ |<k} (7(1‘, b+ ﬁ_l(\puTkHIvollw(“n)|))) |Vvo| da dt + kCy
Up—vg| <

s
23+2) /{|unvo<k} V(| Vuy|) dx dt 4 Cs(k, 8) (3.15)

since v € Eg(Q1), (Vvo) € (Ly(Q))N. Furthermore, we can write

/ a(z,t, up, Vuy)Vu, dzdt
{lun—vo|<k}

1
< P a(x,t, un,Vun)ﬂ;va dx dt

B+1Jq,
LB

W/ﬂunvosmwyWndedNOﬁ(kﬁf (3.16)

Use now (Hz) to evaluate the second term in (3.16),

1
i a(z,t, uy, Vun)ﬂino dx dt
B4 1 J{jun—vo|<k} B
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SL / a(x, t, up, Vuy)Vu, dzdt
B 1\ S Jun—vol <k}

—/ a (x,t,un, WVU()) (Vun — WVU()) dedt)]. (3.17)
{Jun—vo| <k} B B

Hence, (3.16) becomes

=)
1—— a(x,t, Un, Vup)Vu, drdt
( B+1) Jjun—vol<h) (b tn, Vitn)

S/ a (x,t, un,BHva)‘ MVvo dx dt
{Jun—vo| <k} B B
—i—/ a (m,t,un, MVUO) ‘Vun‘ dx dt
{lun—vol <k} p

8
MRS

/ U (|Vuy|) dedt + C7(k, 8).  (3.18)
{lun—vo|<k}

Using again Young’s inequality as in (3.16) for the third term of (3.18) and using
(Hy), we get

<1—6)/ a(x,t, up, Vuy)Vuy, dzdt
B+ 1) J{jun—vol<k}
=1
< U (|Vuyl|) dxdt
2(8 4 2) J{jun—vo|<k} (IVun)

B
" 2(8+2) /{un—vo|<k’} H(Vual) dwdt + Co(k, 5). - (3.19)

Thanks to (Hg), it follows that

g
<5(1 - m) — M) /{un—v0|<k} U (|Vuy|) dzdt < Cy(k, B). (3.20)

Since (B(l - Ly i) = % — % > 0, we have

/ U(|Vuy|) dzdt < C(k, B). (3.21)
{lun—vo[<k}
Finally, since {|uy| <k} C {|up, —vo| < k + [Jvo|/oo }, One has

/ \IJ(|VTk(un)|)dxdt§/ U(|Vuy|) dz dt
Qr {Jun|<k}

g/ U(|Vuuy|) dedt < C(k, B). (3.22)
un—vo| <k}

To prove (3.12), from (3.22), we have

/Q U (|VTi(un)|)) dodt < C(k, B).
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If C(k,8) < 1, by Poincaré’s inequality, there exists A > 0 and ¢ such that

/ W (8| Ty (un)]) doe dt < /\/ U (|VTy(un)|) dz dt,

T T

then for all n, k > 0, we obtain

meas {|up| >k} = U (0|T (un)|) da dt

-
[« N
—

k) J{jun| >k}

1
<
= U(5k) /QT\IJ(‘STk(Un)DdJ:dt
A
<2
~ U(0k) /QT‘I’(WTk(un)I)d:cdt
A
<2 | |
_\I/(Sk)_>0 as k — oo (3.23)

IfC(k,5) > 1and % < 1, using P << ¥ appearing in assumption (H; ), which

implies that for all € > 0, there exists a constant d. such that P(t) < W(et) +
d.. Using again Poincaré’s inequality, we obtain for € < ﬁ < 1 and for all
n, k>0,
1
meas { |u,| >k :/ P(6|Ty(uyp)|) dx dt
theal > K} P(0k) J{jun >k} ( )
1

< 557 /QT (W (e8| T (un)l) +de) da dt

1 1
- P(5k) (C(k,[i’) /QT‘I’((S\Tk(un)\) da:dt—i—de\QT\)

A 1
= P(6k) <C(l<:,ﬁ)/ ‘I’(|VTk(un)\)dxdt+de\QT\>

AL+djor)
= " P(ok)

The proposition is proved. ]

—0 ask — oo. (3.24)

Lemma 3.5. Let uy, be a solution of the approxzimate problem (3.7)—(3.10).
Then:

(i) up—u ae inQr,
(ii) {a(,t, T(un), VIk(un))}n is bounded in (Lg(Qr))Y.

Proof. To prove (i), we proceed as in [27,30]. Taking a C?(R) nondecreasing
function I'y such that
k
Ty (s) = s for [s| < 3
k for |s| >k
and multiplying the approximate problem (3.7)—(3.10) by I'}.(uy), we obtain

Ok (up)
ot

— div (a(:r, t, U, Vun)ﬂg(un)> + a(x, t, up, Vup)Th(un) Vuy,
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Remarking that U~ o U is an increasing function, v € Eg(Qr), supp(T}),
supp(I'y) C [—k, k], by using Young’s inequality, we get

’/ 0@ (2, t, up) dwdt’
T
——1
< IT%|| L (/Q \fy(x,t)|dxdt+/ U (U(| Tk (un)])) dardt)
T T

< ([Tl </Q (\I’(|fy(x,t)|)+\11(1))dxdt+/ T (W (k) dxdt) <Cin

T

and (here, we use also (3.22))

’/ 0@, (2, t, up) Vu, dz dt‘

T

< Iy ( /Q st dedi+ [ \P*(wm(un)r>>rvn<un>|dxdt)
< Iy (/Q (¥l ) + (1)) o+ [ wh) d

T

+/ \IJ(NTk(un)Dd:cdt) < Cyp, (3.25)

where C j, and Cy are two positive constants independent of n. Then all above
implies that
Ol (up,)
ot

Hence, by Lemma 2.10 and using the same techniques as in [29], we can deduce
that there exists a measurable function u € L>(0,T; L' (£2)) such that

is bounded in LY(Q7) + W Ly (Qr). (3.26)

Uy — u  a.e. in Qp,
and for every k > 0,
Ty (up) — Ti(u) weakly in W Ly (Qr) for o(IlLy, I Eg) (3.27)

and
Ti(un) = Tj(u) strongly in L'(Qr) and a.e. in Qr. (3.28)

For (ii), we use the Banach-Steinhaus theorem. Let ¢ € (Ey(Q7))" be an
arbitrary function. From (Hsz), we can write

(a(w,t,Tk(un), VTi(up)) — a(z, t, T (uy), gb)) (VTk(un) - d)) >0

which gives

/ a(x,t, Ti(un), VI (up))¢ dx dt
Qr
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S/ a(x,t, Ti(un), VT (un)) VT (uy) d dt
—i—/ a(z,t, Ti(un), ¢) (¢ — VTi(uy)) de dt. (3.29)

Let us denote by J; and Jo the first and the second integrals in the right-hand
side of (3.29) so that

Jl = / a(x,t,Tk(un),VTk(un))VTk(un) dx dt.

Going back to (3.19), it is seen that

(1 — ﬁ) / a(z,t, up, Vuy)Vu, drdt
B+1) J{jun—vol<k}
o)
< — U (|Vuyl|) dxdt
2(8+2) J{jun—vo|<k} (IVun)

B
P U (|Vuy,|) de d k, B).
Jr2(B+2) /{un vo| <k} (IVunl) dodt + Cs(k, 5)

By (3.22), there exists a positive constant Cj, independent of n such that
J1 < Cy. (3.30)

Now we estimate the integral Jo. To this end, remark that
Jo = / o, T, 8)(6 — VT () d dit
T

< / (ala,t, Te(wn), &)|6] da dt + / (a(as, Ti(un), &)V T )| der .

T

In addition, let n be large enough. From (H;) and the convexity of ¥, we get

/ \Ij<|a(x,t,Tk(un)’¢)’> dz dt

n
. / \P(c(c@:,t)+k1w—1(P(k2|Tk<un)\)+\P—1(\If<k3|¢>|>>)> e dt
T n
C @(( ))dxdt+gn1/ T(T (P (ko T (un)))) de dt
< / U(ks|g)))) da dt
— Ck1 ¢
5 [ Wty dear+ <2 QTP(ka)d:cdHn/QTxp(kgm)da:dt.

Since ¢ € (Ew(Qr))N, c(z,t) € Eg(Qr), we deduce that {a(z,t, Ty(un),¢)} is
bounded in (Lg(Qr))" and we have that {VT(uy)} is bounded in (Ly(Qr))Y
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Consequently, Jo < C},, where Cj, is a positive constant not depending on n.
And then we obtain

/ a(z, Ty (un), VT (up))pdr dt < Cj, +Cy, for all ¢ € (By(Qr))".

T

Finally, {a(z,t, T (un), VIk(un))}n is bounded in (Lg(Qr))Y. O

Step 3: Almost everywhere convergence of the gradients. In this
step, most parts of the proof of the proposition below are the same as in [27,31].
Thus we give only those which are different.

Proposition 3.6. Let u, be a solution of the approximate problem (3.7)—
(3.10). Then, for all k > 0, we have (for a subsequence still denoted by u, ), as
n — 400!

(i) Vu, = Vu a.e. in Qr;
(1) a(x,t, Ti(un), VIg(up)) — alz, t, Tp(u), VT (u)) weakly in (LW(QT))N;
(iii) U(|VTi(un)|) — (| VTE(u)]) strongly in LY(Qr).

Proof. Let 6; € ©(Qr) be a sequence such that §; — u in W&’JCL\I,(QT) for the
modular convergence and let 1; € () be a sequence which converges strongly
to up in L1(€).

Put Zf,j = Ty (0;);+e~" Ty (1;), where Ty (6;); is the mollification with respect
to time of Ty (6;). Notice that ijj is a smooth function having the following
properties:

aZz!,j l l l
ot = 1(Tx(0;) — Zi,j)7 Zi,j(o) = Ty(¢i), and ‘Zi,j| <k,
Zf’j — Tr(u); 4+ e " Tp(y;) in Wol"qu,(QT) modularly as j — oo,

Ti(u); + e U Ty (1) = Ti(u) in W&’qu,(QT) modularly as | — oo.

Let h,, be the function defined on R for any m > k by

1 if |r] <m
h(r) =< —|r|+m+1 ifm<|r|<m+1.
0 if |[r| >m+1
Put E, = {(z,t) € Qr : m < |uy| < m + 1} and define Lpifjm = (Ti(un) —

Zij)hm(un). Testing the approximate problem (3.7)—(3.10) by the test function

1,0
Un = Py 5y WE get
Oup 1 I
P i ) F a(x,t, up, Vup)(VIg(un) — VZ; i) hpm(uy) do dt
Bt 5Js QT )]

+/ a(x,t, up, Vup)(Tk(un) — Zf’j)Vunh'm(un) dx dt
Qr
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—I—/ O (z,t, un) Vunhl, (un) (Tr(un) — Zl{j)da}dt

+ / Dy (2,1, tn) Vg ho () (Vi (un) — VZL ;) da dt
T

Li
:/ ,Un%;fj,m dz dt.
Qr

For simplicity, we will denote by €(n, j,[,4) and €(n, j,1) any quantities such that

lim lim lim lim e(n,j,0,i) =0, lim lm lim €(n,j1)=0.
i—+400 [—+00 j—+00 Nn—+00 l—4-00 j—+00 n—>+00

We have the following lemma which can be found in [27,31].

Li
Lemma 3.7 (cf. [31]). Let o, = (Tp(un) — Z}
k > 0, we have

Ouy, l,i .oy
<8tﬂ (pn,j,m> Z 6(n737l72)7
where (-,-) denotes the duality pairing between L'(Qr) + W1 Lg(Qr) and
L(Qr) N Wy " Ly (Qr).

To complete the proof of Proposition 3.6, we establish the results below. For
any fixed k > 0, we have:

(rl)/ Mnipl,{fj,m dx dt = e(n, j,1);
Qr

Yhm(uy). Then, for any

(r2)/ D, (x, t, wp ) Vil (un) (VT (uy) — VZfJ-) dx dt = e(n, j,1);

T

(r3)/ D (z,t, un) Vunhl, (un) (Te (un) — Zij) dx dt = €(n, j,1);

(r4)/ a(x, t, un, Vup ) (Tx(un) — Zij)Vunh;n(un) dxdt < e(n,j,l,m);
T

(rs)/ [a(z, t, Ti(un), VTi(un)) — a(a, t, T (un), VT (u)Xs)]
! X[VTi(up) — VT (u)xs) dedt < e(n,j,l,m,s).

The proofs of (r1) and (r3)—(rs) are the same as in [27,30,31]. To prove (rs),
to this end, for n > m + 1, we have

P (2, t, up ) hin(un) = (2, t, Trn1(un)) hn (Tim41(un)) ae in Qr.

Put

- |q)<x7t7Tm+1(un)) _(I)($7t7Tm+1(u))‘
P,=Y :
n
Since @ is continuous with respect to its third argument and u, — u a.e in Qr,
then ®(z,t, Tyt1(un)) = ®(2,t, Tint1(u)) a.e in  as n goes to infinity, besides
U(0) =0, it follows that

P, —0 aeinQasn— oo. (3.31)



Solvability of Strongly Nonlinear Obstacle Parabolic Problems 481

Using now the convexity of ¥ and (Hy), for every n > 0 and n > m + 1, we have

P —T <|<I>(a:,t,Tm+1(Un))n— P(z, thm+1(u))|>
2y(x,t) + U (U (| Trt1 (un)]))

+ \Iﬂ(\lf(rTmH(u)r)))

< %@ (f}h(w,t}]) - %@ <;1]\Ill(\11(m + 1))> : (3.32)

We put Cp(z,t) = %@ (4 |y (z, t)\) + %@ (%@‘%‘I’(m + 1))) Since v € Eg(Qr),
we have Cj, € LY (Qr),
get

Then, by Lebesgue’s dominated convergence theorem, we

lim P, dxdt = / lim P, dxdt=0.
n—00 Qr n—00

This implies that {®(x,t, Tynt1(un))} converges modularly to ®(z,t, Tpt1(w))
as n — oo in (Lg(Q7))N. Moreover, ®(z,t, Tini1(un)), ®(x,t, Tyt1(u)) lie in
(Eg(Qr))YN. Indeed, from (Hy), for every n > 0, we have

/ T <!<I>(fc7t7Tm+1(“”)>‘> dz dt

Ui

/1 1—
S/ W(h(m,t)\—i—\ll_( (I Tt (un))) )dmdt
Qr n n
_ /12 12—
U(=-= O+ =0 v 1)) ) dx dt
/T (277\7(3:, I+ 5,0 (Vm+ ))) v

/QT 13 <f]|7(x,t)|> da:dt—i—/QT %@ <127‘I’1(\I/(m—|— 1))> o di < o

since v € FEg(Qr) and Q is bounded, the same for ®(x,t,T5,41(u)). Due to
Lemma 2.3, we can deduce that ®(z,t, Try1(uy)) — @(z,t, Tint1(u)) strongly in
(Eg(Qr))YN. Furthermore, VT (uy,) — VTi(u) weakly in (Ly(Q7))Y as n goes
to infinity and it follows that

IN

IN
()

lim D (2, t, up ) (un) (VT (un) — Vnyj) dx dt

n—o0 QT

= / (2, t, w) o (u) (VT (w) — VZf’j) dx dt.

T

Using the modular convergence of Zé,j as j — oo and then [ — oo, we get (rs).
As a consequence of Lemma 3.1, the results of Proposition 3.6 follow. O
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Step 4: Passing to the limit. Now we will pass to the limit. Let
v € WH Ly (Qr) N L®(Qr) such that & € W12 Ly(Qr) + LY(Qr). From
[17, Lemma 5, Theorem 3], there exists a prolongation v, = v on Qr, v, €
WhLy(Q x R)N LY (Q x R) N L=(Q x R) and

% e W Lg(Q x R) + LY(Q x R).

There also exists a sequence (w;) C (2 x R) such that

w; — vy in WH*Ly(Q x R) and ég;j - 88”; in W Lo (Q x R) + LY(Q x R)

for the modular convergence, and ||wj/oo,0r < (N + 2)||V]|00,Qp-
Testing the approximate problem (3.7)—(3.10) by v = u, — Ti(un — wj)X(0,7)
with 7 € [0,T7, we get

< ouy,

W,Tk(un — wj)>Q —|—/ a(z,t, Ty, (un), VI, (un)) VI (un — wj) da dt

—|—/ @(m,t,Tko(un))VTk(un—wj)da:dt:/ T (wn — wj) dx dt, (3.33)

.

where kg = k + (N + 2)||v||00,@,- This implies, with
Epj = Qr N{jun —wj <k},

that

Ouy,
<u’ T (upn — wj)> + / a(z,t, Ty (un), VI, (un))Vuy, d dt
6t QT En,j

a(z,t, Ty (un), VI, (un))Vw; dz dt

n,j

O (x,t, Ty (un)) VT (un — wj) da dt

_|._
S5

T

pn Ty (U, — wj) dac dt. (3.34)

1
S—

T

Our aim here is to pass to the limit in each term in (3.34). Let us start by
the terms of the left-hand side.
The limit of the first term <88Lt”, T (up — w]-)>Q is as follows:

ou ou Oow;
n o I — n o_ J Ti(uy, — w;
<8t’ k(U w”)>QT <at ot el w”)>
Ow;
+<],Tk(un—wj)>
ot o

~ O
:/Tk(un—wj)d$+<;],Tk(un—wj)>
Q Q-

Q-
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- /ka(u(m — w;(0)) d. (3.35)
Since u, — u in C([0, 7], L*(£2)) (see [17]), by Lebesgue’s theorem, we have
/ Tio (tn, — wj) dx — / Tio(u — wj)dx as n — oo.
Q Q

Passing to the limit in (3.35), we get

n—o0

. ou ~ Ow;;
lim <87tn, Tk(un — wj)>QT = /QTk(u - Wj) dx + <atJ,Tk(u — w]')>QT
- /ka(uo _ w;(0)) da.
For the second and the third terms of (3.34), we have from (ii) of Proposition 3.6,

a(@,t, Try (un), Vg (un)) — a(w,t, Thy(u), Vg, (v))  weakly in (Lg(Qr))Y.

Thus Fatou’s lemma allows us to get

lim inf </ a(x,t, Tiy (un), VI, (un))Vuy, dz dt
En,;

n—oo

_/ a(z,t, Ty, (un), VI, (un))Vw; d dt)
En;

> / a(x,t, Ty, (u), VI, (v)) Vudzr dt
E

n,j

- /E o, t, Ty (1), VT () Veo; d d. (3.36)

n,j

Concerning the fourth term of the left-hand side of (3.34), we proceed as in (3.32)
to get
O(x,t, Ty, (un)) = ®(z,t, Tk (u)) as n — oo.

And since
VT (uy —wj) = VIg(u—w;) in Ly(Qr) as n — oo,

we can deduce

/ O(x,t, Ty (un)) VT (uy — wj) dadt — O(x,t, Tiy (u)) VT (u — wj) da dt.
T QT

Finally, we turn to the right-hand side of (3.34). Since
Tp(up —wj) = Ti(u —w;)  weakly™ in L as n — oo,

we obtain

pn T (wn, — wj) do dt — pTy (v — wj) da dt.
Qr Qr
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Now we are ready to pass to the limit as n — oo in each term of (3.34) to conclude
that

/fk(u—wj dx—|—<awj Tk (u wj)>
Q Q-

/ a(z,t,u, Vu)VTi(u — wj) dr dt

T

+
O

_|_

/ O(z,t,u) VI (uy — wj) dedt
Passing to the limit in (3.37) as j — oo, we obtain

/Tku—v ) dx + u—v>
0 Q-

/ a(x,t,u, Vu)VTi(u —v) dx dt
Qr

+/ O(x,t,u)VTy(u, —v)dedt

O

Tie(ug — w;(0)) dx + / I (v — wj) d dt. (3.37)

o)

—+

/Tk( o—v(0 ))da:—l—/ Ty (u — v) de dt. (3.38)
Q Qr

It remains to show that u satisfies the initial condition of (3.7)-(3.10). To do
this, recall that ‘%” is bounded in L'(Qr) + W Lg(Qr). As a consequence,
Aubin’s type Lemma (cf [32] , Corollary 4 and Lemma 2.6 imply that u,, lies in
a compact set of C°([0,T]; L1(Q2)). It follows that u,(z,t = 0) = ug, converges
to u(x,t = 0) strongly in L!(£2). Thus we conclude that

u(z,t =0) =up(z) in Q.

The proof of the main result is completed. ]
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Po3B’s3HicTh CMIBHO HEJHINHUX ITapaboiYHnuX
mpobJjieM 3 Mepeniko/IaMi B HEOTHOPIJHUX ITPOCTOPAX
Opanuya—CoboJieBa

Mohamed Bourahma, Jaouad Bennouna, Badr El Haji, and Abdelmoujib
Benkirane

V wiit poboTi MU JOBOIUMO iCHYBaHHS PO3B’sI3KIiB sl HEJIHIAHOT OHO-
6iuHOl 33721, OB’ A3aHOI 3 MAPAOOTIYHIM PIBHIHHSIM

% —diva(z,t,u, Vu) —div®(z,t,u) = p in Qpr =Q x (0,7),
Jie d4jIeH HUXKIOro mopsiiky P 3a/10BosIbHSIE y3arajbHEHY NPUPOIHY YMOBY
3pocTaHHs, onucany mesHo dyukiiero Opanyua ¥, i QyHKIS (1 € iIHTEerpOoB-
HUAM YJI€HOM BUTOKY. 2KOmHUX OOMeXKeHb 3POCTaHHs He HAKJIAJAETHCH aHi
na W, ani na fioro crpsizxene V. OTike, PO3B’A30K € IPUPOJHUM y IIHOMY
KOHTEKCTI.

Kimrogosi cioBa: omnobivna napabosidaa 3a1a4a, HepedieKCuBHIN Tpo-
crip Opimya, TpUpOHE 3POCTAHHS
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