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Existence and Asymptotic Behavior of
Beam-Equation Solutions with Strong
Damping and p(z)-Biharmonic Operator
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In this paper, we consider a nonlinear beam equation with a strong damp-
ing and the p(z)-biharmonic operator. The exponent p(-) of nonlinearity is
a given function satisfying some condition to be specified. Applying Faedo—
Galerkin’s method, the existence of weak solutions is proved. Using Nakao’s
lemma, the asymptotic behavior of weak solutions is established with mild
assumptions on the variable exponent p(-). We show the asymptotic behav-
ior of the weak solution is exponentially and algebraically depending on the
variable exponent. This work improves and extends many other results in
the literature.
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1. Introduction

Let  be a bounded domain in RY (N > 3) with a smooth boundary 9. We
consider the following problem

Uty + Ag(x)u — Aug = f(x,t,up) in Qr,
u=0, Au=0 on 0Qr, (1.1)
U(l‘,O) = Uo(fll), Ut($,0) = ’LLl(CL') in €2,

where AQ(I) is the fourth-order operator called the p(x)-biharmonic operator
which is defined by

A2 u=A (\Auv’(w)*%u) .

We introduce, for 0 < T < oo, Q7 = Q2 x (0,7T), 0Qr = 9 x (0,T), and the
functions p(-), f(-), uo(-), and wu; () that satisfy the following conditions.
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Let the variable exponent p : Q — (1, 00) satisfy the log-Holder continuity
condition

_c
~ loglz —y|
where ¢ > 0 and 0 < 6 < 1. The function f € C(Q2 x [0,00) x R) satisfies the

following conditions with two positive constants ¢; and cg for all (z,t,s) € Q x
[0,00) x R:

for all z,y € Q with |z —y| < 4, (1.2)

f (@t s)s > —er]s]"), L3)
| (2.t,5)] < ea |77, '
where ¢ : Q — (1, 00) is log-Holder continuous.
The functions p(-) and ¢(-) satisfy, for all z € Q,
N
1<p <px)<pt< o> (1.4)
- Np(x)
1 < <gt < — 1.
<q <q(@)<q <N 2() (1.5)
where
p~ = essinf p(x), p" = esssupp(x),
e zeQ
q~ = essinf g(x), q" = esssupq(x).
z€Q zeQ
Furthermore, we consider that
ug € WHPE (Q) N Wy () (1.6)
and
up € L2(Q). (1.7)

Partial differential equations with variable exponents have many applications
in mathematical physics, for example, problems of filtration processes in non-
homogeneous porous media [8], wave equations [3, 4, 6], nonlinear beam equa-
tions [9], restoration and image processing [11,13,32], flow of electro-rheological or
thermo-rheological fluids [1,6,7,14,31], plate equations with viscoelasticity, elas-
ticity term or viscoelasticity term [2,4,5,15]. These equations are associated with
operators called p-Laplacian, p(x)-Laplacian, p(x,t)-Laplacian, p-biharmonic or
p(z)-biharmonic.

To motivate our work, let us mention some results. In recent years, there has
been a growing interest in studying elliptic problems involving a p-biharmonic
operator of the type

(1.8)

2 .
Aju = f(z,u) in Q,
u=0, Au=0 on 01,

where Ag is the p-biharmonic operator defined by A%u = A(|AuP72Au). For
example, Benedikt and Drabek [10] studied problem (1.8), taking f(z,u) =
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AluP~2u, and provided estimates from below and from above for the principal
eigenvalue of the p-biharmonic operator on a bounded domain with the Navier
boundary conditions. They also applied these estimates for studying the asymp-
totic behavior of the principal eigenvalue when p — +o0o. Liu, Chen, and Al-
muaalemi [26] studied problem (1.8) with f(z,u) = g(z,u) — V(z)lu[P~2u. For
V(z) and g(x, u) satisfying specific conditions. They proved that the problem has
Neharitype ground state solutions. Also, Bueno, Paes-Leme, and Rodrigues [12]
studied problem (1.8) for f(z,u) = Ag(z)|u|?%u + |u|P" ~2u, where p and ¢ are
such that 1 < p < oo, N > 2p, 1 < ¢ < p, and p* = N]\_fgp. They proved the
existence of infinitely many solutions for the problem in a bounded and smooth
domain €2 with concave-convex nonlinearities depending on the parameter A and
a positive continuous function g : Q — R. They simultaneously handled of the
critical-case problems with both Navier and Dirichlet boundary conditions by
applying the Ljusternik—Schnirelmann method. The multiplicity of solutions is
obtained when A is small enough. In the case of Navier boundary conditions, all
solutions are positive and a regularity result is proved.

A natural generalization of problem (1.8) is obtained by replacing the classic
p-biharmonic by the operator p(z)-biharmonic, that is,

(1.9)
u=0, Au=0, on JQ.

{A?j(x)u = f(x,u), in Q,
In this regard, Ge, Zhou, and Wu [17] studied problem (1.9) with the function
f(z,u) = AV (x)|u|9®) 2y, where X is a positive real number, p,q : Q@ — (1, +00)
are continuous functions, and V is an indefinite weight function. Considering
different situations concerning the growth rates involved in the quoted problem,
they proved the existence of a continuous family of eigenvalues. The proofs of the
main results are based on the mountain pass lemma and Ekeland’s variational
principle. Li and Tang [22] studied problem (1.9) with the Navier boundary
condition and for f(z,u) = AulP® =2y + g(z,u), where A < 0 and g(z,u) is a
Carathéodory function. Using the mountain pass theorem, Fountain theorem,
local linking theorem and symmetric mountain pass theorem, they established
the existence of at least one solution and infinitely many solutions to this prob-
lem. Kong, in [20], considered problem (1.9), where f(z,u) = \b(x)|u|"®) =2y —
Ae(z)|ulP®) =2y — a(x)|uP®) =2y, with A > 0 being a parameter, and a, b, ¢, 5,7 €
C(Q) being nonnegative functions. He proved the existence of weak solutions to
the problem associated with the Navier boundary conditions.
For parabolic problems involving the p-biharmonic operator, we cite the paper
of Liu and Guo [24], where the following initial boundary-value problem for a
fourth-order degenerate parabolic equation was studied:

ug + Af)u + AMulP~%u =0,

where A > 0 and p > 2. Under some assumptions on the initial value, the ex-
istence of weak solutions was proved by using the discrete-time method. The
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asymptotic behavior and the finite speed of propagation of perturbations of so-
lutions were also discussed. Hao and Zhou in [19] investigated a class of p-
biharmonic parabolic equation with nonlocal source in a bounded domain defined
by
u + Agu = |ul? — 1 / |u|?dx,
€2 Jo

where max{1, 1\27714} < p<2andqg > 0. The results on blow up, extinction and
non-extinction of the solutions were demonstrated. Liu and Li [25] discussed the
parabolic p-biharmonic equation with the logarithmic nonlinearity given by

up + Agu = Mu|" 2ulog (Jul),

where A > 0, p > ¢ > % and p > % Basing on the difference and variation
methods, they proved the existence of weak solutions for the initial boundary
problem. In addition, they discussed the long-time behavior and the propagation
of perturbations of solutions.

For parabolic problems involving the p(z)-biharmonic operator, we mention
the work by Liu [27], where the initial-boundary-value problem for

up + Ai(z)u = |u|1®)72y,

was studied. He established the local existence of weak solutions and derived the
finite-time blowup of solutions with nonpositive initial energy.

In this paper, our objective is to discuss the existence and asymptotic behavior
of weak solutions for nonlinear hyperbolic problem (1.1) with strong damping
Auy and p(z)-biharmonic operator. Our proofs are based on Faedo-Galerkin’s
method, Nakao’s lemma, results of functional analysis, and the Lebesgue and
Sobolev spaces with variable exponents. To the best of our knowledge, this is
the first work dealing with problem (1.1) related to the existence and asymptotic
behavior of beam equation solutions with strong damping and p(z)-biharmonic
operator.

The paper is organized as follows. In Section 2, we introduce the functional
spaces of Lebesgue and Sobolev with variable exponents and present a brief de-
scription of their main properties. In Section 3, we prove the existence of weak
solutions for problem (1.1). In Section 4, we demonstrate the asymptotic be-
havior of weak solutions for problem (1.1). Finally, in Section 5, we give the
conclusions of the paper.

2. Preliminaries

In this section, we present some results on the variable exponents in the
Lebesgue and Sobolev spaces, LP()(Q) and W™P()(Q), respectively (see [6, 14]).

Let p: Q — (1,00) be a measurable function, where € is a domain of RY. We
define the variable-exponent Lebesgue space by

£PO(Q) = {u : Q — R |u is mensurable in Q and p(u) = / |u(z)[P@) da < oo},
)
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equipped with the following Luxemburg-type norm

lullpy = lull ooy = inf {2 >0 p () <1},

LP0)(Q) is a Banach space (see [14]). If pt is finite, then the variable exponent
p(z) is bounded and, furthermore, we have the relations:

min ull? s 1l g § < p(00) < mac {Jul ) g Il b (21)
The above inequalities (2.1) can be represented by
1 1 1 1
min { p(u)?~, p(w) 77 } < [[ull sy < max {p(w)>, p(w)> }. (22)

Theorem 2.1 ([6,14]). If p(x) and q(x) are variable exponents such that
p(z) > q(x) for a.e. = in Q, with Q being bounded, then LPO)(Q) — LIV (Q).

Theorem 2.2 (Holder’s inequality [6]). Suppose that u € LPO(Q), v €
LPO(Q), 1 < p(x) < oo and le) + ﬁ =1, then

/| ‘ <<1 1)”” sz”” Q
uv| dx + U . v /.
> — ( ,)7 Lr()(Q) P () (Q)

< 2ull ooy @y lloll Ly - (2.3)

The variable-exponent Sobolev space Wm’p(')(ﬂ) is defined by

Wrmrt) () = {u e 1’V (Q) ’v@ (ya\ <m= D% € Lp(.)(Q))} )

where m is a non-negative integer and D is the derivative in the sense of distri-
butions. The variable-exponent Sobolev space is a Banach space with respect to
the norm

[l py = lelmeor@y = D 1Dl 1acrqy

laf<m

We denote by W(?”p(')(Q) the closure of C§°(Q) in W™P()(Q), where C§°(Q) is
the space of infinitely differentiable functions with a compact support contained
in 2. Throughout this paper, we denote by ¢; various positive constants that
may be different at different occurrences.

If X is a Banach space, then we denote by LP(0,7; X), with 1 < p < oo, the
Banach space of measurable vector valued functions u : (0,7) — X such that
llu(t)||x € LP(0,T), together with the norms

1
T D
- ( [ o dt) S 1<p<oc,
||u||Lp(o7T;X) =esssup [lu(t)[|x, p=o0.
0<t<T

In addition, by C*(0, T; X), we denote the space of continuously differentiable
functions on [0, 7] with values in X.
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Theorem 2.3 ([14]). Let Q C RY be a bounded domain with a smooth bound-
ary. Suppose p : Q2 — (1,00) is a bounded function and log-Hélder continuous. If
q:9Q — (1,00), with ¢* < N, is a bounded and measurable function with

q(x)<p*:]%, x € Q,

then there is a continuous embedding W?P()(Q) — L10)(Q).

Theorem 2.4 ([33]). Let @ C RY be a bounded domain with a smooth bound-
ary. Suppose p : Q — (1,00) is a bounded function and log-Hélder continuous in

Q. Then there is a constant ¢ such that for each u € Wg’p(')(Q) we have

il 2y < 1000 oy -

Theorem 2.5 ([6]). Let Q C RY be a bounded domain and let {w;}2°, be an
orthonormal base in L%(Q). Then, for any e > 0, there is a constant N. > 0 such

that
Ne

1
2\ 2
< ; .
el 2@y < <§ ([ ) ) +ellully 10,

i=1
for allu e Wol’p(')(Q), where 2 < p < o0.

Next, we state Nakao’s lemma, the proof of which can be found in [28]. With
the help of this lemma, we demonstrate the asymptotic behavior of weak solutions
for problem (1.1).

Lemma 2.6 (Nakao [28]). Let ¥ : (0,00) — R be a bounded nonnegative
function. If there are two constants o > 0 and 5 > 0 such that

sup U (s) <a(U(t)-T(t+1)), t>0,
t<s<t+1

then there are positive constants C and v such that
{\I/ (t) < Ce™ if 3=0

, t>0
V() <CE+1)F ifB>0

|

3. Existence of weak solutions

In this section, we prove the existence of weak solutions for problem (1.1),
where the functions p, f, up and u; satisfy the conditions given by (1.2)—(1.7).

Definition 3.1. The scalar function v : Q7 — R is a weak solution for
problem (1.1) if u satisfies simultaneously

we £ (0,7 wg* @) ne (0.1 w32 (@)

S e 1= (.12 @) n 2 (0.7:W0R (@) 110 (@r).
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and

ou(x,0) du dp / _
- ’ dzx — dz dt AulP® =2 AuA @ dx dt
/Q or Plw0)de oy Ot Ot + T| ul uapar

ou ou
+/TV(at>Vg0d:Edt /Tf<;v,t,8t>gpd1:dt

for all ¢ € C1(0,T;C°(Q)) with ¢(z,T) = 0.

Theorem 3.2. Let conditions (1.2), (1.4)—(1.7) hold, and let a function f €
C(2 x [0,00) x R) satisfy the conditions

f (l’,t, 8) s> —63’3"1(15) + cy,
1 (3.1)
|f (z,t,5)| < c5 (|s|‘1(”})— + 1) :

with three positive constants cs,cq and c5 for all (z,t,s) € Q x [0,00) X R, where
q:Q — (1,00) is log-Hélder continuous. Then problem (1.1) has a weak solution
in the sense of Definition 3.1.

Proof. We apply Faedo—Galerkin’s method to problem (1.1) and show the
existence of weak solutions. For that, as stated in [16,21], we choose a sequence

i
{w; 352, € CF°(Q) such that C§°(Q) € U2, Va @ and {w;}32, is a Hilbertian
base in L?(2), where V;, = (w1, ws, ..., wn).

Due to the fact that [J°°; V;, is dense in C?(€2), it is well known that if ug €

w2r0(Q) N Wol’Q(Q) and u; € L?(€), then there are v, ¢, € Vj, such that for
n — 0o,

P = ug  in W2PO(Q) N W2 (Q), (32)
dn —uy in L3(Q). '
Faedo—Galerkin’s method is used to find a sequence of solutions
)= 1mi(tw;(z) € Vy (3.3)
j=1
to the approximate problem
0%uy, Oun,
A 8u2 vdz +/|Aun\p 2AunAvd:E—|-/QV <<§t> Vudx
—/f a:ta vdr, veV, (3.4)
- Ja ot ’ " ’

Substituting (3.3) in (3.4) and taking v = w;, with 1 < i < n, we obtain

/ Sl (i () () da
et
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(1) Aw; ()

p(z)—2
+/ (an ) Aw, (a )wa ) d

/(an )Vwj(x )sz()d
= / f(x,t,Zn%(t)wﬂx))wi(x) dx,
Q =

where ;. (t) = 87”51( ) and M () = o Z’Zg(t) Defining the projection Py;(t, p,v) :

[0,7] x RN x RV — R as
p(x)—2
Pi (&, p,v / (ZMM )Aw;(z >sz( ) da

+ /Q (;ynj(t)wj(x)) Voos(z) da
_ / f<x,t,zynj(t)wj(x)>wi(x)da:, (3.5)
Q st

where 1 < i < n, and using the fact that Vj, is a Hilbertian base in L?(Q), we get

M1 () + Pay (8,101 (1), m (1)) = 0,

() Aw;(x)

77;;2(1;) + Pro (t7 Tin2 (t)v 77%2(1;)) :Ov (3.6)
T (8) + Pan (0 (£), 01 (1)) = 0.
Problem (3.6) can be rewritten as
1" (t) + P (t,n(t),7' () =0,
{77(0) — Upny 7/(0) = Uiy, (37)
with
1 (2) P (t,mn1(t), mp (1))
1" P, M ’ ;L
n//(t) _ an:(t) P, (t,?](t),?],(t)) _ 2 (t,m 2:(t) M (1))
N () Pon (0 (1), 07 (1))
We define
X(t) =n'(t), 3
Y(t) = (n(t), X(1)), :
Zn(t) = (X(t), —Pu(t,n(t))) - (3.10)
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Thus, problem (3.7) becomes

{Y’(t) = Zn(t,Y (1)), (3.11)

Y (0) = (Uon, Un).

From Carathéodory’s theorem, it is easily seen that the system of nonlinear
ordinary equations in the variable ¢ has a local solution.

Remark 3.3. We have

d [ |Au,[P® up \ |2
/ / > n n
Po(tm,m)n’ > dt/ﬁpm dx + i V{5 )| d=
8un q(x
— — 12
+c3 ot dz C6, (3 )

where cg = ¢4|Q2| > 0.

Proof. Using the projection (3.5), we get

Po(t,n,1')n —/ | Ay P 2AunZAwmmdx

=1

Oouy, Oy —
—|—/ V< 5 >V2wmm dx — /Qf (x,t, 8t> ;wmgi dx.

So, it follows that

Ouy,
Pattont i = [ 180, A (%) o

ouy, ouy, Ouy, \ Ouy,
-l-/QV<at>V( 5 > daz—/gf(a;t, T )md:c (3.13)

By (3.1), we have

duy\ duy, du, |
— t, —d —_— dx — 14
i (e Graeza [|G] wma oy
In addition, notice that
ou | Au, [P
Aty P72 Au, A ") dr = — 7d : 3.15
e (Fe) =& ) See o)
Replacing (3.14) and (3.15) in (3.13), we conclude (3.12). O

Now, returning to problem (3.11), we omit the arguments for simplicity. Com-
posing problem (3.11) with Y, by applying the inner product and using (3.8), (3.9)
and (3.10), we obtain that

Y'Y —n/n=—-P.y. (3.16)
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Applying inequality (3.12) in (3.16), gives

| Ay, [P®) / un \ |2 / Auy |1 ,
Y'Y —d —_— d —_— dr < .
+dt/ (@) T+ . \Y 5 T+c3 o |t x < n'n+cg
: / / 1 /12 1 2
Since 7' < i/ Inl < 5 [0']” + 5 [nl”, we get
d [ |Au,P® Oun \ |2 B, |4)
YV +— | ——d V|— d —_— d
+dt/Q (@) x+/9 ot x+63/ 8t v
‘ ‘ +5 W + ¢.
By (3.9), we have
| A, [P duy \ |° / duy, 1) )
Y'Y ———dx —_— d —_— de <|Y .
+dt/ (@) + ; \Y% o r+c3 o x < Y| +cg
We know that £ 4|Y|2 = Y'Y. Then
|Aun|p Oup 2 / Oup, 1(2)
Y 7(1 — d — dx.
2dt| [+ dt/ LY o e | o .

<|YP*+c. (3.17)

Integrating (3.17) from 0 to ¢, ¢ <T', we obtain

e S

<8t”> da:dt+03//

g/o Y(s)Pds+esT.  (3.18)

a Quy Q(Z’)
Y da dt

By (3.2), un(z,0) converges strongly in W2P(®)(Q) N W01’2(Q). Thus, |Auy(z,0)]
is bounded by a constant, that is,

|Aup(z,0)] < c7. (3.19)

In addition, we have

2
(au”> do dt = Hv (8“”> < cs, (3.20)
ot L*(Qr)
a(a) a(a)
/ / un | ™t = ’ Oun < co. (3.21)
0 Jo Ot || La)(Qy)
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Replacing (3.19), (3.20) and (3.21) in (3.18), and defining ¢19(T") = ¢6T + ¢7 —
cg — c3c9, we have

Aty [P@
2ﬁ/uqa+/| il d</D’]@+qM)

Applying Gronwall’s lemma, one has

p(x
th/ |Y‘ dt + /| n| dx<611( )

Since p : Q — (1, 00), it follows that

p(z)
/%dﬂcg/ | Ay, [P® da. (3.22)
Q Q

Thus,
2ﬁ/D’ﬁ+/M%W<m<m@) (3.23)

We know that [, |Au,[P@dx > 0, and thus

where ¢(T) = 2¢11(T).
We denote

T
M, = max 1Z,(t,Y)| and 4, < min {T, d )} ,
tY) € [D,T]xB(Y(O), c(T)) My,

where B(Y(0),+/c(T)) is the ball with center Y (0) € R?Y and radius +/c(T).
By the definition, Z,(¢,Y) is continuous with respect to (¢,Y’). Then, applying
Peano’s theorem (see [29]), it follows that problem (3.11) has a solution C! over
the interval [0,~,], which implies that over the same interval problem (3.7) has
a solution C? denoted by nl(t).

Considering that 7(y,) and 677(%) are the initial values of problem (3.7),
we can repeat the previous process and over the interval [y,,27v,] we obtain a

solution C? denoted by n2(t).

We define
T T T
T = [] Yn + () Yo Wwith 0 < () <1,
Tn Yn Tn

where [,Yln] and ( —) are the integer part and the decimal part of 7 L If we divide

the interval [0, T] in [(4 — 1)Vn, i), t =1,2,--- , L and [Ly,, T, Where L= [%],
then there is a solution C? over the interval [(z — 1), i7,] denoted by 7t (t), and
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there is nE+1(t) over [L,, T]. Therefore, we obtain a solution 7, (t) € C?([0,T))

as follows

Unk(t) ift € [0,
ma(t) it t e (n, 2]
m(t) =4 - :
775(15) ift € ((L - 1)’7717[/%1]
(nEtL(t) it € (L, T

Remark 3.4. The estimates

/ ouy,
Q

2
Auy, d:H/ | Aggy [P d:ﬁ/ Vun|2de < C1, (3.24)
Q Q
dxdt—ir/ | Au, [P dxdt+/
T

ouy,
v (m)

Proof. By equation (3.23), taking into account that |Y(0)|? is bounded, we
obtain

ot
2
dudt < Cy (3.25)

q(z)

ouy,

ot

Jo

are uniform with respect to n for all t € [0, 7).

T

V(o) + / A P® de < c1a.
Q

Using (3.3), (3.9), the fact that w;, 1 < j < n, is a Hilbertian base and Poincaré’s
inequality, we obtain (3.24).
In addition, in (3.17), since |Y'|? is bounded, then

d [ |Au,[P® un \ |2 /
— | —— — | d
@ Jo pl) d:v+/Q \Y% 5 T+ c3 A

Integrating from 0 to 7" and using Qp = Q x [0, T1, it follows that

q(z)

ou
" dx < C13.

ot

p(x) 2 a(x)
/ |Au”|dxdt+/ v(aun> da:dt+03/ A T
Qr p(CL“) Qr ot Qr ot
From (3.22), by hypothesis ¢3 > 0, we conclude (3.25). O
Remark 3.5. The estimate
ou

At P72 Aug| e + Hf <m,t, ") < (4 3.26
I Au,) loom) 5 )| (3.26)

is uniform with respect to n for all ¢ € [0, T.

Proof. By Remark 3.4, we obtain

! (z)
/ |Aun\P(1‘>*2vun(p( dz dt < / IV P@ der dt < 5.
T T

Thus,
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H | A, [P 2T 0,

LY () (Qr)
p_:l p+;1
< max (/ |Aun|p(m)d1:> o (/ |Aun|p($)dx> ’ ,
Q Q
that is,
H|Aun|P(m)f2vunHLP/(,)(QT) < c16. (3.27)
Using (3.1) and (3.21), it follows that
/ (3? 2 ) <car. 3.28)
H 0t Jlro@r) (
From inequalities (3.27) and (3.28), we conclude (3.26). O

Using Remarks 3.4 and 3.5, there is a subsequence of w,, (still denoted by wu,,)
and u such that

Oup + Ou o
5 ot in L (O,T,L (Q)),
un S uin L0, T; WP (9)) N L0, T; Wo(9)),
Oouy, ou
o g LY(Qr) nL*(0.1; Wy?(2)),

|Aun|p(w)_2Aun —¢ in J74S (QT)

Our next objective is to prove that there is a subsequence of u,, such that

aun ou ., o a(-
5 g b L2(Q) and u, — u in LIO(Qr).

From (3.3) and since {w;}}_; is a Hilbertian base, then

ouy, . 9%u,,

L o 5wy dr =1y, (3.29)

By Remark 3.4, it follows that 7;,;(¢) is uniformly bounded in [0, 7]. Considering
that 0 < t; < to < T, integrating (3.7) from ¢; to t2, using (3.29) and defining
Qif = Q X [t1, t2], we get

ot ot

ouy, ou
+/Qtlv<at>Vw]da:dt /Eff<$t 6t>w]da?dt (3.30)

/(Mwwj dw—/ ij dx—l—/ |Aun|p($)_2Aunij dx dt
Q Q Qi
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By (3.29), we obtain

Oup (x,ta) Oun(x,t1)
/Qatwj dx — /Q 5 W dx < |nj;(t2) — mp; ()] (3.31)

Replace (3.31) in (3.30) and use Holder’s inequality (2.3) to get

[ (t2) — 11 (t1)] < 2H|Aun|p(x)_2AUnHLp/( (@) HA%HLP()( 2)
Oouy,
2] (5 ey 17y

e2felen )L

By Poincaré’s inequality, it follows that

g (t2) — 1y (t1)] < clsumunw(f)—%unum(>( ) 18ill 0 (g
ouy,
v <8t> 12(Qp2) Vel (at)
Ouy,
7 (o 2

By Remarks 3.4 and 3.5, [||Aup PP 2Au,]|

+ c19

+ c20

L) (ng)

t’ ut !/ 2 d d. Th

|1 (t2) — Mnj(t1)] < e <||ij||Lp()< t2> + ||VWJ|| ( f2> + Hw]HLq( <Q 1)) :
According to Theorems 2.1, 2.3 and 2.4, it follows that

[ (t2) = 1 (11)] < €20 <”A°"JHLP<)( aiz) 18wl (i) TRl (g ))
Using (2.2), we get

|1 (t2) — Mg (t1)]

1
max {|t2—t1|p‘ / A P dx)
—|—max{|t2—t1|q /|Aw]|q >
1
{|t2—t1|2 /]Aw]] d:l:) }]

1

+\~

< c22

dea =2l ([ 18y )}
s )]

1

+ max
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Thus, the sequence 7,;(t), with 1 < n < oo, is uniformly bounded and equicon-
tinuous for fixed j and n > j in [0,7]. Using Arzela—Ascoli’s theorem (see [18]),
there is a subsequence such that n,;(t) converges uniformly in [0,7] for some
continuous function 7;(t) for each fixed j = 1,2, --. We define

t)=> ni(t)w;(x)
j=1

Then, for each j € N, it follows that

lim 8unw] dr = / tuw; dx
o Ot Q

n—o0

uniformly in [0, 7. With the completeness of w;, we obtain that

and uniformly in [0,7] when n — oco. Furthermore, it turns out that u = ‘gﬁf

Using Remark 3.4 and Lebesgue’s dominated convergence theorem, we get

. T ou, Ou 2
i [0 (=5 )wiae) ae=

By Theorem 2.5, there is a positive number N, independent of n such that

N 2
0 < [T 0 0
(5 = 22 (L (55 o
LQ(QT) = 0 Q ot 8t
+ 2€2 / " 2un 0w dt
Furthermore, by Remark 3.4, we have
lim sup H 3un 8u < 02352.
The arbitrariness of ¢ implies that
ou ou .
8tn o in L? (Qr).
Consequently, there is a subsequence of u,, such that
Oouy, ou .
rra — o a.e. in Q.

For the continuity of f, we get

Oun, ou .
f <:1:,t,at) = f (x,t, (%) a.e. in Q.
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Our next objective is to prove that u, — « in L) (Q7). We know that u,, €
W2(Q7). Thus, by Theorem 2.3, we can obtain a subsequence such that wu, —
uin L?(Qr) and a.e. in Q7. By (1.4), Remark 3.4 and Theorem 2.3, we have

_Np(@)
/ [tp | V=220 do < coq, t € [0,T].
Q

T Np(x)
|ty | N=2p(=) dx dt < cos.
0 Q

For any measurable subset V' € Qr, if we use Holder’s inequality (2.3) and if

q(z) <p* = NNZ;;I()) then

This implies that

1 e < _pro
L q() (Qr) Lr*()=a() (V) Lr* () q()(v)

/ un| ) da dt < 2 || [unl|| »

Thus, the sequence |u,|?®) with 1 < n < oo is equi-integrable in L'(Qr). By
Vitali’s convergence theorem (see [30]),

lim |t — u|9®) da dt = 0.

n—oo QT

Therefore, u, — u in LIO(Qr).

Finally, our last objective here is to prove that £ = ]Au\p(x)QAu. We know
that for all ¢ € C1(0,T;C5°(£2)), we can choose a sequence ¢ € C(0,T; Vi)
such that o, — ¢ in C2(Qr), where for any v € C%?(Qr) its norm is given by

du
ot

lul = sup {rDa

o] <2

(z,t)eQr

For all 7 € [0,T], we have

2
lim lim / 887?; pr dx dt

k—o00 n—00 Q

o Oup(, ) uy(z,0)
= lim lim (/Q T ok, 7)dz / pr i (x,0) dx

k—ro0 n—+00 Q
— lim lim %%d dt
k—oon—oo Jo ot ot

lim /ﬁ(m Yor(z, 7) dz /u (x,0)dx Ou 0o dx dt
= T — _—

oo 0 » T)PE\T, 0 1Pk\T, o 8t 8t

Ou Oy

— [ a - - /

/ w(z, 7)p(z, 7) dx /Qulgp(x,())dx 0. Ty dzx d

J;H;o/ oz ¥4
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where Q- = Q x (0,7). By (3.4), it follows that

62
Q. 9t

"o da dt+/ <\Aun\p “2Au, Ay, +V <88t >w,€) dx dt
Qr

:/ f(x,t,au >g0kdxdt
Qr 0

Thus,

2
s [ Gedea
=/ (f <x t, g ><p EAp —V (‘3 >V<p) drdt. (3.32)

In addition, for any ¢ (x) € C5°(€2), we have

_ . Qup(z,7)  Jun(z,0)
/Q (u(z,7) —up) pdx = nh_}ngo A ( o T Y(x)dx
: &uy,
= nli)rréo / 52 Y(z) dedt

0 0
:/T<f<x,t,(;:>cp EAp — V<81;>V<p)d:cdt—>o,

when 7 — 0. Consequently, %(x,t) is weakly continuous in L?(f2), that is, we
have u(x,t) € Cy(0,T; L3(£2)). For all n € C1([0,T]) with n(T) = 0 and n(0) =
1, we get
Ouy,
—n(t)w; dxdt = —/ Un (2, 0)n(0)w; dx —/ up(z, t)n (t)w; dx dt.
Qr ot 9 -

If n — o0, then
/(u(m,O)—uo)widx:O withi=1,2,....
Q

By the completeness of basis w; in L?(§), we conclude that u(z,0) = ug. Due to
Vu, = Vu in L®(0,T; L*()) and % — % in L2(0,T; W,2(£2)), in the same
way as in [23], we assume u € C(0, T ; VV0 ?(Q)) and that there is a subsequence
of u, such that Vu,(z,T) — Vu(z,T) in (L*(Q))". Thus,

/ Vu(z, T)dz < lim inf/ Vi (2, )| da.
Q n—oo Q
We take ¢ = uy, in equation (3.32) and if k¥ — oo, then

/Qu(x,T)u(x,T) dx—/Quluodx—/QT

ou|?

dz dt
at|
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+/ ({Au—i—V(aat)Vu) dxdt:/ f(a: t, gt)udaﬂdt (3.33)

Multiplying (3.7) by np;, adding j from 1 to n and integrating from 0 to T, we
obtain

0u ou
" Ay, |P® . n
/0 Qazudxdt—i—//( Un| +V<at>Vu>d:Udt
ou
= f (a:,t, n) Uy, dx dt.
[

Therefore,

T
0< / / <\Aun\p($)_2Aun - |Au]p(x)_2Au> (Au, — Au) dx dt
0o Jo
T ouy, ouy,

T
_/ Wun(x,T)dx—l—/ Wun(g;,(])dm’—f—/ /

T
- / / (|Aun|P<w>*2AunAu + yAu|p<x>*2Au) (Aup, — Au) dz dt
0 Q

2
Oun |™ 1o dt

By equation (3.33), we have
hm sup/ / | A PP 72 Ay Au + | AulP®) QAu) (Auy, — Au) dx dt

g/ /(f <x,t,>u—£Au> dzdt—Q/vau(x,T)de

/]Vu:c 0)12(13:—/ _(x TYu(z,T) do

/ ULUQ dx +

dwdt—O

8t

Thus,

T
lim / / (|Aun|p<w>—2Aun — ]Au|p<x)_2Au> (Auy — Au) dedt = 0.
Q

n—o0 0

We define Q1 = {(z,t) € Qr | p(z) > 2} and Q2 = {(z,t) € Qr | 1 < p(z) < 2}.
When n — oo, we have

/ |Auy, — AulP® da dt
Q1

< 026/ <|Aun|p($)_2Aun - |Au|p(m)_2Au> (Au, — Au) dz dt — 0.

1
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Moreover,

/ |Au, — AulP® dadt
2
p(x)

< ey (H [<|Aun|p(m)_2Aun - |Au|p<m>—2Au) (Auy, — Au)} 2

2
LP0) (Q2)

2—p(x)

H (\Aun\p(x) + ’Au|p(x)) 2

) > — 0.
L27P0) (Q2)

Consequently, we obtain Au, — Au in Lp(')(QT). Then there is a subsequence
of u, such that Au,, — Au a.e. in Q7. Moreover,

| Aupn PP 2 Auy, — |AuP®2Au for aa. (z,t) € Q.

To this end, we obtain that ¢ = |Au[P*®)=2Au, and thus the theorem on the
existence of weak solutions to problem (1.1) is proved. ]

4. Asymptotic behavior

In this section, we use Nakao’s lemma to establish the asymptotic behavior
of the weak solutions obtained by Theorem 3.2. Our main result is the following
theorem.

Theorem 4.1. If max{1, %} < p~, then there are constants C > 0 and
~v > 0 such that, for all t > 0, the weak solutions of problem (1.1) satisfy:

2 Ce™ "t if pt =2
/ ‘au(x’t) + | Au(z, )P | dx < .
0 ot Clt+1) » =2 ifpt >2
if ¢ > 2; and
) )
/ ( Lol + \Au(x,t)|p($)) de < {Ct+1) »i-a ifpt <q”
Q ot Ce™t ifpt > q”
if 1 <q” <2.

Proof. We define

1 2 |Au|p(z)

By the definition, I(t) is non-negative and uniformly bounded. Thus, there is
M > 0 such that I(t) < M for all ¢ > 0, which implies £1(¢) < 0 and that I(t)
is non-increasing. In addition, notice that

Ou
ot

ou|?

0%u Ou 1d
d ot

Fudu , _1d 41
G 0z ot T 24t /g, (4.1)
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and

du \Au|p(’3
Auf@72 AuA — . 4.2
8w (50) == [ S “2)
From the definition of I(¢) and by (4.1) and (4.2), we obtain
d 0u Ou p(z)—2 ou
v < 4.
dtI() 8t28tdw+/\A| AA<8>d:c 0. (4.3)

Using (3.4) and taking v = at , we have

9%u Ou ou
il p(z)—2 v el
2 td +/|Au\ AA( >d:c / < ) < 7j)dac

ou
dx.
/Qf ( © ’8t> ot
Replacing (4.3) in the equation above leads us to

o [ (< (3)) e 1 (o0 5) o

By using (1.3), it follows that

d ou\\ I? Au |1
I(t — d — dr <0. 4.4
al®+ /Qv<at) x+cl/9 ar| = (4.4)
Let us define
JAt) = I(t) = I(t+1). (4.5)
Then, integrating (4.4) over (¢,t + 1), we arrive at
b1 ou(z,s)\ |? ou(z, s) a(@)
2(t) > ’ ’ dz ds.
t)_/t /Q<’V< s ) c1 95 x ds
Recall Poincaré’s inequality
t+1 2
2(t) > 028/ / duz, s) dx ds. (4.6)
t Q

Using the mean value theorem and (4.6), we have t; € [t,t + 3] and t5 € [t +
2.t + 1] such that
/

Multiplying equation (1.1) by a function w, integrating over  and using Green’s
formula, we get

ou(x, t;) |

1
o de < —J*(t), i=1,2. (4.7)

C28
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0%u ou ou
AulP®) / / - .
/Q| ulP* dr = 8t2udaz+ V<8t>Vudx—|— Qf x,t, 5 udx
Integrating over (t1,t2), we have
t2
/ /!Au\p(x) dx dt = /8um .t2) z,t2) diL‘—l—/ M u(z,t) dx
t1 Q
to to
Qu dmdt/ /v(au> Vuda dt
tl Q at tl Q at
t2
+ / f (ac,t, 8u) wdz dt. (4.8)
4 Jo ot

Inequality (4.7), Holder’s inequality (2.3), the Sobolev embedding theorem 2.3
and the fact that I(¢) is non-increasing imply that

ou(z,t;) ‘
/S:Z TU<$, tz) dx

ou(z,t;)
ot

< cg9 [|Au(@, )| o () J (2)

L)

< lu(z, ti)ll 20

1
+

wlx. £:)P®)
< c30 (/ Mda;) J(t)

< e (I)7 (1), i=1,2, (4.9)
where the third inequality in (4.9) is obtained using (2.2) as follows:
1A, 1)l ooy

= {</ﬂ p(a) d) </Q o)

1

1 LL A t (@ i
S(f)p‘maX{ ) * (/' ule &) ) i=1,2.

In a similar way, using the fact that Vu € (L?(Q2))%, N +2 < p~ and Theorem
2.4, we have

to t2
[ (G) vuasa < [0 s (9t ds
w Jao ot 4 05 |l p2q) t<s<t+1
1
< ez (I(t) 7 J(8). (4.10)

Using (1.3), Holder’s inequality (2.3), inequality (4.6) and the boundedness of
I(t) and J(t), we get

to to
/ / f <:c,t, 8u> udazdt‘ < 262/
t1 Q 8t t1

ou q(z)—1
- . Ul 7 qc dt
iy TN [ull Loty ()
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to O |1®) q;:l to O |1®) qqll 1
<c - dx dt +</ / - dmdt) ] I(t))r" .
(VA R R VA e
Thus,
t2 ou 2(¢~ 1) 1
/ / f (x,t, ) udxdt‘ <esz(J(t) «  (I(t)r" (4.11)
4 Ja ot
From (4.8)—(4.11), we obtain
t2
/ / | AulP@®) da: dt
t1 Q
1 5 =N 204" =1) e
< o5 O+ Cesot ) J(0) (1) + g3 (J(1)) = (I(B)»" -

Therefore,

to 1 2(¢_—1) 1
10t < o) s (0 10T+ 00) T 1@ ).
t1

The monotonicity of I(t) implies that I(¢t + 1) < 3 fttf I(t)dt, and by equation
(4.5), we have I(t + 1) = I(t) — J?(t). Furthermore, applying Yong’s inequality,
it follows that

2pT (g7 =1) pT
I(t) < 360> (t) + 37 <(J(t)) T 4 (J(t))p+‘1> : (4.12)

o If¢g™ > 2, then
2p7(q” =1 _ _p"
¢ (pt-1) " pt-1
Consequently, by the boundedness of J(t) and by (4.12), it follows that

+

I(t) < es62(t) + e3s (J(£) 77 .
Moreover, if pT = 2, then I(t) < c39.J?(t). Since I(t) is non-increasing, then, from

Nakao’s Lemma 2.6, there are two constants C' > 0 and v > 0 such that I(t) <
Ce " t > 0, that is,

I

v
Ifp™ > 2, then I(t) < cqo(J(¢))»"-1. From Nakao’s Lemma 2.6, there is a constant
+
__p
C > 0 such that I(t) < C(t+1) »"-2, that is,

A

ou

ot

2
+ |Au\p(m)> dz < Ce™ ", t>0. (4.13)

2 +

Oul” yAu|p<x>> de <CO(t+1) 7 =2, t>0. (4.14)

ot
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o Ifl< g™ <2, then

T -1 _ p"

¢ (pt—-1) pt-1
Consequently, by the boundedness of J(t) and by (4.12), we have

2t (g™ 1)

I(t) < 036J2(t) + c11 (J(t)) a(pt-1

In addition, if g~ > p*, then I(t) < cy2J%(t). Again, from Nakao’s Lemma 2.6,
there are two constants C' > 0 and v > 0 such that I(t) < Ce™ % ¢ > 0, that is,

N

Whereas, if ¢~ < p*, then

2
+ |Au\p(x)> de < Ce ", t>0. (4.15)

2pt (g~ 1)

I(t) < ecaz (J(t)) a=@T-1 |

pta= -1

B ANC )
Using Nakao’s Lemma 2.6, it follows that I(t) < C(t+1) »T-a= |t > 0, that

is,
/ u
o\ ot

Therefore, due to (4.13), (4.14), (4.15) and (4.16), we complete the proof of
Theorem 4.1. O

pt@ -1

2
+ |Auyp<~”“)> de < C(t+1) #-a , t>0. (4.16)

5. Conclusion

In this paper, we established the existence and asymptotic behavior of weak
solutions of a non-linear fourth-order beam equation with a strong dissipation and
a lower order perturbation of the p(z)-biharmonic type over a bounded domain.
This asymptotic behavior can be exponential and polynomial depending on the
ranges of variable exponents. It was shown by basing on Nakao’s lemma with
classical functional analysis results and the Lebesgue and Sobolev spaces with
variable exponents. In addition, using Faedo-Galerkin’s method, the existence of
weak solutions was proved.

The authors emphasize that the uniqueness of the weak solution to problem
(1.1) has not been proven yet. Thus, as a future work, it is of great interest to
study this uniqueness.
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IcHyBaHHSI Ta aCMMOTOTUYHE TMOBO/I>KEHHSI PO3B’A3KiB
PiBHSHHS OaJIKM i3 CMJIBHUM JieMnyBaHHAM i
p(z)-6irapMoHiuHUiT onepaTtop

Jorge Ferreira, Willian S. Panni, Salim A. Messaoudi, Erhan Pigkin,
and Mohammad Shahrouzi

VY 1miit poboTi MU PO3NISIAEMO HeTiHifiHe PIBHAHHA OAJKHU i3 CHILHUM
nemiidysanasgm ta p(x)-6irapmoniunuit oneparop. Ilokasuuk HesiniitHOCTI
p(+) € 3amano0 QyHKIEW0, KA 3a/I0BOJIbHSE [IEBHI YMOBH. 3aCTOCOBYIOYU
meron Daeno-Tanepkina, Mu 10Ben ICHYBaHHS CJIAOKIX PO3B’sI3KiB. 3acTo-
coByroun Jjiemy Takao, My BCTAaHOBUJIM ACUMIITOTHYIHE TIOBOJ?KEHHS CJIaOKIX
PO3B’g3KiB 38 M’IKUX NPUIYIIEHb 00 Moka3Huka p(-). Mu moBomumo, 1o
ACHMIITOTUYIHE IOBOJIZKEHHSI CJIADKOTO PO3B’sI3KY € eKCIIOHEHIIIIHO 1 aiarebpa-
TIHO 3aJeKHUM Bifl 3MIHHOTO TTOKa3HuKa. Lls1 poboTa mosimninye Ta y3araib-
HI0€ 6araTo iHIMMMUX Pe3y/IbTATIB 3ralaHuX B JiTEepaTypi.

Kirro4gosi cjioBa: cjiabKu po3B’sI3KU, ICHYBaHHSI, ACHMIITOTHIHE IOBOJIZKE-
HHsl, piBHsHHS Oaiku, p(x)-6irapMoniunuii onepaTop, 3MiHHU TIOKA3HUK
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