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In this paper, we study the existence of multiple nontrivial nonnegative
weak solutions to a coupled system of elliptic PDEs. The existence of solu-
tions in the Nehari manifold is proved. The Lusternik–Schnirelman category
is used to prove the existence of at least cat(Ω)+1 number of solutions, where
Ω is a bounded domain in which the problem is considered.
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1. Introduction

In this section, we introduce the problem and discuss some developments in
this direction in the literature. We consider the following problem:

−(∆p)
su− (−∆q)

su = λf(x)ur−1 + ν
1− α

2− α− β
h(x)u−αv1−β in Ω, (1.1)

−(∆p)
sv − (−∆q)

sv = µg(x)vr−1 + ν
1− β

2− α− β
h(x)u1−αv−β in Ω, (1.2)

u > 0, v > 0 in Ω, (1.3)

u = v = 0 in RN \ Ω, (1.4)

where

(C): λ, µ, ν > 0, 0 < s, α, β < 1, 2− α− β < q < N(p−1)
N−s < p < r ≤ p∗.

We are mainly interested in positive solutions to (1.1)–(1.4). The functions
f, g, h > 0 are measurable over Ω and are bounded almost everywhere in Ω,
i.e., f, g, h ∈ L∞(Ω). The operator (−∆p)

s acting on a function, say U , is the
fractional p-Laplacian operator which is defined as

(−∆p)
sU(x) = CN,s V. P.

∫
RN

|U(x)− U(y)|p−2(U(x)− U(y))

|x− y|N+ps
dy
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for all p ∈ [1,∞), with CN,s being the normalizing constant. In a similar way,
one can define (−∆q)

s. Throughout the paper, we will assume N ≥ 2, sp < N ,
0 < s < 1. A large amount of attention has been given of late to elliptic problems
involving two Laplacian operators viz.

−(∆p)u− (−∆q)u = λ|u|r−2u+ |u|p∗−2u in Ω,

u = 0 on ∂Ω.

The main motivation for problems of this kind is the fundamental reaction-
diffusion equation

∂

∂t
u = ∇ · [H(u)∇u] + c(x, u), (1.5)

where H(u) = |∇u|p−2 + |∇u|q−2. The problem is a model equation to phe-
nomena in physics and other applied sciences such as in biophysics to model the
cells, design of chemical reaction, plasma physics, etc. The reaction term has a
polynomial form with respect to u. Of late, problem (1.5) with

H(u) = c(x, u)

was studied in [4, 6, 18, 19, 27, 29]. One may refer to Yin and Yang [31] who
studied problem (1.5) when p2 < N , 1 < q < p < r < p∗. The authors in
[31] proved the existence of cat(Ω) number of positive solutions using simple
variational techniques. For p = q, r = 2, problem (1.5) reduces to the well-
known Brezis–Nirenberg problem which was further studied for the case of critical
growth in bounded and unbounded domains by many researchers (see [2,3,5,25]
and references therein). A common issue, which kept the interest to the problem,
was to figure out a way for overcoming the lack of compactness in the continuous
embedding W 1,p

0 (Ω) ↪→ Lp
∗
(Ω). Two noteworthy contributions can be found

in [10,24].

At the same time, elliptic systems have also gained much attention, especially
the system

−(∆p)u = λ|u|r−2u+
2a

a+ b
|u|a−2u|v|b in Ω, (1.6)

−(∆p)v = µ|v|r−2v +
2b

a+ b
|u|a|v|b−2u in Ω, (1.7)

u = v = 0 on ∂Ω, (1.8)

where a + b = p∗. Ding and Xiao [12] studied (1.6)–(1.8) with the p-superlinear
perturbation of 2 ≤ p ≤ r < p∗ an extension of which can be found in the
paper by Yin [30]. In both these works, in [12] and [30], the authors obtained
the existence of cat(Ω) number of solutions using the Lusternik–Schnirelman
category. For the sublinear perturbation, Hsu [17] obtained the existence of
two positive solutions for problem (1.6)–(1.8). Eight years ago, Fan [14] studied
problem (1.6)–(1.8) for p = 2 and 1 < r < p. Using the Nehari manifold and the
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Lusternik–Schnirelman category, the author proved the admittance of at least
cat(Ω) + 1 positive solutions. When talking about the doubly nonlocal equation,
we should refer to [16], where the following problem was considered:

(−∆p)
s1u+ (−∆q)

s2u = λa(x)|u|δ−2u+ b(x)|u|r−2u in Ω

u = 0 in RN \ Ω,

where 1 < δ ≤ q ≤ p < r ≤ p∗s1 . Thereafter, in [7], the authors studied the
problem

(−∆p)
su = λ|u|q−2u+

2α

α+ β
|u|α−2u|v|β in Ω,

(−∆p)
sv = µ|u|q−2u+

2β

α+ β
|u|α|v|β−2v in Ω,

u = v = 0 in RN \ Ω.

They guaranteed the multiplicity of solutions in a Nehari manifold. Further, Fu
et al. [15] considered the following problem:

(−∆p)
su = λa(x)|u|p−2u+ λb(x)|u|α−2|v|βv +

µ(x)

αδ
|u|γ−2|v|δu in Ω,

(−∆p)
sv = λc(x)|v|q−2v + λb(x)|u|α|v|β−2v +

µ(x)

βδ
|u|γ |v|δ−2v in Ω,

u = v = 0 in RN \ Ω.

Here, α
p + β

q = 1, 1 < p < r, 1 < q < δ, γ
p∗s

+ δ
q∗s
< 1, 1

αδ + 1
βγ < 1, p∗s, q

∗
s are

fractional Sobolev critical exponents: p∗s = Np
N−ps , q

∗
s = Nq

N−qs .
Another noteworthy contribution was made by Zhen et al. [32], where the

following critical system was studied:

(−∆)su = µ1|u|2
∗−2u+

αγ

2∗
|u|α−2|v|βu in RN ,

(−∆)sv = µ2|v|2
∗−2v +

βγ

2∗
|u|α|v|β−2v in RN ,

u = v = 0 in Ds(RN ).

Here Ds(RN ) is the completion of the space of compactly supported smooth
functions with the norm

‖u‖2Ds(RN ) =
CN,s

2

∫
R2N

|u(x)u(y)|2

|x− y|N+2s
dx dy.

Motivated by the works of Li, Yang [21] and Choudhuri et al [9], we extend the
results of the above problem with local operators and added singular nonlinear-
ities. One may even consider this work to be a sequel to [9]. To our knowledge,
there has not been any contribution in this direction and ours is entirely new.
We now state the main result of this work.

Theorem 1.1. Assume the condition (C) holds. Then there exists Λ∗ > 0
such that if ν ∈ (0,Λ∗), problem (1.1)–(1.4) admits at least cat(Ω) + 1 number of
distinct solutions.
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2. Preliminaries

Let Y be a space that is defined as

Y =

{
u : RN → R

∣∣∣∣∣u is measurable, u|Ω ∈ Lp(Q), and
u(x)− u(y)

|x− y|
N+sp

2

∈ Lp(Q)

}
and is equipped with the Gagliardo norm

‖u‖Y = |u|p +

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dy dx

) 1
p

,

where Ω ⊂ RN , Q = R2N \ ((RN \Ω)× (RN \Ω)). Here |u|p refers to the Lp-norm
of u. We will frequently use the subspace Y0 of Y which is defined as

Y0 =
{
u ∈ X

∣∣u = 0 in RN \ Ω
}

equipped with the norm

‖u‖p =

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dy dx

) 1
p

.

Remark 2.1. Y ⊂ W s,p(Ω), Y0 ⊂ W s,p(Ω), where W s,p(Ω) is the usual frac-
tional order Sobolev space equipped with the norm (the Gagliardo norm)

‖u‖W s,p(Ω) = ‖u‖p +

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dy dx

) 1
p

.

Let Ω ⊂ RN be a bounded domain. Then the space (W s,p
0 (Ω), ‖·‖p) is defined

by

W s,p
0 (Ω) =

{
u

∣∣∣∣∣ u(x)− u(y)

|x− y|
N+sp
p

∈ Lp(Ω× Ω), u = 0 in RN \ Ω

}

equipped with the norm

‖u‖p =

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp
dx dy

) 1
p

.

We will refer to |u|r as the Lr-norm of u defined as (
∫

Ω |u|
rdx)

1
r for 1 ≤ r < ∞.

Clearly, W s,p
0 (Ω)×W s,p

0 (Ω) is a reflexive Banach space [11]. We define the norm
of any member of W s,p

0 (Ω)×W s,p
0 (Ω) as

‖(u, v)‖p = (‖u‖p + ‖v‖p)1/p.

The best Sobolev constant is defined as

S = inf
u∈W s,p

0 (Ω)\{0}

‖u‖pp(∫
Ω |u|p

∗dx
) p
p∗s
, (2.1)
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and further we define

S′ = inf
(u,v)∈X\{(0,0)}

‖(u, v)‖pp
(
∫

Ω |u|p
∗ + |v|p∗dx)

p
p∗
. (2.2)

We also denote M = ‖h‖∞, M ′ = max{‖f‖∞, ‖g‖∞}, where ‖ · ‖∞ denotes the
essential supremum norm (or more commonly the L∞-norm) of a function. We
will seek for a solution in the function space X = Z × Z, where Z = W s,p

0 (Ω) ∩
W s,q

0 (Ω). The space X is equipped with the norm

‖(u, v)‖ = ‖(u, v)‖p + ‖(u, v)‖q.

The space X is a reflexive Banach space. We now define the associated energy
functional to problem (1.1)–(1.4) which is as follows:

Jα,β(u, v) =
1

p
‖(u, v)‖pp +

1

q
‖(u, v)‖qq −

1

r

∫
Ω

(λf(x)ur + µg(x)vr) dx

− ν

2− α− β

∫
Ω
h(x)u1−αv1−βdx.

A function (u, v) ∈ X is a weak solution to problem (1.1)–(1.4) if u, v > 0,
u−αφ1, v

−βφ2 ∈ L1(Ω), and

〈(−∆p)
su, φ1〉+ 〈(−∆p)

sv, φ2〉+ 〈(−∆q)
su, φ1〉+ 〈(−∆q)

sv, φ2〉

−
∫

Ω
(λf(x)ur−1

+ φ1 + µg(x)vr−1
+ φ2) dx− ν 1− α

2− α− β

∫
Ω
h(x)u−α+ v1−β

+ φ1 dx

− ν 1− β
2− α− β

∫
Ω
h(x)u1−α

+ v−β+ φ2 dx = 0.

for each φ2, φ2 ∈ X. We have used the following notation,

〈(−∆r)
sw, φi〉 =

∫
Ω

∫
Ω

|w(x)− w(y)|r̄−2(w(x)− w(y))(φi(x)− φi(y))

|x− y|N+r̄s
dx dy

for i = 1, 2, w = u or v, r = p or q. Observe that the nontrivial critical points
of the functional Jα,β are the positive weak solutions of problem (1.1)–(1.4).
Further, the reason that the functional Jα,β is not a C1-functional does not allow
us to apply classical variational methods. It is not difficult to verify that the
energy functional Jα,β is not bounded below in X. However, we will show that
Jα,β is bounded below on a Nehari manifold and we will extract solutions by
minimizing the functional on suitable subsets.

We further define the Nehari manifold as follows:

Mα,β = {(u, v) ∈ Z \ (0, 0) | u, v > 0, 〈J ′α,β(u, v), (u, v)〉 = 0}.

It is easy to see that a pair (u, v) ∈Mα,β if and only if

‖(u, v)‖pp + ‖(u, v)‖qq −
∫

Ω
(λf(x)ur + µg(x)vr) dx− ν

∫
Ω
h(x)u1−αv1−β dx = 0.
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Just like for any problem, which has an involvement of a Nehari manifold, we
also see here that

Jα,β(u, v) =

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

+ ν

(
1

r
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)(
‖(u, v)‖pp + ‖(u, v)‖qq

)
+ ν

(
1

r
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)
‖(u, v)‖pp + ν

(
1

r
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)
‖(u, v)‖pp − ν

(
1

2− α− β
− 1

r

)
‖(u, v)‖2−α−βp .

Since 2− α− β < p, we have that Jα,β is coercive and bounded below on Mα,β,
and thus the functional is coercive and bounded below in Mα,β. Note that
Jα,β(u, v) ≥ 0 for sufficiently small ν > 0 and for all (u, v) ∈ Mα,β. For t ≥ 0,
we define the fiber maps

Ψ(t) = Jα,β(tu, tv) =
tp

p
‖(u, v)‖pp +

tq

q
‖(u, v)‖qq −

tr

r

∫
Ω

(λf(x)ur + µg(x)vr) dx

− ν t2−α−β

2− α− β

∫
Ω
h(x)u1−αv1−βdx.

Then

Ψ′(t) = tp−1‖(u, v)‖pp + tq−1‖(u, v)‖qq − tr−1

∫
Ω

(λf(x)ur + µg(x)vr) dx

− νt1−α−β
∫

Ω
h(x)u1−αv1−βdx

and

Ψ′′(t) = (p− 1)tp−2‖(u, v)‖pp + (q − 1)tq−2‖(u, v)‖qq

− (r − 1)tr−2

∫
Ω

(λf(x)ur + µg(x)vr) dx

− ν(1− α− β)t−α−β
∫

Ω
h(x)u1−αv1−βdx.

Observe that (u, v) ∈ Mα,β if and only if Ψ′(1) = 0. In general, we have that
(u, v) ∈Mα,β if and only if Ψ′(1) = 0. Therefore, for (u, v) ∈Mα,β, we have

Ψ′′(1) = (p− 1)‖(u, v)‖pp + (q − 1)‖(u, v)‖qq − (r − 1)

∫
Ω

(λf(x)ur + µg(x)vr) dx

− ν(1− α− β)

∫
Ω
h(x)u1−αv1−βdx
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= (p− r)‖(u, v)‖pp + (q − r)‖(u, v)‖qq

+ ν(r + α+ β − 2)

∫
Ω
h(x)u1−αv1−βdx

= (p+ α+ β − 2)‖(u, v)‖pp + (q + α+ β − 2)‖(u, v)‖qq

+ (2− α− β − r)
∫

Ω
(λf(x)ur + µg(x)vr) dx.

We thus split the Nehari manifold into three parts, namely,

M+
α,β = {(u, v) ∈Mα,β | Ψ′′(1) > 0},

M−α,β = {(u, v) ∈Mα,β | Ψ′′(1) < 0},

M0
α,β = {(u, v) ∈Mα,β | Ψ′′(1) = 0},

which corresponds to the collection of local minima, maxima and points of inflec-
tion, respectively. We now prove a lemma which follows the proof due to Hsu [17]
(refer to Theorem 2.2).

Lemma 2.2. For (u, v) ∈ Mα,β, there exists a positive constant A0 that
depends on p, S,N, α, β, |Ω| such that

Jα,β(u, v) ≥ −νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

Proof. Applying the inequality

Jα,β(u, v) ≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
+ ν

(
1

r
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx (2.3)

together with the Hölder inequality, the Young inequality, and the Sobolev em-
bedding theorem [11] to (2.3), we have

Jα,β(u, v) ≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
− ν

(
1

2− α− β
− 1

r

)∫
Ω
h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
− νM |Ω|1−

2−α−β
p∗

(
1

2− α− β
− 1

r

)
×
∫

Ω

(
1− α

2− α− β
|u|2−α−βp∗ +

1− β
2− α− β

|v|2−α−βp∗

)
dx

≥
(

1

p
− 1

r

)(
‖(u, v)‖pp

)
− νM |Ω|1−

2−α−β
p∗ S

α+β−2
p

(
1

2− α− β
− 1

r

)
×
(

1− α
2− α− β

‖u‖2−α−βp +
1− β

2− α− β
‖v‖2−α−βp

)
≥ −νA0(p, S,N, α, β, |Ω|)
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×

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

The lemma is proved.

Lemma 2.3. There exists Λ∗ > 0 such that if

ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
∈ (0,Λ∗), (2.4)

then M0
α,β = φ.

Proof. Choose

Λ∗ =

(
(p− 2 + α+ β)

1

M ′(λ+ µ)

) p
r−p (r − p)S′

rp
N(r−p)+ 2−α−β

p

νM(r − 2 + α+ β)
r
r−p |Ω|1−

2−α−β
p∗

.

The proof follows by a contradiction.

From Lemma (2.3), we have that if (2.4) holds, then Mα,β =M+
α,β

⋃
M−α,β.

We can define i+ = inf(u,v)∈M+
α,β

Jα,β and i− = inf(u,v)∈M−α,β
Jα,β since the func-

tional Jα,β is bounded below in Mα,β.

Remark 2.4. Henceforth, we will denote the norm convergence by →, the
weak convergence by ⇀ and Λ (or Λ∗) as any small parameter we will encounter
or any complex representation in short form.

Lemma 2.5. There exists Λ∗ > 0 such that if (2.4) holds, then

1. i+ < 0,

2. i− ≥ D0 for some D0 > 0.

Proof. 1. Let (u, v) ∈M+
α,β ⊂Mα,β. Then we have

0 < (r − p)‖(u, v)‖pp + (r − q)‖(u, v)‖qq

< ν(r + α+ β − 2)

∫
Ω
h(x)u1−αv1−βdx

Further,

Jα,β(u, v) =

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

+ ν

(
1

r
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx

<

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

− (r − p)
r(2− α− β)

‖(u, v)‖pp −
(r − q)

r(2− α− β)
‖(u, v)‖qq
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=
(r − p)
r

(
1

p
− 1

2− α− β

)
‖(u, v)‖pp

+
(r − p)
r

(
1

q
− 1

2− α− β

)
‖(u, v)‖qq < 0.

Therefore, i+ = inf(u,v)∈M+
α,β

Jα,β(u, v) < 0.

2. Likewise, let us choose (u, v) ∈M−α,β. We again appeal to the inequality

(p+ α+ β − 2)‖(u, v)‖pp < (p+ α+ β − 2)‖(u, v)‖pp + (q + α+ β − 2)‖(u, v)‖qq

< (r + α+ β − 2)

∫
Ω

(λf(x)ur + µg(x)vr) dx

≤ (r + α+ β − 2)CM ′(λ
r
r−p + µ

r
r−p )‖(u, v)‖rp

by virtue of the fact that (u, v) ∈Mα,β. Therefore,

‖(u, v)‖p ≥

[(
p+ α+ β − 2

r + α+ β − 2

)
1

CM ′(λ
r
r−p + µ

r
r−p )

] 1
r−p

.

Let this constant be named as Λ. On proceeding further we have

Jα,β(u, v) =

(
1

p
− 1

r

)
‖(u, v)‖pp +

(
1

q
− 1

r

)
‖(u, v)‖qq

+ ν

(
1

r
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx

≥
(

1

p
− 1

r

)
‖(u, v)‖pp − νM |Ω|

1− 2−α−β
p∗ S

α+β−2
p

(
1

2− α− β
− 1

r

)
×
(

1− α
2− α− β

‖u‖2−α−βp +
1− β

2− α− β
‖v‖2−α−βp

)
≥
(

1

p
− 1

r

)
‖(u, v)‖pp − νA0(p, s,N, α, β, |Ω|)

×

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
‖(u, v)‖2−α−βp

=

[(
1

p
− 1

r

)
‖(u, v)‖p+α+β−2

p − νA0(p, s,N, α, β, |Ω|)

×

{(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

}]
‖(u, v)‖2−α−βp

≥ Λ2−α−β
[(

1

p
− 1

r

)
Λp+α+β−2 − νA0(p, s,N, α, β, |Ω|)

×

{(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

}]
.

Then, for a sufficiently small Λ∗ > 0 and D0 > 0 such that (2.4) holds, we have
i− ≥ D0 > 0.
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Remark 2.6. For better understanding the Nehari manifold and the fiber
maps, we define the function

Fu,v(t) = tp−r‖(u, v)‖pp + tq−r‖(u, v)‖qq − νt2−α−β−r
∫

Ω
h(x)u1−αv1−βdx.

Then

Ψ′(t) = tr−1[Fu,v(t)−
∫

Ω
(λf(x)ur + βg(x)vr)dx].

Observe that limt→∞ Fu,v(t) = 0 and limt→0+ Fu,v(t) = −∞. Further,

F ′u,v(t) = (p− r)tp−r−1‖(u, v)‖pp + (q − r)tq−r−1‖(u, v)‖qq

− ν(2− α− β − r)t1−α−β−r
∫

Ω
h(x)u1−αv1−βdx

= t1−α−β−r[(p− r)tp+α+β‖(u, v)‖pp + (q − r)tq+α+β‖(u, v)‖qq

− ν(2− α− β − r)
∫

Ω
h(x)u1−αv1−βdx].

Let

ψu,v(t) = (p− r)tp+α+β‖(u, v)‖pp + (q − r)tq+α+β‖(u, v)‖qq

− ν(2− α− β − r)
∫

Ω
h(x)u1−αv1−βdx.

We also have

lim
t→0+

ψu,v(t) = ν(r + α+ β − 2)

∫
Ω
h(x)u1−αv1−βdx, lim

t→∞
ψu,v(t) = −∞,

and

ψ′u,v(t) = (p− r)(p+ α+ β)tp+α+β−1‖(u, v)‖pp
+ (q − r)(q + α+ β)tq+α+β−1‖(u, v)‖qq < 0.

Thus, for each (u, v) ∈ X with
∫

Ω h(x)u1−αv1−βdx > 0, Fu,v(t) attains its max-
imum at some tmax = tmax(u, v). This unique tmax can be evaluated by solving
for t from the equation

(r−p)tp+α+β‖(u, v)‖pp+(r−q)tq+α+β‖(u, v)‖qq = ν(r+α+β−2)

∫
Ω
h(x)u1−αv1−βdx.

A simple calculation yields

Fu,v(tmax) = tp−rmax

(
1 +

r − p
r + α+ β − 2

t2max

)
‖(u, v)‖pp

+ tq−rmax

(
1 +

r − q
r + α+ β − 2

t2max

)
‖(u, v)‖qq > 0.

Thus, for t ∈ (0, tmax), we have F ′u,v(t) > 0 and F ′u,v(t) < 0 for t ∈ (tmax,∞).
We now have the following lemma as a consequence.
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Lemma 2.7. For every (u, v) ∈ X \ {(0, 0)} there exists a unique 0 < t+ <
tmax such that (t+u, t+v) ∈M+

α,β and

Jα,β(t+u, t+v) = inf
t≥0

Jα,β(tu, tv).

Furthermore, if ∫
Ω

(λf(x)ur + µg(x)vr) dx > 0,

then there exists a unique 0 < t+ < tmax < t− such that (t+u, t+v) ∈ M+
α,β,

(t−u, t−v) ∈M−α,β and

Jα,β(t+u, t+v) = inf
0≤t≤tmax

Jα,β(tu, tv), Jα,β(t−u, t−v) = sup
t≥0

Jα,β(tu, tv).

Proof. We only prove the case when∫
Ω

(λf(x)ur + µg(x)vr) dx > 0.

Thus the equation

Fu,v(t) =

∫
Ω

(λf(x)ur + βg(x)vr) dx

has only two solutions, namely 0 < t+ < tmax < t− such that I ′α,β(t+) > 0 and

I ′α,β(t−) < 0. Since

Ψ′′(t+) = (t+)r−1

[
Fu,v(t

+)−
∫

Ω
(λf(x)ur + µg(x)vr) dx

]
> 0

Ψ′′(t−) = (t−)r−1

[
Fu,v(t

−)−
∫

Ω
(λf(x)ur + µg(x)vr) dx

]
< 0,

therefore (t+u, t+v) ∈ M+
α,β and (t−u, t−v) ∈ M−α,β. Thus Ψ(t) decreases in

(0, t+), increases in (t+, t−) and decreases in (t−,∞). The lemma is proved.

We now define the Palais–Smale (PS) sequence, the condition and the value
in X for a functional Jα,β.

Definition 2.8. Suppose, for c ∈ R, a sequence {(un, vn)} ⊂ X is a (PS)c-
sequence for the functional Jα,β if Jα,β(un, vn) → c and J ′α,β(un, vn) → 0 in X ′

as n→∞. Then

1. the number c ∈ R is a (PS)-value in X for the functional Jα,β if there exists
a (PS)c-sequence in X for Jα,β;

2. the functional Jα,β satisfies the (PS)c-condition in X for Jα,β if any (PS)c-
sequence admits a strongly convergent subsequence in X.

Remark 2.9. We will sometimes denote limn→∞ xn = 0 as xn = o(1) for a
sequence of real numbers (xn).



Multiplicity of Solutions to a p-q Fractional Laplacian System 525

Remark 2.10. X ′ will refer to the dual space of X.

Lemma 2.11. For any 0 < α, β < 1, the functional Jα,β satisfies the (PS)c-
condition for

c ∈

(
−∞, S

′ r
r−p

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

])
,

where Λ = 2M ′(λ
r
r−p + µ

r
r−p )}

p
r−p |Ω|

1
r . Here,

S
′ r
r−p

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
> 0

for a sufficiently small ν.

Proof. Suppose {(un, vn)} is a (PS)c-sequence in X for the functional Jα,β
with

c ∈

(
−∞, S

′ r
r−p

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

])
.

Then

Jα,β(un, vn) = c+ o(1), I ′α,β(un, vn) = o(1) as n→∞. (2.5)

We now claim that {(un, vn)} is bounded in X. We prove this claim by contra-
diction, i.e., say ‖(un, vn)‖p →∞ as n→∞. Let

(ũn, ṽn) =

(
un

‖(un, vn)‖p
,

vn
‖(un, vn‖p)

)
.

Then ‖(ũn, ṽn)‖p = 1, which implies that (ũn, ṽn) is bounded in X. Therefore,
due to the reflexivity of the space X, we have up to a subsequence

(ũn, ṽn) ⇀ (ũ, ṽ) as n→∞ in X.

This further implies that

ũn ⇀ ũ, ṽn ⇀ ṽ in W 1,p
0 (Ω),

ũn → ũ, ṽn → ṽ in Ls(Ω), 1 ≤ s < p∗,∫
Ω
νh(x)ũ1−α

n ṽ1−β
n dx→

∫
Ω
νh(x)u1−αv1−βdx

as n→∞. The last convergence follows from Egoroff’s theorem. From (2.5), we
have

1

p
‖(un, vn)‖pp‖(ũn, ṽn)‖pp +

1

q
‖(un, vn)‖qq‖(ũn, ṽn)‖qq
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− 1

r
‖(un, vn)‖rp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn) dx

− ν

2− α− β
‖(un, vn)‖2−α−βp

∫
Ω
h(x)ũ1−α

n ṽ1−β
n dx = c+ o(1)

and

‖(un, vn)‖pp‖(ũn, ṽn)‖pp + ‖(un, vn)‖qq‖(ũn, ṽn)‖qq

− ‖(un, vn)‖rp
∫

Ω
(λf(x)ũrn + µg(x)ṽrn) dx

− ν‖(un, vn)‖2−α−βp

∫
Ω
h(x)ũ1−α

n ṽ1−β
n dx = o(1)

as n→∞. By the assumption we made, i.e., ‖(un, vn)‖p →∞, we obtain

1

p
‖(ũn, ṽn)‖pp +

1

q
‖(un, vn)‖qq

‖(ũn, ṽn)‖qq
‖(un, vn)‖pp

− 1

r
‖(un, vn)‖r−pp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn) dx

− ν

2− α− β
‖(un, vn)‖2−α−β−pp

∫
Ω
h(x)ũ1−α

n ṽ1−β
n dx = o(1)

and

‖(ũn, ṽn)‖pp + ‖(un, vn)‖qq
‖(ũn, ṽn)‖qq
‖(un, vn)‖pp

− ‖(un, vn)‖r−pp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn) dx

− ν‖(un, vn)‖2−α−β−pp

∫
Ω
h(x)ũ1−α

n ṽ1−β
n dx = o(1)

as n→∞. By using the above to the equations, we obtain(
1− 2− α− β

p

)
‖(ũn, ṽn)‖pp +

(
1− 2− α− β

q

)
‖(un, vn)‖qq

‖(ũn, ṽn)‖qq
‖(un, vn)‖pp

+

(
2− α− β

r
− 1

)
‖(un, vn)‖r−pp

∫
Ω

(λf(x)ũrn + µg(x)ṽrn) dx = o(1)

as n→∞. Therefore we have

‖(ũn, ṽn)‖pp =
p(2− α− β − q)
q(p− 2 + α+ β)

‖(un, vn)‖qq
‖(ũn, ṽn)‖qq
‖(un, vn)‖pp

+ ν
p(r − 2 + α+ β)

r(p− 2 + α+ β)
‖(un, vn)‖2−α−β−pp

∫
Ω
h(x)ũ1−α

n ṽ1−β
n dx+ o(1)

as n → ∞. Thus we have ‖(ũn, ṽn)‖pp → ∞, which is a contradiction to our
assumption that ‖(ũn, ṽn)‖p = 1. Therefore, the sequence {(un, vn)} is bounded
in X.
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We choose a subsequence to this bounded sequence, still denoted by
{(un, vn)}, such that

(un, vn) ⇀ (u, v) in X,

un → u, vn → v in Ls(Ω), 1 ≤ s < p∗s,∫
Ω

(λf(x)urn + µg(x)vrn) dx→
∫

Ω
(λf(x)ur + µg(x)vr) dx,

ν

∫
Ω
h(x)u1−α

n v1−β
n dx→ ν

∫
Ω
h(x)u1−αv1−βdx

as n→∞.
By the Brezis–Lieb [20] theorem, we get

‖(un − u, vn − v)‖pp = ‖(un, vn)‖pp − ‖(u, v)‖pp + o(1),∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r) dx =

∫
Ω

(λf(x)urn + µg(x)vrn) dx

−
∫

Ω
(λf(x)ur + µg(x)vr) dx+ o(1)

ν

∫
Ω
h(x)(un − u)1−α(vn − v)1−βdx = ν

∫
Ω
h(x)u1−α

n v1−β
n dx

− ν
∫

Ω
h(x)u1−αv1−βdx+ o(1)

as n→∞. Thus, for any (φ2, φ2) ∈ X, the following holds:

lim
n→∞

〈I ′α,β, (φ2, φ2)〉 = 〈I ′α,β(u, v), (φ1, φ2)〉 = 0.

In other words, (u, v) is a critical point of Jα,β. All we now need to show is that
(un, vn)→ (u, v) in X. We use (2.5), the Brezis–Lieb lemma from [20] and some
basic functional analyses to obtain

1

p
‖(un − u, vn − v)‖pp +

1

q
‖(un − u, vn − v)‖qq

− 1

r

∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r) dx = c− Jα,β + o(1) (2.6)

and

0 = 〈I ′α,β(un, vn), (un − u, vn − v)〉
= 〈I ′α,β(un, vn)− I ′α,β(u, v), (un − u, vn − v)〉
= ‖(un − u, vn − v)‖pp + ‖(un − u, vn − v)‖qq

−
∫

Ω
(λf(x)(un − u)r + µg(x)(vn − v)r) dx+ o(1) (2.7)

as n→∞. Without loss of generality, we let

‖(un − u, vn − v)‖pp = c′ + o(1), ‖(un − u, vn − v)‖qq = d′ + o(1)
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and therefore∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r) dx = c′ + d′ + o(1)

as n → ∞. Now, if c′ = 0, the proof is immediate. On the contrary, we assume
that c′ > 0,(

c′

2

) p
p∗

≤
(
c′ + d′

2

) p
p∗

= lim
n→∞

∫
Ω

(λf(x)(un − u)r + µg(x)(vn − v)r) dx

≤M ′ lim
n→∞

∫
Ω

(λ|un − u|r + µ|vn − v|r) dx

≤M ′ lim
n→∞

|Ω|
1

2−α−β−
1
rS
′− rp ‖(un − u, vn − v)‖rp

= M ′|Ω|
1
p
− 1
rS
′− rp

(
λ

r
r−p + µ

r
r−p
)
c
′ r
p .

Thus,

c′ ≥ S
′ r
r−p

{2M ′(λ
r
r−p + µ

r
r−p )}

p
r−p |Ω|

1
r

=
S
′ r
r−p

Λ
.

Therefore, from (2.6), (2.7) and the fact that (u, v) ∈Mα,β
⋃
{(0, 0)}, we have

c′ = Jα,β(u, v) +
c′

p
+
d′

q
− c′ + d′

r

≥ S
′ r
r−p

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

,

]
which contradicts

c′ <
S
′ r
r−p

Λ
− νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

Thus c′ = 0 and hence (un, vn)→ (u, v) as n→∞ in X.

Remark 2.12. The functional Jα,β also satisfies the (PS)c condition for the
case of r = p∗s. In a way, we will try to find out the energy level c below which
the functional satisfies the (PS) condition. We suppose that

c < c∗∗ =

(
1

R
− 1

p∗s

)
S
N
ps (f(xi) + g(xi))

−B
(

2− α− β
p∗s

B

A

) 2−α−β
p∗s−2+α+β

(
p∗s − 2 + α+ β

p∗s

)
.

The sequence (un, vn) is bounded in X by the same argument. By the reflexivity
of X, we have un ⇀ u, vn ⇀ v as n → ∞. Further, from the concentration-
compactness result (refer to Theorem 2.5 of [23]), for these subsequences (still
denoted by (un), (vn)), we have that∫

RN

|un(x)− un(y)|p

|x− y|N+ps
dy⇀µ ≥

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dy +

∑
j∈I

µjδxj ,
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RN

|vn(x)− vn(y)|p

|x− y|N+ps
dy⇀µ′ ≥

∫
RN

|v(x)− v(y)|p

|x− y|N+ps
dy +

∑
j∈I′

µ′jδx′j ,

up
∗
s
n ⇀ dν = up

∗
s +

∑
j∈I

νjδxj ,

vp
∗
s
n ⇀ dν ′ = vp

∗
s +

∑
j∈I′

ν ′jδx′j ,

µj ≥ Sν
p
p∗s
j , µ′j ≥ Sν ′

p
p∗s
j

and therefore∫
Ω

(λf(x)up
∗
s
n + µg(x)vp

∗
s
n ) dx→

∫
Ω

(λf(x)ur + µg(x)vr) dx

+
∑
j∈I

µjf(xj) +
∑
j∈I′

ν ′jg(x′j)

as n→∞. Further, by compact embedding results, we have

ν

∫
Ω
h(x)u1−α

n v1−β
n dx→ ν

∫
Ω
h(x)u1−αv1−βdx

as n → ∞. Here, {xj | j ∈ I}, {x′j | j ∈ I ′} - I, I ′ are countable indexing

sets, i.e., sets of distinct points in RN , {νj | j ∈ I} ∈ (0,∞), {µj | j ∈ I} ∈
(0,∞), {ν ′j | j ∈ I} ∈ (0,∞), {µ′j | j ∈ I} ∈ (0,∞) and S is the best Sobolev
constant defined earlier in this paper. Hence, if J = I ∪ I ′ = ∅, then un →
u, vn → v strongly in Lp

∗
s (Ω). If not, we suppose I 6= ∅ and then choose ζ ∈

C∞c (RN ), 0 ≤ ζ ≤ 1, ζ(0) = 1 with support in a unit ball of RN . Let us define,
for any ε > 0, the function ζε,j as ζε,j = ζ(

x−xj
ε ) for all j ∈ J . We have that

〈J ′α,β(un, vn), ζε,j(un, vn)〉 → 0 as n→∞. On testing wit ζε,j(un, vn), we have∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
ζε,j dx dy +

∫
R2N

|vn(x)− vn(y)|p

|x− y|N+ps
ζε,j dx dy

= 〈(−∆p)
sun, ζε,j〉+ 〈(−∆p)

svn, ζε,j〉 −
∫

Ω
(λf(x)urn + µg(x)vrn)ζε,j dx

− ν
∫

Ω
h(x)u1−α

n v1−β
n ζ2−α−β

ε,j dx+ o(1).

Thus we obtain

lim
ε→0

lim
n→∞

∫
R2N

|un(x)− un(y)|p

|x− y|N+ps
ζε,j dx dy

≥ lim
ε→0

[∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
ζε,j dx dy + µj

]
= µj ,

lim
ε→0

lim
n→∞

∫
R2N

|vn(x)− vn(y)|p

|x− y|N+ps
ζε,j dx dy

≥ lim
ε→0

[∫
R2N

|v(x)− v(y)|p

|x− y|N+ps
ζε,j dx dy + µ′j

]
= µ′j .
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Furthermore, from the definition of ζε,j , we also have

lim
ε→0

lim
n→∞

〈(−∆p)
sun, ζε,j〉 = lim

ε→0
lim
n→∞

〈(−∆p)
svn, ζε,j〉 = 0

and

lim
ε→0

lim
n→∞

∫
Ω

(λf(x)up
∗
s
n + µg(x)vp

∗
s
n )ζε,j dx

= λf(xj)νj + µg(xj)ν
′
j + λf(xj)u(xj)

p∗s + µg(xj)v(xj)
p∗s .

From the compact embedding results in combination with the definition of ζε,j ,
we have

lim
ε→0

lim
n→∞

∫
Ω
h(x)u1−α

n v1−β
n ζ2−α−β

ε,j dx = lim
ε→0

∫
Ω
h(x)u1−αv1−βζ2−α−β

ε,j dx = 0.

From the above analysis, we get

µj ≤ µj + µ′j ≤ λf(xj)νj , µ′j ≤ µj + µ′j ≤ µg(xj)ν
′
j .

Therefore we have either νj = 0 or S ≤ λf(xj)ν
ps
N
j

(
and ν ′j = 0 or S ≤

µg(xj)ν
′
ps
N
j

)
.

Consider

Jα,β(un, vn)− 1

R
〈J ′α,β(un, vn), (un, vn)〉

=

(
1

p
− 1

R

)
‖(un, vn)‖pp +

(
1

q
− 1

R

)
‖(un, vn)‖qq

+

(
1

R
− 1

p∗s

)∫
Ω

(λf(x)up
∗
s
n + µg(x)vp

∗
s
n ) dx

+ ν

(
1

R
− 1

2− α− β

)∫
Ω
h(x)u1−α

n v1−β
n dx

≥
(

1

R
− 1

p∗s

)(∫
Ω

(λf(x)up
∗
s + µg(x)vp

∗
s ) dx

)
+ ν

(
1

R
− 1

2− α− β

)∫
Ω
h(x)u1−αv1−βdx

+

(
1

R
− 1

p∗s

)∑
j∈I

µxjf(xj) + ν ′xjg(xj)

 ,

where r < R < p∗s and

Jα,β(un, vn)− 1

R
〈J ′α,β(un, vn), (un, vn)〉 = c+ o(1) as n→∞.

Further, the function m : x 7→ Atp
∗
s −Bt2−α−β for A,B > 0, attains its minimum

at some point, say, t0 > 0, such that

m(x) ≥ B
(

2− α− β
p∗s

B

A

) 2−α−β
p∗s−2+α+β

(
2− α− β − p∗s

p∗s

)
.
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Passing the limit n→∞, we obtain

c ≥
(

1

R
− 1

p∗s

)∑
j∈I

µxjf(xj) + ν ′xjg(xj)


−B

(
2− α− β

p∗s

B

A

) 2−α−β
p∗s−2+α+β

(
p∗s − 2 + α+ β

p∗s

)
.

Thus we have

c ≥
(

1

R
− 1

p∗s

)
S
N
ps (f(xi) + g(xi))

−B
(

2− α− β
p∗s

B

A

) 2−α−β
p∗s−2+α+β

(
p∗s − 2 + α+ β

p∗s

)
= c∗,

which contradicts the assumption that c < c∗∗. As there are no extra terms
appearing in the decomposition of the sequence (un, vn), we have∫

Ω
(λf(x)up

∗
s
n + µg(x)vp

∗
s
n ) dx→

∫
Ω

(λf(x)up
∗
s + µg(x)vp

∗
s ) dx

as n→∞. Finally, we have

lim
n→∞

‖un‖pp =

∫
Ω
λf(x)up

∗
sdx+ ν

∫
Ω
h(x)u1−αv1−βdx = ‖u‖pp

lim
n→∞

‖vn‖pp =

∫
Ω
µg(x)vp

∗
sdx+ ν

∫
Ω
h(x)u1−αv1−βdx = ‖v‖pp.

Thus, ‖un‖pp → ‖u‖pp, ‖vn‖pp → ‖v‖pp as n → ∞. It is seen that the PS condition
is satisfied by the functional even for the critical case of r = p∗s.

Now we are to prove the existence of a local minimizer for Jα,β in M+
α,β.

Lemma 2.13. There exists Λ∗ > 0 such that (2.4) holds, Jα,β has a mini-
mizer (uν , vν) ∈M+

α,β, and it satisfies the conditions:

(i) Jα,β(uν , vν) = i+ is a weak solution to problem (1.1)–(1.4),

(ii) Jα,β(uν , vν)→ 0 and ‖(uν , vν)‖p → 0, ‖(uν , vν)‖q → 0 as ν → 0.

Proof. In order to prove (i), we follow Hsu [17, Theorem 4.2]. Since i+ =
inf(u,v)∈Mα,β

{Jα,β(u, v)}, there exists a sequence (un, vn) ∈ Mα,β such that

Jα,β(un, vn) → i+ and J ′α,β(un, vn) → 0 in X∗ as n → ∞. Since the func-
tional Jα,β is coercive and therefore (un, vn) is bounded in X. Thus, there exists
a subsequence of (un, vn), still denoted as (un, vn), such that ((un, vn)) ⇀ (u, v) ∈
X. So we have

un ⇀ u, vn ⇀ v,

un → u, vn → v a.e. in Ω,
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un → u, vn → v in Ls(Ω) for 1 ≤ s < p∗

as n→∞. This implies

2ν

2− α− β

∫
Ω
h(x)u1−α

n v1−β
n dx→ 2ν

2− α− β

∫
Ω
h(x)u1−αv1−βdx

as n→∞. Clearly, (u, v) is a weak solution of (1.1)–(1.4). Also, since (un, vn) ∈
Mα,β, we have

Lνα,β(un, vn) =
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

p
− 1

r

)
‖(un, vn)‖pp

+
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

q
− 1

r

)
‖(un, vn)‖qq

− r(2− α− β)

2ν(r − 2 + α+ β)
Jα,β(un, vn),

where Lνα,β(un, vn) =
∫

Ω h(x)u1−α
n v1−β

n dx. Also,

Lνα,β(un, vn) ≥ r(2− α− β)

2ν(r − 2 + α+ β)

(
1

p
− 1

r

)
‖(u, v)‖pp

+
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

q
− 1

r

)
‖(u, v)‖qq −

r(2− α− β)

2ν(r − 2 + α+ β)
i+

≥ − r(2− α− β)

2ν(r − 2 + α+ β)
i+ > 0,

where we have used the lower-semicontinuity of ‖·‖p, ‖·‖q and i+ < 0. Therefore
(u, v) 6= (0, 0), and thus we have a nontrivial weak solution.

Claim: We now claim that (un, vn)→ (u, v) in X and Jα,β(u, v) = i+.

For any (u0, v0) ∈Mα,β, we have

Lνα,β(u0, v0) =
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

p
− 1

r

)
‖(u0, v0)‖pp

+
r(2− α− β)

2ν(r − 2 + α+ β)

(
1

q
− 1

r

)
‖(u0, v0)‖qq

− r(2− α− β)

2ν(r − 2 + α+ β)
Jα,β(u0, v0).

Thus,

i+ ≤ Jα,β(u, v)

≤ lim
n→∞

[(
1

p
− 1

r

)
‖(un, vn)‖pp +

(
1

q
− 1

r

)
‖un, vn‖qq −

2ν

2− α− β
Lνα,β(un, vn)

]
= Jα,β(u, v) = i+.
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Then Jα,β(u, v) = i+. This also implies that (un, vn)→ (u, v) in X.
For the proof of (ii). let (uν , vν) ∈ M+

α,β. From Lemmas 2.2, 2.3, we have
that

0 > Jα,β(uν , vν) ≥ −νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

It is obvious that as ν → 0, we have Jα,β(uν , vν)→ 0.
Further, we have

0 = lim
ν→0

Jα,β(uν , vν) = lim
ν→0

[(
1

p
− 1

r

)
‖(uν , vν)‖pp +

(
1

q
− 1

r

)
‖uν , vν‖qq

− 2ν

2− α− β

∫
Ω
h(x)u1−α

ν v1−β
ν dx

]
.

As it was seen earlier, the functional Jα,β is coercive over M+
α,β, and therefore

(uν , vν) is bounded. Also, using the fact lim
ν→0

2ν
2−α−β

∫
Ω h(x)u1−α

ν v1−β
ν dx = 0, we

clearly have
lim
ν→0
‖(uν , vν)‖pp = 0 = lim

ν→0
‖(uν , vν)‖qq.

Remark 2.14. For ε > 0, let us define

uε(x) =
η(x)

(ε
p
p−1 + |x|

p
p−1 )

N−sp
p

, vε(x) =
uε(x)

|uε(x)|p∗s
,

where η(x) ∈ C∞0 (Ω) is a radially symmetric function defined by

η(x) =


1 if |x| < ρ0

0 if |x| > 2ρ0

0 ≤ η(x) ≤ 1 otherwise

,

where ρ0 is such that B(0, 2ρ0) ⊂ Ω and p∗s = Np
N−sp . Further, let∫

Ω

∫
Ω

|η(x)− η(y)|p

|x− y|N+sp
dx dy ≤ C.

Then
∫

Ω |vε|
p∗dx = 1 and we have the following estimates:

∫
Ω
|uε|tdx =


C1ε

N(p−1)−t(N−sp)
p−1 +O(1) if t > N(p−1)

N−sp
C1| ln ε|+O(1) if t = N(p−1)

N−sp
0 ≤ η(x) ≤ 1 if t < N(p−1)

N−sp

as ε→ 0. In particular, we have∫
Ω

|uε(x)− uε(y)|p

|x− y|N+sp
dx dy = K2ε

sp−N
p +O(1)
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and (∫
Ω
|uε|p

∗
dx

) p
p∗

= K3ε
sp−N
p +O(1)

as ε → 0, where K1,K2,K3 > 0 are independent of ε. There also exists ε0 such
that S, the best Sobolev constant, is close to K2

K3
for every 0 < ε < ε0. In other

words, we will take S ≤ K2
K3

.

We now prove the following lemma which will be used for guaranteeing the
multiplicity of solutions.

Lemma 2.15. There exists ε1, Λ∗, σ(ε) > 0 such that for ε ∈ (0, ε1) and σ ∈
(0, σ(ε)) under condition (2.4), we have

sup
t≥0

Jα,β(tε
p
√
νvε, tε

p
√
νvε) < cα,β − σ,

where

cα,β =
r − p
rp

S
r
r−p − νA0

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
.

Proof. Define

aε(t) = Jα,β(t p
√
νvε, t

p
√
νvε) =

tp

p
ν‖vε‖pp +

tq

q
(2ν

q
p )

∫
Ω
|∇vε|qdx

− 1

r

∫
Ω

(λf(x) + µg(x))(tvεν
1
p )rdx− 2ν

p−α−β+2
p t2−α−β

2− α− β

∫
Ω
h(x)v2−α−β

ε dx.

Clearly, aε(0) = 0, limt→∞ aε(t) = −∞. Then there exists tε > 0 such that

Jα,β(tε
p
√
νvε, tε

p
√
bνvε) = sup

t≥0
Iλ,µ(t p

√
νvε, t

p
√
νvε).

This yields that

(2ν)tp−1
ε ‖vε‖pp + (2ν

q
p )tq−1

ε ‖vε‖qq = tr−1
ε

∫
Ω

(λf(x) + µg(x))
(
ν

1
p vε

)r
dx

+ 2ν
p−α−β+2

p tp
∗
s−1
ε

∫
Ω
h(x)v2−α−β

ε dx. (2.8)

From (2.8), we have the following:

tp+α+β−2
ε ‖vε‖pp ≤ tr+α+β−2

ε

∫
Ω

(λf(x) + µg(x))
(
vεν

1
p

)r
dx

+ 2ν
p−α−β+2

p

∫
Ω
h(x)v2−α−β

ε dx (2.9)

and

(2ν)tp−qε ‖vε‖pp + 2ν
q
p ‖vε‖qq ≥ tr−qε

∫
Ω

(λf(x) + µg(x))
(
vεν

1
p

)r
dx. (2.10)
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From the estimates for uε, obtained in the Remark 2.14, i.e.,

‖vε‖pp = CS +O
(
ε
N−sp
p

)
,∫

Ω
|vε|rdx = O

(
ε
r(N−sp)

p2

)
,∫

Ω
|vε|2−α−βdx = O

(
ε
(2−α−β)(N−sp)

p2

)
as ε→ 0, and from (2.8), it very easily follows now that

tp+α+β−2
ε

(
CS +O

(
ε
N−sp
p

))
= CM ′tr+α+β−2

ε + 2Mν
p−α−β+2

p O

(
ε
(2−α−β)(N−sp)

p2

)
as ε→ 0, where we have used the estimate∫

Ω
(λf(x) + µg(x))vrεdx ≤ CM ′‖vε‖rp∗ = CM ′.

Thus, there exists T1 > 0, ε1 > 0 such that for any ε ∈ (0, ε1), we have tε ≥ T1.
Likewise, we have

Ct2−α−β−qε = (2ν)tp−qε

(
S +O

(
ε
N−sp
p

))
+ 2Cν

q
p (2.11)

as ε→ 0. Then, there exists T2 > 0, ε2 > 0 such that for any ε ∈ (0, ε2), we have
tε ≤ T2. Let ε̃ = min{ε1, ε2}. Then, for any ε ∈ (0, ε̃), we have T1 ≤ tε ≤ T2.
Consider

bε(t) =
tp

p
ν‖vε‖pp −

1

r

∫
Ω

(λf(x) + µg(x))
(
tvεν

1
p

)r
dx.

Then a simple calculation gives

sup
t≥0

bε(t) =
r − p
rp

S
r
r−p +O

(
ε
N−sp
p

)
as ε→ 0. Therefore, for any ε ∈ (0, ε̃), we have

aε(tε) = bε(tε) +
tqε
q

(ν
q
p )‖vε‖qq −

ν
p−α−β+2

p t2−α−βε

2− α− β

∫
Ω
h(x)v2−α−β

ε dx

≤ bε(tε) + 2ν
q
p
tqε
q
‖vε‖qq −

ν
p−α−β+2

p t2−α−βε

2− α− β

∫
Ω
h(x)v2−α−β

ε dx

≤ bε(tε) + 2ν
q
p
T q2
q
‖vε‖qq −

ν
p−α−β+2

p T 2−α−β
1

2− α− β

∫
Ω
h(x)v2−α−β

ε dx

=
r − p
rp

S
r
r−p +O

(
ε
N−sp
p

)
+O

(
ε
q(N−sp)

p2

)
−O

(
ε
(2−α−β)(N−sp)

p2

)
=
r − p
rp

S
r
r−p +O

(
ε
(2−α−β)(N−sp)

p2

)
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as ε→ 0 because, according to the assumptions in problem (1.1)–(1.4), we have

0 <
(2− α− β)(N − sp)

p2
<
q(N − sp)

p2
<
N − sp
p

.

Therefore, one can choose ε1 > 0, sufficiently small, Λ∗, σ(ε) > 0 such that for
ε ∈ (0, ε1), and σ ∈ (0, σ(ε)) under condition (2.4), we obtain

−A0ν

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

]
− σ = O

(
ε
(2−α−β)(N−sp)

p2

)
as ε→ 0.

3. Few useful lemmas

In this section, we recall and prove some important lemmas which are crucial
for the proof of the main theorem. We first consider a submanifold of M−α,β
defined as follows:

M−α,β(cα,β) = {(u, v) ∈M−α,β | Jα,β(u, v) ≤ cα,β}.

The main result we prove in this section is that problem (1.1)–(1.4) admits at
least cat(Ω) number of solutions in this set.

Definition 3.1.

(a) For a topological space X, we say that a non-empty closed subspace Y ⊂ X
is contractible to a point if and only if there exists a continuous mapping

ξ : [0, 1]× Y → X

such that for some x0 ∈ X, there hold

ξ(0, x) = x for all x ∈ Y

and

ξ(1, x) = x0 for all x ∈ Y.

(b) If Y is a closed subset of a topological space X, then catX(Y ) will denote
the Lusternik–Schnirelman category of Y , i.e., the least number of closed and
contractible sets in X which cover Y .

We now state an auxiliary lemma which can be found in the form of Theorem 1
in [1].

Lemma 3.2. Suppose that M is a C1,1 complete Riemanian manifold and
I ∈ C1(M,R). Assume that for c0 ∈ R and k ∈ N:

(i) I satisfies the (PS)c condition for c ≤ c0,

(ii) cat (u ∈M : I(u) ≤ c0) ≥ k.
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Then I has at least k critical points in {u ∈M | I(u) ≤ c0}.

The following lemma is a standard one and can be proved if one works in the
lines of the argument in [28].

Lemma 3.3. Let {(un, vn)} ⊂ X be a nonnegative sequence of functions with∫
Ω

(λf(x)urn + µg(x)vrn) dx = 1

and ‖(un, vn)‖pp → S
′
. Then there exists a sequence {(yn, θn)} ⊂ RN × R+ such

that

ωn(x) = (ω1
n(x), ω2

n(x)) = θ
N
r
n (un(θnx+ yn), vn(θnx+ yn))

contains a convergent subsequence, denoted again by {ωn}, such that

ωn → ω in W 1,p
(
RN
)
×W 1,p

(
RN
)
,

where ω = (ω1, ω2) > 0 in RN . Moreover, we have θn → 0 and yn → y ∈ Ω as
n→∞.

Up to translations, we assume that 0 ∈ Ω. Moreover, we choose δ > 0 small
enough such that Bδ =

{
x ∈ RN

∣∣ dist(x, ∂Ω) < δ
}

and the sets

Ω+
δ =

{
x ∈ RN

∣∣dist(x, ∂Ω) < δ
}
, Ω−δ =

{
x ∈ RN

∣∣ dist(x, ∂Ω) > δ
}

that are both homotopically equivalent to Ω. By using the idea of [14] or [22],
we define a continuous mapping τ :M−α,β → RN by setting

τ(u, v) =

∫
Ω x(λfur + µgvr) dx∫
Ω(λfur + µgvr) dx

.

Remark 3.4. As mentioned earlier in this paper that the functional Jα,β is not
a C1-functional, we might fail to apply some very useful techniques in variational
techniques. For this reason, we will define a cut-off functional using a subsolution
(refer to [13] for the definition) to the system in (1.1)–(1.4). Define

f(x, t, s) =


f(x, t, s) if t > u, s > v,

f(x, t, v) if t > u, s ≤ v
f(x, u, s) if t ≤ u, s > v

f(x, u, v) if t ≤ u, s ≤ v

,

where

f(x, t, s) = λf(x)tr−1 + µg(x)sr−1 + ν
1− α

2− α− β
h(x)t−αs1−β

+ ν
1− β

2− α− β
h(x)t1−αs−β
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is a subsolution to (1.1)–(1.4) (the existence of such a solution can be guaranteed
by the previous sections by taking λ = µ = 0 in (1.1)–(1.4)). Let

F (x, t, s) =

∫ t

0

∫ s

0
f(x, t, s) ds dt

and (u, v). Define a functional I : X → R as follows:

Jα,β(u, v) =
1

p
‖(u, v)‖pp +

1

q
‖(u, v)‖qq −

∫
Ω
F (x, u, v) dx. (3.1)

The functional is C1 (the proof follows the arguments of Lemma 6.4 in the Ap-
pendix of [26]) and it is weakly lower semicontinuous. Taking into account the
way the functional was defined, it is not difficult to see that the critical points
of the functional corresponding to problem (1.1)–(1.4) and that of the cut-off
functional are the same.

Remark 3.5. We will continue to name the cut-off functional Jα,β as Jα,β.

We then have the following result.

Lemma 3.6. There exists Λ∗ such that if (2.4) holds, and (u, v) ∈
M−α,β(cα,β), then τ(u, v) ∈ Ω+

δ .

Proof. Let us assume that there exist sequences νn → 0 and {(un, vn)} such
that τ(un, vn) 6∈ Ω+

δ . By using the same tactics as in one of the previous lemmas
(2.11), we conclude the boundedness of the sequence {(un, vn)} in X. Then we
have

νn

∫
Ω
h(x)u1−α

n v1−β
n dx→ 0 as n→∞.

Therefore, we get

Jα,β(un, vn) =

(
1

p
− 1

r

)
‖(un, vn)‖pp +

(
1

q
− 1

r

)
‖(un, vn)‖qq + o(1) ≤ cα,β

and (
1

p
− 1

r

)
‖(un, vn)‖pp ≤ cα,β ≤

S
r
r−p

Λ
.

‖(un, vn)‖pp ≤
rp

r − p
S

r
r−p

Λ
. (3.2)

Since {(un, vn)} ⊂ M−α,β(cα,β) ⊂M−α,β, we have

lim
n→∞

‖(un, vn)‖pp lim
n→∞

≤
∫

Ω
(λf(x)urn + µg(x)vrn) dx ≤ lim

n→∞
M ′|(un, vn)|rp∗ . (3.3)

By (3.2) and (3.3), we get

S
′ ≤ ‖(un, vn)‖pp
{
∫

Ω(up
∗
n + vp

∗
n )dx}

p
p∗
≤ C‖(un, vn)‖pp = S

′
+ o(1), (3.4)
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which implies that ‖(un, vn)‖pp → CSS
′ p
r−p and∫

Ω
(λf(x)urn + µg(x)vrn) dx→ C ′S

′ p
r−p

as n→∞.
Define

(ξn, ηn) =

(
un(∫

Ω(λfurn + µgvrn) dx
)1/r , vn(∫

Ω(λfurn + µgvrn) dx
)1/r

)
.

Clearly, ∫
Ω

(λξrn + µηrn) dx = 1

and ∫
Ω

(|∇ξn|p + |ηn|pdx)→ S
′ p
r−p

r−1
r as n→∞.

From Lemma 3.3, there exists a sequence {(yn, θn)} ⊂ N×R+ such that θn →
0, yn → y ∈ Ω and

ω(x) = (ω1
n(x), ω2

n(x)) = θ
N
r
n (ξn(θnx+ yn), ηn(θnx+ yn))→ (ω1, ω2)

with ω1, ω2 > 0 in RN as n→∞.
Let χ ∈ C∞0 (RN ) such that χ(x) = x in Ω. Then we guarantee that

τ(un, vn) =

∫
Ω χ(x)(λfurn + µgvrn) dx∫

Ω(λfurn + µgvrn) dx

=

∫
Ω
θNn χ(θnx+ yn)(λξrn + µηrn) dx

=

∫
Ω
χ(θnxn + yn)(λ(ωn(x)1)r + µ(ωn(x)2)r) dx. (3.5)

By the Lebesgue dominated convergence theorem, we have∫
Ω
χ(θnxn + yn)(λ(ω1

n)r + µ(ω2
n)r)dx→ y ∈ Ω

as n → ∞. This implies that τ(xn, yn) → y ∈ Ω as n → ∞, which leads to a
contradiction to our assumption.

The analysis done till now tells us that infMδ
uα,β > 0 and infMδ

vα,β > 0,
due to Lemma 2.13 and the definition of Ω−δ . Note that

Mδ =

{
x ∈ Ω

∣∣∣∣dist(x,Ω−δ ) ≤ δ

2

}
which is a compact set. Thus, by Lemma 2.15 and using the idea of Lemma 3.4
of [14], Lemma 3.3 of [8], we can obtain t̃− > 0 such that

(t̃− p
√
νvε(x− y), t̃ p

√
νvε(x− y)) ∈Mα,β(cα,β − σ)
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uniformly in y ∈ Ω−δ . Further, by Lemma 3.6, τ(t̃− p
√
νvε(x−y), t̃− p

√
νvε(x−y)) ∈

Ω−δ . Thus we can define a map γ : Ω−δ →Mα,β(cα,β − σ)− by

γ(y) =

{
(t̃− p
√
νvε(x− y), t̃− p

√
νvε(x− y)) if x ∈ Bδ(y)

0 otherwise
.

We will denote by τα,β the restriction of τ over M−α,β(cα,β − σ). Observe that vε

is a radial function, therefore for each y ∈ Ω−δ , we have

(τα,β ◦ γ)(y) =

∫
Ω x(λf(x)(t̃− p

√
νvε(x− y))r + µg(x)(t̃− p

√
νvε(x− y))r) dx∫

Ω(λf(x)(t̃− p
√
νvε(x− y))r + µg(x)(t̃− p

√
νvε(x− y))r) dx

=

∫
Ω(y + z)(t̃−)rν

r
p (λf + µg)vrεdz∫

Ω(t̃−)rν
r
p (λf + µg)vrεdz

= y.

From [14], we define the map Tα,β : [0, 1]×M−α,β(cα,β − σ)→ RN by

Tα,β(t, z) = tτα,β(z) + (1− t)τα,β(z).

We then have the following lemma.

Lemma 3.7. To each ε ∈ (0, ε0), there exists Λ∗ > 0 such that if (2.4) holds,
we have Tα,β([0, 1]×M−α,β(cα,β − σ)) ⊂ Ω−δ .

Proof. We prove by contradiction. Let there exist sequences tn ∈ [0, 1], νn →
0 and zn = (un, vn) ∈ M−α,β(cα,β − σ) such that Tα,β(tn, zn) 6∈ Ω+

δ for all n. We
can assume that tn → t ∈ [0, 1]. Thus, by Lemma 2.13 (ii) and an argument
similar to that used in the proof of 3.6, we have

Tα,β(tn, zn)→ y ∈ Ω as n→∞,

which leads to a contradiction.

We now prove the main result of this paper which roughly states that under
certain assumptions on ν problem (1.1)–(1.4) admits at least cat(Ω) + 1 number
of solutions.

Lemma 3.8. If (u, v) is a critical point of Jα,β on M−α,β, then it is also a
critical point of Jα,β in X.

Proof. We follow the proof of Lemma 4.1 in [14] or Lemma 4.1 in [31]. Let
(u, v) be a critical point of Jα,β in M−α,β. Then

〈J ′α,β(u, v), (u, v)〉 = 0.

Define

ψ(u, v) = 〈J ′α,β(u, v), (u, v)〉 = ‖(u, v)‖pp + ‖(u, v)‖qq
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−
∫

Ω
(λf(x)ur + µg(x)vr) dx− ν

∫
Ω
h(x)u1−αv1−βdx.

Since we are now seeking to minimize Jα,β over the entire space X, the Lagrange
multiplier method helps us in finding a θ(6= 0) ∈ R such that

J ′α,β(u, v) = θψ′(u, v), (3.6)

where

ψ(u, v) = 〈J ′α,β(u, v), (u, v)〉.

Since (u, v) ∈ M−α,β, by a simple computation, we have that ψ′(u, v) < 0. Con-
sequently, from (3.6), we have J ′α,β(u, v) = 0.

Lemma 3.9. There exists Λ∗ > 0 such that any sequence {(un, vn)} ⊂ M−α,β
with JM−α,β

(un, vn)→ c ∈ (−∞, cα,β) and J ′M−α,β
(un, vn)→ 0 as n→∞ contains

a convergent subsequence if (2.4) holds.

Proof. By the Lagrange multiplier method, there exists a sequence (an) ⊂ R
such that

‖I ′α,β(un, vn)− anψ′α,β(un, vn)‖X′ → 0

as n→∞. Here,

ψα,β(un, vn) = 〈I ′α,β(un, vn), (un, vn)〉

= ‖(un, vn)‖pp + ‖(un, vn)‖qq −
∫

Ω
(λf(x)urn + µg(x)vrn) dx

− ν
∫

Ω
h(x)u1−α

n v1−β
n dx.

Then
I ′α,β(un, vn) = anψ

′
α,β(un, vn) + o(1)

as n→∞. Since (un, vn) ∈M−α,β ⊂Mα,β, by a simple computation, we have

〈ψ′α,β(un, vn), (un, vn)〉 < 0.

Now suppose 〈ψ′α,β(un, vn), (un, vn)〉 → 0 as n→∞. Then we have

lim
n→∞

(r − p)‖(un, vn)‖pp + (r − q)‖(un, vn)‖qq

= lim
n→∞

ν(1 + α+ β)

∫
Ω
h(x)u1−α

n v1−β
n dx

≤ ν(1 + α+ β)M

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

] p+α+β−2
p

lim
n→∞

‖(un, vn)‖2−α−βp
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and

lim
n→∞

(p+ α+ β − 2)‖(un, vn)‖pp + (q + α+ β − 2)‖(un, vn)‖qq

= lim
n→∞

(r + α+ β − 2)

∫
Ω

(λf(x)urn + βg(x)vrn) dx ≤ lim
n→∞

M ′‖(un, vn)‖p∗p ,

where we have used the Hölder inequality and the Sobolev embedding. Then we
have

lim
n→∞

‖(un, vn)‖p ≤ (νC1)
1
p

[(
1− α

2− α− β

) p
p+α+β−2

+

(
1− β

2− α− β

) p
p+α+β−2

] 1
p

and

‖(un, vn)‖p = C
1

p∗−p
2 + o(1)

as n → ∞. Now, if we choose Λ∗ small enough, this cannot hold. There-
fore, let us assume that 〈ψα,β(un, vn), (un, vn)〉 → l < 0 as n → ∞. Since
〈Jα,β(un, vn), (un, vn)〉 = 0, we conclude that an → 0, and thus I ′α,β(un, vn) → 0
as n→∞. This gives us that

Iα,β(un, vn) = c < cα,β and I ′α,β(un, vn)→ 0 as n→∞.

Therefore, by Lemma 2.11, the proof is complete.

Lemma 3.10. Suppose that (C) and (2.4) hold. Then

cat(M−λ,µ(cλ,µ − σ)) ≥ cat(Ω).

Proof. Let cat(M−α,β(cα,β − σ)) = n. Then, by the definition 3.1 of the
category of a set in the sense of Lusternik–Schnirelman, we suppose that

M−α,β(cα,β − σ) = A1 ∪A2 ∪ · · · ∪An,

where Aj , j = 1, 2, . . . , n are closed and contractible inM−α,β(cα,β−σ), i.e., there

exists hj ∈ C([0, 1]×Aj ,M−α,β(cα,β − σ)) such that

hj(0, z) = z, hj(1, z) = Θ for all z ∈ Aj ,

where Θ ∈ Aj is fixed. Consider Bj = γ−1(Aj), j = 1, 2, . . . , n. Then the sets Bj
are closed

Ω−δ = B1 ∪B2 ∪ · · · ∪Bn.

We now define the deformation gj : [0, 1]×Bj → Ω+
δ by setting

gj(t, y) = Tα,β
(
t, hj(t, γ(y))

)
under condition (2.4). Notice that

gj(0, y) = Tα,β(0, hj(0, γ(y))) = (τα,β ◦ γ)(y) = y for all y ∈ Bj
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and

gj(1, y) = Tα,β(0, hj(1, γ(y))) = τα,β(Θ) ∈ Ω+
δ for all y ∈ Bj .

Thus the sets Bj , j = 1, 2, . . . , n are contractible in Ω+
δ . Therefore,

cat(M−α,β − σ) ≥ catΩ+
δ

(Ω−δ ) = cat(Ω).

The lemma is proved.

Proof of Theorem 1.1. By Lemmas 2.11 and 3.9, the functional Iα,β satisfies
the (PS)c condition for c ∈ (−∞, cα,β). Then, by Lemmas 3.2 and 3.10, we have
that Iα,β has at least cat(Ω) number of critical points in M−α,β(cα,β − σ). By
Lemma 3.8, we have that Iα,β has at least cat(Ω) number of critical points in
M−α,β. Further, since M+

α,β ∩M
−
α,β = φ, the proof is now complete.
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Множиннiсть розв’язкiв систем з p-q дробовим
лапласiаном з увiгнутими сингулярними

нелiнiйностями
Kamel Saoudi, Debajyoti Choudhuri, and Mouna Kratou

У цiй роботi ми вивчаємо iснування множинних нетривiальних не-
вiд’ємних слабких розв’язкiв сполученої системи елiптичних диференцi-
альних рiвнянь з частинними похiдними. Доведено iснування розв’язкiв
на многовидi Негарi. Для доведення iснування щонайменше cat(Ω) +
1 розв’язкiв використано категорiю Люстерника–Шнiрельмана, де Ω є
обмеженою областю, в якiй розглянуто цю задачу.

Ключовi слова: многовид Негарi, категорiя Люстерника–Шнiрельма-
на, сингулярнiсть, множиннiсть
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