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In this paper, we study the existence of multiple nontrivial nonnegative
weak solutions to a coupled system of elliptic PDEs. The existence of solu-
tions in the Nehari manifold is proved. The Lusternik—Schnirelman category
is used to prove the existence of at least cat({2)+1 number of solutions, where
Q) is a bounded domain in which the problem is considered.
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1. Introduction

In this section, we introduce the problem and discuss some developments in
this direction in the literature. We consider the following problem:

—(Ap)*u — (—Ay)%u = Af(x)u" 1 + 1/21_aﬁh(x)uav1’3 in Q, (1.1)
"o

—(Ap)*v — (=A)*v = pg(z)v" 1 + Vzl_ﬁﬁh(x)ulav’g in , (1.2)
"o

u>0,v>0 in Q, (1.3)

u=v=0 in RV \ Q, (1.4)

where

(C): )\,,u,u>0,0<s,oz,ﬁ<1,2—a—ﬁ<q<%<p<r§p*.

We are mainly interested in positive solutions to (1.1)—(1.4). The functions
f,9,h > 0 are measurable over 2 and are bounded almost everywhere in 2,
ie., f,g,h € L>®(Q). The operator (—A,)® acting on a function, say U, is the
fractional p-Laplacian operator which is defined as

U(z) = U(y)P2(U(z) - U(y))
|z —y|N+ps

(—A,)°U(x) =Cns V. P./ dy

RN
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for all p € [1,00), with C s being the normalizing constant. In a similar way,
one can define (—A,)®. Throughout the paper, we will assume N > 2, sp < N,
0 < s < 1. A large amount of attention has been given of late to elliptic problems
involving two Laplacian operators viz.

—(Ap)u — (—A)u = Au|""%u + [ulP” "u in Q,
u=20 on 0€2.

The main motivation for problems of this kind is the fundamental reaction-
diffusion equation

0

Frih V- [H(uw)Vu] + c(z,u), (1.5)
where H(u) = |Vu[P~2 + |Vu|?2. The problem is a model equation to phe-
nomena in physics and other applied sciences such as in biophysics to model the
cells, design of chemical reaction, plasma physics, etc. The reaction term has a
polynomial form with respect to u. Of late, problem (1.5) with

H(u) = c(z,u)

was studied in [4, 6, 18,19,27,29]. One may refer to Yin and Yang [31] who
studied problem (1.5) when p?> < N, 1 < ¢ < p < r < p*. The authors in
[31] proved the existence of cat({2) number of positive solutions using simple
variational techniques. For p = ¢, r = 2, problem (1.5) reduces to the well-
known Brezis—Nirenberg problem which was further studied for the case of critical
growth in bounded and unbounded domains by many researchers (see [2,3,5,25]
and references therein). A common issue, which kept the interest to the problem,
was to figure out a way for overcoming the lack of compactness in the continuous
embedding VVO1 P(Q) « LP"(Q). Two noteworthy contributions can be found
in [10,24].

At the same time, elliptic systems have also gained much attention, especially
the system

2
—(Ap)u = Aul"~2u + aTabw—?umb in Q, (1.6)
2b
—(Ap)v = plv| %0 + m|u|“|v]b_2u in Q, (1.7)
u=v=0 on 01}, (1.8)

where a + b = p*. Ding and Xiao [12] studied (1.6)—(1.8) with the p-superlinear
perturbation of 2 < p < r < p* an extension of which can be found in the
paper by Yin [30]. In both these works, in [12] and [30], the authors obtained
the existence of cat(€2) number of solutions using the Lusternik—Schnirelman
category. For the sublinear perturbation, Hsu [17] obtained the existence of
two positive solutions for problem (1.6)—(1.8). Eight years ago, Fan [14] studied
problem (1.6)—(1.8) for p =2 and 1 < r < p. Using the Nehari manifold and the
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Lusternik—Schnirelman category, the author proved the admittance of at least
cat(§2) + 1 positive solutions. When talking about the doubly nonlocal equation,
we should refer to [16], where the following problem was considered:

(=Ap)* u+ (—Ag)™u = Aa(z)|ul’u + b(x) [u|"?u in Q
u=20 in RV \ Q,

where 1 < § < ¢ < p < r < p; . Thereafter, in [7], the authors studied the
problem

—A)%u = Aul® 2w+ ———|ul*2ulv)? in Q,
(=4p) |ul 04+B| * " ulvl
(—Ap)*v = u|u]q_2u + £|U|a|v|ﬁ_2v in Q,
a+ g
u=v=0 in RV \ Q.

They guaranteed the multiplicity of solutions in a Nehari manifold. Further, Fu
et al. [15] considered the following problem:

(—Ap)*u = Aa(z)|ulP~2u + Ab(z)u]* 2 [v] v + “(?my”wu in Q,
(0%

(—Ap)*w = Ac()]v|720 + Ab(x)|ul®v]*~2v + ﬁg?|u|v|v|6—2v o,

u=v=0 in RV \ Q.

B — ol é 1 1
Here, %—1—5—1, l<p<r,1<gqg<y, EN—&-E < 1,1?—1-57 < 1, pk gt are
fractional Sobolev critical exponents: pf = N_I; - 0= N_qqs.
Another noteworthy contribution was made by Zhen et al. [32], where the

following critical system was studied:

(—A)Y’u = p|u 2*’2u+¥\u|a*2\vlﬁu in RY,
(=A)*v = polv|* 20 + %‘U|a‘1}’5721} in RY,
u=v=0 in D,(RM).

Here D,(R™) is the completion of the space of compactly supported smooth
functions with the norm
2 Cn.s Ju(@)u(y)?
Julf oy = 52 [ e dady.

Motivated by the works of Li, Yang [21] and Choudhuri et al [9], we extend the
results of the above problem with local operators and added singular nonlinear-
ities. One may even consider this work to be a sequel to [9]. To our knowledge,
there has not been any contribution in this direction and ours is entirely new.
We now state the main result of this work.

Theorem 1.1. Assume the condition (C) holds. Then there exists A* > 0
such that if v € (0, A*), problem (1.1)—(1.4) admits at least cat(Q2) + 1 number of
distinct solutions.
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2. Preliminaries

Let Y be a space that is defined as

Y:{U:RN—HR

u is measurable, u|g € LP(Q), and u(z) = uly) € LP(Q)}

and is equipped with the Gagliardo norm

[[ul ulp + <// )|pd d >;
ully = |u x >
! QxQ |~"3 |N+Sp

where Q C RY, Q = RV ((RV\ Q) x (RV\ Q)). Here |ul, refers to the LP-norm
of u. We will frequently use the subspace Yy of Y which is defined as

Yp={ueX|u=0inR"\Q}

equipped with the norm

= (], L 00)°
u = i .
b QxQ |33—y|N+Sp

Remark 2.1. Y C W*P(Q), Yo C W*P(Q), where W*P() is the usual frac-
tional order Sobolev space equipped with the norm (the Gagliardo norm)

lllyosey = lully + (// )‘pdd)’l’
u s u X
wer( P QxQ \x—y\N“p

Let Q C RY be a bounded domain. Then the space (W7 (), ]| -||,) is defined
by

N+sp

|z —y| >

e - o

Me[}’(ﬁxﬂ) u:Oin]RN\Q}

equipped with the norm

1
u(a ;
Jull, = ( [ ey

We will refer to |u|, as the L™-norm of u defined as ([, |u|" dx) for 1 <r < co.
Clearly, WP (Q) x WP (1) is a reflexive Banach space [11]. We define the norm
of any member of Wos’p(Q) x WiP(Q) as

(s 0)lp = (lallp + loll) .

The best Sobolev constant is defined as

p
P Jul

—_— (2.1)
weWg (N} ( [, |ulp* dar) 75

)
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and further we define

o I, o)l

N0 ([ [uf?” + [o]p" da)?

= (2.2)

We also denote M = ||h]|oo, M' = max{||flloo; [|g]lcc}, Where || - ||cc denotes the
essential supremum norm (or more commonly the L*°-norm) of a function. We
will seek for a solution in the function space X = Z x Z, where Z = W' (Q2) N
Wi (). The space X is equipped with the norm

[, o) = [ (w, 0)[p + [ (2, )l

The space X is a reflexive Banach space. We now define the associated energy
functional to problem (1.1)—(1.4) which is as follows:

Jop(u,v) = ;H(u, W)L+ 6”(“ o)l -2 / (AF (@) + pg(x)or) de

_ l-a, 1
2aﬁ/§2h(x)u v Pdz.

A function (u,v) € X is a weak solution to problem (1.1)—(1.4) if u,v > 0,
u= %1, v Py € L1(Q), and

(= Ap)°u, ¢1) + ((=Ap)°v, $2) + ((—A )u¢1> <( q)’v, d2)
_ / (Af(x)u;—lgbl+ug(x)v;—1¢2)dx— p— / yuivy P ¢y da
Q

-8

for each ¢9, p2 € X. We have used the following notation,

w(z) — w(y)|[ 2 () — ¢
(o = [ [ 1=l H0le) —wlg6) 280D o,

|SL‘ _ |N+rs

fori =1,2, w =w or v, T = p or q. Observe that the nontrivial critical points
of the functional J, g are the positive weak solutions of problem (1.1)-(1.4).
Further, the reason that the functional J, g is not a C I_functional does not allow
us to apply classical variational methods. It is not difficult to verify that the
energy functional J, g is not bounded below in X. However, we will show that
Ja,p is bounded below on a Nehari manifold and we will extract solutions by
minimizing the functional on suitable subsets.
We further define the Nehari manifold as follows:

Mo ={(u,v) € Z\(0,0) | u,v >0, ;yﬂ(u,v), (u,v)) = 0}.

It is easy to see that a pair (u,v) € M, g if and only if

I, 0) 2+ 11ty 0) 1 - /Q (\f(@)u" + pg(a)o") dz — v /Q h(x)u' ' do = 0.
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Just like for any problem, which has an involvement of a Nehari manifold, we

also see here that

Inptus) = (3= ) Nl + (5 = 1) lew ol

1_ 1 l—a, 1-p5
+V<7" 2—0¢—B>/Qh($)u v Pdx

L p u,v)||2
> (2= 1) Qo) + 1w o)l

1 . # l—a, 1-8
+V(7’ 2—a—ﬁ)/9h(x)u v dx
> (2= Dot v (- 5i) [ oot

> (3= D)1l v (7o~ ) w3

Since 2 — a — 3 < p, we have that J, g is coercive and bounded below on M, g,
and thus the functional is coercive and bounded below in M, g. Note that
Jop(u,v) > 0 for sufficiently small v > 0 and for all (u,v) € Myg. Fort >0,
we define the fiber maps

W(t) = Jo pltu, tv) = ;Hw o)k + 5||<u e - = / (@) + pg(a)e’) da

2—a—f
2t - 5/ 1_O‘v1_5d:r.
— a _

V() = I (u, ) [+ ¢4 I (u, 0) [ — £ /Q(Af(x)ur + pg(x)o") da

—l/tl_o‘_ﬁ/h(x)ul_o‘vl_ﬁdac
Q

Then

and
T(t) = (p — D2 (u,0) [+ (g — 1)1 (u, o)
(- / (Af(@)u” + pg(e)”) de
—v(l—a-— B)to‘ﬁ/ h(z)u' =0 P dz.
Q

Observe that (u,v) € Mg g if and only if ¥/(1) = 0. In general, we have that
(u,v) € Mg p if and only if U/(1) = 0. Therefore, for (u,v) € M, g, we have

(1) = (p— D(w,0)lIh + (g = D[ (w,0) [T = (r = 1) /Q()\f(l’)ur + pg(x)v") dz
—v(l—a-— z)ut " Pdr
(1-a=5) [ he) d
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= (2 =)l (w, 0)l5 + (g = )l (u, v)[[g
+v(r+a+p-2) /Q h(z)ul =t P d
= (p+a+6=2)[(wv)|;+(g+a+5=2)[[(u0)g

+@-a=p=1) [ (M@ + ugle)) de
Q
We thus split the Nehari manifold into three parts, namely,

M;;B = {(u,v) € My p | T"(1) > 0},
Mg 5 ={(w,v) € Mag | v”(1) < 0},
Mo = {(u,v) € Mo | ¥"(1) =0},

which corresponds to the collection of local minima, maxima and points of inflec-

tion, respectively. We now prove a lemma which follows the proof due to Hsu [17]
(refer to Theorem 2.2).

Lemma 2.2. For (u,v) € M,g, there exists a positive constant Ao that
depends on p, S, N, «, 3, || such that

1—« p+ai/372 1-p p+ai/372
2—a—p0 + 2—a—0

Proof. Applying the inequality

Jo,p(u,v) > —vAg

—_

Tngtws) 2 (1= 1) (N0l

p T
1 1
+v <1" - 2045) /Qh(:z)ulavlﬁda: (2.3)

together with the Holder inequality, the Young inequality, and the Sobolev em-
bedding theorem [11] to (2.3), we have

Inplu) = (5= 1) (o) v (5—a—g = 1) [ hnt P

1 1 | 2-a=B 1 1
>(Z_Z P\ _ % - - _Z
(-3) Ul - vanar =57 (50— - 1)
-« 2—a—pf 1-— B 2—a—p
X/Q(Q—a—ﬁwp* +72_O[_/8‘U|p* dx
1 1 1-2=a=B  atp-2 1 1
(p - r> (H(u,v)llﬁ) —vM|Q S <2—a—6 - T>

l -« 2—a—f 1-p 2—a—pf
O R e

> —VA()(p7 S7 N; 04767 ‘Q’)

v



Multiplicity of Solutions to a p-q Fractional Laplacian System 521

1—« Patp—2 1-p5 PFarA=2

The lemma is proved. O

Lemma 2.3. There exists A* > 0 such that if

)™ () com e

then M9 =09
Proof. Choose

p rp 2—a—p

Ly g
r —a—pg"
A+u)/ oM —24a+ ) 3|+

A = ((p—?—l—oz-i—ﬂ)M,

The proof follows by a contradiction. O

From Lemma (2.3), we have that if (2.4) holds, then M, g = Miﬁ UM, s

We can define it = 1nf(u 0)

eMZ, Jo,p and i~ inf(u,v)eM‘B Jo,p since the func-
tional J, g is bounded below i in Ma B ’

Remark 2.4. Henceforth, we will denote the norm convergence by —, the
weak convergence by — and A (or A*) as any small parameter we will encounter
or any complex representation in short form.

Lemma 2.5. There exists A* > 0 such that if (2.4) holds, then

1. it <0,
2. 1= > Dqg for some Dy > 0.

Proof. 1. Let (u,v) € M+ﬁ C Mg . Then we have

0 < (r=p)ll(uw, )l + (r = )l (u, ) I3

vir+a+p-2) / h(z)ul =t P d
Q

Further,
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:07#”(;_2_;_5)HWww5

A (Yl <o.

Therefore, it = inf(um)eM;rﬂ Jop(u,v) <0.

_|_

2. Likewise, let us choose (u,v) € M; 5 We again appeal to the inequality
p+a+p-=2)(uv)f<@+a+p-=2)uv)}p+(q+a+B8-=2)uv)f
<Grats-2) [ Af@u + oy’ de
< (rtatf-2OM' (W + )| 0)ll
by virtue of the fact that (u,v) € M, g. Therefore,

1

[(w, 0)llp =

<p+a—|—5—2> 1 r
r+a+B8-2) M (N 4 prr) '

Let this constant be named as A. On proceeding further we have

1 1 1 1
Iagp() = (= D)1l + (3 - 1) ol
+v ot /h(x)ul_avl_'gdx
r 2—a-—-08) Jq
1 1 |_2-a—B a+p-2 1 1
> Z - = p_ * - - -
> (5= 1) ol - wariop 575" (o - )
17 2—a-p 2—a—p3
e L e

1 1

Z(p_r>|WWN§—“%@JJ“aﬁvm)

1—a \prasse 1— B \rratsz 2o
x[(Q_a_ﬁ) +(525) ]Hmmmp

1 1

:Kp‘Jumw$M52ummsNaﬁm

p
1 — o pta+B—2 1— p+a+5 2 2—a—B
>< e —
()™ (22) 7 o

1 1
Z AQ—a—,B |:<p — 7,) Ap-l—OH‘B 2 VA(](p,S N CY,B ‘QD

1—a \pratsz 1—f \#ratr—z
Aea)T )
4)

Then, for a sufficiently small A* > 0 and Dy > 0 such that (2.
i~ > Dy > 0.

holds, we have
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Remark 2.6. For better understanding the Nehari manifold and the fiber
maps, we define the function

Fuw(t) = 77" |[(uw, ) |5 + 77| (u, v)||T — pt2-o—h-r /Q h(x)ul_o‘vl_ﬁdx.
Then
V(0) = Funlt) = [ (M@ + Bala)”)dal
Observe that lim_,o Fy,(t) = 0 and lim; g+ Fy, () = —oo. Further,
Fyo(t) = (p =) Y[ (w, o)l + (g — r)t? "I (u, 0) 1§
—v(2—a—f—r)tme A /Q h(x)ul =P dy
= 117 (p — )P (u, 0) |15+ (g — )t (u, 0) 1
—v(2—a—-08-r) /Q h(z)ul =o' P dz].
Let
Yup(t) = (0= )| (w, 0) [ + (g — )t | (u,0) |4

—v2—a—-0B-r) / h(x)u' =o' P da.
Q
We also have

lHm 9y () =v(r+a+p— 2)/ h(z)ur~ ' Pdz, tlim Yyup(t) = —o0,
Q — 00

Vo(t) = (0= 7)(p+ a+ BT (u,0) |15
+ (g —r)(g+a+ B (u, )2 < 0.
Thus, for each (u,v) € X with [, h(z)u'"*v'"Pdx > 0, F,,(t) attains its max-

imum at some tymax = tmax(u,v). This unique ty,ax can be evaluated by solving
for t from the equation

(r=p)tP* 0 (u, o) B+ (r =)t (u, )| = V(?"+04+6—2)/ h(z)u'= ' dz.
Q
A simple calculation yields

_ r—p
Fyp(tmax) = thiax <1 + T+a+/@_2t?nax> [ (w, )15

- r—4q 2
por (11749 4 )| > 0.
il (1 ) ol

Thus, for t € (0, tmax), we have Fy, () >0 and Fy, ,(t) < 0 for ¢ € (tmax, 00).
We now have the following lemma as a consequence.
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Lemma 2.7. For every (u,v) € X \ {(0,0)} there exists a unique 0 < t+ <
tmaz Such that (tTu,ttv) € MIB and

JaptTu,ttv) = %I>1£ Jo p(tu, tv).

Furthermore, if

/Q AF(@)” + pg(e)”) de > 0,

then there exists a unique 0 < t+ < tpax < t such that (tTu,tTv) € Maﬁ’
(tTu,t7v) € M 5 and

Jop(tTu, t™v) = inf J,pgtu,tv), Jop(t u,t v) =supJug(tu,tv).
’ 0<t<tmax ’ ’ t>0 ’

Proof. We only prove the case when

/Q(Af(l‘)ur + pg(z)v") dxr > 0.

Thus the equation

Fuslt) = [ (@) + Bg(o)e") da

has only two solutions, namely 0 < t* < tpax <t such that I/, B(t+) > 0 and
I}, 5(t7) < 0. Since

() = () [Fu,v<t+>— [os@ur + ngapydo| o

i)
W) = () [Funle) — [ + e dx] <o,

therefore (t*u,ttv) € M;FB and (t7u,t7v) € M_ 5. Thus ¥(t) decreases in
(0,t1), increases in (¢t7,¢7) and decreases in (7, 00). The lemma is proved. [

We now define the Palais—Smale (PS) sequence, the condition and the value
in X for a functional J, g.

Definition 2.8. Suppose, for ¢ € R, a sequence {(u,,v,)} C X is a (PS)-
sequence for the functional Jo g if Jo g(un,vn) — ¢ and Jg 5(up,vn) — 0 in X’
as n — oo. Then

1. the number ¢ € R is a (PS)-value in X for the functional J, g if there exists
a (PS)c-sequence in X for J, g;

2. the functional J, g satisfies the (PS).-condition in X for J, g if any (PS).-
sequence admits a strongly convergent subsequence in X.

Remark 2.9. We will sometimes denote lim, oz, = 0 as z,, = o(1) for a
sequence of real numbers (x,).



Multiplicity of Solutions to a p-q Fractional Laplacian System 525

Remark 2.10. X’ will refer to the dual space of X.

Lemma 2.11. For any 0 < o, f < 1, the functional Jo g satisfies the (PS)c-

condition for
b b
1—«a protp—2 n 1-p3 protp—2
2—a—p8 2—a—p8 ’

ST
ceE (—oo, — VA
where A = 2M' (A7 + u#)}%lﬂ\% Here,

A
1 Tratpz 1—f \irate2
— pratf— — pta+f—
(2—a—6> +<2—a—5> ]>0

for a sufficiently small v.

p—a—
ST

— I/AQ

Proof. Suppose {(un,vn)} is a (PS)c-sequence in X for the functional J, g

with
5 l—a \retis 1—8 \iaiss
°c (‘“’ o) ) D
Then
Jap(tun,vn) = c+o0(1), I, g(un,vn) = o(1) asn — oo. (2.5)

We now claim that {(un,vy)} is bounded in X. We prove this claim by contra-
diction, i.e., say ||(un,vpn)||p = 00 as n — oo. Let

) = (T Ty

Then ||(@y,0n)|l, = 1, which implies that (@, ) is bounded in X. Therefore,
due to the reflexivity of the space X, we have up to a subsequence

(Up,0p) — (u,0) asn — oo in X.
This further implies that

T Ty — O in W, P (),

G, — @, B — in L3(Q), 1< s < p,
/ vh(z)ul ol Pdr — / vh(z)ut ' Pdx
Q Q

as n — 0o. The last convergence follows from Egoroff’s theorem. From (2.5), we
have

1 o 1 -
1 0l (2, )l + (s 0 ) (2, Tl
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= Mol [ M@ + po@)i?) da

v
2—a—-p

|t 0270 /Q h(@)ik— 5 Bdz = ¢ + o(1)
and
s o) 20 s )2+ s 0 12 B0
vl [ (M), + o)) do
vl o) [ [ @ik e de = o)

as n — 0o. By the assumption we made, i.e., ||(un, vs)||p = 00, we obtain

¢ 12, ) |Ig

1 1
= (g, D) |12 + = || (s, v
p (e Tl - M enly,

1
— lum ) /Q O\ (2)T+ pg(2)T7) da
- o o) [ bt sl e = o)

and

R ~ H(’an’f}n)ng
p A —
”(Un7 Uﬂ)”p + H(uﬂ" Un)Hq ||(Una Un)Hg

s o) [ /Q (A ()i, + pg(x)i,) de

— v||(un, vn)Hf,*a*B*p /Q h(z)al=2o Pdx = o(1)

as n — oco. By using the above to the equations, we obtain

(1= 25572 ot (1= 25522 Yot

1 (s o) 15

i (2‘“‘5 - 1) s o) 17 /Q (\F(@)iE, + pg(@)ii) da = o(1)

as n — 0o. Therefore we have

p2—a—-B—-q)
alp—2+a+p)
p(r—2+a+p)
r(p—2+4+a+pP)

o 1t ) 11
qH(Umvn)Hg

(@, On) I} = (2t vn) |

Iun, v 72 [ (o) + o(1)
Q

as n — oo. Thus we have ||(ty,o,)|h — oo, which is a contradiction to our

assumption that ||(@y,0,)|, = 1. Therefore, the sequence {(uy,v,)} is bounded

in X.
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We choose a subsequence to this bounded sequence, still denoted by
{(u’fhvn)}, such that

(Un,vn) = (u,v) in X,

Up = u, v, v inL%Q), 1<s<pl,

/ (@), + pg(a)l) do — / ()" + pgla)r) de,
Q Q

V/ h(z)ut vl Pdr — 1// h(z)ur~ v Pdx
Q Q

as n — 0o.
By the Brezis-Lieb [20] theorem, we get

[(un =, 00 = V) = [[(un, vn) [ = [[(w, 0) [ + o(1),

/ (A ()t — )"+ g () (0 — 0)) dr = / (@), + pgla)e]) de
Q Q
- /Q () + pg(a)or) d + o(1)
v 2)(w, — u) v, — ) Pdr = v 2l Bdy
/Qh<><n )y — 0)iPd /Qh<>n 1=
- y/ h(x)u' =o' Pdx + o(1)
Q

as n — oo. Thus, for any (¢2, ¢2) € X, the following holds:

lim (I}, 5, (¢2, 2)) = (I, g(u,v), (61, ¢2)) = 0.

n—0o0

In other words, (u,v) is a critical point of J, 5. All we now need to show is that
(Un,vn) — (u,v) in X. We use (2.5), the Brezis—Lieb lemma from [20] and some
basic functional analyses to obtain
1 py 1 q
—[[(un =, o0 = V) + = [[(un — u, 00 = v)[|3
p q
1

- /Q(Af(x)(un —u)" +pg(x)(von —v))de =c—Japg+o(l)  (2.6)

and
I;’ (Un, Un)y (Up — w, vy — 0))
I/

B
a,g(um 'Un) - I&ﬁ(ua ’U), (un — U, VUnp — U))
Unp,

— U, Up —U)HﬁJr | (un — w, vp, —’U)HZ

(
(
I
- /Q (N ()t — )"+ pg () (0n — 0)7) i+ o(1) (2.7)

0=

as n — oo. Without loss of generality, we let

(= w00 = W) = ¢ +0(1),  [l(wn — 1,00 — 0)[2 = d' + o(1)
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and therefore
/Q (@) (1 — )" + 19() (0 — v)") o = & + '+ o(1)

as n — oo. Now, if ¢ = 0, the proof is immediate. On the contrary, we assume
that ¢ > 0,

p_
F

(dfﬁ(ﬁd/) = tim [ (Af(@)(un —w)” + pg(e) (v —v)") da

2 2 n—oo Jq

< M’ lim ()\]un—u|r—|—u|vn—v|T) dx

n—oo

< M’ lim |Q\2 om S pH( — U, v, — )|},

n—oo
— MQr S ()\Tp +#ﬁ> e
Thus,

T T

S’ S’
d > ; T = :
{2M' (A5 + prr)} 2 Q|7 A
Therefore, from (2.6), (2.7) and the fact that (u,v) € M, g J{(0,0)}, we have

p
11—« PPz 1-p5 PFoiA=s
11—« Prarp—2 1-8 PFoip=s
() T ()T

Thus ¢ = 0 and hence (uy,v,) — (u,v) as n — oo in X. O

which contradicts

T

—a—
=P
/

c < —vAg

Remark 2.12. The functional J, g also satisfies the (PS). condition for the
case of r = p%. In a way, we will try to find out the energy level ¢ below which
the functional satisfies the (PS) condition. We suppose that

< (1 - 1*) ST (f(i) + 9(a1)

_B<2—a—ﬁB>2m+ﬁ <p:—2+oz+ﬁ>.
ps A P

The sequence (uy, v,) is bounded in X by the same argument. By the reflexivity
of X, we have u, — u, v, = v as n — oo. Further, from the concentration-

compactness result (refer to Theorem 2.5 of [23]), for these subsequences (still
denoted by (uy), (vy)), we have that

|un(x)_un<y)’p N ’u( )
/RN ‘x_y‘N—i-ps dy—p > RN ‘ ‘N—l—ps d +Z'u1 Tjo

jel
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‘Un(x) _vn(y”p ! ”U(CE) _v(y)’p IS,
/RN dy—pu Z/R e )

— y|N+ — y|N+
ERPLSE v =g YT 2

* *
ubs — dv = uPs + E Vil

jeI
* *
vbs =~ dv = oPs + E I/J,'(Sm;,
jer
b P
P* / /P*
u]>51/j5, ,U,J>SVjS

and therefore
/ AF (@)l + pg(apth) de — / (f (@) + pgla)r) de
Q Q

+ > pif () + > vig(ah)

jeI jer

as n — oo. Further, by compact embedding results, we have
1// h(z)ul=vl Pdr — 1// h(z)ul=v'Pd
Q Q

as n — oo. Here, {z; [ j € I}, {z} | j € I'} - I,I' are countable indexing
sets, i.e., sets of distinct points in RY, {v; | j € I} € (0,00), {p; | j € I} €
(0,00), {vj | j € I} € (0,00), {§) | j € I} € (0,00) and S is the best Sobolev
constant defined earlier in this paper. Hence, if J = T UI' = @&, then u, —
u, v, — v strongly in LPs(Q). If not, we suppose I # @ and then choose ¢ €
CX(RN), 0 < ¢ <1, ¢(0) = 1 with support in a unit ball of RY. Let us define,
for any € > 0, the function (. ; as (.; = ((*=22) for all j € J. We have that

€
<J&,5(Um Un), Cej(Un,vn)) — 0 as n — oco. On testing wit (¢ j(un,vy), we have

‘Un(x) - "U,n(y)‘p / |'Un(x) vn(y)’p
cidrdy + cidrd
/2 ’x y’N-&-ps CJ xray oN |:C y|N+ps CJ xray

()t Cog) + ((—Ap) v, Cog) — /Q F(@)d, + pg(2)])Ce, da
- 1// h(m)u,ll_az;}l_ﬂcz;afﬁdm + o(1).
Q

Thus we obtain

- |un () = un(y)[”
l% nlgrolo R2N |z — y’N'HDS Cej dady

. u(z) —u(y)P 1_ .,
2 |, S Gt =

_ p
lim lim [vn(2) fV”(y)‘ Cejda dy
e=+0n—00 JpaN ‘x — y’ +ps >

: ”U(:C) — U(y)’p / /
> 1 — € > . = .,
= Uw FErEETR A
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Furthermore, from the definition of (. ;, we also have

lim lim ((—=Ap)*un, ;) = lim lim ((=Ap)°vpn, ;) =0

e—0n—o0 e—~0n—o0

and

lim lim [ (Af(z)ubs + pg(x)vls )¢, ; da

e—0n—oo Q
= N(zj)v; + ug(xj)yj‘ + )\f(xj)u(xj)p: + ug(a:j)v(xj)p:.

From the compact embedding results in combination with the definition of ¢ ;,
we have

s —a, 1-B 2—a— . —a, 1-f2—a—
lgr(lmh_{r;o Qh(az)u; apl B(gja ’Bdl‘zlg% Qh(az)ul apl BCGJ-“ Adx = 0.

From the above analysis, we get
pg < pj 4 1y S Nf(z)vy, < g+ g < pg(x)vi.
bs
Therefore we have either v; = 0 or § < Af(z;)v} (and vi = 0or § <

ps
ug(xj)V’jN)-
Consider

Ja,ﬁ(um Un) -

= (3= ) Ml + (2= ) i

. (; - pl) [ Or@u + ngta)eti) da

1 1
v (R - 2_@_5> o=t

1 1

(gm0 ) (S vata ).
s jel

where » < R < p} and

1

=

Further, the function m :  — AtPs — Bt>=*8 for A, B > 0, attains its minimum

at some point, say, tg > 0, such that

Jz/)z,ﬁ(unavn)a (unavn» =c+ 0(1) as n — oo.

Ja,ﬁ(una Un) -

—a—p
2—a—ﬁB)pZ‘-22+a+ﬂ<2—a—ﬂ—p§>

m(x) > B
(=) 2 ( py A Pk
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Passing the limit n — oo, we obtain

1 1
CZ(RP*> Z“ij(xj)jLV;jg(xj)
jel
2—a—p
B (2—0‘—53>’W (P—“‘Hﬁ)
p; A P |
Thus we have
1 1 N
> (5= o ) S (f(wi) + g(ai)
(20453)% (p:2+0<+5>
—B 7** —* B
;A Ps

which contradicts the assumption that ¢ < c4.. As there are no extra terms
appearing in the decomposition of the sequence (uy,,v,), we have

[ Os@ + pgtartiyao = [ (s + gl as
Q Q

as n — oo. Finally, we have

lim Hunug_/ Af(x)upiidxw/ h(@)ul =o' de = |[ul}2
n—oo Q 0

lim |[vy |5 :/ ug(:n)vp:d:n—i—y/ h(z)ur~ ' Pdr = [l
n—oo Q 0

Thus, |lun|lh = [[ullb, llonlls = [Jv]|h as n — oo. It is seen that the PS condition
is satisfied by the functional even for the critical case of r = p}.

Now we are to prove the existence of a local minimizer for J, 5 in /\/l;r 5

Lemma 2.13. There exists A* > 0 such that (2.4) holds, J, 3 has a mini-
mizer (u,,v,) € /\/l;tﬁ, and it satisfies the conditions:

(i) Jap(uw,vy) =1i" is a weak solution to problem (1.1)—(1.4),
(i) Jap(uv,vy) = 0 and ||(uy,v))|p = 0, |[(uy,vy)|lg = 0 as v — 0.

Proof. In order to prove (i), we follow Hsu [17, Theorem 4.2]. Since it =
inf(y)em, s1Ja,8(u,v)}, there exists a sequence (un,vn) € Maqp such that
Jag(tn,vp) — i and J}, 5(up,vn) — 0 in X* as n — oo. Since the func-
tional J, g is coercive and therefore (uy,vy,) is bounded in X. Thus, there exists
a subsequence of (uy, vy,), still denoted as (uy, v, ), such that ((un,v,)) = (u,v) €
X. So we have

Up — U, Up — 0,

Up — U, Up — U a.e. in £,
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Up — U, v, > v inL5(Q)for 1 <s<p

as n — oo. This implies

2v 1-a, 1-8 2v / -, 1-08
Z—Q—B/Qh(x)u” vy, d$—>72—04—5 Qh(az)u v Pdz

as n — oo. Clearly, (u,v) is a weak solution of (1.1)—(1.4). Also, since (uy,vy,) €
M, 3, we have

y _ r2-a-p) 1 1
La,p(ttn; vn) = 2u(r—2+a+p) ( r> ey o)1

p
r(2—a—p) 1 1
w(r—2+a+p) <q B 7’> I Cn, U”)Hg
r(2—a-p)
Cw(r—2+a+p) Ja(tn, vn),
where Lg,ﬁ(unvvn) = fQ h($)ul_av}f’3dﬂs. Also,
” r(2—a—p) 1 1
La,ﬂ(un7’l)n) > 21/(T 2 ta+ ,8) (p — T) H(u,v)”ﬁ

r(2—a—p) 1 1 r2—a-p) .

2u(r — 2+ a+ B) <q_r> 1w, w)llg - 21/(7"—2+04+ﬂ)2+
r2—a-p8) .

__21/(7“—2—|—a—|—5)1+>0’

where we have used the lower-semicontinuity of |- ||, ||+ |l and i* < 0. Therefore
(u,v) # (0,0), and thus we have a nontrivial weak solution.

Claim: We now claim that (uy,v,) — (u,v) in X and J, g(u,v) = i*.
For any (ug,vo) € Mg, we have

r(2—a—p) 1

1
L = - = b
i) = 52 O (D D ol

r(2—a—p) 1 1

sy~ ra7 ko~ r) 00
r(2—a—p)

Cw(ir—2+a+p

] Ja, (U0, v0).

Thus,

i+ < Ja,ﬂ(ua U)
) 1 1 1 1 2v
< Jim [(5=2) Mmoot (5 = 1) o vl = 5= L)

n—oo p
+

= Jog(u,v) =1i".
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Then J, g(u,v) = i*. This also implies that (uy,v,) — (u,v) in X.
For the proof of (ii). let (u,,v,) € Mzﬁ. From Lemmas 2.2, 2.3, we have

that
1—a \rratsz 1— B \rrarpz
2—a—f + 2—a—f '

It is obvious that as v — 0, we have J, g(uy,v,) — 0.
Further, we have

1 1 1 1
0= hm Jaﬁ(u,,,v,,) = lim [< - > (| (v, v0) |5 + ( - r> s, vo g

v—0 p T
—a—ﬂ/ Jup~ av,ﬁﬂdaf} .

As it was seen earlier, the functional J, g is coercive over ./\/lJr 6’ and therefore

0> Jog(uy,v,) > —vAg

Uy, Vy,) 1S bounde so, using the fact lim T = we
( ) is bounded. Al g the fact lim 5225 o h( L Pdx =0,

clearly have

iig(l)H(um”V)Hg =0= il_r)% [ (uwr, v0) 11 u

13-
Remark 2.14. For € > 0, let us define

uelw) = ——1 ey = )

(eﬁ + |x|ﬁ) e |u€(x)\p;7

where n(z) € C§°(Q?) is a radially symmetric function defined by

1 if || < po
n(x) =<0 if |z| > 2pg ,
0 <n(x) <1 otherwise

where pg is such that B(0,2p0) C 2 and p} =

JUECE n()ldd<c
Q

|z — y|N+op

Then [, [v¢|P"dz = 1 and we have the following estimates:

N(p—1)— z(N sp)
Cie =t +0(1) ift> el
/Q|ue|tda: =4 Ci|lnel +0(1) if ¢t = M=l
0<nz) <1 if t < )

as € — 0. In particular, we have

‘u€($) - ue(y)| _ sp=N
/Q | — y|NFsp dedy =FKye » +0(1)
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i N
* p Sp—
(/ lue|P d:v) =Kz 7 +0(1)
Q

as € — 0, where K7, Ko, K3 > 0 are independent of €. There also exists ¢y such
that S, the best Sobolev constant, is close to % for every 0 < € < €. In other

and

words, we will take § < %
3

We now prove the following lemma which will be used for guaranteeing the
multiplicity of solutions.

Lemma 2.15. There ezists €1, A*, o(€) > 0 such that for e € (0,€1) and o €
(0,0(€)) under condition (2.4), we have

81>1£) Jo,8(te Y/ Vve, tev0e) < Cop — 0,
t>

1—04 m 1_ﬁ m
(0as) " T ()T

tP t4 q
ac(t) = Jo g(tYvve, tY/v0e) = ;I/H%Hﬁ + q(?yp)/ |Vue|?dx
Q

p—a—pB+2

S A -
L@+ ngtaoaryds - 2B [ byt

where

T — T
Cop = LS — vy

Proof. Define

1
r

Clearly, a.(0) = 0, limy_,o0 ac(t) = —oo. Then there exists t. > 0 such that

Jo 5 (te Yvve, teVbvve) = sup I, (t Yvve, tYvve).
t>0
This yields that

q 1 T
) ol + @R e =70 [ @) + ng(e) (vive) de
Q
—a—p8 .
T / h(z)? o Pdz.  (2.8)
Q
From (2.8), we have the following:

A TS A / (@) + pg()) (verr ) do
Q
+ 2, / h(x)v?Pda (2.9)
Q

and

@) ol + 207 el = €70 [ (@) + ugla)) (v¥) do 210
Q
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From the estimates for u., obtained in the Remark 2.14, i.e.,

vt = CS+0 (6L> ,

r(N—sp)
|v|"de =0 | e »° ,
Q
(2—a=B)(N—=sp)
/ o>~ Pde = O (e »? )
Q

as € — 0, and from (2.8), it very easily follows now that

—s —a— (2—a—B)(N—sp)
w2 (08 4 0 (ELP “)) = omtreri Tt omy” 70 (e o >

as € — 0, where we have used the estimate

/(/\f(x) + pg(x))vide < CM' v = CM'.

Q

Thus, there exists 77 > 0, €; > 0 such that for any € € (0, ¢1), we have t. > T3.
Likewise, we have

ettt (s +0 (¢77")) +2005 (2.11)

as € — 0. Then, there exists T > 0, eo > 0 such that for any € € (0, e2), we have
te < Ty. Let € = min{e,e2}. Then, for any € € (0,€), we have T1 < t. < Th.

Consider
be(t) = —t vve||b — *1 /()\ () + pug(x)) (t y;li)r
e » Vellp " f(x g(x Ve dx.

Then a simple calculation gives

sup be(t) = %Sﬁ +0 <eN;SP)

>0
as € — 0. Therefore, for any e € (0, €), we have

p—a—=pB+2 o
v 2-a—p

2—&-5 0
p—a—p3+2 2_01_6
1t2 v P p
< be(t 2ur —||v||2 —
< belte) + 208 Sl - Ty |
P—a—5+2T2_a_6

q TY v P
< be(ty) + 2vr =2 ||u.||9 — 1 /h 2—a=fg
< be(te) + 2v7 . l|velld - ; (z)vg x

— r N—s a(N—sp) (2—a=B)(N—sp)
_r pST*P—FO(e Pp>+0<e 2 >—O<e »? >
rp

— r (2—a=pB)(N—=sp)
_ T pSTip + O (6 p2 P )
rp

td

aclte) = beltd) + L n) oelly - By P d

h(z)vE 2 Pdx
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as € — 0 because, according to the assumptions in problem (1.1)—(1.4), we have

(2—04—,32)(N—sp) <q(N;sp) cN-sp
P p p

0<

Therefore, one can choose €1 > 0, sufficiently small, A*, o(e) > 0 such that for
€ € (0,€e1), and o € (0,0(€)) under condition (2.4), we obtain

p p
— @ — — o — (Q*Q*B)(N*S )
11—« pto+B 2+ 1-p pra+h—2 ool ) 2
2—a—p 2—a—pf

as € — 0. O

—A()l/

3. Few useful lemmas

In this section, we recall and prove some important lemmas which are crucial
for the proof of the main theorem. We first consider a submanifold of M 5
defined as follows:

M., s(cap) = {(u,v) € M 5| Jop(u,v) < cap}

The main result we prove in this section is that problem (1.1)—(1.4) admits at
least cat(€2) number of solutions in this set.

Definition 3.1.

(a) For a topological space X, we say that a non-empty closed subspace ¥ C X
is contractible to a point if and only if there exists a continuous mapping

£:00,1]xY - X
such that for some zg € X, there hold

£0,2) =2 forallzeY

and
£(l,z) =z9 forallze.

(b) If Y is a closed subset of a topological space X, then catx(Y') will denote
the Lusternik—Schnirelman category of Y, i.e., the least number of closed and
contractible sets in X which cover Y.

We now state an auxiliary lemma which can be found in the form of Theorem 1
in [1].

Lemma 3.2. Suppose that M is a CY' complete Riemanian manifold and
I € CY(M,R). Assume that for co € R and k € N:

(i) I satisfies the (PS). condition for ¢ < ¢y,
(ii) cat (u € M : I(u) < co) > k.
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Then I has at least k critical points in {u € M | I(u) < co}.

The following lemma is a standard one and can be proved if one works in the
lines of the argument in [28].

Lemma 3.3. Let {(un,v,)} C X be a nonnegative sequence of functions with
sy + patayet o =1

and || (un, va)||h — S'. Then there exists a sequence {(yn,0n)} C RN x RT such

that v
wn (@) = (wn(2), w5 (%)) = 0 (un (0 + Yn), vn (00 + yn))

contains a convergent subsequence, denoted again by {w,}, such that
Wp —w in WP (RN) x Whp (]RN) ,

where w = (w,w?) > 0 in RN. Moreover, we have 0,, — 0 and y, — y € Q as
n — oo.

Up to translations, we assume that 0 € ). Moreover, we choose § > 0 small
enough such that Bs = {z € RY ‘ dist(x,0) < 0} and the sets

Qf = {z e R |dist(z,09) < 6}, Q5 = {z € RV |dist(z,00) > 5}

that are both homotopically equivalent to . By using the idea of [14] or [22],
we define a continuous mapping 7 : M_ 5 RN by setting

 JorA\fu" + pgv”) dx
o\ fur + pgun) da

Remark 3.4. As mentioned earlier in this paper that the functional J, g is not
a C'-functional, we might fail to apply some very useful techniques in variational
techniques. For this reason, we will define a cut-off functional using a subsolution
(refer to [13] for the definition) to the system in (1.1)—(1.4). Define

7(u,v)

flx,t,s) ift>u,s >,
x? 78 = )
flx,u,s) ift<u, s>w
flz,u,v) ift<u, s<v
where
11—«
fla,t,s) = M (@)t + pg(x)s" ™ + vo———h(x)ts' "
2—a—p
]_ —
+ I/iﬁ h(z)ti=2sh

2—a—p
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is a subsolution to (1.1)—(1.4) (the existence of such a solution can be guaranteed
by the previous sections by taking A = g =01in (1.1)-(1.4)). Let

F(x,t,s) = /Ot /Osf(x,t,s) ds dt

and (u,v). Define a functional T : X — R as follows:
Tos(ws) = Slwo)p+ ol = [ Feuod. @

The functional is C' (the proof follows the arguments of Lemma 6.4 in the Ap-
pendix of [26]) and it is weakly lower semicontinuous. Taking into account the
way the functional was defined, it is not difficult to see that the critical points
of the functional corresponding to problem (1.1)—(1.4) and that of the cut-off
functional are the same.

Remark 3.5. We will continue to name the cut-off functional jaﬁ as Jo 8.
We then have the following result.

Lemma 3.6. There exists A* such that if (2.4) holds, and (u,v) €
M., 5(ca,p), then 7(u,v) € Qf.

Proof. Let us assume that there exist sequences v, — 0 and {(uy,,vy)} such
that 7(un,v,) & Q}. By using the same tactics as in one of the previous lemmas
(2.11), we conclude the boundedness of the sequence {(up,v,)} in X. Then we
have

Vn/ h(z)ul vl Pdz -0 asn — oco.
Q

Therefore, we get

1 1 1 1
Jnsltns ) = (5= ) amB+ (5 = 2) I )l + o1 < o
and
11 S
- _Z P < <
(G=3) Numonllp < cap < 25
rp S
n> Un)lp < : 2
sl < 25 52)

Since {(un,vn)} C M 5(ca,8) C M, 5, we have

n—oo

: P r r : ! r
nl;rgo|](un,vn)\|p lim < /Q()\f(a:)un + pg(x)vy) de < nlggoM |(tns vn) [ (3.3)

By (3.2) and (3.3), we get

p
S < II(?n,vnzllp < C(un,va)[B =S+ o(1), (3.4)
{fQ(uﬁ + vh )dx}PF
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, P
which implies that ||(un,vy)||h = CSS "7 and

[ @+ uglayer) o '8 7
Q

as n — 0o.
Define

U U
O R —
(JoOfuz, + pgen) dz) ™ ([ (Afus, + pgor) da) "
Clearly,
/ (A&, + uny,) doe =1
Q
and

,_p_r=1
/(]V&n]p + [np|Pdz) = S 77 7 asn — oc.
Q

From Lemma 3.3, there exists a sequence {(yn,6),)} C NxR™ such that 6, —
0, y, — y € Q and

[z

w(@) = (Wi (@), w2 (2)) = 057 (Ea (0@ + Yn)s (O + Yn)) — (w1, w2)

with wi,ws > 0 in RY as n — .
Let x € C°(RY) such that x(z) = x in . Then we guarantee that

_ Jo x(@)(AMfup, + pgoy,) da
T(Unu Un) - fﬂ(/\fuz n Mgvz) is

- / 0N x(Ouz + y) AL + ) d
Q

- /Q X(Onn + 5) Nwn (@)1 + plwn(@)®) ) de. (3.5)

By the Lebesgue dominated convergence theorem, we have
[ X Guia )N + ) o sy €
Q

as n — oo. This implies that 7(z,,y,) — y € Q as n — oo, which leads to a
contradiction to our assumption. O

The analysis done till now tells us that infaz; ua g > 0 and infy v g > 0,
due to Lemma 2.13 and the definition of {25. Note that

J
Ms = {x €N ‘ dist(z, Q) < 2}

which is a compact set. Thus, by Lemma 2.15 and using the idea of Lemma 3.4
of [14], Lemma 3.3 of [8], we can obtain £~ > 0 such that

(Evve(z — y), tYvve(x — y)) € Ma,g(cap —0)
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uniformly in y € Q. Further, by Lemma 3.6, 7(t~ ¢/vv.(z—y), T~ Yvve(z—y)) €
Q5. Thus we can define a map v : Q5 — M, g(cas — ) by

0 otherwise

v(y) = {({ er(x - y)agi er(x - y)) if x € B(;(y) .

We will denote by 7, g the restriction of 7 over M B(Ca:ﬁ — o). Observe that v,
is a radial function, therefore for each y € 15, we have

Jor (@) Yrve(z —y))" + pg(a)

JoO\f (@)t WUE(SE — )"+ png(@)(

_ Joly+ Z)( v (A + pg)vidz
Jo rue (A + pg)vrdz

From [14], we define the map T, g : [0,1] x M 5(cap —0) — RN by

(&
-

(Faup 0 7)) = (@ ?j” ) dz

Yo
Yvve(w —y))) do

Ta,g(t, 2:) = tTa,g(Z) + (1 — t)Ta,g(Z).
We then have the following lemma.

Lemma 3.7. To each € € (0,¢€), there exists A* > 0 such that if (2.4) holds,
we have Ty, 5([0,1] x M 5(cap —0)) C Q5.

Proof. We prove by contradiction. Let there exist sequences t,, € [0, 1], v, —
0 and z, = (up,vy) € M;’B(Ca,ﬁ — o) such that Tj, g(tn, 2n) & Q; for all n. We
can assume that ¢, — ¢ € [0,1]. Thus, by Lemma 2.13 (i) and an argument
similar to that used in the proof of 3.6, we have

Top(tn,zn) >y €Q asn— oo,
which leads to a contradiction. O

We now prove the main result of this paper which roughly states that under
certain assumptions on v problem (1.1)—(1.4) admits at least cat(£2) + 1 number
of solutions.

Lemma 3.8. If (u,v) is a critical point of Jo g on M, 5, then it is also a
critical point of Jo g in X.

Proof. We follow the proof of Lemma 4.1 in [14] or Lemma 4.1 in [31]. Let
(u,v) be a critical point of Jo g in M 5. Then

(Jo.5(u,0), (u,v)) = 0.
Define

¥(u,v) = (Jg 5w, 0), (u,0)) = || (w, )17 + [[(w,v) [
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~ [0+ gty [ o P
Q

Q

Since we are now seeking to minimize J, g over the entire space X, the Lagrange
multiplier method helps us in finding a #(# 0) € R such that

a5, 0) = 09" (u, v), (3.6)

where

w(u7 ’U) = <Jéz,,6(u7 U)v (’U,, ’U)>

Since (u,v) € M, 5, by a simple computation, we have that ' (u,v) < 0. Con-
sequently, from (3.6), we have J/, 5(u,v) = 0. O

Lemma 3.9. There exists A* > 0 such that any sequence {(un,vn)} C M, 4
with JM;ﬁ(un,vn) — c € (—00,cq,8) and JJ,\A‘B(U”’ vp) = 0 as n — 0o contains

a convergent subsequence if (2.4) holds.

Proof. By the Lagrange multiplier method, there exists a sequence (a,) C R
such that

11 o3 (Un, Vn) — anw&,ﬁ(umvn)nX’_)O

as n — o0o. Here,
Va,8(Un, Un) = <I</1,ﬁ(unavn)’ (Un,vn))
= Nl vl = [ AF (@ + mg(a)er) da

/ Jul=vl P dz.

I3, 5 (tn, vn) = aniyy g(tn, vn) + o(1)

Then

as n — oo. Since (uy,v,) € M;B C Mg g, by a simple computation, we have

<¢:)¢”B(un7vn); (Un,vn)) < 0.

Now suppose (17, 5(tn; vn), (Un, v5)) — 0 as n — co. Then we have

Hm (1 — )| (n, vn) |15 + (r — @) (tn, vn) |2

n—oo

= limv(l+a+ B)/ h(z)ul vl P da
n—oo Q

e ()

pta+B—2

P
1— Proatp—2 P
n <B/B> et ] im || 00) |5 p

2—«a—
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and

P+ + B = 2)l|(un, va) Iy + (g + a + 8 = 2)[[ (un, vn)llg

lim
n—oo
= liﬁ\m (r+a+p8-2) / (A (), + Bg(x)vy) dx < ILm M’H(un,fun)Hg*,

n o0 Q n oo

where we have used the Holder inequality and the Sobolev embedding. Then we
have

11—« PFatp2 1-8 PForA=z | P
<2_a_5> +<2_a_ﬁ>

_1
[[(tns vn)llp = G377 +0(1)

as n — oo. Now, if we choose A* small enough, this cannot hold. There-
fore, let us assume that (g g(un,vn), (un,vs)) — 1 < 0 as n — oo. Since
(Ja,8(tn,vp), (un,vy)) = 0, we conclude that a,, — 0, and thus I(’Xﬂ(un,vn) -0
as n — oo. This gives us that

3=

T [[(un, )l < (#C1)

and

Iop(tn,vn) = ¢ <cap and I g(up,v,) =0 asn — oco.
Therefore, by Lemma 2.11, the proof is complete. O

Lemma 3.10. Suppose that (C) and (2.4) hold. Then
cat(My  (cxp — o)) = cat(Q).

Proof. Let cat(M, 5(ca,p —0)) = n. Then, by the definition 3.1 of the
category of a set in the sense of Lusternik—Schnirelman, we suppose that

Mil@(caﬁ—d):A1UA2U"'UAn,

«,

where A;, j =1,2,...,n are closed and contractible in M;g(ca,ﬁ —o0), i.e., there
exists hj € C([0,1] x A;j, M_ 5(ca,p — o)) such that

hj(0,2) =z, hj(1,2) =© for all z € Aj,

where © € A; is fixed. Consider B; = V*I(Aj), J=1,2,...,n. Then the sets B;
are closed
Qé_ =Bi1UByU---UB,.

We now define the deformation g; : [0,1] x B; — QF by setting
95(t,y) = Taa(t, hi(t,7()))

under condition (2.4). Notice that

9i(0,y) = Ta,5(0,1;(0,7(y))) = (Ta,p 0 ¥)(y) =y for all y € B,
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and

g](lvy) = Ta,ﬂ(oa h](la’}/(y))) = Taﬂ(@) € Q; for all y € BJ

Thus the sets B, j = 1,2,...,n are contractible in Qgr Therefore,

cat(M_, 5 — o) > catﬂg(Qé_) = cat(92).

The lemma is proved. O

the

Proof of Theorem 1.1. By Lemmas 2.11 and 3.9, the functional I, g satisfies
(PS). condition for ¢ € (—00, cq 3). Then, by Lemmas 3.2 and 3.10, we have

that I, s has at least cat({2) number of critical points in M 5(ca,s — o). By
Lemma 3.8, we have that I, g has at least cat(2) number of critical points in
M;B' Further, since MIB N M;ﬁ = ¢, the proof is now complete. O
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MHOXKUHHICTb PO3B’A3KiB CUCTEM 3 p-¢ JPOOOBUM
JlafnJjiaciaHOM 3 YBiIrHYTUMW CUHTYJISPHUMU
HeJIiHiTHOCTAMU

Kamel Saoudi, Debajyoti Choudhuri, and Mouna Kratou

VY it poboTi MM BUBYAEMO iCHYBaHHSI MHOXKUHHUX HETPHUBIAJbHUX He-
Bif eMHUX C/IaOKUX PO3B’A3KIB CIIOIYyYIEHOI CUCTEMU EIINTUIHUX JTu(epPeHIri-
aJbHUX PiBHSHDb 3 YACTUHHUMU TTOXiTHUMHA. /{0BeIeHO iCHYBaHHS PO3B’A3KiB
Ha muorouai Herapi. g noBeseHHsi icHyBaHHs InoHaiiMenine cat(€)) -+
1 posw’si3kiB Bukopuctano kareropito Jlrocrepuuka—Illuipessmana, e ) €
0OMEKEeHOI0 00JIaCTIO, B SKiil PO3TJISTHYTO ITIO 3a1a9y.

Kurogosi ciiopa: muorosun Herapi, kareropis Jliocrepunka—IITxipeasma-
HAa, CUHT'YJIAPHICTb, MHOYXKUHHICTH
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