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In the present paper, we study Busemann functions in a general Finsler
setting as well as in asymptotically harmonic Finsler manifolds. In par-
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harmonic Finsler manifolds.
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1. Introduction

Finsler geometry is a generalization of Riemannian geometry which is richer
in content and much wider in scope. Working in the Finsler context may need
different techniques that do not exist in the Riemannian framework. In [19],
harmonic manifolds were introduced in the Finsler context. Recently, the study
of harmonic and asymptotically harmonic Finsler manifolds of (α, β)-type has
been discussed in [26]. It is known that Busemann functions play an important
role in studying geometry of noncompact complete Riemannian manifolds with
negative sectional curvature and harmonic manifolds (cf. [1, 16]). The convexity
of Busemann functions is essential for the study of Hadamard Riemannian man-
ifolds (cf. [22]). Furthermore, Busemann functions were used to study reversible
Finsler manifolds of negative flag curvature [5], the splitting theorems for Finsler
manifolds of non-negative Ricci curvature [12] and recently the relation between
affine functions and Busemann functions on a complete Finsler manifold has been
treated in [8]. Also, Finsler manifolds, whose Busemann functions are convex,
were studied in [18]. The authors in [1, 9, 10, 23, 24] offered insightful discus-
sions about Busemann functions in both complete Riemannian and Finslerian
manifolds.

Our aim is to analyze Busemann functions in the context of Finsler geometry
and then apply the obtained results for studying asymptotic harmonic Finsler
(AHF) manifolds. For example, in a forward complete Finsler manifold we find
the relation between Busemann functions associated with two asymptotic rays
(in equation (3.5)). Also, we prove that any of two rays in an AHF-manifold are
asymptotic if and only if the corresponding Busemann functions agree up to a
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constant (see Theorem 4.1). Our results lead to the conclusion that Busemann
functions are smooth in an AHF-space (see Theorem 4.7), which is a generaliza-
tion of [16, Theorem 3.1] from the Riemannian to the Finsler context. Further,
in Proposition 4.11, it is proved that if the horospheres of an AHF-manifold are
minimal, then they have the bi-asymptotic property, that is, their asymptotic
geodesics are bi-asymptotic.

The structure of the present paper is as follows. Section 2 is devoted to some
preliminaries needed for better exposition of our work. Thereafter, in Section
3, we give some properties of the Busemann functions in a connected Finsler
manifold without conjugate points. Then we study the relation of Busemann
functions of asymptotic rays in a forward complete Finsler manifold. Finally, in
Section 4, we conclude our work with the exploration of Busemann functions in
the case of AHF-manifolds.

2. Preliminaries

We use the following notations: M denotes an n-dimensional, n > 1, ori-
entable connected smooth manifold, (TM, π,M), or simply TM , its tangent bun-
dle and TM0 := TM \{0} the tangent bundle with the null section removed. The
tangent space at each x ∈M without the zero vector is denoted by TxM0. The lo-
cal coordinates (xi) on M induce the local coordinates (xi, yi) on TM . Moreover,
∂i and ∂̇i denote partial differentiation with respect to xi and yi.

Definition 2.1 ([2]). A Finsler structure on a manifold M is a mapping F :
TM → [0,∞) such that F is C∞ on TM0, positively homogeneous of degree one
in y and the Hessian matrix (gij(x, y))1≤i,j≤n is positive definite at each point y

of TM0, where gij(x, y) :=
1

2
∂̇i∂̇jF

2(x, y).

We refer to [2,20] for further reading about Finsler geometry. A Finsler metric
is Riemannian when gij(x, y) are functions in x only. Further, a Finsler metric
can be characterized in any tangent space TxM by its unit vectors, which form a
smooth strictly convex hypersurface IxM called indicatrix at the point x ∈ M .
When a Finsler metric is Riemannian, this hypersurface at each point of M is a
Euclidean unit sphere. The indicatrix of F is IM := ∪x∈MIxM .

The distance dF induced by F is defined in M by [20,27],

dF (p, q) := inf

{∫ 1

0
F (η̇(t)) dt

∣∣∣∣ η : [0, 1]→M, C1 curve joining p to q

}
.

Remark 2.2. Note the following:

(i) The Finsler distance is nonsymmetric, that is, dF (p, q) 6= dF (q, p). In other
words, the Finsler distance depends on the direction of the curve. Therefore
the reverse of a general Finsler geodesic can not be a geodesic. The non-
reversibility property is also reflected in the notion of Cauchy sequence and
completeness [2, §6.2].
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(ii) Thus, being different from the Riemannian case, a positively (or forward)
complete Finsler manifold (M,F ) is not necessarily negatively (or backward)
complete. The classical Hopf-Rinow theorem splits into forward and back-
ward versions [2, §6.6]. A Finsler metric is complete if it is both forward and
backward complete.

(iii) Another main difference between Finsler and Riemannian geometries is that
in a general Finsler manifold, the exponential map is only C1 at the origin
of TxM and it is C∞ on TxM0.

A volume measure dµ (nondegenerate n-volume form) on M can be written
in local coordinates as dµ = σµ(x) dx1 ∧ · · · ∧ dxn = σµ(x) dx, where σµ(x) is
a positive smooth function on M . Unlike in Riemannian geometry, there are
several non-equivalent definitions of volume forms used within Finsler geometry.
The most well known among them are Busemann–Hausdorff dµBH and Holmes–
Thompson dµHT volume forms [6]. Otherwise stated, we work with arbitrary but
fixed volume form dµ. That is, the forthcoming definitions and results hold for
either Busemann–Hausdorff volume form or Holmes–Thompson volume form.

It is known that if F is a Finsler structure on M , then F induces a Minkowski
norm on TxM at each point x ∈ M . Also, F ∗, the dual structure of F , induces
a Minkowski norm on T ∗xM . That is, F ∗ : T ∗M → R+ is defined, for all (x, α) ∈
T ∗M , by

F ∗(x, α) := sup{α(ξ) | ξ ∈ IxM}.

The dual metric associated to F ∗ is given by g∗ij(x, α) := 1
2
∂2F ∗2(x,α)
∂αi∂αj .

The Legendre transformation J : TM → T ∗M associated with F is defined,
for any point x ∈M , by J(x, y) = gij(x, y) yi dxj , ∀y ∈ TxM0 and J(0) = 0. Let
J∗ : T ∗M → TM be defined by

J∗(x, α) = g∗ij
(
x, α

)
αi ∂j , for all α ∈ T ∗xM0 and J∗(0) = 0,

where g∗ij(x, α) := gij(J∗(α)).

Definition 2.3 ([20, §3.2]). The gradient of a differentiable function f : M →
R at a point x ∈M , where df(x) 6= 0, is defined by

∇f(x) = J∗
(
x, df(x)

)
= g∗ij

(
x, df(x)

)
∂if(x) ∂j . (2.1)

Then df(x) can be written as follows:

df(x, v) = g∇f(x)(∇f(x), v), v ∈ TxM. (2.2)

Remark 2.4. Unlike the Riemannian gradient, the gradient ∇f(x) is non-
linear. It should be noted that when df(x) = 0, the gradient ∇f(x) is defined to
be zero.

Definition 2.5 ([20]). A smooth function f : M → R is called a Finsler
distance if F (∇f) = 1.
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A distance function r defined on an open subset Ω of (M,F ) has some inter-
esting geometric properties. Indeed, ∇r is a unit vector field on Ω and it induces
a smooth Riemannian metric on Ω defined by

F̂ (x, v) :=
√
g∇r(v, v), v ∈ TM.

Furthermore, F̂ (∇̂r) = F (∇r) = 1 by [20, Lemma 3.2.2].

Definition 2.6 ([20, §14.1]). Let (M,F, dµ) be a Finsler µ-space. For a C2

function f , Shen’s Laplacian ∆f of f is defined by ∆f = divµ(∇f), that is,

∆f =
1

σµ(x)
∂k

[
σµ(x) gkl(x,∇f(x)) ∂lf

]
=
[
gkl(x,∇f(x)) ∂k (log(σµ(x)) + ∂k(g

kl(x,∇f(x)))
]
∂lf

+ gkl(x,∇f(x)) ∂l∂kf. (2.3)

Remark 2.7. Shen’s Laplacian is fully non-linear elliptic differential operator
of the second order, cf. [4], which depends on the measure µ and it is defined on
Uf := {x ∈M | df(x) 6= 0} by (2.3), and to be zero on {x ∈M | df(x) = 0}.

Definition 2.8 ([20, §14.1]). For u ∈ H1
loc(M), the weak (or distributional)

Laplacian of u is defined by∫
M
φ∆u dµ = −

∫
M
dφ(∇u) dµ for all φ ∈ C∞c (M). (2.4)

Definition 2.9 ([20, §14.3]). The Finsler mean curvature of the level hyper-
surface r−1(t) at x ∈M with respect to ∇rx is defined by

Π∇r(x) :=
d

dt
log(σx(t, xa))

∣∣∣∣
t=to

for some to ∈ Im(r). (2.5)

The Finsler Laplancian of a distance function r satisfies ∆ r(x) = Π∇r(x) [21].

Definition 2.10 ([19]). A forward complete Finsler manifold (M,F ) endowed
with a smooth volume measure dµ is (globally) harmonic if in polar coordinates
the volume density function σp(r, y) is a radial function around (each) p ∈ M,

where σp(r, y) :=
σp(r,y)√

det(ġp(p,y))
and ġp is the restriction of g on the indricatrix

IpM . That is, σp(r, y) is independent of y ∈ IpM , and thus it can be written
as σp(r).

Theorem 2.11 ([19]). Let (M,F, dµ) be a forward complete Finsler µ-mani-
fold. The following are equivalent:

(1) (M,F, dµ) is harmonic,

(2) Shen’s Laplancian of a distance function is radial,

(3) the Finsler mean curvature of all geodesic spheres of sufficiently small radii
(all radii), expressed in polar coordinates, is a radial function.
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Definition 2.12 ( [19]). The Finsler mean curvature of horospheres Π∞ is
the mean curvature of the Finsler spheres of infinite radius and can be defined
by

Π∞ = lim
r→∞

Π∇r(x).

Definition 2.13 ([19]). A forward complete, simply connected Finsler µ-
manifold (M,F, dµ) without conjugate points is called asymptotically harmonic
Finsler manifold (or shortly, AHF-manifold) if the Finsler mean curvature of
horospheres is a real constant h.

Thus, a noncompact harmonic Finsler manifold with constant Finsler mean
curvature of horospheres is an AHF-manifold. The examples of the AHF-manifold
are given in [19]. Further, [7,10,28] offered perceptive discussions about harmonic
and asymptotically Riemannian manifolds.

3. Analysis of Busemann functions with applications

An effective tool for studying various topics in differential geometry, such as
the structure of harmonic spaces in Riemannian geometry, is Busemann functions.
For more details about Busemann functions see [14–16,24,28] in the Riemannian
context and [5, 9, 12,17,24] in the Finsler context.

Definition 3.1 ([12]). Let (M,F ) be a forward complete Finsler manifold.
A geodesic γ : [0,∞] → M is called a forward ray if it is a globally minimizing
unit speed Finslerian geodesic, that is, dF (γ(s), γ(t)) = t − s for all s < t and
F (γ̇) = 1.

Now we recall the definition of Busemann functions in the context of Finsler
geometry [12,17,23] and discuss some of their general properties.

Let (M,F ) be a forward complete noncompact Finsler manifold without con-
jugate points. There always exists a forward ray γ : [0,∞)→ (M,F ) emanating
from each point p := γ(0) ∈M [17]. We define the following function associated
to the ray γ:

bγ,t(x) = dF (x, γ(t))− t, ∀x ∈M,

where dF is the Finsler distance which is nonsymmetric.

Lemma 3.2. For each x ∈M , the function bγ,t(x) is monotonically decreas-
ing with t. Moreover, bγ,t(x) is bounded below.

Proof. Let s, t ∈ [0,∞) such that s < t. Using a triangle inequality for the
nonsymmetric distance d, we have

t− s = dF (γ(s), γ(t)) ≤ dF (γ(s), x) + dF (x, γ(t)),

hence,
−s ≤ dF (γ(s), x) + dF (x, γ(t))− t = dF (γ(s), x) + bγ,t(x),

therefore,
−dF (γ(0), x) ≤ bγ,t(x) at s = 0.
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Hence, bγ,t(x) is bounded below by −dF (γ(0), x).

To prove the decreasing of bγ,t, we suppose x ∈ M to be arbitrary but fixed
and s < t. Using the triangle inequality, we have

dF (x, γ(t)) ≤ dF (x, γ(s)) + dF (γ(s), γ(t)) = dF (x, γ(s)) + t− s,

therefore,

dF (x, γ(t))− t ≤ dF (x, γ(s))− s⇐⇒ bγ,t(x) ≤ bγ,s(x).

In view of Lemma 3.2, the limit of the function bγ,t(x) as t→∞ exists. This
justifies the following definition.

Definition 3.3. The limit bγ(x) of bγ,t(x) is called the Busemann function
associated to the ray γ:

bγ(x) = lim
t→∞

bγ,t(x) = lim
t→∞

(
dF (x, γ(t))− t

)
. (3.1)

We now give some properties of the Busemann functions.

Proposition 3.4. For a forward complete simply connected Finsler manifold
without conjugate points, the following holds:

(1) Along the ray γ(t), we have bγ(γ(t)) = −t for all t > 0. Therefore,
bγ(γ(0)) = bγ(p) = 0.

(2) bγ is 1-Lipschitz in the sense that

− dF (y, x) ≤ bγ(y)− bγ(x) ≤ dF (x, y), x, y ∈M. (3.2)

Hence, bγ is differentiable almost everywhere and it is uniformly continuous.

(3) bγ,t converges to bγ uniformly on each compact subset of M .

Proof. (1) follows directly from equation (3.1). (2) follows from the triangle
inequality. (3) follows from Dini’s theorem.

It should be noted that Proposition 3.4 is proved in (cf. [12, 17]) under the
condition that (M,F ) is a noncompact forward complete Finsler manifold. In
addition, for the Riemannian case, in [10, 11, 25] one can find the results similar
to ours under different assumptions.

Proposition 3.5 ([21]). Busemann functions can be computed in a vector
space equipped with a Finsler structure (V, F ) as follows: for any vector v ∈ V,
the Busemann function bv associated to the ray ηv(t) = tv, 0 < t < ∞, is given
by

bv(y) = −yi ∂F (v)

∂yi
. (3.3)

Lemma 3.6. Let (M,F ) be a forward complete Finsler manifold and let f
be a Finsler distance on M . Then the following assertions hold:
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(1) The level sets of f have no critical points and viz. f−1(c) for any c are
smooth hypersurfaces in M .

(2) The integral curves of ∇f are unit speed Finslerian geodesics.

(3) The level sets of f are parallel hypersurfaces along the direction ∇f . Con-
sequently, f is linear along the integral curves of ∇f .

Proof. (1) A Finsler distance f on M by its definition means that F (∇f) =
1. Then f has no critical points and the rest of the proof follows directly.

(2) The proof follows from [2, Lemma 6.2.1].
(3) The proof follows from [27, §4]. That is, dF (f−1(t), f−1(s)) = s − t, t <

s. Consequently, f is linear along the integral curves of ∇f . Indeed, integrating
both sides of η̇(t) = ∇f ◦ η yields f(η(t)) = t+ f(η(0)).

Remark 3.7. In the Finsler context, there is a slight difference in the definition
of parallel hypersurfaces. This is due to the nonsymmetry of the distance dF .
Namely, if a hypersurface f−1(t) is parallel to f−1(s), it does not mean that
f−1(s) is parallel to f−1(t), unless the Finsler metric is reversible, cf. [17].

Remark 3.8 ( [14]). Let T be a distribution on a compact subset Ω of M .
Then ∀z ∈ Z+ and we are to define the distributional derivative

dzT

dxz
(φ) = (−1)z T (φ(z)), φ ∈ D(Ω).

That is, ∫
Ω
D(z) T (φ)dµ = (−1)z

∫
Ω
T (D(z)φ) dµ, φ ∈ D(Ω). (3.4)

Lemma 3.9. We have ∆bη,t → ∆bη as t→∞ in the distributional sense.

Proof. Let Ω ⊂ M be a compact subset. Since bη,t is a continuous function,
then it is locally integrable and therefore it is a distribution on Ω. Let φ be a
test function, then ∆φ is a test function as well. Thus,∫

Ω
(∆bη,t)(φ) dµ =

∫
Ω
bη,t(∆φ) dµ.

Now, taking the limit as t→∞ yields∫
Ω
bη(∆φ) dµ =

∫
Ω

(∆bη)(φ) dµ.

Hence, ∆bη,t → ∆bη in the distributional sense.

For the corresponding result in Riemannian geometry, one can refer to [10,25].

Definition 3.10. Let (M,F ) be a noncompact forward complete Finsler
manifold. Let η : [0,∞)→M be a ray. Another ray ζ : [0,∞)→M is said to be
asymptotic to η if there exists a sequence {ti}i∈N ⊂ [0,∞[ and a sequence {ζi}i∈N
such that

lim
i→∞

ζi(t) = ζ(t), t ≥ 0, lim
i→∞

ti =∞,
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and
ζi : [0, dF (ζ(0), η(ti)]→M

is a sequence of minimal geodesics from ζ(0) to η(ti) (see [16] for the Riemannian
case and [12,17] for the Finsler one).

The following figure explains the definition:

ξ(0) ξ(t)

η(0) η(t)η(t1) η(t2) η(ti)

ξ1 ξ2 ξi

0 t1 t2 ti

The following result is a generalization of [15, Proposition 7.3.8] from the
Riemannian to the Finsler context.

Proposition 3.11. Let (M,F ) be a forward complete Finsler manifold. If a
ray ζ emanating from p := ζ(0) is asymptotic to η, then their Busemann functions
are related by

bη(ζ(t)) = bη(p) + bζ(ζ(t)) = bη(p)− t. (3.5)

Consequently,
bη(x)− bζ(x) ≤ bη(p). (3.6)

Proof. Let ζ be an asymptote to η from p. Then there exists a sequence
{ti}i∈N ⊂ [0,∞[ and a sequence {ζi}i∈N of minimal geodesics from p to η(ti) such
that

lim
i→∞

ζi(t) = ζ(t), t ≥ 0, and lim
i→∞

ti =∞,

bη(p) : = lim
i→∞

(
dF (p, η(ti))− ti

)
= lim

i→∞

(
dF (p, ζi(s)) + dF (ζi(s), η(ti))− ti

)
= dF (p, ζ(s)) + lim

i→∞

(
dF (ζ(s), η(ti))− ti

)
= s+ bη(ζ(s)).

That is, bη(q)− bη(p) = −c, where ζ(c) = q, c ≥ 0. Now we use equation (3.5) to
prove (3.6) as indicated below. From the triangle inequality for the nonsymmetric
distance d, we have

dF (x, η(s))− s ≤ dF (x, ζ(t)) + dF (ζ(t), η(s))− s
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= dF (x, ζ(t))− t+ dF (ζ(0), ζ(t)) + dF (ζ(t), η(s))− s.

Now, let s→∞ in the above inequality. Then we obtain

bη(x) ≤ dF (x, ζ(t))− t+ dF (p, ζ(t)) + bη(ζ(t)).

Using (3.5), we get

bη(x) ≤ dF (x, ζ(t))− t+ dF (p, ζ(t)) + bη(p)− t.

Therefore,

bη(x) ≤ dF (x, ζ(t))− t+ bη(p).

Taking the limit t→∞ of both sides yields (3.6).

Actually, equation (3.5) represents a generalization of [5, Corollary 3.9].

Now we are to show that the asymptotes are unique. Consequently, the
Busemann functions are distance functions, i.e., F (∇bζ) = 1.

Corollary 3.12. Let (M,F ) be a forward complete Finsler manifold. Let
η : [0,∞] → M be a ray and p ∈ M . Then there exists a unique ray ζ(s) :=
expp(sv) emanating from p that is asymptotic to η, where v is the initial velocity
of ζ (cf. [12, 17]).

Proof. Let ζ be an asymptote to η from p. From Proposition 3.4 (2), the
Busemann function is differentiable almost everywhere, and hence one can differ-
entiate both sides of equation (3.5) and get

d

ds
(bη(ζ(s)) = −1.

Using (2.2), we have

d

ds
(bη(ζ(s))|s=0+ = g(∇bη(ζ(s)), ζ̇(0)).

Hence,

∇bη(p) = −ζ̇(0) = −v. (3.7)

Therefore, there is only one asymptotic geodesic to η emanating from p, namely
ζ(s) = expp(s∇bη(p)).

4. Busemann functions in asymptotically harmonic manifolds

It should be noted that for a complete simply connected Riemannian manifold
of nonpositive sectional curvature, the asymptotic relation between two rays is
an equivalence relation [15]. However, imposing conditions on the flag curvature
of a Finsler manifold does not suffice to make it an equivalence relation. This is
because the asymptotic relation is neither transitive nor symmetric [24]. Even-
though, we prove the following.
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Theorem 4.1. In an AHF-manifold, two rays are asymptotic if and only if
the corresponding Busemann functions agree up to a constant. Moreover, equa-
tion (3.6) represents an equivalence relation.

Proof. Let ζ be a ray asymptotic to η and starting from p. Then it is clear
from (3.6) that the function (bη − bζ) attains its maximum at p. Let Ω be a
bounded open subset of M containing p. Now, applying the “strong comparison
principle” [6, Lemma 5.4], for u = bζ(x)+bη(p), v = bη(x) and Λ = 0, yields that

bζ(x)− bη(x) = c, (4.1)

where c = bη(p) is a constant and x lies in the component of Ω containing p, say,
x ∈ U . This is because u ≥ v in Ω and ∆(bζ(x)+bη(p)) = ∆bζ(x) = h, ∆bη(x) =
h as (M,F, dµ) is an AHF-manifold. Note that the set

A := {z ∈ U | bζ(z)− bη(z) = c}

is a non-void open bounded subset of Ω. Meanwhile, it is clear that A is a closed
set. But our base manifold M is connected, therefore A is the whole M . One can
easily show that the relation (4.1), η ≈ ζ ⇔ bζ(x)− bη(x) = c, is an equivalence
relation.

Corollary 4.2. The level sets b−1
γ (t) := (bγ(t))−1 of a Busemann function

are smooth closed noncompact hypersurfaces of M and are called limit spheres or
horospheres.

Proof. Since bγ is a distance function, then, by Lemma 3.6 (1), the level sets
of bγ have no critical points and viz. b−1

γ (c) for any c are smooth hypersurfaces in
M . Moreover, when M is simply connected, the level sets b−1

γ (c) are noncompact
hypersurfaces in M .

In flat Riemannian manifolds [15, §7.3.2], horospheres are just affine hy-
perplanes, and in the case of constant negative sectional curvature, using the
Poincare model, horospheres are Euclidean spheres internally tangent to the
boundary sphere, minus the point of tangency. This may not be the case in
Finsler manifolds (cf. [19]). As we have mentioned before, the Busemann func-
tion bγ is a distance function and 1-Lipschitz. Consequently, we can define an
AHF-manifold in the weak sense as follows.

Definition 4.3. A forward complete simply connected Finsler µ-manifold
(M,F, dµ) without conjugate points is called an AHF-manifold in the weak sense
if the weak Laplacian of every Busemann function is a real constant, that is,
∆bγ = h, where ∆ is Shen’s Laplacian.

Another equivalent definition is the following.

Definition 4.4. A complete simply connected Finsler µ-manifold (M,F, dµ)
without conjugate points is called an AHF-manifold in the weak sense if the weak
forward and backward Laplacians of every Busemann function are real constants.
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That is,
←−
∆bη = h and ∆bη = h, where h ∈ R, ∆ is Shen’s Laplacian and

←−
∆ is

Shen’s Laplacian associated with the reverse (backward) Finsler structure
←−
F of

F which is defined by
←−
F (v) := F (−v).

It is clear that an AHF-manifold is an AHF-manifold in the weak sense.

Remark 4.5. The constant h in the Riemannian case is non-negative. How-
ever, it may not be non-negative in Finsler setting.

Proposition 4.6. For an AHF-manifold in the weak sense, the Finsler mean
curvature of large geodesic spheres converges to the Finsler mean curvature of
horospheres.

Proof. The proof follows from Lemma 3.9.

Theorem 4.7. For any ray η in an AHF-manifold in the weak sense, the
associated Busemann function bη is smooth.

Proof. Let bη be the Busemann function associated to the ray η. We showed
in Proposition 3.4 that bη is 1-Lipschitz. Now, assume that ∆bη(x) = h, h ∈ R
in the weak sense. That is, in view of (2.4),

h

∫
M
φdµ = −

∫
M
dφ(∇bη) dµ, for all φ ∈ C∞c (M).

In a coordinate neighborhood Ω, Shen’s Laplacian (2.3) of bη can be written in
the form

∆bη(x) = Aij(x, dbη(x)) ∂i ∂jbη(x) +Bi(x, dbη(x)) ∂ibη(x),

where Aij(x, dbη(x)) := gij(x,∇bη(x)),

Bi(x, dbη(x)) := Aij(x, dbη(x)) ∂j (log(σµ(x)) + ∂j(A
ij(x, dbη(x))).

It is clear that the coefficients Aij(x, dbη(x)), Bi(x, dbη(x)) are smooth functions
for each x ∈ M and dbη(x) ∈ TxM0 since (M,F, dµ) is a C∞ Finsler manifold
equipped with a smooth volume form dµ. Now, ∆bη − h = 0 can be written in
the form F(d2bη) = 0 on a domain Ω. Thanks to [3, Theorem 41], we conclude
that bη is smooth on Ω.

Remark 4.8. For a straight line ζ : R → M in a complete Finsler manifold,
we have the two associated Busemann functions, bζ for the forward ray and bζ
for the backward ray ζ := ζ(−t), t ≥ 0,

bζ(x) = lim
t→∞

dF (ζ(t), x)− t.

Let us recall the definition of bi-asymptote in Finsler geometry [12, §4].

Definition 4.9. We say that a straight line ζ : R→M is bi-asymptotic to η
if ζ|[0,∞) is asymptotic to η|[0,∞) and ζ̄(s) = ζ(−s) is asymptotic to η̄ with respect

to
←−
F .



Busemann Functions in Asymptotically Harmonic Finsler Manifolds 557

Lemma 4.10. For any straight line η : R → M in an AHF-manifold with
h = 0, the associated Busemann functions satisfy

bη + bη = 0. (4.2)

Proof. The triangle inequality gives bη + bη ≥ 0, which means that bη ≥ −bη.
By direct calculations, bη(η(s)) = −bη(η(s)). Let Ω be a bounded open set of M .
It is easy to see that bη, −bη ∈ H1(Ω)∩C(Ω). Applying the “Strong comparison
principle” [6, Lemma 5.4], by putting u := bη, v := −bη and Λ := 0, yields that
bη + bη ≤ 0. Hence the result follows.

Proposition 4.11. The bi-asymptotics are unique in any AHF-manifold
whose Finsler mean curvature of all horospheres vanishes, i.e., h = 0.

Proof. The proof follows from Lemma 4.10 by using the same technique as
that of the proof of Corollary 3.12.

The next result is a special case of Theorem 4.7. However, the proof is
different.

Proposition 4.12. For any straight line η in an AHF-manifold (M,F ), the
associated Busemann functions bη and bη are smooth functions on M in the case
of h = 0.

Proof. We have ∆bη = 0,
←−
∆bη = 0. Since a harmonic function is a static

solution to the heat equation and dbη does not vanish, then bη is smooth by [12,
Proposition 4.1] and [13, Theorem 4.9 and Remark 4.10]. Moreover, bη + bη = 0
by Lemma 4.10, and thus bη = −bη is smooth.

Proposition 4.13. Suppose f is a distance function on an AHF-manifold.
Let η be the integral curve of ∇f starting from p = η(0) such that f(p) = 0. If
∆f = h = ∆bη, then f = bη.

Proof. From the definition of the distance function, F (∇f) = 1. By Lemma
3.6 (3), it follows that the integral curve η of ∇f satisfies f(η(t)) = t as f(η(0)) =
f(p) = 0. Now, fix some s > t and let x ∈ f−1(s),

dF (η(t), x) ≥ dF (f−1(t), f−1(s)) = s− t,

thereby dF (η(t), x) + t ≥ s = f(x) for all x ∈ f−1(s). Hence,

lim
t→−∞

(dF (η(t), x) + t) ≥ f(x).

Consequently, bη(x) ≥ f(x) for all x ∈ f−1(s) and bη(p) = 0 = f(p). Now,
applying [6, Lemma 5.4], we get bη(x) = f(x), ∀x ∈ f−1(s). That is, f = bη.

Let (M,F ) be a complete simply connected Finsler manifold without conju-
gate points. Assume that at each x ∈ M there exists a unique line ζ emanating
from x := ζ(0) with ζ̇(0) = v. Under these conditions, each v ∈ IM gives rise to
a Busemann function bζ , where ζ is the line just defined above. This justifies the
following definition of the total Busemann function [16, §5].
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Definition 4.14. Let A(M) be the set of differentiable functions from M to
R. The total Busemann function B : IM → A(M) is given by (x, v) 7→ b(x,v) :=
bζ .

Proposition 4.15. Let {γn} n∈N be a family of unit speed geodesic rays start-
ing from a fixed point p ∈M with initial velocities {yn}n∈N ⊂ IpM . The sequence
{byn}n∈N is uniformly bounded on each compact set.

Proof. Let Ω be a compact subset of M. Assume that {γn} n∈N is a family of
unit speed geodesic rays starting from a fixed point p ∈M with initial velocities
{yn} n∈N. Thus, we have a sequence {yn}n∈N of unit vectors in IpM and corre-
sponding Busemann functions {byn} n∈N. By (3.2), since each Busemann function
byn is 1-Lipschitz, we have

−dF (xo, p) ≤ byn(xo) ≤ dF (p, xo).

Taking the supremum over xo ∈ Ω, where p /∈ Ω, we get

−dF (Ω, p) = sup
xo∈Ω

−dF (xo, p) ≤ sup
xo∈Ω

byn(xo) ≤ sup
xo∈Ω

dF (p, xo) = dF (p,Ω).

Hence, {byn}n∈N is uniformly bounded.

Remark 4.16. Note the following:

(i) Consider a sequence of unit vectors {yn}n∈N in IpM such that yn → y.
Then {byn}n∈N is an equicontinuous family of Busemann functions which
is pointwise bounded on each compact subset Ω of M (Proposition 4.15).
Consequently, by Ascoli–Arzela theorem, {byn : Ω→ R}n∈N has a uniformly
convergent subsequence, say, {bynk

}, converging to some function f .

(ii) The limit function f is differentiable almost everywhere. Therefore, the
gradient ∇f is defined and the weak Laplacian ∆f is defined.

Now, applying the definition of the distributional derivative (3.4), for
T = ∇bvnk

and z = 1, we get∫
Ω

(∆bvnk
)φdµ = −

∫
Ω
dφ(∇bvnk

) dµ =

∫
Ω
bvnk

∆φdµ,∫
Ω

(∆f)φdµ = −
∫

Ω
dφ(f) dµ =

∫
Ω
f ∆φdµ.

Hence, in the distributional sense, we get

∇bynk
→ ∇f, ∆bynk

→ ∆f, as nk →∞.

(iii) As (M,F, dµ) is an AHF-manifold, i.e., ∆bynk
= h, then ∆f = h in the

distributional sense. Now, using the same technique of the proof as that of
Theorem 4.7, we deduce that f is smooth.

(iv) Both f, bynk
∈ C∞(Ω,R). Indeed, limnk→∞ bynk

= f.

(v) Let ηv be the integral curve of ∇f starting from p := η(0). Then, using
Proposition 4.13, we conclude that f = bη on Ω.

Table 4.1 summarizes the main differences between Riemannian and Finsler
geometries used in the present work.
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Geometric objects Riemannian mani-
fold (M,α)

Finsler manifold
(M,F )

Metric αij(x) gij(x, y)

Induced distance dα(p, q) is symmetric dF (p, q) is non-symmet-
ric

Exponential map expx C∞ on TxM C∞ on TxM0,
C1 at null section

Legendre transforma-
tion

linear non-linear

Gradient of a function linear non-linear

Volume measure canonically defined and
unique

several non-equivalent
(e.g., Holmes-Thomp-
son)

Laplacian unique (Laplace-Beltra-
mi), linear elliptic oper-
ator

not unique (e.g., Shen’s
Laplacian) non-linear el-
liptic operator,

Asymptotic relation is
an equivalence relation
between two rays

for a simply connected
complete (M,α) of non-
positive sectional curva-
ture [15](YES)

for a forward com-
plete simply connected
(M,F ) of non-positive
flag curvature (NO) [24];
but (YES) in case of
Theorem 4.1

Parallel hypersurfaces:
f−1(t) is parallel to
f−1(s)

means f−1(s) is parallel
to f−1(t)

does not mean f−1(s) is
parallel to f−1(t); unless
F is reversible

Busemann function associated to a ray, 1-
Lipschitz in the sense
|bγ(q)−bγ(p)| ≤ dα(p, q)

associated to a forward
ray, 1-Lipschitz in the
sense ofequation (3.2)

The mean curvature of
horospheres

In AH-Riemannian
space is always non-
negative

In AH-Finsler space is a
real constant

Table 4.1: Main differences between Riemannian and Finsler geometries.
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Функцiї Буземана в асимптотично гармонiчних
фiнслерових многовидах
Hemangi Shah and Ebtsam H. Taha

У цiй статтi ми вивчаємо функцiї Буземана як в загальнiй фiнсле-
ровiй поставi, так i для асимптотично гармонiчних фiнслерових много-
видiв. Зокрема, ми показуємо, що функцiї Буземана на асимптотично
гармонiчних фiнслерових многовидах є гладкими.

Ключовi слова: функцiя Буземана, асимптота, гармонiчний фiнсле-
ровий многовид, асимптотично гармонiчний фiнслеровий многовид
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