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1. Introduction

A closed geodesic is called simple if this geodesic is not self-intersecting and
does not go along itself. At the end of the 19th century, while working on the
three-body problem, H. Poincare [39] stated a problem of the existence of geodesic
lines on smooth convex two-dimensional surfaces. Since then, the methods for
finding closed geodesics on regular surfaces of positive and negative curvature
have been developed. In 1927, G.D. Birkhoff [6] proved that there exists at least
one simple closed geodesic on an n-dimensional Riemannian manifold homeomor-
phic to a sphere. In contrast to this, there are non-smooth convex closed surfaces
in Euclidean space that are free from simple closed geodesics. From the gener-
alization of the Gauss–Bonnet theorem for polyhedra, there follows a necessary
condition for the existence of a simple closed geodesic on a convex polyhedron
in E3. This condition does not hold for most convex polyhedra, but it holds for
regular polyhedra, in particular for regular tetrahedra.
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In the current survey, we present the results on the behavior of simple closed
geodesics on regular tetrahedra in three-dimensional spaces of constant curvature.
D. Fuchs and E. Fuchs supplemented and systematized the results on closed
geodesics on regular polyhedra in E3 (see [16,18]). V.Yu. Protasov [41] obtained
a condition for the existence of simple closed geodesics on an arbitrary tetrahedron
in Euclidean space.

A.A. Borisenko and D.D. Sukhorebska studied simple closed geodesics on
regular tetrahedra in three-dimensional hyperbolic and spherical spaces (see [7,9,
10]). In Euclidean space, the faces of a tetrahedron have zero Gaussian curvature,
and the curvature of a tetrahedron is concentrated only on its vertices. In the
hyperbolic or spherical space, the Gaussian curvature of faces is k = −1 or 1, and
the curvature of a tetrahedron is determined not only by its vertices, but also
by its faces. In the hyperbolic space, the planar angle α of a face of a regular
tetrahedron satisfies 0 < α < π/3. In the spherical space, the planar angle α
satisfies π/3 < α ≤ 2π/3. In both cases the intrinsic geometry of a tetrahedron
depends on the planar angle. The behavior of closed geodesics on a regular
tetrahedron in three-dimensional spaces of constant curvature k depends on the
sign of k.

2. Historical notes and main results

In [39], Henri Poincare studied properties of the solutions of the three-body
problem, in particular, periodical and asymptotic solutions. He found that the
key difficulty of this problem could be formulated as an independent problem of
describing geodesics lines on a convex surface. In [40], H. Poincare showed the
existence of a simple closed geodesic on a convex smooth surface S that is an
embedding of the two-dimensional sphere into Euclidean space E3 with induced
metric. He considered the shortest simple closed curve dividing S into two pieces
of equal total Gaussian curvature. Moreover, H. Poincare stated a conjecture
on the existence of at least three simple closed geodesics on a smooth closed
convex two-dimensional surface in E3. Later, in 1927, G.D. Birkhoff proved that
there exists at least one simple closed geodesic on an n-dimensional Riemannian
manifold homeomorphic to a sphere [6].

In 1929, L.A. Lusternik and L.G. Schnirelmann [30,31] published the proof of
Poincare’s conjecture. However, their proof contained some gaps which were filled
in by W. Ballmann in 1978 [4] and independently by I. Taimanov in 1992 [47]. In
1951–1952, L.A. Lusternik and A.I. Fet [14, 29] proved the existence of a closed
geodesic on an n-dimensional regular closed manifold.

Using the ideas of G.D. Birkhoff, it was proved that every Riemannian metric
on a two-dimensional sphere carries infinitely many geometrically distinct closed
geodesics, cf. J. Franks [15] and V. Bangert [5]. The methods of the proof
were restricted to surfaces. The condition of the existence of infinitely many
closed geodesics on a compact simply-connected manifold of arbitrary dimension
is more complicated. In 1969, D. Gromoll and W. Meyer [20] showed that there
always exist infinitely many distinct periodic geodesics on an arbitrary compact
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manifold M , provided some weak topological condition holds: if the sequence
of Betti numbers of the free loop space LM of M is unbounded. W. Ziller [50]
proved that this condition on the free loop space holds for symmetric spaces
of rank > 1. H.B. Rademacher [42] showed that for a C4-regular metric on a
compact Riemannian manifold with finite fundamental group there are infinitely
many geometrically distinct closed geodesics.

In 1898, J. Hadamard [23] showed that on a closed surface of negative curva-
ture any closed curve, that is not homotopic to zero, can be deformed into the
closed curve of minimal length within its free homotopy group. This minimal
curve is unique and it is a closed geodesic. Then it is interesting to estimate the
number of closed geodesics, depending on the length of these geodesics, on a com-
pact manifold of negative curvature. H. Huber [25,26] proved that on a complete
closed two-dimensional manifold of constant curvature −1 the number of closed
geodesics of length at most L has the order of growth eL/L as L→∞. For com-
pact n-dimensional manifolds of negative curvature this result was generalized by
Ya.G. Sinai [46], G.A. Margulis [32], M. Gromov [21], and others.

In I. Rivin’s work [43], and later in M. Mirzakhani’s work [34], it was proved
that on a complete hyperbolic (constant negative curvature) Riemannian surface
of genus g and with n cusps the number of simple closed geodesics of length at
most L is asymptotic to (positive) constant times L6g−6+2n as L→∞. One can
also refer to [13,44] for details.

Theorems about geodesic lines on convex two-dimensional surfaces play an
important role in geometry “in the large” of convex surfaces in spaces of con-
stant curvature. Important results on this subject were obtained by S. Cohn-
Vossen [11], A.D. Alexandrov [2], and A.V. Pogorelov [36]. In one of his earliest
works, A.V. Pogorelov proved that on a closed convex surface of Gaussian curva-
ture ≤ k, k > 0, each geodesic of length < π/

√
k is the shortest path between its

endpoints [37]. V.A. Toponogov [48] proved that on a C2-regular closed surface
of curvature ≥ k > 0 the length of a simple closed geodesic is at most 2π/

√
k.

V.A. Vaigant and O.Yu. Matukevich [49] proved that on this surface a geodesic
of length ≥ 3π/

√
k has the point of self-intersection.

Geodesics have also been studied on non-smooth surfaces, including convex
polyhedra in E3. Since a geodesic is the locally shortest curve, it can not pass
through any point for which the full angle is less than 2π (see [2]). P. Gruber [22]
showed that in the sense of Baire categories [27] most convex surfaces (no regu-
larity required) do not contain a closed geodesic. A.V. Pogorelov [38] generalized
L.A. Lusternik and L.G. Schnirelmann’s result showing that on any closed convex
surface there are at least three closed quasi-geodesics. Whereas a geodesic has
exactly π surface angle to either side at each point, a quasi-geodesic has at most
π surface angle to either side at each point. Unlike geodesics, quasi-geodesics can
pass through the vertices with the full angle < 2π on the surface [3].

On a convex polyhedron a geodesic has the following properties:

1) it consists of line segments on faces of a polyhedron;

2) it forms equal angles with edges on adjacent faces;
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3) a geodesic cannot pass through a vertex of a convex polyhedron [2].

G. Galperin [19] presented a necessary condition for the existence of a simple
closed geodesic on a convex polyhedron in E3. It is based on a generalization of
the Gauss–Bonnet theorem for polyhedra. The curvature of a convex polyhedron
in E3 is concentrated on its vertices. Let θ1, . . . , θn be the full angles around
the vertices A1, . . . , An of a convex polyhedron. The curvature of the vertex Ai
is ωi = 2π − θi, i = 1, . . . , n. If there is a simple closed geodesic on a convex
polyhedron, then there should necessarily be a subset I ⊂ {1, 2, . . . , n} such that∑

i∈I
ωi = 2π.

This condition does not hold for most polyhedra, but it holds for regular poly-
hedra. D. Fuchs and E. Fuchs supplemented and systematized the results on
closed geodesics on regular polyhedra in the three-dimensional Euclidean space
(see [16, 18]). K. Lawson and others [28] obtained a complete classification of
simple closed geodesics on the eight-convex polyhedra (deltahedra) whose faces
are all equilateral triangles.

In [41], V.Yu. Protasov obtained a condition for the existence of simple
closed geodesics on an arbitrary tetrahedron in Euclidean space and evaluated
from above the number of these geodesics in terms of the difference from π the
sum of the angles at a vertex of the tetrahedron. In particular, it is proved that
a simplex has infinitely many different simple closed geodesics if and only if all
the faces are equal triangles. A. Akopyan and A. Petrunin [1] showed that if a
closed convex surface M in E3 contains arbitrarily long simple closed geodesic,
then M is a tetrahedron whose faces are equal triangles.

Definition 2.1. A simple closed geodesic on a tetrahedron has type (p, q) if
it has p vertices on each of two opposite edges of the tetrahedron, q vertices on
each of other two opposite edges, and (p + q) vertices on each of the remaining
two opposite edges.

On a regular tetrahedron in Euclidean space, for each ordered pair of coprime
integers (p, q) there exists a whole class of simple closed geodesics of type (p, q),
up to the isometry of the tetrahedron. On the development of the tetrahedron,
geodesics in each class are parallel to each other. Furthermore, in each class there
is a simple closed geodesic passing through the midpoints of two pairs of opposite
edges of the tetrahedron [9].

J. O’Rourke and C. Vilcu [35] considered simple closed quasi-geodesics on
tetrahedra in E3.

In [12], D. Davis and others considered geodesics which begin and end at
vertices (and do not touch other vertices) on a regular tetrahedron and cube. It
was proved that a geodesic as above never begins and ends at the same vertex and
computed the probabilities with which a geodesic starting from a given vertex
ends at every other vertex. D. Fuchs [17] obtained similar results for a regular
octahedron and icosahedron (in particular, such a geodesic never ends at the
point it begins).
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Denote a simply-connected complete Riemannian n-dimensional manifold of
constant curvature k ∈ {−1, 0, 1} by Mn

k . A polyhedron in M3
k is a surface

obtained by gluing finitely many geodesic polygons from M2
k . In particular, a

regular tetrahedron in M3
k is a closed convex polyhedron whose all faces are

regular geodesic triangles from M2
k and all vertices are regular trihedral angles.

From Alexandrov’s gluing theorem [3], it follows that the polyhedron in M3
k with

the induced metric is a compact Alexandrov surface A(k) with the curvature
bounded below by k. Notice that in E3(M3

0 ) the curvature of a tetrahedron
is concentrated only on its vertices. In the hyperbolic or spherical space, the
Gaussian curvature of faces is k = −1 or 1, respectively, and the curvature of a
tetrahedron is determined not only by its vertices, but also by its faces.

In [45], J. Rouyer and C. Vilcu studied the existence or non-existence of
simple closed geodesics on most (in the sense of Baire category [27]) Alexandrov
surfaces. In particular, it was proved that most surfaces in A(−1) have infinitely
many, pairwise disjoint, simple closed geodesics, and most surfaces in A(1) have
no simple closed geodesics.

As we have said before, on a regular tetrahedron in Euclidean space E3, for
each ordered pair of coprime integers (p, q) there exist infinitely many simple
closed geodesics of type (p, q) that are parallel to each other on the development
of the tetrahedron. It follows from the fact that the development of a tetrahedron
along the geodesic is contained in the standard triangular tiling of the plane.
Moreover, the vertices of the tiling can be labeled in such a way that for any
development the labeling of vertices of the tetrahedron matches the labeling of
vertices of the tiling. This is something that holds only for regular tetrahedra
and only in E3 [18].

In the spherical space S3, the planar angle α of the faces of a tetrahedron
satisfies π/3 < α ≤ 2π/3. The intrinsic geometry of the tetrahedron depends on
α. If the planar angle α = 2π/3, then the tetrahedron is a unit two-dimensional
sphere. Hence, there are infinitely many simple closed geodesics on it and they
are great circles of the sphere. In the following, we consider α such that π/3 <
α < 2π/3. In [10], A.A. Borisenko and D.D. Sukhorebska proved that on a
regular tetrahedron in spherical space there exists the finite number of simple
closed geodesics. The length of all these geodesics is less than 2π.

It was found that for any coprime integer (p, q) there exist the numbers α1

and α2, depending on p, q and satisfying the inequalities π/3 < α1 < α2 < 2π/3,
such that

1) if π/3 < α < α1, then on a regular tetrahedron in spherical space with the
planar angle α there exists a unique simple closed geodesic of type (p, q), up
to the rigid motion of this tetrahedron, and it passes through the midpoints
of two pairs of opposite edges of the tetrahedron;

2) if α2 < α < 2π/3, then on a regular tetrahedron with the planar angle α there
is no simple closed geodesic of type (p, q).

In [7], A.A. Borisenko gave the necessary and sufficient condition for the
existence of a simple closed geodesic on a regular tetrahedron in S3. We will
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consider it in details in Section 4.

Unlike in S3, on a regular tetrahedron in hyperbolic space H3 there are
infinitely many simple closed geodesics. Recall that the planar angle α of a
regular tetrahedron in H3 satisfies 0 < α < π/3. In [9], A.A. Borisenko and
D.D. Sukhorebska proved that on a regular tetrahedron in hyperbolic space for
any coprime integers (p, q), 0 ≤ p < q, there exists a unique, up to the rigid
motion of the tetrahedron, simple closed geodesic of type (p, q), and it passes
through the midpoints of two pairs of opposite edges of the tetrahedron. These
geodesics exhaust all simple closed geodesics on a regular tetrahedron in hyper-
bolic space. As a part of the proof, there was found a constant d(α) > 0 for α ∈
(0, π/3) such that the distances from the vertices of the regular tetrahedron to
any simple closed geodesic is greater than d(α). It should be noticed that this
property holds only for simple closed geodesics on regular tetrahedra in H3. In
E3 or S3, for any ε > 0, there is a simple closed geodesic γ such that the distance
from a tetrahedron vertex to γ is < ε.

Furthermore, in [9], it was proved that the number of simple closed geodesics
of length bounded by L is asymptotic to c(α)L2 when L → ∞. If α → 0, then
c(α)→ c0 > 0. If the planar angle α of a regular tetrahedron in hyperbolic space
is zero, then the vertices of the tetrahedron become cusps. Then the limiting
tetrahedron is a noncompact surface homeomorphic to a sphere with four cusps
with a complete regular Riemannian metric of constant negative curvature. The
genus of this surface is zero. In [43], Rivin showed that the number of simple
closed geodesics on this surface has order of growth L2.

In [7], A.A. Borisenko proved that if the planar angles of any tetrahedron in
hyperbolic space are at most π/4, then for any pair of coprime integers (p, q) there
exists a simple closed geodesic of type (p, q). This situation differs from Euclidean
space, where there are no simple closed geodesics on a generic tetrahedron [19].

3. Closed geodesics on a regular tetrahedron in E3

Consider a regular tetrahedron A1A2A3A4 with the edge of length 1 in Eu-
clidean space.

Fix a point of a geodesic on the edge of the tetrahedron and roll the tetrahe-
dron along the plane in such a way that the geodesic always touches the plane.
The traces of the faces form the development of the tetrahedron on a plane and
the geodesic is a line segment inside the development.

A development of a regular tetrahedron in E3 is a part of the standard triangu-
lation of Euclidean plane. Denote the vertices of the triangulation in accordance
with the vertices of the tetrahedron (see Fig. 3.1). We introduce a rectangular
Cartesian coordinate system with the origin at A1 and the x-axis along the edge
A1A2 containing X. Then the vertices A1 and A2 have the coordinates

(
l, k
√

3
)
,

and the coordinates of A3 and A4 are
(
l + 1/2, (2k + 1)

√
3/2
)
, where k, l are

integers.

Choose two identically oriented edges A1A2 of the triangulation that do not
belong to the same line. Take two points X(µ, 0) and X ′(µ + q + 2p, q

√
3) on
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them, where 0 < µ < 1 such that the segment XX ′ does not contain any vertex
of the triangulation. The segment XX ′ corresponds to the simple closed geodesic
γ of type (p, q) on a regular tetrahedron in Euclidean space. If (p, q) are coprime
integers, then γ does not repeat itself. On a tetrahedron, γ has p vertices on each
of two opposite edges of the tetrahedron, q vertices on each of other two opposite
edges, and (p+ q) vertices on each of the remaining two opposite edges, and thus
γ has type (p, q).

The length of γ is equal to

L = 2
√
p2 + pq + q2. (3.1)

Notice that the segments of a geodesic lying on the same face of the tetra-
hedron are parallel to each other. It follows that a closed geodesic on a regular
tetrahedron in Euclidean space does not have points of self-intersection.

Fig. 3.1

If q = 0 and p = 1, then the geodesic consists of four segments that consecu-
tively intersect four edges of the tetrahedron and the geodesic does not intersect
a pair of opposite edges.

Theorem 3.1.

1. On a regular tetrahedron in Euclidean space, for each ordered pair of coprime
integers (p, q) there exists the whole class of simple closed geodesics of type
(p, q), up to the isometry of the tetrahedron. On the development of the tetra-
hedron, geodesics in each class are parallel to each other [18].

2. In every class there is a simple closed geodesic passing through the midpoints
of two pairs of opposite edges of the tetrahedron [9].

Proof. For each pair of coprime integers (p, q), construct a segment connecting
the points X(µ0, 0) and X ′(µ0 + q + 2p, q

√
3). Chose µ0 ∈ (0, 1) such that XX ′

does not contain any vertex of the triangulation. Then XX ′ corresponds to the
simple closed geodesic γ of type (p, q) on a regular tetrahedron in Euclidean space.
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Consider the segments parallel to XX ′. They are characterized by the equa-
tion

y =
q
√

3

q + 2p
(x− µ).

We can change µ until the line touches a vertex of the tiling. Then for each pair
(p, q) there are µ1, µ2 ∈ (0, 1) such that µ1 ≤ µ0 ≤ µ2 and for all µ ∈ (µ1, µ2),
the segment joining X(µ, 0) and X ′(µ + q + 2p, q

√
3) corresponds to the simple

closed geodesic of type (p, q) on a regular tetrahedron. Therefore, the first part
of the theorem is proved.

To prove the second part, consider the lines

γi : y =
q
√

3

q + 2p
(x− µi), i = 1, 2, (3.2)

passing through the vertices of the tiling. It means that there exist the in-
teger numbers c1 and c2 such that the points P1

(
c1(q + 2p)/2q + µ1, c1

√
3/2
)

and P2

(
c2(q + 2p)/2q + µ2, c2

√
3/2
)

are the vertices of the tiling and γ1 passes
through P1 and γ2 passes through P2.

Consider the closed geodesic γ0 parallel to γ such that the equation of γ0 is

y =
q
√

3

q + 2p

(
x− µ1 + µ2

2

)
.

It passes through the point

P0

(
c1 + c2

2

q + 2p

2q
+
µ1 + µ2

2
,
c1 + c2

2

√
3

2

)
.

Consider three cases:

1) the points P1 and P2 belong to the line A1A2;

2) the points P1, P2 belong to the line A3A4;

3) the point P1 belongs to the line A1A2 and the point P2 belongs to the line
A3A4.

In each of this cases it is easy to show that P0 is a midpoint of some edge of the
tiling.

Then, let us prove that if a geodesic passes through the midpoint of one edge,
then it passes through the midpoints of two pairs of opposite edges. Assume that
a closed geodesic γ0 passes through the midpoint of the edge A1A2. Then the
equation of γ0 is

y =
q
√

3

q + 2p

(
x− 1

2

)
. (3.3)

The vertices A3 and A4 belong to the line yv = (2k + 1)
√

3/2, and their first
coordinate is xv = l + 1/2 (k, l ∈ Z). Substituting the coordinates of the points
A3 and A4 to equation (3.3), we get

q(2l − 2k − 1) = 2p(2k + 1). (3.4)
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If q is even, then there exist k and l satisfying equation (3.4). It follows that
γ0 passes through the vertex of the tiling. It contradicts the properties of γ0,
therefore q is an odd integer.

The points X1 (1/2, 0) and X ′1
(
q + 2p+ 1/2, q

√
3
)

satisfy equation (3.3).
These points are the midpoint of the edge A1A2 on the tetrahedron. Sup-
pose that the point X2 is the midpoint of X1X

′
1. Then the coordinates

of X2 are
(
q/2 + p+ 1/2, q

√
3/2
)
. Substituting q = 2k + 1, we obtain

X2

(
k + p+ 1, (k + 1/2)

√
3
)
. Since the second coordinate of X2 is (k + 1/2)

√
3,

where k is an integer, the point X2 belongs to the line that contains the vertices
A3 and A4. It follows that X2 is the midpoint of the edge A3A4 because the first
coordinate of X2 is an integer.

Let Y1
(
q/4 + p/2 + 1/2, q

√
3/4
)

be the midpoint of X1X2. Substituting q =

2k + 1, we obtain Y1
(
(k + p+ 1)/2 + 1/4, (k/2 + 1/4)

√
3
)
. From the second

coordinate we have that Y1 belongs to the line passing in the middle of the
horizontal lines y = k

√
3/2 and y = (k+ 1)

√
3/2. Looking at the first coordinate

of Y1, which has 1/4 added, we can see that Y1 is the center of A1A3, or A3A2,
or A2A4, or A4A1.

In a similar way, consider the midpoint Y2
(
3q/4 + 3p/2 + 1/2, 3q

√
3/4
)

of
X2X

′
1 Then Y2 is the midpoint of the edge that is opposite to the edge with Y1.

Corollary 3.2. The development of the tetrahedron obtained by unrolling
along a closed geodesic consists of four equal polygons. Two adjacent polygons
can be transformed into each other by rotating them through an angle π around
the midpoint of their common edge.

Proof. For any closed geodesic γ, we get the equivalent closed geodesic γ0
that passes through the midpoints of two pairs of the opposite edges on the
tetrahedron. Let the points X1, X2 and Y1, Y2 on γ0 be the midpoints of the
edges A1A2, A4A3 and A1A3, A2A4, respectively.

Fig. 3.2

Consider the rotation of the regular tetrahedron through π around the line
passing through the points X1 and X2. This rotation is the isometry of the regular
tetrahedron. The points Y1 and Y2 are swapped. Furthermore, the segment of γ0
that starts at X1 on the face A1A2A4 is mapped to the segment of γ0 that starts
from the point X1 on A1A2A3. It follows that the segments X1Y1 and X1Y2 are
swapped. For the same reason, after the rotation the segments X2Y1 and X2Y2
of γ0 are also swapped.

From this rotation, we get that the development of the tetrahedron along the
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segment Y1X1Y2 of the geodesic is central symmetric with respect to the point
X1. And the development along Y1X2Y2 is central symmetric with respect to X2.

Now, consider the rotation of the regular tetrahedron through π around the
line passing through the points Y1 and Y2. By the same argument as above, we
obtain that the development of the tetrahedron along the segment X1Y1X2 of the
geodesic is central symmetric with respect to Y1, and the development along the
segment X2Y2X1 is central symmetric with respect to Y2 (see Fig. 3.2).

Lemma 3.3. Let γ be a simple closed geodesic of type (p, q) on a regular
tetrahedron in Euclidean space such that γ intersects the midpoints of two pairs
of opposite edges. Then the distance h from the vertices of the tetrahedron to γ
satisfies the inequality

h ≥
√

3

4
√
p2 + pq + q2

. (3.5)

Proof. Suppose γ intersects the edge A1A2 at the midpoint X. Then geodesic
γ is unrolled into the segment XX ′ lying at the line

y =
q
√

3

q + 2p

(
x− 1

2

)
.

The segment XX ′ intersects the edges A1A2 at the points

(xb, yb) =

(
2(q + 2p)k + q

2q
, k
√

3

)
,

where k ≤ q. Since XX ′ does not pass through the vertices of tiling, xb can not
be an integer. Hence, on the edge A1A2, the distance from the vertices to the
points of γ is not less than 1/2q.

Analogously, on the edge A3A2, the distance from the vertices of the tetrahe-
dron to the points of γ is not less than 1/2p.

Develop the faces A1A2A4 and A2A4A3 to the plane. Choose the points B1

at the edge A2A1 and B2 at the edge A2A3 such that the length A2B1 is 1/2q
and the length A2B2 is 1/2p. Let A2H be the height of the triangle B1A2B2.
Then

|A2H| =
√

3

4
√
p2 + pq + q2

.

The distance h from the vertex A2 to γ is not less than |A2H|.

The pair of coprime integers (p, q) determines the combinatorical structure of
a simple closed geodesic and hence the order of intersections with the edges of
the tetrahedron.

In [41], the generalization of simple closed geodesics on a polyhedron was
proposed. A polyline on a tetrahedron is a curve consisting of line segments which
connect the points consecutively on the edges of this tetrahedron. An abstract
geodesic on a tetrahedron is a closed polyline with the following properties:
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1) it does not have points of self-intersection, and adjacent segments of it lie on
different faces;

2) it crosses more than three edges and does not pass through the vertices of the
tetrahedron.

For any two tetrahedra, we can fix a one-to-one correspondence between their
vertices and label the corresponding vertices of the tetrahedra identically. Then
two closed geodesics on these tetrahedra are called equivalent if they intersect
the identical labelled edges in the same order.

Proposition 3.4 ([41]). For every abstract geodesic γ̃ on a tetrahedron in
Euclidean space there exists an equivalent simple closed geodesic γ on a regular
tetrahedron in Euclidean space.

A vertex of a geodesic γ is called a link node if it and two neighboring vertices
of γ lie on the edges of the same vertex Ai of the tetrahedron, and these three
vertices are the vertices of the geodesic that are closest to Ai.

Proposition 3.5 ([41]). Let γ11 and γ21 be the segments of a simple closed
geodesic γ starting at a link node on a regular tetrahedron, and let γ12 and γ22 be
the next segments and so on. Then, for each i = 2, . . . , 2p+ 2q− 1, the segments
γ1i and γ2i lie on the same face of the tetrahedron, and there are no other geodesic
points between them. The segments γ12p+2q and γ22p+2q meet at the second link
node of the geodesic.

4. Simple closed geodesics on regular tetrahedra in S3

4.1. The main definition and examples. A spherical triangle is a con-
vex polygon on a unit sphere bounded by the three shortest lines. A regular
tetrahedron A1A2A3A4 in three-dimensional spherical space S3 is a closed con-
vex polyhedron such that all its faces are regular spherical triangles and all its
vertices are regular trihedral angles. A planar angle α of a regular tetrahedron
in S3 satisfies the conditions π/3 < α ≤ 2π/3. Notice that then there exists a
unique (up to the rigid motion) tetrahedron in spherical space with the given
planar angle. The length of the edges is equal to

a = arccos

(
cosα

1− cosα

)
, (4.1)

lim
α→π/3

a = 0; lim
α→π/2

a = π/2; lim
α→2π/3

a = π − cos−1 1/3. (4.2)

If α = 2π/3, then a tetrahedron is a unit two-dimensional sphere. There are
infinitely many simple closed geodesics on it. In the following, we suppose that
α satisfies π/3 < α < 2π/3.

A spherical space S3 of the curvature 1 is realized as a unite tree-dimensional
sphere in four-dimensional Euclidean space. Hence the regular tetrahedron
A1A2A3A4 is in an open hemisphere. Consider a Euclidean space tangent to this
hemisphere at the center of circumscribed sphere of the tetrahedron. A central
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projection of the hemisphere to this tangent space maps the regular tetrahedron
from S3 onto the regular tetrahedron in Euclidean tangent space. A simple closed
geodesic γ on A1A2A3A4 is mapped into an abstract geodesic on a regular tetra-
hedron in E3. Proposition 3.4 states that there exists a simple closed geodesic on
a regular tetrahedron in Euclidean space equivalent to this generalized geodesic.
It follows that a simple closed geodesic on a regular tetrahedron in S3 is also
characterized uniquely by a pair of coprime integers (p, q) and has the same com-
binatorical structure as a closed geodesic on a regular tetrahedron in E3.

Lemma 4.1 ([10]).

1) On a regular tetrahedron with the planar angle α ∈ (π/3, 2π/3) in spherical
space there exist three different simple closed geodesics of type (0, 1). They
coincide under isometries of the tetrahedron.

2) Geodesics of type (0, 1) exhaust all simple closed geodesics on a regular tetra-
hedron with the planar angle α ∈ [π/2, 2π/3) in spherical space.

3) On a regular tetrahedron with the planar angle α ∈ (π/3, π/2) in spherical
space there exist three different simple closed geodesics of type (1, 1).

Proof. 1) Consider a regular tetrahedron A1A2A3A4 in S3 with the planar
angle α ∈ (π/3, 2π/3). Let X1 and X2 be the midpoints of A1A4 and A3A2, and
let Y1, Y2 be the midpoints of A4A2 and A1A3. Join these points consecutively
with the segments through the faces. Since the points X1, Y1, X2, and Y2 are
midpoints, the triangles X1A4Y1, Y1A2X2, X2A3Y2, and Y2A1X1 are equal. It
follows that the closed polyline X1Y1X2Y2 is a simple closed geodesic of type
(0, 1) on a regular tetrahedron in spherical space (see Fig. 4.1). Choosing the
midpoints of other pairs of opposite edges, we can construct other two geodesics
of type (0, 1) on the tetrahedron.

Fig. 4.1

2) Consider a regular tetrahedron with the planar angle α ≥ π/2. Since a
geodesic is a line segment inside the development of the tetrahedron, it cannot
intersect three edges of the tetrahedron, coming out from the same vertex, in
succession.
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If a simple closed geodesic on the tetrahedron is of type (p, q), where p = q =
1 or 1 < p < q, then this geodesic intersects three edges, with the common vertex,
in succession (see [41]). Only a simple closed geodesic of type (0, 1) intersects two
edges of the tetrahedron, which have a common vertex, and does not intersect
the third edge. It follows that on a regular tetrahedron in spherical space with
the planar angle α ∈ [π/2, 2π/3) there exist only three simple closed geodesics of
type (0, 1) and there are no other geodesics.

Fig. 4.2

3) Consider a regular tetrahedron A1A2A3A4 in S3 with the planar angle α ∈
(π/3, π/2). As above, the points X1, X2, Y1, and Y2 are the midpoints of A1A4,
A3A2, A4A2, and A1A3, respectively.

Unfold two adjacent faces A1A4A3 and A4A3A2 into the plane and draw a
geodesic line segment X1Y1. Since α < π/2, the segment X1Y1 is contained
inside the development and intersects the edge A4A2 at the right angle. Then
unfold other two adjacent faces A4A1A2 and A1A2A3 and construct the segment
Y1X2. In the same way, join the points X2 and Y2 within the faces A2A3A4 and
A3A4A1, and join Y2 andX1 within A1A2A3 and A4A1A2 (see Fig. 4.2). Since the
points X1, Y1, X2, and Y2 are the midpoints of their edges, the triangles X1A4Y1,
Y1A2X2, X2A3Y2, and Y2A1X1 are equal. Hence, the segments X1Y1, Y1X2,
X2Y2, and Y2X1 form a simple closed geodesic of type (1, 1) on the tetrahedron.

Two other simple closed geodesics of type (1, 1) on a tetrahedron can be con-
structed in the same way by connecting the midpoints of other pairs of opposite
edges of the tetrahedron.

In the following, we assume that α satisfies π/3 < α < π/2.

4.2. The properties of simple closed geodesics on a regular tetra-
hedron in S3.

Lemma 4.2. The length of a simple closed geodesic on a regular tetrahedron
in spherical space is less than 2π.
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In [10], this lemma was proved by using Proposition 3.5 about the construction
of a simple closed geodesic on a regular tetrahedron. However, Lemma 4.2 can
be considered as a particular case of the result proved by A. Borisenko [8] about
the generalization of V. Toponogov’s theorem [48] to the case of two-dimensional
Alexandrov space.

Lemma 4.3 ([10]). On a regular tetrahedron in spherical space a simple closed
geodesic intersects midpoints of two pairs of opposite edges.

Proof. Let γ be a simple closed geodesic on a regular tetrahedron A1A2A3A4

in S3. As it was shown above, there exists a simple closed geodesic γ̃ on a regular
tetrahedron in Euclidean space such that γ̃ is equivalent to γ. From Theorem 3.1,
we assume that γ̃ intersects the midpoints X̃1 and X̃2 of the edges A1A2 and A3A4

on the tetrahedron in E3. Denote by X1 and X2 the vertices of γ at the edges
A1A2 and A3A4 on the tetrahedron in S3 such that X1 and X2 are equivalent to
the points X̃1 and X̃2.

Consider the development of the tetrahedron along γ starting from the point
X1 on a two-dimensional unite sphere. The geodesic γ is unrolled into the line
segment X1X

′
1 of length less than 2π inside the development. Denote the parts

of the development along X1X2 and X2X
′
1 by T1 and T2.

Let M1 and M2 be the midpoints of the edges A1A2 and A3A4 on the tetra-
hedron in S3. The rotation by the angle π over the line M1M2 is an isometry of
the tetrahedron. Then the development of the tetrahedron is central symmetric
with the center M2.

In addition, the symmetry over M2 swaps the parts T1 and T2. The point X ′1
at the edge A1A2 of T2 is mapped into the point X̂ ′1 at the edge A2A1 containing

X1 on T1, and the lengths of A2X1 and X̂ ′1A1 are equal.

The image of the point X1 on T1 is a point X̂1 at the edge A1A2 on T2. Since
M2 is the midpoint of A3A4, the symmetry maps the point X2 at A3A4 onto the
point X̂2 at the same edge A3A4 such that the lengths of A4X2 and X̂2A3 are
equal. Thus, the segment X1X

′
1 is mapped into the segment X̂ ′1X̂1 inside the

development.
Suppose the segments X̂ ′1X̂2 and X1X2 intersect at the point Z1 inside T1.

Then the segments X̂2X̂1 and X2X
′
1 intersect at the point Z2 inside T2, and the

point Z2 is central symmetric to Z1 with respect to M2 (see Fig. 4.3). Inside the
polygon on the sphere, we obtain two circular arcs X1X

′
1 and X̂ ′1X̂1 intersecting

in two points. Therefore Z1 and Z2 are antipodal points on the sphere and the
length of the geodesic segment Z1X2Z2 is π.

Now, consider the development of the tetrahedron along γ starting from the
point X2. This development also consists of spherical polygons T2 and T1, but in
this case they are glued by the edge A1A2 and are central symmetric with respect
to M1.

Similarly to the above, apply the symmetry over M1. The segments X2X1X
′
2

and X̂2X̂1X̂
′
2 are swapped inside the development. Since the symmetries over

M1 and over M2 correspond to the same isometry of the tetrahedron, the arcs
X2X1X

′
2 and X̂2X̂1X̂

′
2 also intersect at the points Z1 and Z2. It follows that the
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Fig. 4.3

length of the geodesic segment Z1X1Z2 is also equal to π. Hence the length of the
geodesic γ on a regular tetrahedron in spherical space is 2π, which contradicts
Lemma 4.2. We get that the segments X̂ ′1X̂2 and X1X2 on T1 either do not
intersect or coincide.

IfX1X2 and X̂ ′1X̂2 do not intersect, then they form a quadrilateralX1X2X̂2X̂
′
1

inside T1. Since γ is a closed geodesic, ∠A1X1X2 +∠A2X̂
′
1X̂2 = π. Furthermore,

∠X1X2A3+∠X̂ ′1X̂2A4 = π. We obtain the convex quadrilateral on a sphere with
the sum of inner angles 2π. It follows that the integral of the Gaussian curvature
over the interior of X1X2X̂2X̂

′
1 on a sphere is equal to zero. Hence the segments

X1X2 and X̂ ′1X̂2 coincide under the symmetry of the development. Then the
points X1 and X2 of the geodesic γ are the midpoints of the edges A1A2 and
A3A4.

The statement that γ intersects the midpoints of the second pair of the op-
posite edges of the tetrahedron can be proved in a similar way.

Corollary 4.4 ([10]). If two simple closed geodesics on a regular tetrahedron
in spherical space intersect the edges of the tetrahedron in the same order, then
they coincide.

4.3. The estimation on the angle α for which there is no simple
closed geodesic of type (p, q).

Theorem 4.5 ([10]). On a regular tetrahedron with the planar angle α in
spherical space such that

α > 2 arcsin

√
p2 + pq + q2

4(p2 + pq + q2)− π2
, (4.3)

where (p, q) is a pair of coprime integers, there is no simple closed geodesic of
type (p, q).
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Proof. Let A1A2A3A4 be a regular tetrahedron in S3 with the planar angle
α ∈ (π/3, π/2), and let γ be a simple closed geodesic of type (p, q) on it.

Each face of the tetrahedron is a regular spherical triangle. Consider a two-
dimensional unit sphere containing the face A1A2A3. Construct the Euclidean
plane Π passing through the points A1, A2, and A3. The intersection of the sphere
with the plane Π is a small circle. Draw the rays starting at the sphere center
O to the points at the spherical triangle A1A2A3. This defines the geodesic map
between the sphere and the plane Π. The image of the spherical triangle A1A2A3

is the triangle
ã
A1A2A3 at the Euclidean plane Π. The edges of

ã
A1A2A3 are

the chords joining the vertices of the spherical triangle. From (4.1), it follows

that the length ã of an edge of
ã
A1A2A3 equals

ã =

√
4 sin2(α/2)− 1

sin(α/2)
. (4.4)

The segments of the geodesic γ lying inside A1A2A3 are mapped into the straight
line segments inside

ã
A1A2A3 (see Fig. 4.4).

Fig. 4.4

In the same way, the other tetrahedron faces A2A3A4, A2A4A1, and A1A4A3

are mapped into the plane triangles
ã
A2A3A4,

ã
A2A4A1, and

ã
A1A4A3, respec-

tively. Since the spherical tetrahedron is regular, the constructed plane triangles
are equal. We can glue them together identifying the edges with the same labels.
Hence we obtain the regular tetrahedron in Euclidean space. Since the segments
of γ are mapped into the straight line segments within the plane triangles, they
form an abstract geodesic γ̃ on the regular tetrahedron in E3, and γ̃ is equivalent
to γ.

Let us show that the length of γ is greater than the length of γ̃. Consider
an arc MN of the geodesic γ within the face A1A2A3. The rays OM and ON
intersect the plane Π at the points M̃ and Ñ . The line segment M̃ and Ñ lying
into

ã
A1A2A3 is the image of the arc MN under the geodesic map (see Fig. 4.4).

Suppose that the length of the arc MN is equal to 2ϕ, then the length of the
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segment M̃Ñ equals 2 sinϕ. Thus, the length of γ on a regular tetrahedron in
spherical space is greater than the length of its image γ̃ on a regular tetrahedron
in Euclidean space.

From Proposition 3.4, we know that on a regular tetrahedron in Euclidean
space there exists a simple closed geodesic γ̂ equivalent to γ̃. On the development
of the tetrahedron, the geodesic γ̂ is a straight line segment, and the generalized
geodesic γ̃ is a polyline, and thus the length of γ̂ is less than the length of γ̃.

This implies that on a regular tetrahedron A1A2A3A4 in S3 with the planar
angle α the length Lp,q of a simple closed geodesic γ of type (p, q) is greater than
the length of a simple closed geodesic γ̂ of type (p, q) on a regular tetrahedron
with the edge length ã in E3. From equations (3.1) and (4.4), we get that

Lp,q > 2
√
p2 + pq + q2

√
4 sin2(α/2)− 1

sin(α/2)
.

If α is such that the following inequality holds:

2
√
p2 + pq + q2

√
4 sin2(α/2)− 1

sin(α/2)
> 2π, (4.5)

then the necessary condition for the existence of a simple closed geodesic of type
(p, q) on a regular tetrahedron with the face angle α in spherical space is failed.
Therefore, if

α > 2 arcsin

√
p2 + pq + q2

4(p2 + pq + q2)− π2
,

then there are no simple closed geodesics of type (p, q) on the tetrahedron with
the planar angle α in spherical space.

Corollary 4.6 ([10]). On a regular tetrahedron in spherical space there exist
a finite number of simple closed geodesics.

Proof. If the integers p and q go to infinity, then

lim
p,q→∞

2 arcsin

√
p2 + pq + q2

4(p2 + pq + q2)− π2
= 2 arcsin

1

2
=
π

3
.

From inequality (4.3), we get that for large numbers p and q a simple closed
geodesic of type (p, q) can exist on a regular tetrahedron with the planar angle α
closed to π/3 in spherical space.

The pairs p = 0, q = 1 and p = 1, q = 1 do not satisfy the condition (4.3).
Geodesics of these types are described in Lemma 4.1.
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4.4. The estimation on the angle α for which there is a simple
closed geodesic of type (p, q). In the previous sections, we assumed that the
Gaussian curvature of faces of a regular tetrahedron in spherical space was equal
to 1. In that case, the length a of the edges of the regular tetrahedron was the
function of α given by (4.1). In the current section, we will assume that the
faces of the tetrahedron are spherical triangles with the angle α on a sphere of
radius R = 1/a. Then the length of the tetrahedron edges equals 1, and the faces
curvature is a2.

Since α > π/3, we can write α = π/3 + ε, where ε > 0. Taking into account
Lemma 4.1, we also expect ε < π/6.

Theorem 4.7 ([10]). Let (p, q) be a pair of coprime integers, 0 ≤ p < q, and
let ε satisfy

ε < min


√

3

4c0
√
p2 + q2 + pq

∑[ p+q2 ]+2

i=0

(
cl(i) +

∑i
j=0 cα(j)

) ;
1

8 cos π
12(p+ q)2

 ,

where

c0 =
3− (p+q+2)

π cos π
12

(p+q)2
− 16

∑[ p+q2 ]+2

i=0 tan2
(

πi
2(p+q)

)
1− (p+q+2)

2π cos π
12

(p+q)2
− 8

∑[ p+q2 ]+2

i=0 tan2
(

πi
2(p+q)

) ,
cl(i) =

cos π
12(p+ q)2

(
4 + π2(2i+ 1)2

)
(p+ q − i− 1)2

,

cα(j) = 4

(
8π(p+ q)2 cos

π

12
tan2 πj

2(p+ q)
+ 1

)
.

Then on a regular tetrahedron in spherical space with the planar angle α = π/3 + ε
there exists a unique, up to the rigid motion of the tetrahedron, simple closed
geodesic of type (p, q).

First, let us prove some auxiliary lemmas.

Lemma 4.8 ([10]). The edge length of a regular tetrahedron in spherical space
of curvature 1 satisfies the inequality

a < π
√

2 cos(π/12)
√
ε, (4.6)

where α = π/3 + ε is the planar angle of the face of the tetrahedron.

Proof. From (4.1), we have

sin a =

√
4 sin2(α/2)− 1

2 sin2(α/2)
.

Substituting α = π/3 + ε, we get

sin a =

√
sin(ε/2) cos (π/6− ε/2)

sin2 (π/6 + ε/2)
.
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Since ε < π/6, we have

cos (π/6− ε/2) < cosπ/12, sin (π/6 + ε/2) > sinπ/6, and sin(ε/2) < ε/2.

Using these estimations, we obtain

sin a < 2
√

2 cos(π/12)
√
ε.

The inequality a < π/2 implies that sin a > (2/π)a. Then

a < π
√

2 cos(π/12)
√
ε.

Consider a parametrization of a two-dimensional sphere S2 of radius R in E3:
x = R sinϕ cos θ

y = R sinϕ sin θ

z = −R cosϕ

, (4.7)

where ϕ ∈ [0, π], θ ∈ [0, 2π). Let the point P have the coordinates ϕ = r/R,
θ = 0, where r/R < π/2, and let the point X1 correspond to ϕ = 0. Apply a
central projection of the hemisphere ϕ ∈ [0, π/2], θ ∈ [0, 2π) onto the tangent
plane at X1 (see Fig. 4.5).

Fig. 4.5

Lemma 4.9 ([10]). Under the central projection of the hemisphere of radius
R = 1/a onto the tangent plane at X1, the angle α = π/3 + ε with the vertex
P (R sin(r/R), 0,−R cos(r/R)) on the hemisphere is mapped to the angle α̂r on
the plane, which satisfies the inequality∣∣∣α̂r − π/3∣∣∣ < π tan2(r/R) + ε. (4.8)
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Proof. Construct the planes Π1 and Π2 through the center of a hemisphere
and the point P (R sin(r/R), 0,−R cos(r/R)) :

Π1 : a1 cos(r/R) x+
√

1− a21 y + a1 sin(r/R) z = 0,

Π2 : a2 cos(r/R) x+
√

1− a22 y + a2 sin(r/R) z = 0,

where
|a1|, |a2| ≤ 1. (4.9)

If the angle between these two planes, Π1 and Π2, equals α, then

cosα = a1a2 +
√

(1− a21)(1− a22). (4.10)

The tangent plane to S2 at X1 is given by z = −R. The planes Π1 and Π2

intersect the tangent plane along the lines that form the angle α̂r (see Fig. 4.5),
and

cos α̂r =
a1a2 cos2(r/R) +

√
(1− a21)(1− a22)√

1− a21 sin2(r/R)
√

1− a22 sin2(r/R)
. (4.11)

From equations (4.10) and (4.11), we get

| cos α̂r − cosα| < |a1a2 sin2(r/R)|√
1− a21 sin2(r/R)

√
1− a22 sin2(r/R)

. (4.12)

Inequalities (4.9) and (4.12) imply that

| cos α̂r − cosα| < tan2(r/R). (4.13)

It is true that

| cos α̂r − cosα| =
∣∣∣2 sin

α̂r − α
2

sin
α̂r + α

2

∣∣∣.
Then α > π/3 and α̂r < π together with the inequities∣∣∣∣sin α̂r + α

2

∣∣∣∣ > sin
π

6
and

∣∣∣∣sin α̂r − α2

∣∣∣∣ > 2

π

∣∣∣∣ α̂r − α2

∣∣∣∣
imply that

2

π

∣∣∣∣ α̂r − α2

∣∣∣∣ < | cos α̂r − cosα|.

From (4.14), (4.13) and α = π/3 + ε, we obtain∣∣∣α̂r − π/3∣∣∣ < π tan2(r/R) + ε.

On a sphere (4.7), let us consider the arc of length one starting at the point
P with the coordinates ϕ = r/R, θ = 0, where r/R < π/2. Apply the central
projection of this arc to the plane z = −R, which is tangent to the sphere at the
point X1(ϕ = 0) (see Fig. 4.6).
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Fig. 4.6

Lemma 4.10 ([10]). Under the central projection of the hemisphere of radius
R = 1/a onto the tangent plane at X1, the arc of the length one starting from
the point P (R sin(r/R), 0,−R cos(r/R)) is mapped to the segment of length l̂r
satisfying the inequality

l̂r − 1 <
cos(π/12)

(
4 + π2(2r + 1)2

)
(1− (2π)a(r + 1))2

· ε. (4.14)

Proof. The point P (R sin(r/R), 0,−R cos(r/R)) on the sphere S2 is mapped
to P̂ (R tan(r/R), 0,−R) on the tangent plane z = −R.

Take the point Q(Ra1, Ra2, Ra3) on the sphere such that the spherical dis-
tance PQ equals 1. Then ∠POQ = 1/R, where O is the center of the sphere S2

(see Fig. 4.6). We obtain the following conditions for the constants a1, a2, a3:

a1 sin(r/R)− a3 cos(r/R) = cos(1/R); (4.15)

a21 + a22 + a23 = 1. (4.16)

The central projection into the plane z = −R maps the point Q to the point

Q̂
(
−a1
a3
R,−a2

a3
R,−R

)
. The length of P̂ Q̂ equals

|P̂ Q̂| = R

√
(a1/a3 − tan(r/R))2 + a22/a

2
3. (4.17)

Using the Lagrange multiplier method to find the local extremum of the length
P̂ Q̂, we get that the minimum of |P̂ Q̂| is reached when Q has the coordinates

(R sin ((r − 1)/R) , 0, R cos ((r − 1)/R)) .



Simple Closed Geodesics on Regular Tetrahedra 583

Then

|P̂ Q̂|min = R |tan(r/R)− tan ((r − 1)/R)| = R sin(1/R)

cos(r/R) cos ((r − 1)/R)
.

It should be noticed that |P̂ Q̂|min > 1.
The maximum of |P̂ Q̂| is reached at the point

Q (R sin ((r + 1)/R) , 0, R cos ((r + 1)/R)) .

This maximum value equals

|P̂ Q̂|max = R |tan(r/R)− tan ((r + 1)/R)| = R sin(1/R)

cos(r/R) cos ((r + 1)/R)
.

Since R = 1/a, the length l̂r of the projection of PQ satisfies

l̂r <
sin a

a cos(ar) cos
(
a(r + 1)

) .
From sin a < a, we obtain

l̂r − 1 <
2− cos a− cos

(
a(2r + 1)

)
2 cos(ar) cos

(
a(r + 1)

) . (4.18)

Equation (4.6) implies that

1− cos a =
sin2 a

1 + cos a
≤ 8 cos(π/12) ε. (4.19)

Analogously, from inequality (4.6), we have

1− cos (a(2r + 1)) ≤ 2π2 cos(π/12)(2r + 1)2 ε. (4.20)

Estimate the denominator of (4.18) using the inequality cosx > 1−(2/π)x, where
x < π/2. Using (4.19) and (4.20), we get

l̂r − 1 <
4 cos(π/12) + π2 cos(π/12)(2r + 1)2

(1− (2/π)a (r + 1))2
· ε.

Proof of Theorem 4.7. Fix a pair of coprime integers (p, q) such that 0 < p <
q. Consider a simple closed geodesic γ̃ of type (p, q) on a regular tetrahedron
Ã1Ã2Ã3Ã4 with the edge of length 1 in E3. Assume that γ̃ passes through
the midpoints X̃1, X̃2 and Ỹ1, Ỹ2 of the edges Ã1Ã2, Ã3Ã4 and Ã1Ã3, Ã4Ã2,
respectively.

Consider the development T̃pq of the tetrahedron along γ̃ starting from the

point X̃1. The geodesic unfolds to the segment X̃1Ỹ1X̃2Ỹ2X̃ ′1 inside the devel-

opment T̃pq. From Corollary 3.2, we know that the parts of the development

along the geodesic segments X̃1Ỹ1, Ỹ1X̃2, X̃2Ỹ2, and Ỹ2X̃
′
1 are equal, and any
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two adjacent polygons can be transformed into each other by a rotation through
an angle π around the midpoint of their common edge.

Now, consider a two-dimensional sphere S2 of radius R = 1/a, where a de-
pends on α according to (4.1). On this sphere, we take several copies of the
regular spherical triangles with the angle α ∈ (π/3, π/2) at vertices. Fold these
triangles up in the same order as the faces of the Euclidean tetrahedron were
unfolded along γ̃ into the plane. In other words, we construct a polygon Tpq on

a sphere S2 formed by the same sequence of regular triangles as the polygon T̃pq
in E3. Denote the vertices of Tpq in accordance with the vertices of T̃pq. By the
construction, the spherical polygon Tpq has the same properties of the central

symmetry as the Euclidean T̃pq. Since the groups of isometries of regular tetra-
hedra in S3 and in E3 are equal, Tpq corresponds to the development of a regular
tetrahedron with the planar angle α in spherical space.

Denote by X1, X
′
1 and X2, Y1, Y2 the midpoints of the edges A1A2, A3A4,

A1A3, A4A2 on Tpq, respectively. These midpoints correspond to the points X̃1,

X̃ ′1 and X̃2, Ỹ1, Ỹ2 on the Euclidean development T̃pq. Construct the great circle
arcs X1Y1, Y1X2, X2Y2, and Y2X

′
1. The central symmetry of Tpq implies that

these arcs form one great arc X1X
′
1 on S2. If α is such that X1X

′
1 lies inside Tpq,

then X1X
′
1 corresponds to a simple closed geodesic of type (p, q) on a regular

tetrahedron with the planar angle α in S3.
In what follows, we consider the part of the polygon Tpq only along X1Y1, but

we also denote it as Tpq for the convenience. This part consists of p + q regular
spherical triangles with the edges of length 1. The polygon Tpq is contained inside
the open hemisphere if

a(p+ q) < π/2. (4.21)

Since α = π/3 + ε, the condition (4.6) implies that (4.21) holds if

ε <
1

8 cos(π/12)(p+ q)2
. (4.22)

In this case, the length of the arc X1Y1 is less than π/2a, so X1Y1 satisfies the
necessary condition from Lemma 4.2.

Apply the central projection of Tpq into the tangent plane TX1S
2 at the point

X1 to the sphere S2. The image of the spherical polygon Tpq on TX1S
2 is a

polygon T̂pq.

Denote by Âi the vertex of T̂pq, which is an image of the vertex Ai on Tpq.

The arc X1Y1 maps into the line segment X̂1Ŷ1 on TX1S
2 that joins the midpoints

of the edges Â1Â2 and Â1Â3. If, for some α, the segment X̂1Ŷ1 lies inside the
polygon T̂pq, then the arc X1Y1 is also inside Tpq on the sphere.

The vector X̂1Ŷ1 equals

X̂1Ŷ1 = â0 + â1 + · · ·+ âs + âs+1, (4.23)

where âi are the sequential vectors of the T̂pq boundary, â0 = X̂1Â2, âs+1 = Â1Ŷ1,

and s =
[p+q

2

]
+ 1 (if we take the boundary of T̂pq from the other side of X̂1Ŷ1,

then s =
[p+q

2

]
), (see Fig. 4.7).
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Furthermore, at the Euclidean plane TX1S
2 there exists a development T̃pq

of a regular Euclidean tetrahedron Ã1Ã2Ã3Ã4 with the edge of length 1 along a
simple closed geodesic γ̃. The development T̃pq is equivalent to Tpq, and thus it

is equivalent to T̂pq. The segment X̃1Ỹ1 lies inside T̃pq and corresponds to the
segment of γ̃ (see Fig. 4.7).

Fig. 4.7

Let the development T̃pq be placed such that the point X̃1 coincides with X̂1

of T̂pq, and the vector X̂1Â2 has the same direction as X̃1Ã2. Similarly to the
above, we have

X̃1Ỹ1 = ã0 + ã1 + · · ·+ ãs + ãs+1, (4.24)

where ãi are the sequential vectors of the T̃pq boundary, s =
[p+q

2

]
+ 1 and ã0 =

X̃1Ã2, ãs+1 = Ã1Ỹ1 (see Fig. 4.7).
Suppose the minimal distance from the vertices of T̃pq to the segment X̃1Ỹ1

is at the vertex Ãk and equals h̃ by formula (3.5). Let us estimate the distance ĥ
between the segment X̂1Ŷ1 and the corresponding vertex Âk on T̂pq. A geodesic
on a regular tetrahedron in E3 intersects at most three edges starting from the
same vertex of the tetrahedron. It follows that the interior angles of the polygon
T̃pq are not greater than 4π/3. Hence the angles of the corresponding vertices on

T̂pq are not greater than 4α̂i. Applying (4.8) for 1 ≤ i ≤ s, we get that the angle
between âi and ãi satisfies the inequality

∠(âi, ãi) <
i∑

j=0

4

(
π tan2 j

R
+ ε

)
. (4.25)

Since R = 1/a, then, using (4.6), we obtain

tan
j

R
< tan

(
jπ

√
2 cos

π

12

√
ε

)
. (4.26)

Inequality (4.21) holds if the following condition fulfills:

tan

(
jπ

√
2 cos

π

12

√
ε

)
< tan

πj

2(p+ q)
. (4.27)
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If tanx < tanx0, then tanx < tanx0
x0

x. From (4.27), it follows that

tan

(
jπ

√
2 cos

π

12

√
ε

)
< 2(p+ q) tan

πj

2(p+ q)

√
2 cos

π

12

√
ε. (4.28)

Therefore, from (4.26) and (4.28), we get

tan
j

R
< 2(p+ q) tan

πj

2(p+ q)

√
2 cos

π

12

√
ε. (4.29)

Using (4.25) and (4.29), we obtain the final estimation for the angle between the
vectors âi and ãi:

∠(âi, ãi) <
i∑

j=0

4

(
8π(p+ q)2 cos

π

12
tan2 πj

2(p+ q)
+ 1

)
ε. (4.30)

Now, estimate the length of the vector âi− ãi. The following inequality holds:

|âi − ãi| ≤
∣∣∣∣ âi|âi| − ãi

∣∣∣∣+

∣∣∣∣âi − âi
|âi|

∣∣∣∣ . (4.31)

Since ãi is a unite vector,∣∣∣∣ âi|âi| − ãi
∣∣∣∣ ≤ ∠(âi, ãi) and

∣∣∣∣âi − âi
|âi|

∣∣∣∣ ≤ l̂i − 1. (4.32)

From inequality (4.14), we get∣∣∣∣âi − âi
|âi|

∣∣∣∣ < cos π
12

(
4 + π2(2i+ 1)2

)(
1− 2

πa(i+ 1)
)2 · ε. (4.33)

Estimate the denominator in (4.33) using (4.21). Thus,∣∣∣∣âi − âi
|âi|

∣∣∣∣ < cos π
12(p+ q)2

(
4 + π2(2i+ 1)2

)
(p+ q − i− 1)2

· ε. (4.34)

From (4.31), (4.30) and (4.34), we obtain

|âi − ãi| ≤

cl(i) +
i∑

j=0

cα(j)

 ε, (4.35)

where

cl(i) =
cos π

12(p+ q)2
(
4 + π2(2i+ 1)2

)
(p+ q − i− 1)2

, (4.36)

cα(j) = 4

(
8π(p+ q)2 cos

π

12
tan2 πj

2(p+ q)
+ 1

)
. (4.37)



Simple Closed Geodesics on Regular Tetrahedra 587

We estimate the length of Ŷ1Ỹ1 using (4.35),

|Ŷ1Ỹ1| <
s+1∑
i=0

|âi − ãi| <
s+1∑
i=0

cl(i) +

i∑
j=0

cα(j)

 ε. (4.38)

From (4.30), it follows that the angle ∠Ŷ1X̂1Ỹ1 satisfies

∠Ŷ1X̂1Ỹ1 <
s+1∑
i=0

cα(i)ε. (4.39)

The distance between the vertices Âk and Ãk equals

|ÂkÃk| <
k∑
i=0

cl(i) +
i∑

j=0

cα(j)

 ε. (4.40)

We drop a perpendicular ÂkĤ from the vertex Âk into the segment X̂1Ŷ1.
The length of ÂkĤ equals ĥ. Then we drop the perpendicular ÃkH̃ into the
segment X̃1Ỹ1 and the length of ÃkH̃ equals h̃ (see Fig. 4.8).

Fig. 4.8

Let the point F on X̃1Ỹ1 be such that the segment ÃkF is perpendicular to
X̂1Ŷ1. Then the length of ÃkF is at least h̃. Let G be the point of intersection of
X̃1Ỹ1 and the extension of ÂkĤ. Let FK be perpendicular to ĤG (see Fig. 4.8).
Then the length of FK is not greater than the length of ÂkÃk, and ∠KFG =
∠Ŷ1X̂1Ỹ1. From the triangle GFK, we obtain

|FG| = |FK|
cos∠Ŷ1X̂1Ỹ1

. (4.41)

Applying the inequality cosx > 1− 2
πx, for x < π

2 , to (4.41), we obtain

|FG| < |ÂkÃk|
1− 2

π∠Ŷ1X̂1Ỹ1
. (4.42)

Inequalities (4.39), (4.40) and (4.42) imply

|FG| <

∑k
i=0

(
cl(i) +

∑i
j=0 cα(j)

)
ε

1−
∑s

i=0

(
64π(p+ q)2 cos π

12 tan2 πi
2(p+q) + 8

π

)
ε
. (4.43)
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Applying (4.22) to the denominator in (4.43), we obtain

|FG| <

∑k
i=0

(
cl(i) +

∑i
j=0 cα(j)

)
ε

1− (p+q+2)
2π cos π

12
(p+q)2

− 8
∑s+1

i=0 tan2
(

πi
2(p+q)

) . (4.44)

Therefore, we have

h̃ ≤ ÃkF ≤ ĥ+ |ĤG|+ |ÂkÃk|+ |FG|. (4.45)

Notice that |ĤG| < |Ŷ1Ỹ1|. Lemma 3.3 implies that

h̃ >

√
3

4
√
p2 + q2 + pq

.

From (4.45), it follows that

ĥ >

√
3

4
√
p2 + q2 + pq

− |Ŷ1Ỹ1| − |ÂkÃk| − |FG|. (4.46)

Applying estimations (4.38), (4.40), (4.44) and the identity s =
[p+q

2

]
+ 1, we

obtain

ĥ >

√
3

4
√
p2 + q2 + pq

− c0
[ p+q2 ]+2∑
i=0

cl(i) +

i∑
j=0

cα(j)

 ε, (4.47)

where cl(i) is from (4.36), cα(j) is from (4.37), and

c0 =
3− (p+q+2)

π cos π
12

(p+q)2
− 16

∑[ p+q2 ]+2

i=0 tan2
(

πi
2(p+q)

)
1− (p+q+2)

2π cos π
12

(p+q)2
− 8

∑[ p+q2 ]+2

i=0 tan2
(

πi
2(p+q)

) ,
Inequality (4.47) implies that if ε satisfies the condition

ε <

√
3

4c0
√
p2 + q2 + pq

∑[ p+q2 ]+2

i=0

(
cl(i) +

∑i
j=0 cα(j)

) , (4.48)

then the distance from the vertices of the polygon T̂pq to X̂1Ŷ1 is nonzero.
By using estimation (4.22), we get that if

ε < min


√

3

4c0
√
p2 + q2 + pq

∑[ p+q2 ]+2

i=0

(
cl(i) +

∑i
j=0 cα(j)

) ;
1

8 cos π
12(p+ q)2

 ,

(4.49)
then the segment X̂1Ŷ1 lies inside the polygon T̂pq. This implies that the arc X1Y1
on a sphere lies inside the polygon Tpq. The arc X1Y1 corresponds to a simple
closed geodesic γ of type (p, q) on a regular tetrahedron with the planar angle
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α = π/3 + ε in spherical space. From Corollary 4.4, we get that this geodesic is
unique up to the rigid motion of the tetrahedron.

Note that the geodesic γ is invariant under the rotation of the tetrahedron
of the angle π over the line passing through the midpoints of the opposite edges
of the tetrahedron. The rotation of the tetrahedron through the angle 2π/3 or
4π/3 over the altitude dropped from the vertex to the center of its opposite face
changes γ into other simple closed geodesics of type (p, q).

The rotation over the lines connecting other vertices of the tetrahedron with
the center of the opposite faces does not give us any new geodesics. So, if ε
satisfies the condition (4.49), then on a regular tetrahedron with the planar angle
α = π/3 + ε in spherical space there exist three different simple closed geodesics
of type (p, q), disregarding isometries of the tetrahedron.

4.5. The necessary and sufficient condition for the existence of a
simple closed geodesic. Let T (α) be a regular tetrahedron with the planar
angles α in spherical space S3 of curvature 1. Consider a development Rp,q(α) of
T (α) in S3 along a simple closed geodesic γp,q of type (p, q), for α ∈ (π/3, π/3 +
ε), where ε is from Theorem 4.7. It follows from Lemma 3.2 that the development
Rp,q(α) has four points of symmetry X1(α), X2(α), Y1(α), Y2(α), and X ′1(α) that
correspond to the midpoints of two pairs of opposite edges of the tetrahedron.
The geodesic γp,q passes through these midpoints.

Now, for fixed (p, q), consider a one-parameter family of closed polygons
Rp,q(α), where α ∈ (π/3, 2π/3). Then Rp,q(α) may have overlaps on the sphere.
However, Rp,q(α) is considered as an abstract polygon homeomorphic to a disc,
with intrinsic metric since each interior point of this polygon has a neighborhood
isometric to the interior of a disc on the unit sphere S2. This polygon is locally
isometrically immersed in the sphere S2 (see Fig. 4.9). The development Rp,q(α)
also has a symmetry property for any α ∈ (π/3, 2π/3) with the corresponding
points X1(α), X2(α), Y1(α), Y2(α), and X ′1(α) on them.

Fig. 4.9
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Next, consider rectifiable curves σp,q(α) on Rp,q(α) that connect the points
X1(α), X ′1(α) and pass through X2(α), Y1(α), and Y2(α). If X1(α)X ′1(α) lies
inside the development Rp,q(α), then σp,q(α) corresponds to the simple closed
geodesic on the regular tetrahedron T (α). From Theorem 4.7, it follows that
this is true if α is close to π/3. Then, from Lemma 4.2, we get that the length
of σp,q(α) is less than 2π. In [7], Borisenko proved that this condition is also
sufficient for the existence of a simple closed geodesic on a regular tetrahedron in
S3.

The infimum Lp,q(α) of the lengths of the curves σp,q(α) is referred to as the
length of the abstract shortest curve in the development.

Theorem 4.11 ([7]). On a regular tetrahedron in spherical space of curvature
one there exists a simple closed geodesic of type (p, q) if and only if the length of
the abstract shortest curve in the development is less than 2π.

Proof. 1. Necessity. If there exists a simple closed geodesic of type (p, q) on a
tetrahedron T (α), then by unfolding along this geodesic we obtain Rp,q(α). The
geodesic unfolds into an arc of great circle, which lies inside Rp,q(α), connects the
points X1(α) and X ′1(α) and passes through the points of symmetry of Rp,q(α).
Lemma 4.2 implies that Lp,q(α) equals the length of this geodesic, and Lp,q(α) is
less than 2π (see Fig. 4.10).

Fig. 4.10

2. Sufficiency. Let us prove the monotonicity of Lp,q(α). Let the infimum
Lp,q(α) be attained on a curve σp,q(α) on Rp,q(α). Consider the geodesic mapping
of the sphere S3 onto Euclidean tangent space TOS3, where O is the center of the
inscribed sphere in the tetrahedron T (α). Then T (α) is mapped onto the regular
tetrahedron T̂ (α) in E3, and the curve σp,q(α) is mapped onto σ̂p,q(α).

Let T̂ (α(λ)) = λT̂ (α) be a tetrahedron homothetic to T (α) with center O
and ratio λ < 1 such that α(λ) < α. This homothety takes σ̂p,q(α) to a curve
σ̂p,q(α(λ)).
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Consider the inverse geodesic mapping of TOS3 onto S3. It takes T̂ (α(λ)) to
a regular tetrahedron T (α(λ)), where α(λ) < α. The curve σ̂p,q(α(λ)) is mapped
to σp,q(α(λ)) that belongs to our class of curves. Let us show that the length of
the curve σp,q(α(λ)) is less than Lp,q(α) for λ < 1.

The curve σ̂p,q(α) consists of a finite number of segments with endpoints on
edges of the regular tetrahedron. Consider one of these segments, ẑ(α), on the
face A1A2A3 of T̂ (α). The family of segments λẑ(α) on λT̂ (α) is homothetic
to ẑ(α) with respect to the center O. The great circle arcs z(λ) = z(α(λ))
are the inverse geodesic images of λẑ(α). We show that the length of z(λ) is a
monotonically increasing function of λ.

Fig. 4.11

Denote by Ax and Ay the endpoints of ẑ(α) on A1A2 and A1A3. Then

|AxAy|2 = |A1Ax|2 + |A1Ay|2 − |A1Ax||A1Ay|.

The radius of the inscribed sphere of the tetrahedron T̂ (α) with edge length a is
r = a/(2

√
6). The distance from the center of T̂ (α) to the points Ax and Ay can

be found from the triangles 4A1ŌAx, where Ō is the center of the face A1A2A3

(see Fig. 4.11):

|ŌAx|2 = |A1Ax|2 +
a2

3
− a|A1Ax|.

From the triangle 4OŌAx, we get

|ŌAx|2 =
3

8
a2 + |A1Ax|2 − a|A1Ax|.

From the triangle 4OŌAy, we have

|ŌAy|2 =
3

8
a2 + |A1Ay|2 − a|A1Ay|.

From the triangles 4OSAx and 4OSAy, where S is the center of the sphere S3,
we obtain

|SAx|2 = 1 + |ŌAx|2; |SAy|2 = 1 + |ŌAy|2.
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From 4AxSAy, it follows that

cos z =

(
1 + |ŌAx|2

)
+
(
1 + |ŌAy|2

)
− |AxAy|2

2
√

1 + |ŌAx|2
√

1 + |ŌAy|2
,

where z is the angle at the vertex S.

Similarly, for the homothetic tetrahedron λT̂ (α), we have

cos z(λ) =

(
1 + λ2|ŌÂx|2

)
+
(
1 + λ2|ŌAy|2

)
− λ2|AxAy|2

2
√

1 + λ2|ŌAx|2
√

1 + λ2|ŌAy|2
.

The derivative of z(λ) at λ = 1 is positive. This implies that the length
of σp,q(α(λ)) is less than the length of σp,q(α) for λ < 1. Hence, Lp,q(α(λ)) <
Lp,q(α) for λ < 1 and α(λ) < α.

For π/3 < α < π/3 + ε, where ε is from Theorem 4.7, there is a simple closed
geodesic of type (p, q) on a regular tetrahedron in S3. This geodesic unfolds into
a curve σp,q(α) of length Lp,q(α) < 2π inside the development Rp,q(α).

Now, increase the angle α starting from π/3 + ε. As σp,q(α) lies inside the
development Rp,q(α), it corresponds to a simple closed geodesic on a regular
tetrahedron T (α). Let β be the first value of α for which σp,q(α) attains the
boundary of Rp,q(α). This value exists by Theorem 4.5, which implies that there
exists α2 ∈ (π/3, π/2) such that there is no simple closed geodesic on T (α) for
α > α2.

The point of intersection of σp,q(β) with the boundary of the development
Rp,q(β) is a vertex of the tetrahedron. Since Rp,q(β) consists of congruent poly-
gons, the segment σp,q(β) ‘touches’ the boundary of Rp,q(β) at four vertices. The
property of symmetry of Rp,q(β) implies that these ’touchings’ alternate and there
are two of them from each side of σp,q(β) (see Fig. 4.12).

Fig. 4.12

The segment σp,q(α) cannot ‘touch’ the boundary of the development Rp,q(β)
at five points. Otherwise the curve σp,q(α) passes twice through some vertex of
T (β). For any line segment, the full angle on one side is π. The full angle at
any vertex is less than 2π, and thus the segments l1 and l2 of the curve σp,q(α)
intersect at a nonzero angle at that vertex. The geodesics σp,q(α) with α < β
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and α close to β also intersect themselves, which contradicts the fact that these
geodesics are simple.

The case when two points of intersection (for example, the vertices A2 and
A3) merge is also impossible. These two vertices are not connected by an edge,
because, if we take α < β and limα = β, then we can see that the length of the
edge connecting these two vertices of intersection tends to zero. As α → β, the
full angles at A2 and A3 tend to angles ≥ π. Otherwise the geodesics σp,q(α) cross
the boundary of the development for some α < β. Without loss of generality, we
can assume that β ≤ β0 = 2 arcsin

√
7/18 < 2π since there are only three simple

closed geodesics for β ≥ π/2 (see Lemma 4.1). This bound follows from the case
p = 2, q = 1 of inequality (4.3) from Theorem 4.5. For the full angles at the
vertices A2 and A3 to tend to the limits ≥ π, it is necessary that at least three
triangles meet at A2 and at A3 and that for α close to β two edges meeting at
A2 belong to triangles in the development traversed by the line segment σp,q(α).

The same is observed for A3. Then four different edges of triangles would meet
at the merged vertex. Thus, four edges come out of a vertex of the tetrahedron,
which is a contradiction.

As a result, for α = β, the segment σp,q(α) ‘touches’ the boundary of Rp,q(β)
at four points, which correspond to the vertices of the tetrahedron. The curve
σp,q(α) divides the tetrahedron into two regions homeomorphic to a circle. Each
interior point has a neighborhood isometric to a disc on the sphere S2 of cur-
vature 1, and the boundary is a digon. The edges of this digon have the same
length, the full angles at both vertices are 3β − π, and the geodesic curvature of
the digon is zero. Therefore, the perimeter of the digon is 2π. Hence the length
of σp,q(α) is 2π, which implies that Lp,q(α) = 2π.

If a simple closed geodesic exists for a fixed α, then Lp,q(α) is equal to the
length of this geodesic, and therefore it is < 2π for α < β. If α > β, then, due to
the monotonicity of Lp,q(α), the length of Lp,q(α) is greater than 2π, and there
are no simple closed geodesics of type (p, q) on the tetrahedron T (α).

Corollary 4.12 ([7]). If the edge a of a regular tetrahedron in the spherical
space satisfies the inequality

a < 2 arcsin
π√

p2 + pq + q2 +
√

(p2 + pq + q2) + 2π2
, (4.50)

then this tetrahedron has a simple closed geodesic of type (p, q).

Proof. Let O be the centre of the inscribed and circumscribed spheres of a
regular tetrahedron T (α) in spherical space S3.

Consider a geodesic mapping of the open hemisphere of S3 containing T (α)
onto the tangent space TOS3. The tetrahedron T (α) is mapped to a regular
tetrahedron T̂ (α) with center at O in Euclidean space TOS3. The midpoints of
the edges are mapped to the midpoints. Let â be the edge length of T̂ (α).

Let γ̂p,q(α) be a simple closed geodesic of type (p, q) that passes through the

midpoints of two pairs of opposite edges of T̂ (α). Then the length of γ̂p,q(α) is
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equal to
L̂p,q(α) = 2â

√
p2 + pq + q2. (4.51)

Take α such that L̂p,q(α) < 2π. The inverse image γp,q(α) of the geodesic γ̂p,q(α)

on T (α) has the length less than L̂p,q(α), and therefore less than 2π. The curve
γp,q(α) belongs to the class of admissible curves σp,q(α) in the definition of Lp,q(α).
Therefore, Lp,q(α) < 2π, and Theorem 4.11 implies that there exists a simple
closed geodesic of type (p, q) on T (α). It remains to use the inequality

2â
√
p2 + pq + q2 < 2π

to obtain a bound on α, or, equivalently, on a. Formula (4.1) implies that

2 sin(a/2) cos(a/2) = 1.

We apply a geodesic mapping of the sphere S3 from its centre S onto the
tangent space TOS3. Consider the triangle 4SOB, where B is the midpoint of
A1A2. Let B̂ be the image of B under the geodesic mapping (Fig. 4.13). Then

|OB̂| = tan |OB|.

The edge A1A2 of the spherical triangle maps to the edge Â1Â2 of the regular
tetrahedron in Euclidean space, and Â1Â2 is perpendicular to OB̂. From the
triangle 4SÂ1B̂, we obtain

â

2
= |Â1B̂| = |SB̂| tan

a

2
=

tan(a/2)

cos |OB|
. (4.52)

Fig. 4.13

From the triangle 4PA1A2 on a face of the tetrahedron in spherical space,
where P is the centre of the inscribed and circumscribed circles of the face, we
obtain

cos a = cos2Rbas −
1

2
sin2Rbas,
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where Rbas = |PA1| = |PA2|. Hence,

cosRbas =

√
1 + 2 cos a

3
. (4.53)

From 4A4PA1 (Fig. 4.14), we obtain

cos a = cos(R+ r) cosRbas, (4.54)

where R is the radius of the circumscribed sphere of the tetrahedron A1A2A3A4,
r is the radius of the inscribed ball, and |A4P | = R+ r. Then (4.54) implies that

cosR >
cos a

cosRbas
. (4.55)

From 4OA1B, we obtain

cosR = cos |OB| cos(a/2). (4.56)

Expressions (4.55) and (4.56) imply that

1

cos |OB|
=

cos(a/2)

cosR
<

cos(a/2) cosRbas
cos a

. (4.57)

From (4.52), (4.53) and (4.57), we get

â/2 <
sin(a/2)

cos a

√
1 + 2 cos a

3
≤ sin(a/2)

cos a
. (4.58)

Therefore, from (4.51) and (4.58), we obtain the following estimation for the
length of a simple closed geodesic γ̂p,q(α) of type (p, q) on T̂ (α):

L̂p,q(α) ≤ 4
sin(a/2)

cos a

√
p2 + pq + q2.

Fig. 4.14

Remind that from Theorem 4.11 it follows that if L̂p,q(α) < 2π, then there ex-
ists a simple closed geodesic of type (p, q) on T (α) in S3. Resolving the quadratic
inequality

4
sin(a/2)

cos a

√
p2 + pq + q2 < 2π

with respect to sin(a/2), we obtain the required inequality.
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5. Simple closed geodesics on regular tetrahedra in H3

5.1. Necessary conditions for a closed geodesic to be simple. We
assume that the Gaussian curvature of hyperbolic space (Lobachevsky space) H3

is −1. A regular tetrahedron in H3 is a closed convex polyhedron whose all faces
are regular geodesic triangles and all vertices are regular trihedral angles. The
planar angle α of the face satisfies the inequality 0 < α < π/3 and the length a
of edges is equal to

a = arcosh

(
cosα

1− cosα

)
. (5.1)

Consider the Cayley–Klein model of hyperbolic space. In this model, the
points are represented by the points in the interior of the unit ball. Geodesics in
this model are the chords of the ball. Assume that the center of the circumscribed
sphere of a regular tetrahedron coincides with the center of the model. Then the
regular tetrahedron in hyperbolic space is represented by a regular tetrahedron
in Euclidean space.

Lemma 5.1 ([9]). If a geodesic on a regular tetrahedron in hyperbolic space
intersects three edges meeting at a common vertex consecutively, and intersects
one of these edges twice, then this geodesic has a point of self-intersection.

Proof. Let A1A2A3A4 be a regular tetrahedron in H3. Suppose the geodesic
γ intersects A4A1, A4A2, and A4A3 consecutively at the points X1, X2, and X3,
respectively, and then intersects the edge A4A1 again at the point Y1.

Suppose also that the length of A4X1 is less than the length of A4Y1.

Unfold the faces A1A2A4, A4A2A3, and A4A3A1 to the hyperbolic plane.
Consider the Cayley–Klein model of the hyperbolic plane and place the vertex
A4 at the center of the model. Then the part X1X2X3Y1 of the geodesic is a
straight line segment on the development. We obtain a triangle X1A4Y1 on the
development.

Let ρ(X) be the distance function between the vertex A4 and a point X on
γ. It is known that if γ is a geodesic in a complete simply connected Riemannian
manifold M of nonpositive curvature, then the function ρ(X) of a distance from
the fixed point A on M to the points X on γ is a convex function. The minimum
of ρ(X) is achieved at the point H0 such that A4H0 is orthogonal to γ, and
∠H0A4Y1 > 3α/2.

Let Z1 be the point on the segment H0Y1 such that ∠H0A4Z1 = 3α/2. On
the opposite side of H0, we choose the point Z2 such that ∠H0A4Z2 = 3α/2. The
point Z2 also lies on the face at the vertex A4 of the tetrahedron.

Since ∠H0A4Z1 = ∠H0A4Z2 = 3α/2, it follows that the points Z1 and Z2

correspond to the same point Z on the generatrix A4Z opposite to A4H0 on the
tetrahedron. This point is the self-intersection point of the geodesic γ (Fig. 5.1).
The lemma is proved.

Lemma 5.2 ([9]). Let d be the minimum distance from the vertices of a regu-
lar tetrahedron in hyperbolic space to a simple closed geodesic on the tetrahedron.
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Fig. 5.1

Then

d >
1

2
ln

(√
2π3 + (π − 3α)

3
2

√
2π3 − (π − 3α)

3
2

)
, (5.2)

where α is the planar angle of a face of the tetrahedron.

Proof. Let γ be a simple closed geodesic on a regular tetrahedron A1A2A4A3

in hyperbolic space H3. Assume that the minimum distance d from the vertices
of the tetrahedron to γ is achieved at the vertex A4 on the face A2A4A3. Draw
a generatrix A4H orthogonal to γ at the point H0. Denote the angle ∠A2A4H
by β. Without loss of generality, we assume that 0 ≤ β ≤ α/2.

We draw a generatrix A4K such that the planar angle between A4K and A4H
is 3α/2. Then A4K lies in the face A1A4A3, and ∠A1A4K = α/2 − β. Notice
that if β = α/2, then A4K coincides with A4A1. If β = 0, then A4K coincides
with the altitude in the face of the tetrahedron and has the smallest length h
(Fig. 5.2).

We cut the trihedral angle at A4 along the generatrix A4K and develop it to
the hyperbolic plane in the Cayley-Klein model. We put the vertex A4 at the
centre of the boundary circle. The trihedral angle unfolds into a convex polygon
K1A4K2A3A2A1. The angle K1A4K2 equals 3α. The segment A4H corresponds
to the bisector of the angle K1A4K2. The geodesic γ is a straight line ortogonal
to A4H at H0.

On the lines A4K1 and A4K2, choose the points P1 and P2 such that

|A4P1| = |A4P2| = h.
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Fig. 5.2

The line segment P1P2 is ortogonal to A4H at the point Hp, and

tanh |A4Hp| = cos(3α/2) tanhh.

If d ≤ |A4Hp|, then γ lies above the segment P1P2, and therefore γ intersects
the lines A4K1 and A4K2 at the points Z1 and Z2. When we fold the development
back to the tetrahedron, the segmentsA4K1 andA4K2 are mapped to the segment
A4K on the tetrahedron, and Z1 and Z2 are mapped to the same point Z on A4K.
This point Z is the point of self- intersection of the geodesic γ.

Therefore, in order that γ have no points of self-intersection, it is necessary
that d > |A4Hp|. This implies

tanh d > cos(3α/2) tanhh. (5.3)

The altitude h of the face of the tetrahedron satisfies

tanhh = tanh a cosα/2 = cosα/2

√
2 cosα− 1

cosα
. (5.4)

Combining (5.4) and (5.3), we obtain

tanh d > cosα/2 cos(3α/2)

√
2 cosα− 1

cosα
, (5.5)

Now we estimate the expression on the right-hand side of (5.5) from below.
Consider the function

√
2 cosα− 1:

2 cosα− 1 = 4 sin (π/6− α/2) sin (π/6 + α/2) .
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Since the function sin(π/6 + α/2) increases on the interval (0, π/3), we get

sin(π/6 + α/2) > 1/2 when α ∈ (0, π/3).

The function sin (π/6− α/2) decreases on the interval (0, π/3). It is known
that sin y > (2/π)y when 0 < y < π/2. These imply

sin(π/6− α/2) >
1

π
(π/3− α) .

We obtain
√

2 cosα− 1 >

√
2

3π
(π − 3α). (5.6)

The function cos(3α/2) is decreasing for 0 < α < π/3. It is true that cos y >
1− (2/π)y when 0 < y < π/2. Therefore,

cos(3α/2) >
1

π
(π − 3α) . (5.7)

We have cosα/2 >
√

3/2 when 0 < α < π/3.
These inequalities, together with (5.6) and (5.7), give the following bound:

tanh d >
1√
2π3

(π − 3α)3/2 . (5.8)

Inequality (5.8) implies inequality (5.2) as required.

5.2. Uniqueness of a simple closed geodesic on a regular tetrahedron
in H3. For a regular tetrahedron in hyperbolic space the following analogue of
Lemma 4.3 holds.

Lemma 5.3 ([9]). A simple closed geodesic on a regular tetrahedron in hy-
perbolic space passes through the midpoints of two pairs of opposite edges on the
tetrahedron.

Proof. Let γ be a simple closed geodesic on a regular tetrahedron T in hyper-
bolic space H3. Consider the Cayley–Klein model of H3 and place the tetrahedron
such that the center of the circumscribed sphere of the tetrahedron coincides with
the center of the model. Then T is represented by a regular tetrahedron T̃ in
Euclidean space E3.

A simple closed geodesic γ on T is represented by an abstract geodesic on
T̃ . From Proposition 3.4, we get that this generalized geodesic is equivalent to a
simple closed geodesic γ̃ on T̃ in E3. From Theorem 3.1, we assume that γ̃ passes
through the midpoints of two pairs of opposite edges on this tetrahedron.

Label the vertices of the tetrahedron T and the corresponding vertices of T̃
with A1, A2, A3, and A4. Suppose that γ̃ passes through the midpoints X̃1

and X̃2 of the edges A1A2 and A3A4. Consider the development of T̃ along γ̃
starting from X̃1. From Corollary 3.2, it follows that this development is central
symmetric with respect to the point X̃2.
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Fig. 5.3

Let X1 and X2 be the corresponding points on γ on the edges A1A2 and A3A4

of T . Consider the development of T onto hyperbolic plane along γ starting from
the point X1. Then γ is a line segment X1X

′
1 on the development.

Denote the midpoints of the edges A1A2 and A3A4 by M1 and M2. Since the
rotation of the tetrahedron trough π around M1M2 in hyperbolic space is the
isometry of the tetrahedron, the development of T along X1X2X

′
1 on hyperbolic

plane is central symmetric with the center at M2.

Denote by T1 and T2 the parts of the development along the segments X1X2

and X2X
′
1. The central symmetry of the development around the point M2 swaps

T1 and T2.

The edge A1A2 containing X ′1 is mapped onto A2A1 with the point X1. Then
the point X ′1 belongs to the edge A1A2 of T1, and the lengths of A2X1 and X ′1A1

are equal.

The edge A3A4 is mapped into itself with the opposite orientation. The point
X2 on A3A4 is mapped to the point X ′2 on A3A4 such that the lengths of A4X2

and X ′2A3 are equal. Moreover, ∠X1X2A4 = ∠X ′1X
′
2A4. Since the geodesic is

closed, we have ∠A1X1X2 = ∠A1X
′
1X
′
2 (Fig. 5.3).

We obtain the quadrilateral X1X2X
′
2X
′
1 inside T1 the sum of whose interior

angles is 2π. Then the integral of the Gaussian curvature over the interior of
X1X2X

′
2X
′
1 in hyperbolic plane is zero. This implies that the rotation takes the

part X ′2X
′
1 of the geodesic to the part X1X2. Hence the points X1 and X2 are

the midpoints of the corresponding edges (Fig. 5.3).

In the same way, it can be proved that γ passes through the midpoints of
other two opposite edges on the regular tetrahedron in H3.

Corollary 5.4 ([9]). If two closed geodesics on a regular tetrahedron in hy-
perbolic space intersect the edges of the tetrahedron in the same order, then they
coincide.
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5.3. The existence of a simple closed geodesic of type (p, q) on a
regular tetrahedron.

Theorem 5.5 ([9]). On a regular tetrahedron in hyperbolic space for each
ordered pair of coprime integers (p, q) there exists a unique, up to the rigid motion
of the tetrahedron, simple closed geodesic of type (p, q). The geodesics of type (p, q)
exhaust all simple closed geodesics on a regular tetrahedron in hyperbolic space.

Proof. Let γ̃ be a simple closed geodesic on a regular tetrahedron A1A2A3A4

in Euclidean space. Assume that γ̃ passes through the midpoints X̃1, X̃2, Ỹ1,
and Ỹ2 of the edges A1A2, A3A4, A1A3, and A2A4, respectively.

Consider the development T̃ of the tetrahedron along γ̃ from the point X̃1 to
the point X̃ ′1. The polygon T̃ consists of four equal polygons. Any two adjacent
polygons can be transformed into each other by a rotation through an angle π
around the midpoint of their common edge. The interior angles of T̃ are π/3,
2π/3, π, or 4π/3. The angle of 4π/3 is obtained if γ̃ intersects three edges having
a common vertex consecutively.

Now we take regular triangles on the hyperbolic plane with angle α at the
vertices. We put these triangles in the same order in which the faces of the
tetrahedron were unfolded in Euclidean space along γ̃.

Fig. 5.4

In other words, we construct a polygon T on a hyperbolic plane that is formed
by the same sequence of regular triangles as the polygon T̃ on the Euclidean
plane. Label the vertices of T according to the vertices of T̃ . Then the polygon
T corresponds to a development of a regular tetrahedron with the planar angle
α in hyperbolic space (see Fig. 5.4).

Moreover, T has the same property of central symmetry with respect to the
midpoint of the same edge as the polygon T̃ . Denote by X1, X2, Y1, Y2, and X ′1
the midpoints of the edges A1A2, A3A4, A1A3, and A2A4 of T, respectively. We
draw the geodesic line segment X1X

′
1.

By the construction, the interior angles at the vertices of T are equal to α,
2α, 3α, or 4α, according to the development on the Euclidean plane.

First, assume that α ∈ (0, π/4]. Then the polygon T is convex and the
segment X1X

′
1 lies inside T . Furthermore, X1X

′
1 passes through the points X2,

Y1, Y2 that are the centers of symmetry of T . Therefore X1X
′
1 is a simple closed
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geodesic γ on the regular tetrahedron with the planar angle α ∈ (0, π/4] in
hyperbolic space.

Now we increase the angle α starting from α = π/4. Then the polygon T is
not convex because it contains the interior angles 4α > π.

Let α0 be the supremum of α for which the segment X1X2 lies inside T .
Suppose α0 < π/3. For all α < α0, the segment X1X

′
1 lies entirely inside T and

it is a simple closed geodesic γ on the regular tetrahedron in H3. The distance d
from the vertices of the tetrahedron to γ satisfies (5.2). Therefore, there exists
α1 = α0 + ε such that the segment X1X2 lies entirely inside T . This contradicts
the maximality of α0. Thus α0 = π/3.

It follows that for any α ∈ (0, π/3) there is a simple closed geodesic of type
(p, q) on a regular tetrahedron with the planar angle α in hyperbolic space.

The uniqueness of a simple closed geodesic of type (p, q) on a regular tetra-
hedron in H3 follows from Corollary 5.4. This geodesic has p points on each of
two opposite edges of the tetrahedron, q points on each of other two opposite
edges, and (p + q) points on each edge of the third pair of opposite edges. For
any coprime integers (p, q), 0 ≤ p < q, there exist three simple closed geodesics
of type (p, q) on a regular tetrahedron in H3. They coincide if the tetrahedron is
rotated by the angle 2π/3 or 4π/3 around the altitude constructed from a vertex
to the opposite face.

Since any simple closed geodesic on a regular tetrahedron in H3 is equivalent
to a simple closed geodesic on a regular tetrahedron in E3, there is not another
simple closed geodesic on a regular tetrahedron in H3.

5.4. The existence of a simple closed geodesic of type (p, q) on a
generic tetrahedron. In Euclidean space E3, there is no simple closed geodesic
on a generic tetrahedron. Protasov [41] gave an upper bound for the number of
simple closed geodesics depending on the largest deviation from π of the sum
of planar angles at the vertices of the tetrahedron. The situation in hyperbolic
space is quite different provided that the planar angles of the tetrahedron are
sufficiently small. Borisenko proved the following result.

Theorem 5.6 ([7]). If the planar angles of a tetrahedron in hyperbolic space
are at most π/4, then for any pair of coprime natural numbers (p, q) there exist
a simple closed geodesics of type (p, q).

Proof. Let γ̃ be a simple closed geodesic on a regular tetrahedron A1A2A3A4

in Euclidean space. Consider the development T̃ of the tetrahedron along γ̃ from
the point X̃1 on A1A2 to the point X̃ ′1.

Consider a generic tetrahderon in hyperbolic space. For more convenience, we
can also label the vertices of the tetrahedron with A1, A2, A3, and A4. Develop
this tetrahedron onto the hyperbolic plane in the same order as the development
T̃ is unfolded, starting from the edge A1A2.

As it was shown in the proof of Theorem 5.5, at most four faces can meet
at one vertex of the development. Hence, if α ≤ π/4, then the development is a
convex polygon.
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However, there are at most two faces meeting at each of the vertices A1, A2,
A′1, and A′2, where A1A2 is a starting edge and A′1A

′
2 is a finishing edge. Therefore

the angles at these vertices are at most π/2.
Consider the quadrilateral A1A2A

′
2A
′
1. Take the points X(s) on A1A2 and

X ′(s) on A′1A
′
2 such that X(0) = A1, X

′(0) = A′1, and the lengths of A1X(s)
and A′1X

′(s) are both equal to s (Fig. 5.5).

Fig. 5.5

For s = 0, the sum of the angles ∠A1 and ∠A′1 measured from inside the
polygon is less than π. For s = |A1A2|, the sum of ∠A2 and ∠A′2 measured from
outside the polygon is greater than π. Therefore, there is s0 such that the sum of
∠X(s0) and ∠X ′(s0) equals π. The line segment X(s0)X

′(s0) on the development
corresponds to the simple closed geodesic of type (p, q) on the tetrahedron in H3.

Since for any ordered pair of coprime integers (p, q) there exist three simple
closed geodesics of type (p, q) on a regular tetrahedron in E3, disregarding isome-
tries of the tetrahedron, in a similar way, we can construct three simple closed
geodesics of type (p, q) on a tetrahedron in H3 with the planar angle at most
π/4.

5.5. The number of simple closed geodesics. Let N(L,α) be the num-
ber of simple closed geodesics of length not greater than L on a regular tetrahe-
dron with the planar angle α in hyperbolic space. In [9], it was shown that

N(L,α) = c(α)L2 +O(L lnL),

where O(L lnL) ≤ CL lnL when L→ +∞, and

c(α) =
27

16

(
ln

1−
√
3

2 (1− 3α
π )

3
(
1−α2

4

)
1−

√
3

2 (1− 3α
π )

3
(
1+α2

4

) + ln
1+

√
3

4 (1− 3α
π )

1−
√
3

4 (1− 3α
π )

)2 ,

lim
α→π

3

c(α) = +∞; lim
α→0

c(α) =
27

16

(
ln

1+
√
3
4

1−
√
3
4

)2 .

This result was proved using Proposition 3.5 about the structure of a simple
closed geodesic on a regular tetrahedron.
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In the current paper, we improve the constant c(α) by using the estimations
obtained in [9].

Lemma 5.7. If the length of a simple closed geodesic of type (p, q) on a
regular tetrahedron in hyperbolic space is not greater than L, then

L ≥ 2(p+ q) ln

(
2
√

3

(
1− 3α

π

)
+ 1

)
,

where α is the plane angle of a face of the tetrahedron.

Proof. Let γ be a simple closed geodesic of type (p, q), 0 ≤ q < p, on a regular
tetrahedron A1A2A3A4 in hyperbolic space.

Assume that γ has q points on the edges A1A2 and A3A4, p points on A1A4

and A2A3 and p + q points on A2A4 and A1A3. Denote by B1, . . . , Bp+q points
of γ on A1A3 and by B′1, . . . , B

′
p+q points of γ on A2A4.

Consider the development of the faces A3A1A4 and A1A4A2 onto the plane.
The geodesic segment starting at the point Bi, where i = 1, . . . , p, goes through
the edge A1A4 to the point B′q+i. Analogously, on the development of the faces
A1A2A3 and A2A3A4 there are p segments of γ connecting B′i and Bq+i, i =
1, . . . , p, and passing through the edge A2A3.

On the faces A4A1A2 and A1A2A3, the geodesic segments BiB
′
q−(i−1), i =

1, . . . , q, pass through the edge A1A2. Analogously, on the development of the
faces A2A4A3 and A4A3A1 there are q geodesic segments Bp+iB

′
(p+q)−(i−1), i =

1, . . . , q (see Fig. 5.6).

Fig. 5.6

Therefore, the geodesic γ consists of 2(p + q) segments that connect oppo-
site edges of the tetrahedron. Let us evaluate from below the length of these
segments. Consider the quadrilateral obtained by unfolding the faces A2A1A4

and A1A4A3. The minimum distance between the points on the edges A2A4 and
A1A3 is achieved at H1H2 perpendicular to these edges. Since the planar angle
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of the tetrahedron α < π/3, H1H2 lies inside the quadrilateral A3A1A4A2 and
passes through the midpoint M of the edge A1A4 (see Fig. 5.7).

Fig. 5.7

From the triangle A4MH1, we have

sinh |MH1| = sinh(a/2) sinα

Using (5.1), we get

sinh |MH1| = cos(α/2)
√

2 cosα− 1.

Using

2 cosα− 1 =
cos(3α/2)

cos(α/2)
,

we obtain
sinh |MH1| =

√
cos(α/2) cos(3α/2).

Inequality (5.7) together with cosα/2 >
√

3/2 implies

sinh |MH1| ≥

√√
3

2

(
1− 3α

π

)
. (5.9)

Consider the function arsinh(x):

2arsinh(x) = 2 ln
(
x+

√
x2 + 1

)
= ln(2x2 + 1 + 2x

√
x2 + 1) > ln(4x2 + 1).

This inequality implies

|H1H2| ≥ ln
(

2
√

3 (1− 3α/π) + 1
)
.

We obtain that the length L of a simple closed geodesic γ of type (p, q) satisfies

L ≥ 2(p+ q) ln
(

2
√

3 (1− 3α/π) + 1
)
.
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Euler’s function φ(n) is equal to the number of positive integers not greater
than n and prime to n ∈ N. From [24, Theorem 330], we know that

x∑
n=1

φ(n) =
3

π2
x2 +O(x lnx), (5.10)

where O(x lnx) < Cx lnx when x→ +∞.
Denote by ψ(x) the number of pairs of coprime integers (p, q) such that p <

q and p+ q ≤ x, x ∈ R. Suppose ψ̂(y) is equal to the number of pairs of coprime
integers (p, q) such that p < q and p+ q = y, y ∈ N. From the definitions, we get

ψ(x) =

x∑
y=1

ψ̂(y). (5.11)

If (p, q) = 1 and p + q = y, then (p, y) = 1 and (q, y) = 1. Consider Euler’s
function φ(y). We obtain that the set of integers not greater than and prime to
y are separated into the pairs of coprime integers (p, q) such that p < q and p+
q = y. It follows that φ(y) is even and ψ̂(y) = φ(y)/2. From (5.11), we have

ψ(x) =
1

2

x∑
y=1

φ(y).

Then (5.10) implies

ψ(x) =
3

2π2
x2 +O(x lnx) as x→ +∞ (5.12)

The following result can be proved by using this asymptotic.

Theorem 5.8. Let N(L,α) be the number of simple closed geodesics of length
not greater than L on a regular tetrahedron with plane angles of the faces equal
to α in hyperbolic space. Then

N(L,α) = c(α)L2 +O(L lnL) as L→ +∞, (5.13)

where

c(α) =
9

8π2
(
ln
(
2
√

3 (1− 3α/π) + 1
))2 ,

lim
α→π

3

c(α) = +∞; lim
α→0

c(α) =
9

8π2 ln
(
2
√

3 + 1
) .

Proof. To each ordered pair of coprime integers (p, q), p < q, there correspond
three different geodesics on the regular tetrahedron. We have

N(L,α) = 3ψ

(
L

2 ln
(
2
√

3 (1− 3α/π) + 1
)) .

Using (5.12), we get

N(L,α) =
9

8π2
(
ln
(
2
√

3 (1− 3α/π) + 1
))2L2 +O(L lnL) as L→ +∞.



Simple Closed Geodesics on Regular Tetrahedra 607

In [43], I. Rivin showed that for any hyperbolic structure on a sphere with n
boundary components, the number of simple closed geodesics of length bounded
by L on it grows like L2n−6 as L→∞.

From Lemma 5.2, we know that there is no simple closed geodesic on a regular
tetrahedron on a distance < d0(α), where d0(α) is from (5.2). The estimation
(5.2) holds also for a generic tetrahedron in hyperbolic space.

We can consider the tetrahedron as a non-compact surface with regular Rie-
mannian metric of constant negative curvature with 4 boundary components.
From Lemma 5.1, it follows that there are no simple closed geodesics that are
boundary parallel. From (5.13), we get that the number N(L,α) is asymptotic
to L2 as L→ +∞.

If the planar angle α of the tetrahedron goes to zero, then the vertices of
the tetrahedron tend to infinity. The limiting tetrahedron is homeomorphic to a
sphere with four cusps with a complete regular Riemannian metric of constant
negative curvature. The genus of this surface is zero. In work of I. Rivin [43] it
was shown that the number of simple closed geodesics on this surface has order
of growth L2. Thus the the number of simple closed geodesics of length at most
L on a regular hyperbolic surface with four cusps and on a regular tetrahedron
in hyperbolic space has order of grows L2.
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Простi замкненi геодезичнi на правильних
тетраедрах у просторах постiйної кривини

Darya Sukhorebska

У даному оглядi представленi результати о поведiнцi простих замкне-
них геодезичних на правильних тетраедрах у тривимiрних просторах
постiйної кривини.
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