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The Plasticity of Fittable Cones for a Given
Quadruple of Points on the Surface of a Unit
2-sphere

Anastasios N. Zachos

We construct a family of fittable cones for a given quadruple of points
on a unit 2-sphere S?(1), which form a weighted Fermat—Torricelli (tree)
network on S2(1), such that one of the four given points is the weighted
Fermat—Torricelli point that has got a positive subconscious quantity (re-
maining weight). We describe five types of weighted Fermat—Torricelli trees
located on these fittable cones, which depend on the sign of the subconscious
quantity that corresponds to the same weighted Fermat—Torricelli point de-
rived on S%(1) (plasticity of fittable cones).
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1. Introduction

We start with the weighted Fermat—Torricelli problem for a geodesic quadri-
lateral Ay AsA3A4 on a C? complete convex surface M with curvature bounded
from above by K .

Problem 1.1 (Weighted Fermat—Torricelli problem for A; Ay A3A4 on M). Let
A1A2A3A4 C M be a quadrilateral whose perimeter is less than 2\/’%. Suppose
that a positive number (weight) w;, corresponds to the vertex A;. Find a weighted

Fermat—Torricelli point Ag such that

4

f(Ao) = wi(agi)y — min, (1.1)

i=1
where (ap;)q is the length of the shortest geodesic arc AgA;.
The solution of the weighted Fermat—Torricelli problem is the unique weighted
Fermat—Torrcelli point Ag. The following lemmas give two characterizations of

the weighted Fermat—Torricelli point Ay with respect to the geometric structure
of AjAsA3A4 and the four weights, which correspond to its vertices ( [9]).
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Let D be a domain of M bounded by A;AsA3A4, and let ﬁAiAj be the unit
tangent vector of the geodesic arc A;A; at A, :

AA; = == ; .
! (aij)g | X 4,4,

where ﬁAiAj belongs to the tangent plane Ty, (M) at A;.

Lemma 1.2 (Floating Case [9, Proposition 4,p. 91]). Conditions (i), (ii),
and (iii) are equivalent on M :

(i) All the following inequalities are satisfied simultaneously:
1.3)
)

waUa, A, +w3Ua, a; + walUgp,a,|| > wi,

[a—
o

(
wlﬁAgAl + w3[7A2A3 + w4(_jA2A4 > w2, (
(
(

wiUaza, + woUssa, + waUnga, || > w3, 1.5)
wlUA4A1 —|—w2UA4A2 +w3UA4A3 > wy. 16)

(ii) The point Ag is an interior point of A1AsAszAs and does not belong to the
geodesic arcs A1 As, AsAs, AsAy and A4A;.

(iif) Z?:l wiﬁAoAi = 0.
Lemma 1.3 (Absorbed Case [9, Proposition 5,p. 91]). Conditions (i) and (ii)
are equivalent on M.

(i)  One of the following inequalities is satisfied:

waUn, 4y + w30 ay + wiUa, a,|| < w1, (1.7)
wiUaya, + w3Uaya, +wilaya,|| < wo, (1.8)
wiUaga, + wolaga, +wilaya,|| < ws, (1.9)
wiUaga, +w2lUa,a, +w3Ua,a,|| < ws. (1.10)

(ii) The point A is attained at Ay or Ag or As or Ay, respectively.

The solution of the weighted Fermat—Torricelli problem for Ay A2 A3A4 with
respect to Lemma 1.1 yields a weighted floating Fermat—Torricelli tree, which
consists of the geodesic arcs { A1 Ag, A2 Ay, AsAg, A4Ap}.

The solution of the weighted Fermat—Torricelli problem for Ay Ay A3A4 with
respect to Lemma 1.2 yields a weighted absorbed Fermat—Torricelli tree, which
consists of the geodesic arcs {A;Ag, AjAg, ApAo}, for A = Ao, for i,5,k,1 =
1,2,3,4, 9 # j # k # [, such that

< wy.

HwiUAlAi +w;Uaa; +wiUa a,
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By setting wy = 0 in Lemma 1.2, the solution of the weighted Fermat—
Torricelli problem for A1 Ay A3 Ay yields a weighted floating Fermat—Torricelli tree,
which consists of the geodesic arcs {41 Ag, A2Ag, A3Ap}.

By setting wy = 0 in Lemma 1.3, the solution of the weighted Fermat—
Torricelli problem for A;AsAsAy yields a weighted absorbed Fermat—Torricelli
tree, which consists of the geodesic arcs {A4;Ao, AjAo} A = Ay, for i,j,1 =
1,2,3,4, i # j # 1, such that

< wi.

HwiUAlAi + ijAzAj

In 2014, we introduced a problem of the plasticity of fittable surfaces on a
given quadruple of points in R? in [7].

The problem of plasticity of fittable surfaces in R? states the following.

Suppose that F' is the corresponding weighted Fermat—Torricelli point of a
geodesic triangle AA; Ay Az on a C? complete surface M with weights w1, wo and
ws. Find a fittable Alexandrov surface M’ of a bounded curvature which passes
Ay, As Az and F such that F is the corresponding weighted Fermat—Torricelli
point of AA;AsAz on M’ with weights w], wy and w}.

The problem is solved for the case of a fittable sphere and a circular cone on
a circular cylinder in [7].

Euclidean surfaces having conical singularities are given in [2]. Troyanov
established metrics on a sphere with two conical singularities in [3], and Umehara
and Yamada extended these studies for metrics on a sphere with three conical
singularities in [5].

In [1], Ivanov and Tuzhilin investigated the behavior of shortest networks
under deformation of their boundary sets. They proved that the analyticity of
the boundary set guarantees preserving of the network type for minimal spanning
trees.

In this paper, we describe five types of shortest networks (weighted Fermat—
Torricelli trees) for a fixed boundary quad of points on a unit 2-sphere S%(1),
which are located on fittable circular cones (deformation of the metric) that pass
through the same quad of points (Section 3, Theorems 3.4-3.8). The charac-
terization of these types of networks depends on the sign of the subconscious
quantity that remains at the same weighted Fermat—Torricelli (node) on these
fittable cones (Plasticity of fittable cones).

2. Extrinsic geodesic flow along some weighted Fermat—
Torricelli trees that have got a subconscious on S%(1)

Let Ay = (1,0,0), Ay = (0,1,0), A3 = (0,0, 1) be the vertices of an equilateral
geodesic triangle AAj As As, and let Ag be an interior point of AA;As A3 on the
unit sphere S2(1).

We denote by (a;;)s2(1) the length of the geodesic arc A;A;, which is part of

a great circle of unit radius, by Uy, 4; the unit tangent vector of A;A; at A;, and
by a;; the angle between A; Ay and ApA; for i,j,k =0,1,2,3,1 # j # k.
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The weighted Fermat-Torricelli problem for AA; A Az on S?(1) states the
following.

Problem 2.1. Find a point A (weighted Fermat—Torricelli point) such that

3

Z wi(aol-)sg(l) — min. (2.1)
=1

If Hwi(j'Ain +wk[_jAjAkH > wj, for 4,5,k = 1,2,3, @ # j # k, then the
weighted Fermat—Torricelli point Ag is an interior point of AA;A2A3 and the
solution of the weighted Fermat—Torricelli problem consists of three geodesic arcs
{A1 Ay, A2 Ap, A3Ap}, which intersect at Ay (weighted floating Fermat—Torricelli
tree, [10, Proposition 2]).

If HwiﬁAin +wk(7AjAkH < wj, for 4,5,k = 1,2,3, @ # j # k, then the
weighted Fermat—Torricelli point Ag is the vertex A; of AA;A2A3 and the so-
lution of the weighted Fermat—Torricelli problem consists of two geodesic arcs
{A;A;, A A}, which intersect at A;, (weighted absorbing Fermat-Torricelli tree,
[10, Proposition 2]).

The inverse weighted Fermat—Torricelli problem for AA; A3 Az on S?(1) states
the following.

Problem 2.2. Given a point Ag, which belongs to the interior of AA;AsAs
on S%(1). The question is whether there exists a unique set of positive weights
{wy,we, w3} such that

w1 + wo + wg = 1,

for which Ay minimizes
3
F(Ao) =) wilaoi)s2q)-
i=1

Lemma 2.3 ([7, Lemma 3, p. 488]). The solution of the inverse weighted
Fermat—Torricelli problem for AAjAs Az on S?(1) is given by

1
1 + SN &0 5 SIN 0k
sin ook sin ajok

fori,j,k=1,2,3,i# j#k.

The idea of assigning a residual weight (subconscious) at a weighted Fermat—
Torricelli point (generalized Fermat—Torricelli point) is given in [11]. It is as-
sumed that a weighted Fermat—Torricelli tree is a two-way communication net-
work and the weights wy, wg, ws are three small masses that may move through
the branches of the weighted Fermat—Torricelli tree. By assuming mass flow
continuity of this network, we obtain the generalized inverse weighted Fermat—
Torricelli problem (INVSFT problem).
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The INVSFT problem is the inverse weighted Fermat—Torricelli problem such
that the weighted Fermat—Torricelli point acquires a subconscious quantity wy.

We denote by w; a mass flow, which is transferred from A; to Ag for ¢ =
1,2, by wg a residual weight, which remains at Ag, by w3 a mass flow, which is
transferred from Ag to As, by w; a mass flow, which is transferred from Ag to A;,
i = 1,2, by Wy a residual weight, which remains at Ap, and by w3 a mass flow,
which is transferred from Az to Ap.

The following equations are derived by this mass flow along the geodesic arcs

Ay Ao, A2Ag, A3Ap :
w1 + Wy = w3 + wy, (23)
w1 + We + Wy = W3- 2.
By taking into account (2.3) and (2.4) and by setting w; = w; — w;, for i =
0,1,2,3, we get
w1 + W = W3 + Wy (2.5)
such that
w1 + wg + w3 = ¢ > 0. (2.6)

Problem 2.4. Given a point Ag, which belongs to the interior of AA;AsAs

on S%(1). The question is whether there exists a unique set of positive weights 1;
such that

w1 + we + w3 = ¢, (2.7)

for which Ay minimizes

f(Ag) = wi(ao)sz2(1) + walaoz)s2(1) + w3(aos) s2 (1),
f(Ao) = w1(ao)sz(1) + w2(aoz)s2(1) + W3(aos) sz (1),
f(Ao) = wi(ao)s2(1y + w2(ao2)s2(1) + Ws(ao3) s2(1)-
w; + W; = w; (2.8)

under the condition for the weights

Wy + W; = Wo + Wk (2.9)
fori,j,k=1,2,3 and ¢ # j # k.
Theorem 2.5. If the g.FT point Ag is an interior point of the triangle

NA1 Ao As with the wertices lying on three geodesic arcs that meet at Ay and
from the two given values of o3, 102, then the positive real weights

By = — <Sln(04'103+06102)> c—wo’ (2.10)
S111 (X102 2
By — <S?Il0é103> c— wO’ (2.11)
SN (v102 2
w3 = © _2“’0 (2.12)

give a negative answer with respect to the inverse s.F'T problem on S?(1).
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We note that Theorem 2.5 is proved in [11] for the case of R?. Without loss
of generality, we may use the normalized unit constant c¢/ Z?:l w; instead of c.

By expressing Ag € S?(1) in terms of the spherical coordinates (w,),
Ay = (cosw cos p, coswsin g, sinw), we found the exact position of the weighted
Fermat-Torricelli tree on S%(1) in ( [10]). By replacing the weight w; with w;,
the exact position of Ay depends on the extrinsic geodesic flow produced by wq,
we, w3, and wg.

The exact location of Ay is given by

2 2 2

wy + w3 — wj
= arccos — 5 £ 2.13
@ < 202 ) (2.13)

and
2 2 _ .9
W = arccos 7;01 jwi ik —— . (2.14)
Wi —Ws5 —Ws W5 —W7 —Ws
2w1w2\/(1 = (o DD = (i)

Lemma 2.6 ([10, Corollary 1]). Ifw; = wy = w3, then ¢ = 7, w = arccos \/g

and Ay = (%%%)

3. The plasticity of fittable circular cones for a given quadruple
of points on S%(1)

It is well known that for every three non-collinear (not located on a great
circle) points € {Ay, Aa, A3, Ap, } there is one circle on the unit 2-sphere S2(1)
passing through them. Hence, four “small” circles pass through A;, As, Az, Ag
located on S?(1). The constructions on the sphere using a spherical compasses
are given in [4].

Theorem 3.1. Four circular cones pass through A1, As, As, Ag such that
each triad of these points determines their base circles.

Proof. We use a spherical compass to construct each center of the four circles,
which pass through A, As, A3, Ag. The intersection of two geodesics orthogonal
to two sides in their midpoints is the center of the circle on S%(1), (the same as
in Euclidean geometry). A circular cone passes through this circle and contains
its interior. There are four circles on S?(1) passing through them. Hence, there
are four circular cones in R? that pass across these four circles. O

We consider the parametric and Cartesian forms of a right circular cone
S’(r1, H) with a base circle C(M,r1) with center M, base radius rq, vertex A,
height H,

) = (n (1= ) s+ ao.m (1= ) sinv+ v0.u)
= - — — — ) sin
r(u, v r1 I cosv + xq, 71 I sinv 4+ yo, u | ,
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7

(x —20)* + (y — 40)* = 75 (2 — H)?

for 0 < u,0 <v < 2m,r1 >0,M = (x0,y0), A = (x0, z0, H).

Theorem 3.2. If H > 1, then there exists a circular cone, which passes
through A1, As, As, Ay such that Ay, Ao lie on their base circles.

Proof. We have

(1—20)? +y5 = ri, (3.1)
x(2) + (1 - y0)2 = T%?
1 2
ot vy = (5) (H -1 (3.3)
2 2 12 2
(or = 20)* + (yr — w0)* = (37) (2w = H)%, (3.4)
where
5ty 42k =1 (3.5)

By subtracting (3.1) from (3.2), we get z¢p = yo. By substituting z¢p = yo in (3.2),
(3.3) and (3.4), we get:

213 — 220+ 1 =13, (3.6)
208 = (7)*(H — 1% (3.7)
(wr =202 + (yr — 20)? = (5)%(2r — H)2 (3.8)

We distinguish two cases.

A, If zy > 0, then (3.7) yields
V2o = %(H —1). (3.9)

By substituting (3.9) in (3.6), we get

rm_ V2H-1—vVH?+2H -1
H 2 1—-2H

> 0. (3.10)

By substituting (3.10), (3.9) in (3.8), we obtain

22 4y + (QRHAYIERH12 (00 1)(2H — 1 — 2p)

H=1+ . (3.11)

_1—/H2 _
2(55F+yF)(H 1 1_H2JQH 1)

which yields H — f(H) = 0, where f is a rational (continuous) function with
respect to H.

Taking into account that 1 — f(1) < 0, 10 — f(10) > 0, (1 — f(1))(10 —
£(10)) < 0, by Bolzano’s theorem, there exists Hy € (1,10) : Hy = f(Hp).
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B. If o <0, then (3.7) yields

Vﬁnggl—ﬂy (3.12)

By substituting (3.12) in (3.6), we get
rl_yﬁl—ﬂ>qﬁﬁ+2ﬂ—1>
H 2 1-2H

By substituting (3.13), (3.12) in (3.8), we obtain

0. (3.13)

—_H_ 2 _
2yl (RIHYI2H-1)2 (0 1) (2H — 1 — 2p)
N = S 2 _
2($F+yF)(1 H \1/_H2J2H 1)

H=1+

(3.14)

which yields H — g(H) = 0, where ¢ is a rational (continuous) function with
respect to H.

In a similar way, by using Bolzano’s theorem, we can find a suitable
H| € [1,10] : H = g(H]{).

The theorem is proved. O

Theorem 3.3. An infinite number of circular cones pass through Ay, As, As,
Ag such that each triad of these points does not determine their base circles.

Proof. Let II; be a given plane a1z +b1y+c12+d; = 0, which passes through
the points Ay, Ao and a circle C (M (xo,yo, 20),71) with center M (zo,yo, 20) €
II;. The points Ay, Az, Ag define the plane Ils : asx + boy + coz + do = 0. Thus,
there is an ellipse, which passes through A;, A3, A, having as a projection the
circle C'(M;i(xo, Yo, 20),71). This construction leads to a fittable circular cone for
Ay, A, A3, Ag on S?(1). Thus, taking an infinite number of planes, which pass
through A, As, one yields an infinite number of fittable cones to the quadruple
of points {A1, Ag, A3, Ag}. O

There are five different types of weighted Fermat—Torricelli trees lo-
cated on a circular cone, which fits the weighted (floating) Fermat—Torri-
celli tree {(A140)s2(1), (A240)g2(1), (A340)s2(1), } at a given quad of points
of {A1,As, A3, Ag} on S%(1), or the weighted (floating) Fermat—Torricelli
tree {(A740)s201), (A540)s2(1), (A340)s2(1), } at a given quad of points of
{A], AL, AL Ag} on S?(1) such that each point lies on a geodesic arc AgA; for
1 =1,2,3. The type of weighted Fermat—Torricelli trees located on these fittable
cones depends on the sign of the subconscious quantity that corresponds to the
weighted Fermat—Torricelli point Ayp.

We proceed by giving notations for the weights that correspond to the points
Ay, Ay, As, Ay and a description of mass flow, by assuming mass flow continuity
along the geodesics on a fittable cone C. We denote by (w;)c a mass flow, which
is transferred from A; to Ay, by (wg) a residual weight, which remains at Ay, by
(wj)c a mass flow, which is transferred from Ag to Ay, by (w;)c a mass flow,
which is transferred from Ay to A;, i = 1,2, by (wp)c a residual weight, which
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remains at Ag, and by (wg)c a mass flow, which is transferred from A to Ay,
fori,j,k=1,2,3,1#j #k.
By setting (w;)c = (w;)c— (w;)c fori = 0,1, 2,3, we obtain (3.25) and (3.26).

Theorem 3.4 (Type A. Positive subconscious of a weighted minimum
geodesic network on C'). If the g.FT point Ay is an interior point of (AA1A2A3)c
with the vertices lying on three geodesic arcs that meet at Ag, then the dynamic
plasticity equations of {A1, Aa, Az, Ao} are given by

(1)e = — <Sin((a;?z)(21;r2§j1oz)c)) c— (2@0)0’ (3.15)
(o) = (L ensie) = (ule, (3.16)
(03)c = C_(;DO)C (3.17)
where
(Wi)c + (wj)c = (wo)c + (Wk)c (3.18)
forij,k=1,2,3,i#j#k, and
(01)c + (W2)c + (ws)c = c. (3.19)

Proof. The solution of the INVSFT problem for AA;AsAs on a circular cone
is given by (3.22), (3.23) and (3.24), by substituting the weight (w;)c — w; and
taking into account the weighted condition of mass flow continuity (3.25) and
(3.26). O

Theorem 3.5 (Type B. Positive subconscious of a weighted minimum
geodesic network on C'). If the g.F'T point Ay is an exterior point of (AA1A2A3)c
with the vertices lying on three geodesic arcs that meet at Ay, then the dynamic
plasticity of {A1, Aa, As, Ao} is given by

3
Z 2+ 2(w1) o (we)c cos(a102)c

=1
+ 2(w1)c(w3)c cos(a103)c + 2(w2)c(W3)c cos(azos)c, (3.20)

and
3

> (wi)e = (wo)c + (Wy)c- (3.21)

i=1

Proof. Assume that we select four weights (w;)c(0) = (w;)c(0) such that
(1.10) holds, by substituting the weight (wo)c — (w4)c. Thus, we get

Hu_)lUAoAl + waU aga, + W3U a4, < Wo,

which yields (3.20). Hence, the weighted Fermat—Torricelli point Ay = Ag. If
we select as a new weight (wp)c + (wy )c the weight, which corresponds to the
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point Ay, then the weighted absorbed inequality holds (1.10), by substituting the
weight () + (wy)o — ((w4)c. Therefore, Ay = Ag. The positive subconscious
quantity is defined by the weight ((wo)c + (wy)c that may remain at Ay, tak-
ing into account a two-way communication network described by the weighted
condition (3.21). O

We denote by P the center of the base circle of C, with radius r1, by A the
vertex of C, by A;, the intersection of the line defined by the line segment AA;
with the base circle ¢(P,r1), by ¢; the angle ZA1PA;,, and we set (z;)g = A; P
for ¢+ = 0,1,2,3. We assume that ¢y > . Let Ay be a point on C, which is
derived by rotating Ay with respect to AP by ¢¢ + .

Theorem 3.6 (Type C. Negative subconscious of a weighted minimum
geodesic network on C'). If the g.F'T point Ay is an interior point of (AA1A2A3)c
with the vertices lying on three geodesic arcs that meet at Ay, then the dynamic
plasticity equations of {Ay, Aa, Az, Ay} are given by

(@1)0 = — (Sin((alofg)c + (Oé10/2)c)) ¢ — (Wo)c (3.22)

Sin(alo/g)c 2 ’

(@2)e = ((Sin 0410/3)0) c— (1170')07 (3.23)

Sin(Ozlglg)C 2
(ws)c = C_(;UD)C (3.24)
where
(i) + (wj)c = (Wo)c + (k) (3.25)
fori,j,k=1,2,3,1#j#k, and
(01)c + (W2)c + (Ws)c = c. (3.26)

Proof. It is a direct consequence of Theorem 3.4, taking into account that a
negative subconscious (wp)c quantity remains at the point Ag and changes to a
positive subconscious quantity (wy )c that remains at the point Ay . ]

Theorem 3.7 (Type D. Negative subconscious of a weighted minimum
geodesic network on C). If Ay is an exterior point of (AA1A2A3)c with the

vertices lying on three geodesic arcs that meet at Ag, then the dynamic plasticity
of {A1, Ag, A, Ay} is given by

((w;)c)* + 2(w01) ¢ (w2) ¢ cos(a102)c

M

s
Il
R

(Wo)c)? >

_l’_
[\

(w1)c(w3)c cos(ao3)c + 2(w2)c(ws)c cos(azez)c (3.27)

and
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Proof. It is a direct consequence of Theorem 3.5, taking into account that a
negative subconscious (wp)c quantity remains at the point Ag and changes to a
positive subconscious quantity (wgy )c+ (g~ )c that remains at the point Ag. [

Theorem 3.8 (Type E. Vanishing subconscious of a weighted minimum
geodesic network on C). If Ay, A;, A; determine a base circle of a fittable cone C,
and Ay, belongs to C, then (wr)c = 0 and Ag is the weighted Fermat—Torricelli
point of the geodesic arc A;Aj with vanishing subconscious (wo)c = (Wo)g2(1),
such that (’lI)Z)C = (wi)SQ(l)a (wj)c = (@')52(1), (’lf)i)c, (lf)j)c < %, and

(U_JI)C + (w2)c + (11_)3)0 =1.

Proof. We show that the weighted Fermat—Torricelli point Ay cannot lie
on the side (geodesic arc) A;A; of a geodesic triangle AA;(Ag)A;A, on C for
w;, wj, Wy, > 0. If Ag is an interior point of AA;A; Ay, then the weighted condi-
tion (III) for wy = 0 of the floating case (Lemma 1.2) yields

SN2 (N2 (= 32
cos LA;ApAj = (@r)c _(wl)(i Q(MJ)C.
2(wi)C(wj)C
If Ap lies on the geodesic arc A;A;, then, by substituting £ZA4;AgA; = 7 in the
weighted cosine condition, we get

(wi)c = (Wk)c + (w5)c

for (’Lﬁl)c > (@j)c, or
(w;)c = (wk)c + (W)

for (wj)c > (wi)c. Thus, Ag = A; or Ag = A;j. Therefore, if Ay is a weighted
Fermat—Torricelli point, which lies on A4;A4;, we get (wy)c = 0.

Therefore, by substituting (w;)c = 0, we may locate Ay at the geodesic arc
A; Aj. By setting (wo)c = (w0)s2(1y, (0i)c = (Wi)s21) < 3, (W5)e = (W))s2(1) <
%, Ap is the weighted Fermat—Torricelli point of A;A; with the corresponding
weight (wo)g2(1) such that

(01)s21) + (W2)s2(1) + (W3)52(1) = 1. =
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IlnacTuYHIiCTh ITPUCTOCOBAHUX KOHYCIB JIJIsi 3aaHOT
YeTBIipKM TOYOK Ha IMOBEPXHI OAMHUYHOI 2-ccepu

Anastasios N. Zachos

Mu 6y1yeMo ciM’10 IPUCTOCOBAHUX KOHYCIB JJIsl 33/IaHOI YeTBIPKH TOUOK
Ha oxmHmuHif 2-cdepi S2(1), MO yTBOPIOIOTH 3BaykeHy Mepexky (1epeso)
®epma—Toppivesnt ma S2(1), Takux, MO OJHa 3 YOTHPHOX 3aJAHEX TOYOK
€ 3Baxkenoro Toukoo Pepma—Toppivdesnii 3 JOAATHOIO ITi/ICBIIOMOIO BeJIH-
YMHOMO (3aJIUIIKOBOIO BAroO). MM OIucyeMo I'siTh THIIB 3Ba’KeHUX JIEPEB
Qepma—Toppiveni, po3TAIOBAHUX HA IMPUCTOCOBAHUX KOHYCAX, Y 3aJI€7KHO-
CTi BiJI 3HAKY IIiJICBiZIOMOT BeJIMYUHU, IO BiJIMOBiIa€ Tiit »Ke camiii 3BaKeHiit
tourni ®epma—Toppivesni, obuncieniit na S2(1) (macTuaricTs TPHUCTOCOBA-
HUX KOHYCIB).

Kirrouosi cioBa: 3Baxkene nepeso @epma—Toppiuesi, chepa, Kpyrosuit
KOHYC, T'€OJIC3NYHNNA TPUKYTHUK
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