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Given a three-coefficient Sturm–Liouville differential expression τ0 =
r−1
0 [−(d/dx)p0(d/dx) + q0] and its perturbation τq1 = τ0 + r−1

0 q1 on an
interval (a, b) ⊆ R, we employ the existence of a strictly positive solution
u0(λ0, ·) > 0 on (a, b) of τ0u0 = λ0u0 to derive a quadratic form inequality
for τq1 that naturally generalizes the well-known Hardy inequality and re-
duces to it in the particular case p0 = r0 = u0(0, ·) = 1, q0 = λ0 = 0, a ∈ R,
b =∞.
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1. Introduction

We consider a natural generalization of Hardy’s inequality for Sturm–Liouville
differential expressions: Assuming that p0, q0, q1, and r0 satisfy Hypothesis 2.1, we
compare the Sturm–Liouville equations τ0u0 = λ0u0 and τq1u = λ0u on (a, b) ⊆
R, where τ0 is of the type

τ0 =
1

r0(x)

[
− d

dx
p0(x)

d

dx
+ q0(x)

]
for a.e. x ∈ (a, b), (1.1)

and its perturbation τq1 is of the form τq1 = τ0 + r−10 q1, that is,

τq1 =
1

r0(x)

[
− d

dx
p0(x)

d

dx
+ q0(x) + q1(x)

]
for a.e. x ∈ (a, b), (1.2)

where q1 is of the form (1.6)
As our principal result we shall prove in Theorem 3.1 a natural generalization

(from the point of view of quadratic form perturbations) of Hardy’s inequality
which, in its well-known original form, is∫ ∞

a
dx |f ′(x)|2 > 1

4

∫ ∞
a

dx
|f(x)|2

(x− a)2
, 0 6= f ∈ C∞0 ((a,∞)), a ∈ R. (1.3)
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In particular, we will derive the following inequality:
Assume τ0u0 = λ0u0, u0(λ0, x) > 0 for x ∈ (a, b), and∣∣∣∣∫

a
dt p0(t)

−1u0(λ0, t)
−2
∣∣∣∣ <∞.

Then∫ b

a
dx p0(x)|f ′(x)|2 >

∫ b

a
dx

[
λ0r0(x)− q0(x) + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2, 0 6= f ∈ D0((a, b)), (1.4)

where

D0((a, b)) =
{
g ∈ L2((a, b); r0dx)

∣∣ g ∈ ACloc((a, b)); supp (g) ⊂ (a, b) compact;

p
1/2
0 g′ ∈ L2((a, b); dx)

}
. (1.5)

If, in addition, ∣∣∣∣∫ b

dx p0(x)−1u0(λ0, x)−2
∣∣∣∣ =∞,

then the constant 1/4 in (1.4) is optimal.
In this context, the generalized Hardy-type potential q1 is of the form

q1(x) = q1,0,a(x)

:= −4−1p0(x)−1u0(λ0, x)−4
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2

for a.e. x ∈ (a, b). (1.6)

In the special case p0 = r0 = u0(0, ·) = 1, q0 = λ0 = 0, −∞ < a < b =∞, and
f smooth and compactly supported in (a,∞), (1.4) and (1.5) reduce to Hardy’s
inequality (1.3) and

q1(x) = −4−1(x− a)−2, x ∈ (a,∞). (1.7)

Finally, we will show how to remove the compact support hypothesis on f in
(1.4).

Hardy’s inequality (1.3) (see, for instance, [8], [9, Sect. 9.8], [10, Chs. 1, 3,
App.]) and its subsequent generalizations (especially, in the multi-dimensional
context) has such a rich history that we cannot possibly do it any justice here,
but we refer to the very detailed bibliographies in [1, p. 3–5], [2], [3, p. 104–
105], [4, 5, 7, 8], [9, p. 240–243], [10, Ch. 3], [11, p. 5–11], [12, 13, 15], [14, Ch. 1],
and the references cited therein. Regarding the principal topic at hand, the notion
of perturbative Hardy-type inequalities, much less seems to be known and we are
only aware of the earlier work [6] in this context.
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2. Some background

To set the stage we introduce the following basic assumptions on the the three
coefficients p, q, r in the Sturm–Liouville differential expression (2.1) below:

Hypothesis 2.1. Let (a, b) ⊆ R and suppose that p, q, r are (Lebesgue) mea-
surable functions on (a, b) such that the following items (i)–(iii) hold:

(i) r > 0 a.e. on (a, b), r ∈ L1
loc((a, b); dx).

(ii) p > 0 a.e. on (a, b), 1/p ∈ L1
loc((a, b); dx).

(iii) q is real-valued a.e. on (a, b), q ∈ L1
loc((a, b); dx).

Given Hypothesis 2.1, we consider differential expressions τ of the type,

τ =
1

r(x)

[
− d

dx
p(x)

d

dx
+ q(x)

]
for a.e. x ∈ (a, b) ⊆ R. (2.1)

In the following it will become necessary to refer to the minimal operator Tmin

in L2((a, b); rdx) associated with τ . In this context, the preminimal operator Ṫmin

in L2((a, b); r dx) associated with τ is defined by

Ṫminf = τf,

f ∈ dom
(
Ṫmin

)
=
{
g ∈ L2((a, b); r dx)

∣∣ g, g[1] ∈ ACloc((a, b));
supp (g) ⊂ (a, b) is compact; τg ∈ L2((a, b); r dx)

}
, (2.2)

where the quasi-derivative g[1] of g is given by

g[1](x) = p(x)g′(x), x ∈ (a, b).

It is well-known that Ṫmin is closable, and hence one defines the minimal operator
Tmin as the closure of Ṫmin,

Tmin = Ṫmin.

We recall that τ−λ, λ ∈ R, is called nonoscillatory at b if and only if τu = λu
has a real-valued solution u(λ, ·) which has finitely many zeros near b (in this case
all real-valued solutions of τu = µu with µ ≤ λ share this property). Regarding
classical oscillation theory, we start with the following celebrated result.

Theorem 2.2 (The Sturm Separation Theorem).

(i) Assume that p, qj , r satisfy Hypothesis 2.1 and denote

τj =
1

r(x)

[
− d

dx
p(x)

d

dx
+ qj(x)

]
for a.e. x ∈ (a, b), j = 1, 2. (2.3)

Suppose q2 ≥ q1 a.e. on (a, b) and, for fixed λ ∈ R, let uj be a nontrivial
real-valued solution of τjuj = λuj on (a, b) ⊆ R, j = 1, 2. If x1, x2 ∈ (a, b)
are two consecutive zeros of u2, then u1 has at least one zero in [x1, x2].
In addition, if u1 does not have a zero in (x1, x2), then q1 = q2 a.e. on
[x1, x2] and u1 is a constant multiple of u2 on [x1, x2]. If τ is regular at a
(respectively, b), then x1 = a (respectively, x2 = b) is permissible.

Item (i) applies, in particular, to the case q1 = q2 := q, τ1 = τ2 := τ ,
and τuj = λjuj with λ2 ≤ λ1.
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(ii) Assume Hypothesis 2.1, λ ∈ R, and let uj, j = 1, 2, be linearly independent
real-valued solutions of τu = λu. Then the zeros of u1 and u2 separate each
other (i.e., if x1, x2 ∈ (a, b) are two consecutive zeros of u2, then u1 has
precisely one zero in (x1, x2)).

Next, we recall the following well-known facts regarding boundedness from
below of Tmin:

Theorem 2.3. Assume Hypothesis 2.1. Then Tmin is bounded from below if
and only if there exists ν0 ∈ R such that for all λ < ν0, τ − λ is nonoscillatory
at a and b. Moreover, if τu = λ0u has a strictly positive solution u(λ0, ·) > 0 on
(a, b), then Tmin ≥ λ0I and TF ≥ λ0I, where TF denotes the Friedrichs extension
of Tmin.

For subsequent purpose we also briefly recall the notion of (non)principal
solutions of τu = λu for some λ ∈ R. In the following the Wronskian of two
functions f, g satisfying f, g ∈ ACloc((a, b)), f [1]g[1] ∈ C((a, b)) is defined via

W (f, g)(x) = f(x)g[1](x)− f [1](x)g(x), x ∈ (a, b).

Theorem 2.4. Assume Hypothesis 2.1 and let λ ∈ R be fixed. If τ − λ is
nonoscillatory at b, then there exists a real-valued solution ub(λ, ·) of (τ − λ)u =
0 satisfying the following properties (i)–(iii) in which ûb(λ, ·) denotes an arbitrary
real-valued solution of (τ − λ)u = 0 linearly independent of ub(λ, ·).
(i) ub(λ, ·) and ûb(λ, ·) satisfy the limiting relation

lim
x↑b

ub(λ, x)

ûb(λ, x)
= 0. (2.4)

(ii) ub(λ, ·) and ûb(λ, ·) satisfy∫ b

dx |p(x)|−1ûb(λ, x)−2 <∞ and

∫ b

dx |p(x)|−1ub(λ, x)−2 =∞. (2.5)

It is understood in (2.4) and (2.5) that only x-values beyond the largest zero
(if any) of ub and ûb, and only x-values less than the smallest zero (if any)
of ua and ûa, are considered.

(iii) Suppose x0 ∈ (a, b) strictly exceeds the largest zero, if any, of ub(λ, ·), and
ûb(λ, x0) 6= 0. If ûb(λ, x0)/ub(λ, x0) > 0, then ûb(λ, ·) has no (respec-
tively, exactly one) zero in (x0, b) if W (ub(λ, ·), ûb(λ, ·)) > 0 (respectively,
W (ub(λ, ·), ûb(λ, ·)) < 0). On the other hand, if ûb(λ, x0)/ub(λ, x0) < 0, then
ûb has no (respectively, exactly one) zero in (x0, b) if W (ub(λ, ·), ûb(λ, ·)) <
0 (respectively, W (ub(λ, ·), ûb(λ, ·)) > 0).

A result analogous to Theorem 2.4 holds if τ − λ is nonoscillatory at a. That
is, one can establish the existence of a distinguished real-valued solution ua(λ, ·)
of (τ − λ)u = 0 which satisfies the following analog to (2.4): If ûa(λ, ·) is any
real-valued solution of (τ − λ)u = 0 linearly independent of ua(λ, ·), then

lim
x↓a

ua(λ, x)

ûa(λ, x)
= 0.
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Analogs of item (ii) and (iii) of Theorem 2.4 subsequently hold for ua(λ, ·) and
any real-valued solution ûa(λ, ·) linearly independent of ua(λ, ·).

Definition 2.5. Assume Hypothesis 2.1 and suppose that λ ∈ R. If τ − λ is
nonoscillatory at c ∈ {a, b}, then a nontrivial real-valued solution uc(λ, ·) of (τ −
λ)u = 0 which satisfies

lim
x→c
x∈(a,b)

uc(λ, x)

ûc(λ, x)
= 0

for any other linearly independent real-valued solution ûc(λ, ·) of (τ − λ)u = 0 is
called a principal solution of (τ − λ)u = 0 at c. A real-valued solution of (τ −
λ)u = 0 linearly independent of a principal solution at c is called a nonprincipal
solution of (τ − λ)u = 0 at c.

Next, we recall that a straight forward computation yields Jacobi’s celebrated
factorization identity

− (pg′)′ + h−1(ph′)′g = −h−1
(
ph2(g/h)′

)′
,

g, pg′, h, ph′ ∈ ACloc((a, b)), h > 0 on (a, b), (2.6)

or, in a more symmetrical form,

− h(pg′)′ + (ph′)′g = −
(
ph2(g/h)′

)′
,

g, pg′, h, ph′ ∈ ACloc((a, b)), h > 0 on (a, b). (2.7)

Remark 2.6. Suppose that for some λ0 ∈ R, u(λ0, ·) is a solution of τu = λ0u
on (a, b) such that u(λ0, ·) > 0 on (a, b). Then, for a.e. x ∈ (a, b),

τu(λ0, x) = λ0u(λ0, x) is equivalent to q(x) =
[p(x)u′(λ0, x)]′

u(λ0, x)
+ λ0r(x).

Similarly, for z ∈ C,

τv = zv is equivalent to − (pv′)′ +
[pu′(λ0, ·)]′

u(λ0, ·)
v = (z − λ0)rv;

in particular, a convenient candidate for h in (2.6) is u(λ0, ·). Moreover, abbre-
viating

φ(λ0, x) =
p(x)u′(λ0, x)

u(λ0, x)
=
u[1](λ0, x)

u(λ0, x)
, x ∈ (a, b),

one obtains

q(x) = φ′(λ0, x) + p(x)−1φ(λ0, x)2 + λ0r(x) for a.e. x ∈ (a, b), (2.8)

and for the quadratic form associated with Tmin,

(f, Tminf)L2((a,b);rdx) =

∫ b

a
r(x)dx f(x)(τf)(x)
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=

∫ b

a
dx f(x)[−(p(x)f ′(x))′ + q(x)f(x)]

=

∫ b

a
dx
[
p(x)−1

∣∣f [1](x)
∣∣2 + q(x)|f(x)|2

]
=

∫ b

a
dx
{
p(x)−1

∣∣f [1](x)
∣∣2 +

[
φ′(λ0, x) + p(x)−1φ(λ0, x)2 + λ0r(x)

]
|f(x)|2

}
=

∫ b

a
dx p(x)−1

∣∣f [1](x)− φ(λ0, x)f(x)
∣∣2 + λ0

∫ b

a
r(x)dx |f(x)|2

=

∫ b

a
dx p(x)u(λ0, x)2

∣∣∣∣( f(x)

u(λ0, x)

)′∣∣∣∣2 + λ0

∫ b

a
r(x)dx |f(x)|2

> λ0‖f‖2L2((a,b);rdx), 0 6= f ∈ dom(Tmin), supp (f) ⊂ (a, b) compact, (2.9)

permits the necessary integrations by part with vanishing boundary terms. We
also note that equality would hold in (2.9) if and only if for some C ∈ C\{0},
f(x) = Cu(λ0, x), x ∈ (a, b), which contradicts supp (f) ⊂ (a, b) compact.

For subsequent use in connection with a perturbative Hardy-type inequality
in Theorem 3.1, we isolate one particular quadratic form equality related to (2.9),
namely,∫ b

a
dx
{
p(x)|f ′(x)|2 + [q(x)− λ0r(x)]|f(x)|2

}
=

∫ b

a
dx p(x)u(λ0, x)2

∣∣∣∣( f(x)

u(λ0, x)

)′∣∣∣∣2 > 0,

0 6= f ∈ dom(Tmin), supp (f) ⊂ (a, b) compact. (2.10)

Finally, if [c, d] ⊂ (a, b) is compact and hence τ |[c,d] is regular, the computa-
tions leading to (2.9) also apply to the Friedrichs extension TF,(c,d) of Tmin,(c,d),
the minimal operator associated to τ in L2((c, d); rdx). Here,

TF,(c,d)f = τf, f ∈ dom(TF,(c,d)) =
{
g ∈ L2((c, d); rdx)

∣∣ g, g[1] ∈ AC([c, d]);

g(c) = 0 = g(d); τg ∈ L2((c, d); rdx)
}
.

In fact, they apply to the sesquilinear form QF,(c,d) associated with TF,(c,d), where

QF,(c,d)(f, g) =
(
|TF,(c,d)|1/2f, sgn(TF,(c,d))|TF,(c,d)|1/2g

)
L2((c,d);rdx)

,

f, g ∈ dom(QF,(c,d)) = dom
(
|TF,(c,d)|1/2

)
=
{
h ∈ L2((c, d); rdx)

∣∣h ∈ AC([c, d]);

h(c) = 0 = h(d); (pr)−1/2h[1] ∈ L2((c, d); rdx)
}
.

Then one obtains in a manner entirely analogous to (2.9),

QF,(c,d)(f, f) =

∫ d

c
dx
[
p(x)−1

∣∣f [1](x)
∣∣2 + q(x)|f(x)|2

]
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=

∫ d

c
dx
{
p(x)−1

∣∣f [1](x)
∣∣2 +

[
φ′(λ0, x) + p(x)−1φ(λ0, x)2 + λ0r(x)

]
|f(x)|2

}
=

∫ d

c
dx p(x)−1

∣∣f [1](x)− φ(λ0, x)f(x)
∣∣2 + λ0

∫ b

a
r(x)dx |f(x)|2

=

∫ d

c
dx p(x)u0(λ0, x)2

∣∣∣∣( f(x)

u(λ0, x)

)′∣∣∣∣2 + λ0

∫ d

c
r(x)dx |f(x)|2

≥ λ0‖f‖2L2((c,d);rdx), 0 6= f ∈ dom
(
|TF,(c,d)|1/2

)
, (2.11)

where equality holds in (2.11) if and only if for some C ∈ C\{0},

f(x) = Cu(λ0, x), x ∈ [c, d]. (2.12)

If (2.12) holds, then λ0 is the lowest eigenvalue of TF,(c,d) and at the same time
u(λ0, ·) ∈ dom(TF,(c,d)) is the corresponding eigenfunction of TF,(c,d), unique up
to constant multiples, and strictly positive on (c, d).

Hypothesis 2.7. Let (a, b) ⊆ R and suppose that p0, q0, and r0 satisfy Hy-
pothesis 2.1. In addition, assume that for some λ0 ∈ R, u0(λ0, ·) > 0 is a strictly
positive solution of τ0u = λ0u on (a, b) (implying Tmin ≥ λ0I).

In the following we discuss factorizations of Sturm–Liouville differential ex-
pressions and use them to prove a natural generalization of Hardy’s inequality
(1.3) from the point of view of quadratic form perturbation theory comparing τ0
and τq1 = τ0 + r−10 q1 for appropriate q1.

Assuming Hypothesis 2.7, we start with a factorization of our comparison
differential expression τq1,γ,x0 on (a, b),

τq1,γ,x0 = τ0 + r0(x)−1q1,γ,x0(x)

=
1

r0(x)

[
− d

dx
p0(x)

d

dx
+ q0(x)

+
[
γ2 − (1/4)

]
p0(x)−1u0(λ0, x)−4

(∫ x

x0

dt p0(t)
−1u0(λ0, t)

−2
)−2]

,

γ ∈ [0,∞) ∪ i(0,∞), x0 ∈ {a, b}, for a.e. x ∈ (a, b). (2.13)

Introducing the differential expressions

Aα,x0 =

[
p0(x)

r0(x)

]1/2
u0(λ0, x)

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)α

× d

dx
u0(λ0, x)−1

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)−α

= [p0(x)/r0(x)]1/2
d

dx
− [p0(x)/r0(x)]1/2u0(λ0, x)−1u′0(λ0, x)

− α[p0(x)r0(x)]−1/2u0(λ0, x)−2
(∫ x

x0

dt p0(t)
−1u0(λ0, t)

−2
)−1

,
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α ∈ C, x0 ∈ {a, b}, for a.e. x ∈ (a, b), (2.14)

A+
α,x0 = − 1

r0(x)
u0(λ0, x)−1

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)−α

× d

dx
[p0(x)r0(x)]1/2u0(λ0, x)

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)α

= − 1

r0(x)

d

dx
[p0(x)r0(x)]1/2 − [p0(x)r0(x)]−1/2u0(λ0, x)−1p0(x)u′0(λ0, x)

− α[p0(x)r0(x)]−1/2u0(λ0, x)−2
(∫ x

x0

dt p0(t)
−1u0(λ0, t)

−2
)−1

,

α ∈ C, x0 ∈ {a, b}, for a.e. x ∈ (a, b), (2.15)

one verifies that

τq1,γ,x0 = A+
α,x0Aα,x0 + λ0 if and only if γ2 − (1/4) = α(α− 1). (2.16)

Moreover, since u0(λ0, ·) > 0 is a solution of τ0u = λ0u on (a, b), linearly in-
dependent solutions uγ,±(λ0, ·) of τq1,γ,x0u = λ0u on (a, b) are explicitly given
by

uγ,±(λ0, x) = u0(λ0, x)

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)(1/2)±γ

,

γ ∈ (0,∞) ∪ i(0,∞), x0 ∈ {a, b}, for a.e. x ∈ (a, b), (2.17)

u0,1(λ0, x) = u0(λ0, x)

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)1/2

,

u0,2(λ0, x) = u0(λ0, x)

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)1/2

× ln

(∫ max(x,x0)

min(x,x0)
dt p0(t)

−1u0(λ0, t)
−2
)
,

γ = 0, x0 ∈ {a, b}, for a.e. x ∈ (a, b). (2.18)

The factorization (2.16) of τq1,γ,x0 is possible for α ∈ R if and only if γ ≥ 0. In
this case A+

α,x0 , α ∈ R, is the adjoint differential expression of Aα,x0 and, as we
will show in the next section, this factorization naturally leads to an inequality
generalizing Hardy’s inequality.

3. Perturbative Hardy-type inequalities

In this section we derive our principal results on perturbative Hardy-type
inequalities. We start with the following fundamental result:

Theorem 3.1. Assume Hypothesis 2.7 and introduce the linear space

D0((a, b)) =
{
g ∈ L2((a, b); r0dx)

∣∣ g ∈ ACloc((a, b)); supp (g) ⊂ (a, b) compact;

p
1/2
0 g′ ∈ L2((a, b); dx)

}
. (3.1)
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If ∣∣∣∣ ∫
a
dx p0(x)−1u0(λ0, x)−2

∣∣∣∣ <∞ (3.2)

(i.e., u0(λ0, ·) is nonprincipal at a), then for all 0 6= f ∈ D0((a, b)),∫ b

a
dx p0(x)|f ′(x)|2 >

∫ b

a
dx

[
λ0 r0(x)− q0(x) + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2. (3.3)

If, in addition, ∣∣∣∣ ∫ b

dx p0(x)−1u0(λ0, x)−2
∣∣∣∣ =∞ (3.4)

(i.e., u0(λ0, ·) is principal at b), then the constant 1/4 in (3.3) is optimal.

Similarly, if ∣∣∣∣ ∫ b

dx p0(x)−1u0(λ0, x)−2
∣∣∣∣ <∞

(i.e., u0(λ0, ·) is nonprincipal at b), then for all 0 6= f ∈ D0((a, b)),∫ b

a
dx p0(x)|f ′(x)|2 >

∫ b

a
dx

[
λ0 r0(x)− q0(x) + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ b

x
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2. (3.5)

If, in addition, ∣∣∣∣ ∫
a
dx p0(x)−1u0(λ0, x)−2

∣∣∣∣ =∞ (3.6)

(i.e., u0(λ0, ·) is principal at a), then the constant 1/4 in (3.5) is optimal.

Proof. It suffices to focus on (3.3), the proof of (3.5) being analogous. But
inequality (3.3) is an instant consequence of inequality (2.10) upon identifying

τ with τq1,γ,a , γ ∈ [0,∞) ∪ i(0,∞),

u(λ0, ·) with uγ,+(λ0, ·) = u0(λ0, ·)
(∫ •

a
dt p0(t)

−1u0(λ0, t)
−2
)(1/2)+γ

,

γ ∈ (0,∞) ∪ i(0,∞),

u(λ0, ·) with u0,1(λ0, ·) = u0(λ0, ·)
(∫ •

a
dt p0(t)

−1u0(λ0, t)
−2
)1/2

, γ = 0,

p with p0,

q with q0 +
[
γ2 − (1/4)

]
p−10 u0(λ0, ·)−4

(∫ •
a
dt p0(t)

−1u0(λ0, t)
−2
)−2

,
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γ ∈ [0,∞) ∪ i(0,∞),

r with r0,

which results in∫ b

a
dx

{
p0(x)|f ′(x)|2 +

[
q0(x)− λ0r0(x)

+
[
γ2 − (1/4)

]
p0(x)−1u0,1(λ0, x)−4

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2
}

=

∫ b

a
dx p0(x)uγ,+(λ0, x)2

∣∣∣∣( f(x)

uγ,+(λ0, x)

)′∣∣∣∣2 ≥ 0,

f ∈ dom(Tq1,γ,a,min), supp (f) compact in (a, b), γ ∈ [0,∞). (3.7)

Here we identify uγ,+(λ0, ·) and u0,1(λ0, ·) if γ = 0 and Tq1,γ,a,min represents the
minimal operator associated with τq1,γ,a .

Since f has compact support in (a, b), and [c, d] ⊂ (a, b) in (2.11) can be
chosen such that [c, d] contains the support of f , one concludes that

(3.7) extends to f ∈ D0((a, b)). (3.8)

Choosing γ = 0 yields inequality (3.3).
Since equality in (3.7), and hence equality under the conditions of (3.8), can

only hold for

f(x) = 0 and f(x) = u0,1(λ0, x) = u0(λ0, x)

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)1/2

,

x ∈ (a, b), (3.9)

the strict perturbative Hardy-type inequality (3.3) results as f ∈ D0((a, b)) (but
not u0,1(λ0, ·)) has compact support.

To see that the constant 1/4 in (3.3) is optimal, suppose by way of contra-
diction that the 1/4 in (3.3) can be replaced by (1/4) + ε for some ε ∈ (0,∞).
Writing ε = −γ2 for some γ = γ(ε) ∈ i(0,∞), then after rearranging terms in
(3.7) and a simple integration by parts, one obtains

(f, [Tq1,γ,a,min − λ0I]f)L2((a,b);r0dx) ≥ 0,

f ∈ dom(Tq1,γ,a,min), supp (f) compact in (a, b),

so that Tq1,γ,a,min ≥ λ0I. On the other hand, according to (3.4), the solutions
uγ,±(λ0, ·) in (2.17), and hence by Theorem 2.2(ii) every solution u of τq1,γ,au =
λ0u, is oscillatory near b. Thus, τq1,γ,a−λ0 is oscillatory at b and hence Tq1,γ,a,min �
λ0I, which is a contradiction.

One notes that the existence of u0(λ0, ·) > 0 on (a, b) in Theorem 3.1 implies
together with u0,1(λ, · ) > 0 in (2.18) that

T0,min ≥ λ0I, T0,F ≥ λ0I, Tq1,γ,a,min ≥ λ0I, Tq1,γ,a,F ≥ λ0I. (3.10)
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Remark 3.2. One can also prove (3.3) for γ = 0 directly as follows: Choose
c, d ∈ (a, b), c < d and f ∈ ACloc((a, b)). Then∫ d

c
dx p0(x)u0(λ0, x)2

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)

×
∣∣∣∣[u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

f(x)

]′ ∣∣∣∣2
=

∫ d

c
dx

{
p0(x)|f ′(x)|2 + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2
|f(x)|2

+ u0(λ0, x)−2p0(x)u′0(λ0, x)2|f(x)|2 + u0(λ0, x)−3u′0(λ0, x)

×
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1
|f(x)|2

−
[
f(x)f ′(x) + f(x)f ′(x)

][
u0(λ0, x)−1p0(x)u′0(λ0, x)

+ 2−1u0(λ0, x)−2
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1]}

=

∫ d

c
dx

{
p0(x)|f ′(x)|2 + [q0(x)− λ0 r0(x)]|f(x)|2

− 4−1p0(x)−1u0(λ0, x)−4
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2
|f(x)|2

}
− |f(x)|2

[
p0(x)u0(λ0, x)−1u′0(λ0, x)

+ 2−1u0(λ0, x)−2
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1]∣∣∣∣d

x=c

≥ 0, (3.11)

integrating by parts once. Choosing f ∈ D0((a, b)) and letting c ↓ a, d ↑ b then
yields (3.3) in the case γ = 0. The argument extends to γ ∈ (0,∞), but we omit
the details.

Remark 3.3. A straightforward application of Theorem 3.1 is the following
lower boundedness observation. Assume that the coefficients in the differential
expressions τ0 = r−10 [−(d/dx)p0(d/dx) + q0] and its perturbation τq1 = τ0 +
r−10 q1 satisfy Hypothesis 2.1. Introducing the minimal operator Tq1,min and its
Friedrichs extension Tq1,F corresponding to τq1 , the inequality

q1(x) ≥ q1,0,x0(x) for a.e. x ∈ (a, b),

where

q1,0,x0(x) = −4−1p0(x)−1u0(λ0, x)−4
(∫ x

x0

dt p0(t)
−1u0(λ0, t)

−2
)−2
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for a.e. x ∈ (a, b), and x0 ∈ {a, b},

combined with the inequalities (3.3), (3.5) then yields the lower bounds

Tq1,min ≥ λ0I, Tq1,F ≥ λ0I.

Next we show how to obtain a result analogous to Theorem 3.1 with the com-
pact support assumption removed. This requires some notation and preliminary
results which we shall introduce next. We begin by introducing, for fixed λ0 ∈
R, functions W , α and β defined a.e. on (a, b) as follows. First, we introduce the
weight

W = 4−1p−10 u0(λ0, ·)−4
(∫ •

a
dt p0(t)

−1u0(λ0, t)
−2
)−2

= −q1,0,a, (3.12)

and then (with f±(x) = [|f(x)| ± f(x)]/2 for a.e. x ∈ (a, b))

α =

{
q0,+, λ0 ≥ 0,

q0,+ − λ0r0, λ0 < 0,
β =

{
λ0r0 + q0,− +W, λ0 ≥ 0,

q0,− +W, λ0 < 0.
(3.13)

One notes that β > 0 a.e. on (a, b) for all λ0 ∈ R and α > 0 (respectively, α ≥ 0)
a.e. on (a, b) if λ0 < 0 (respectively, λ0 ≥ 0).

Next, we introduce

Ḣp0,α((a, b)) =

{
f : (a, b)→ C

∣∣∣∣ f ∈ ACloc((a, b)),

‖f‖2p0,α :=

∫ b

a
dx
[
p0(x)|f ′(x)|2 + α(x)|f(x)|2

]
<∞

}
. (3.14)

Remark 3.4. By (3.3), ‖ · ‖p0,α is a norm on D0((a, b)). However, ‖ · ‖p0,α is
not necessarily a norm on Ḣp0,α((a, b)) since it does not separate points in general
(e.g., take p0 = r0 ≡ 1, q0 = 0, and λ0 ≥ 0).

Lemma 3.5. If {fn}∞n=1 is a Cauchy sequence in (D0((a, b)), ‖ · ‖p0,α), then
there exists a unique f ∈ Ḣp0,α((a, b)) ∩ L2((a, b);βdx) such that

lim
n→∞

[
‖fn − f‖p0,α + ‖fn − f‖L2((a,b);βdx)

]
= 0. (3.15)

Proof. The uniqueness of f follows from the property (3.15), so it suffices to
prove existence. Since {fn}∞n=1 is a Cauchy sequence in (D0((a, b)), ‖·‖p0,α), (3.3)
implies that {f ′n}∞n=1 is a Cauchy sequence in L2((a, b); p0dx) and {fn}∞n=1 is a
Cauchy sequence in L2((a, b);αdx) and in L2((a, b);βdx). Thus, there exist g1 ∈
L2((a, b); p0dx) and g0 ∈ L2((a, b);αdx) ∩ L2((a, b);βdx) such that

lim
n→∞

‖f ′n − g1‖L2((a,b);p0dx) = lim
n→∞

‖fn − g0‖L2((a,b);αdx)

= lim
n→∞

‖fn − g0‖L2((a,b);βdx) = 0. (3.16)
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In particular, there is a subsequence {fnk}∞k=1 of {fn}∞n=1 and a set N ⊂ (a, b)
with |N | = 0 (here | · | temporarily abbreviates Lebesgue measure) such that

lim
k→∞

f ′nk(x) = g1(x), lim
k→∞

fnk(x) = g0(x); x ∈ (a, b)\N. (3.17)

Fix c ∈ (a, b)\N . Then for all x ∈ (a, b)\N ,

g0(x) = lim
k→∞

fnk(x)

= lim
k→∞

[
fnk(c) +

∫ x

c
dt [f ′nk(t)− g1(t)] +

∫ x

c
dt g1(t)

]
, (3.18)

where∣∣∣∣ ∫ x

c
dt [f ′nk(t)− g1(t)]

∣∣∣∣ ≤ ∫ x

c
dt |f ′nk(t)− g1(t)|

=

∫ x

c
dt p0(t)

−1/2p0(t)
1/2|f ′nk(t)− g1(t)|

≤
(∫ x

c
dt p0(t)

−1
)1/2(∫ x

c
dt p0(t)|f ′nk(t)− g1(t)|2

)1/2

≤
(∫ x

c
dt p0(t)

−1
)1/2

‖f ′nk − g1‖L2((a,b);p0dx), (3.19)

and the upper bound in (3.19) converges to 0 as k →∞ by (3.16). By (3.18) and
(3.19),

g0(x) = g0(c) +

∫ x

c
dt g1(t), x ∈ (a, b)\N, (3.20)

and it follows that g0 ∈ ACloc((a, b)) and g′0 = g1. The conclusion of the lemma
now follows from (3.16) by taking f = g0.

Next, we introduce

Ḣp0,α,0((a, b)) =
{
f ∈ Ḣp0,α((a, b))

∣∣ there is a Cauchy sequence {fn}∞n=1 in

(D0((a, b)), ‖ · ‖p0,α) such that

lim
n→∞

[
‖fn − f‖p0,α + ‖fn − f‖L2((a,b);βdx)

]
= 0
}
. (3.21)

=
{
f ∈ Ḣp0,α((a, b))

∣∣ there is a Cauchy sequence {fn}∞n=1 in

(D0((a, b)), ‖ · ‖p0,α) such that for all a < c < d < b,

lim
n→∞

‖fn − f‖L2((c,d);Wdx) = 0
}
. (3.22)

Remark 3.6.

(i) If f ∈ Ḣp0,α((a, b)) and {fn}∞n=1 is a Cauchy sequence in the space
(D0((a, b)), ‖ · ‖p0,α) satisfying the limit condition in (3.21), then (3.22) is
clearly satisfied. On the other hand, if f ∈ Ḣp0,α((a, b)) and {fn}∞n=1 is
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a Cauchy sequence in (D0((a, b)), ‖ · ‖p0,α) satisfying the limit condition in
(3.22), then by Lemma 3.5, there exists g ∈ Ḣp0,α((a, b)) such that

‖fn − g‖L2((a,b);Wdx) ≤ ‖fn − g‖p0,α + ‖fn − g‖L2((a,b);βdx) → 0 as n→∞.
(3.23)

Hence, f = g, and thus f satisfies the condition in (3.21).

(ii) Lemma 3.5 implies that Ḣp0,α,0((a, b)) can be identified with the completion
of (D0((a, b)), ‖ · ‖p0,α).

(iii) If λ0 6= 0, then Ḣp0,α,0((a, b)) ⊆ L2((a, b); r0dx). If λ0 = 0, then
Ḣp0,α,0((a, b)) is not necessarily a subspace of L2((a, b); r0dx), see Remark
3.9 below for an example.

The following result plays a fundamental role in the proof of Corollary 3.14.

Theorem 3.7. Assume Hypothesis 2.7 and suppose that∣∣∣∣ ∫
a
dt p0(t)

−1u0(λ0, t)
−2
∣∣∣∣ <∞. (3.24)

Then for all f ∈ Ḣp0,α,0((a, b)),∫ b

a
dx p0(x)|f ′(x)|2 ≥

∫ b

a
dx

[
λ0r0(x)− q0(x) + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2. (3.25)

If, in addition,

u0(λ0, ·)
(∫ •

a
dt p0(t)

−1u0(λ0, t)
−2
)1/2

/∈ Ḣp0,α,0((a, b)), (3.26)

then inequality (3.25) is strict for 0 6= f ∈ Ḣp0,α,0((a, b)).

Proof. Let f ∈ Ḣp0,α,0((a, b)) and {fn}∞n=1 be a Cauchy sequence in the space
(D0((a, b)), ‖ · ‖p0,α) satisfying

lim
n→∞

[
‖fn − f‖p0,α + ‖fn − f‖L2((a,b);βdx)

]
= 0. (3.27)

Then by (3.27) and (3.3),∫ b

a
dx
[
p0(x)|f ′(x)|2 + α(x)|f(x)|2

]
= lim

n→∞

∫ b

a
dx
[
p0(x)|f ′n(x)|2 + α(x)|fn(x)|2

]
≥ lim inf

n→∞

∫ b

a
dx β(x)|fn(x)|2 =

∫ b

a
dx β(x)|f(x)|2, (3.28)

which is the desired inequality. One notes that the two equalities in (3.28) follow
from (3.27), while the inequality in (3.28) uses (3.3).



142 Fritz Gesztesy, Roger Nichols, and Michael M.H. Pang

Next, suppose, in addition, that (3.26) holds and that f 6= 0. By (3.27) there
exists a subsequence {fnk}k∈N of {fn}n∈N, and a set N ⊂ (a, b) of zero Lebesgue
measure, such that for all x ∈ (a, b)\N ,

lim
k→∞

fnk(x) = f(x) and lim
k→∞

f ′nk(x) = f ′(x).

Then, for all x ∈ (a, b)\N ,

lim
k→∞

[
u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

fnk(x)

]′
=

[
u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

f(x)

]′
.

By (3.26),

u0(λ0, ·)−1
(∫ •

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

f(·)

is not a constant function on (a, b). Hence, by Fatou’s lemma, (3.11), and (3.27),

0 <

∫ b

a
dx p0(x)u0(λ0, x)2

∫ x

a
dt p0(t)

−1u0(λ0, t)
−2

×
∣∣∣∣[u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

f(x)

]′∣∣∣∣2
≤ lim inf

k→∞

∫ b

a
dx p0(x)u0(λ0, x)2

∫ x

a
dt p0(t)

−1u0(λ0, t)
−2

×
∣∣∣∣[u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

fnk(x)

]′∣∣∣∣2
= lim inf

k→∞

∫ b

a
dx
{
p0(x)|f ′nk(x)|2 + [q0(x)− λ0r0(x)−W (x)]|fnk(x)|2

}
= lim

k→∞

∫ b

a
dx
{
p0(x)|f ′nk(x)|2 + [q0(x)− λ0r0(x)−W (x)]|fnk(x)|2

}
=

∫ b

a
dx
{
p0(x)|f ′(x)|2 + [q0(x)− λ0r0(x)−W (x)]|f(x)|2

}
. (3.29)

Remark 3.8. Since D0((a, b)) ⊂ Ḣp0,α,0((a, b)), Theorem 3.1 implies that the
constant 1/4 in (3.25) is optimal subject to condition (3.4).

Remark 3.9. In the special case p0 = r0 = u0(0, ·) = 1, q0 = λ0 = 0, and
−∞ < a < b = ∞, it has been shown in [5, Proposition 3.1 and Theorem 3.4]
that

Ḣp0,α,0((a,∞)) =
{
f ∈ ACloc((a,∞))

∣∣ lim
x↓a

f(x) = 0; f ′ ∈ L2((a,∞); dx)
}

=
{
f ∈ ACloc([a,∞))

∣∣ f(a) = 0; f ′ ∈ L2((a,∞); dx)
}

=
{
f ∈ ACloc((a,∞))

∣∣ (· − a)−1f, f ′ ∈ L2((a,∞); dx)
}
,
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where

ACloc([a,∞)) = {f : [a,∞)→ C | f ∈ AC([a, c]) for all c ∈ (a,∞)}.

In this case Ḣp0,α,0((a,∞)) 6⊂ L2((a,∞); dx) (cf. [5, Remark 3.3]), in particular,

Ḣp0,α,0((a,∞)) 6⊂ H2
0 ((a,∞); dx),

where, as usual, H2
0 ((a,∞); dx) = C∞0 ((a,∞))

H2((a,∞))
and

H2((a,∞)) =
{
f : (a,∞)→ C

∣∣ f is weakly differentiable on (a,∞);

‖f‖H2((a,∞)) <∞
}

=
{
f ∈ L2((a,∞); dx)

∣∣ f ∈ AC([a, b]) for all b ∈ (a,∞); f ′ ∈ L2((a,∞); dx)
}
,

denotes the classical Sobolev space with associated norm

‖f‖2H2((a,∞)) =

∫ ∞
a

dx
[
|f ′(x)|2 + |f(x)|2

]
, f ∈ H2((a,∞)).

These observations show that in the present case, (1.3) extends to all

f ∈
{
g ∈ ACloc([a,∞))

∣∣ g(a) = 0; g′ ∈ L2((a,∞); dx)
}
, (3.30)

which is of course well-known.

In analogy with (3.1), let

Hp0,r0((a, b)) =
{
g ∈ L2((a, b); r0dx)

∣∣ g ∈ ACloc((a, b)); p
1/2
0 g′ ∈ L2((a, b); dx)

}
and define the norm ‖ · ‖p0,r0 : Hp0,r0((a, b))→ [0,∞) on Hp0,r0((a, b)) by

‖f‖2p0,r0 =

∫ b

a
dx
[
p0(x)|f ′(x)|2 + r0(x)|f(x)|2

]
, f ∈ Hp0,r0((a, b)).

One notes that D0((a, b)) (cf. (3.1)) is a subspace of Hp0,r0((a, b)).

Lemma 3.10. If {fn}∞n=1 is a Cauchy sequence in (D0((a, b)), ‖ ·‖p0,r0), then
there exists a unique f ∈ Hp0,r0((a, b)) such that

lim
n→∞

‖fn − f‖p0,r0 = 0.

Proof. Uniqueness of the limit is clear, so it suffices to prove the existence
claim. Since {fn}∞n=1 is a Cauchy sequence in (D0((a, b)), ‖ · ‖p0,r0), it fol-
lows that {f ′n}∞n=1 and {fn}∞n=1 are Cauchy sequences in L2((a, b); p0dx) and
L2((a, b); r0dx), respectively. Thus, there exist g1 ∈ L2((a, b); p0dx) and g0 ∈
L2((a, b); r0dx) such that

lim
n→∞

‖f ′n − g1‖L2((a,b);p0dx) = lim
n→∞

‖fn − g0‖L2((a,b);r0dx) = 0. (3.31)
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Therefore, there exist N ⊂ (a, b) with |N | = 0 (here | · | temporarily abbreviates
Lebesgue measure) and a subsequence {fnk}∞k=1 of {fn}∞n=1 such that

lim
k→∞

f ′nk(x) = g1(x), lim
k→∞

fnk(x) = g0(x); x ∈ (a, b)\N. (3.32)

Fix c ∈ (a, b)\N . Then

g0(x) = lim
k→∞

fnk(x)

= lim
k→∞

{
fnk(c) +

∫ x

c
dt [f ′nk(t)− g1(t)] +

∫ x

c
dt g1(t)

}
, x ∈ (a, b)\N,

(3.33)

where∣∣∣∣ ∫ x

c
dt [f ′nk(t)− g1(t)]

∣∣∣∣ ≤ ∫ x

c
dt |f ′nk(t)− g1(t)|

=

∫ x

c
dt p0(t)

−1/2p0(t)
1/2|f ′nk(t)− g1(t)|

≤
[ ∫ x

c
dt p0(t)

−1
]1/2[ ∫ x

c
dt p0(t)|f ′nk(t)− g1(t)|2

]1/2
≤
[ ∫ x

c
dt p0(t)

−1
]1/2
‖f ′nk − g1‖L2((a,b);p0dx), x ∈ (a, b)\N. (3.34)

The estimate in (3.34) taken together with (3.31) yields

lim
k→∞

∫ x

c
dt [f ′nk(t)− g1(t)] = 0, x ∈ (a, b)\N,

so that (3.33) reduces to

g0(x) = g0(c) +

∫ x

c
dt g1(t), x ∈ (a, b)\N. (3.35)

In particular, (3.35) implies that g0 ∈ ACloc((a, b)) and g′0 = g1. Therefore, f :=
g0 is the desired function.

Next, introduce the subspace

Hp0,r0,0((a, b)) =
{
g ∈ Hp0,r0((a, b))

∣∣ there exists a Cauchy sequence

{gn}∞n=1 in (D0((a, b)), ‖ · ‖p0,r0) such that

lim
n→∞

‖gn − g‖p0,r0 = 0
}

=
{
g ∈ Hp0,r0((a, b))

∣∣ there exists a Cauchy sequence

{gn}∞n=1 in (D0((a, b)), ‖ · ‖p0,r0) such that

lim
n→∞

‖gn − g‖L2((a,b);r0dx) = 0
}
. (3.36)
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Remark 3.11. To justify the second equality in (3.36), it suffices to verify the
containment “⊇” (the containment “⊆” follows immediately from the definition
of ‖ · ‖p0,r0). In turn, to establish the containment “⊇,” it suffices to note that
if f ∈ Hp0,r0((a, b)) and {fn}∞n=1 is a Cauchy sequence in (D0((a, b)), ‖ · ‖p0,r0)
with limn→∞ ‖fn − f‖L2((a,b);r0dx) = 0, then by Lemma 3.10, there exists g ∈
Hp0,r0((a, b)) such that

‖fn − g‖L2((a,b);r0dx) ≤ ‖fn − g‖p0,r0 −→ 0 as n→∞.

Thus, g = f , and it follows that f belongs to the middle set in (3.36).

Define the operator A : D0((a, b))→ L2((a, b); r0dx) by

Af = p
1/2
0 r

−1/2
0 f ′, f ∈ dom(A) = D0((a, b)).

On D0((a, b)), ‖ · ‖p0,r0 coincides with the graph norm of A, so an elementary
argument employing Lemma 3.10 yields the following result.

Lemma 3.12. The operator A is closable and dom
(
A
)

= Hp0,r0,0((a, b)).

For completeness we recall the following result to be used in the proof of
Corollary 3.14 below:

Lemma 3.13. Suppose T : dom(T ) → H2 is a closed operator, dom(T ) ⊆
H1, and S is a closable operator from dom(S) ⊆ H1 to H2 (or even H3). If
dom(S) ⊇ dom(T ), then S is T -bounded.

With these preparations in place, we now state and prove, as a consequence of
Theorem 3.7, the following alternative to Theorem 3.1 which avoids the compact
support hypothesis on f in (3.3) and improves on [6, Theorem 3.2].

Corollary 3.14. Assume Hypothesis 2.7 and suppose that∣∣∣∣ ∫
a
dx p0(x)−1u0(λ0, x)−2

∣∣∣∣ <∞ (3.37)

(i.e., u0(λ0, ·) is nonprincipal at a). Let B be a closed operator restriction of A
(i.e., B is closed, dom(B) ⊆ dom

(
A
)
, Bf = Af for all f ∈ dom(B)). Assume

that D0((a, b)) ∩ dom(B) is a core of B and that

dom(B) ⊆ dom
(
(q0,+/r0)

1/2
)
. (3.38)

Then for all f ∈ dom(B),∫ b

a
dx p0(x)|f ′(x)|2 ≥

∫ b

a
dx

[
λ0 r0(x)− q0(x) + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2. (3.39)



146 Fritz Gesztesy, Roger Nichols, and Michael M.H. Pang

Similarly, if ∣∣∣∣ ∫ b

dx p0(x)−1u0(λ0, x)−2
∣∣∣∣ <∞

(i.e., u0(λ0, ·) is nonprincipal at b), then for all f ∈ dom(B),∫ b

a
dx p0(x)|f ′(x)|2 ≥

∫ b

a
dx

[
λ0 r0(x)− q0(x) + 4−1p0(x)−1u0(λ0, x)−4

×
(∫ b

x
dt p0(t)

−1u0(λ0, t)
−2
)−2]

|f(x)|2. (3.40)

If, in addition,

u0(λ0, ·)
(∫ •

a
dt p0(t)

−1u0(λ0, t)
−2
)1/2

/∈ dom(B), (3.41)

then inequality (3.39) is strict for 0 6= f ∈ dom(B). Similarly, if, in addition,

u0(λ0, ·)
(∫ b

•
dt p0(t)

−1u0(λ0, t)
−2
)1/2

/∈ dom(B), (3.42)

then inequality (3.40) is strict for 0 6= f ∈ dom(B).

Proof. By Theorem 3.7, it suffices to show that dom(B) ⊆ Ḣp0,α,0((a, b)). By
Lemma 3.13 and (3.38), there exists C ∈ (0,∞) such that∥∥(q0,+/r0)

1/2f
∥∥
L2((a,b);r0dx)

≤ C
[
‖Bf‖L2((a,b);r0dx) + ‖f‖L2((a,b);r0dx)

]
, f ∈ dom(B). (3.43)

Let f ∈ dom(B) and let {fn}∞n=1 be a sequence in D0((a, b))∩ dom(B) such that

lim
n→∞

‖Bfn −Bf‖L2((a,b);r0dx) + ‖fn − f‖L2((a,b);r0dx) = 0. (3.44)

Then by (3.43),

lim
n→∞

∥∥(q0,+/r0)
1/2(fn − f)

∥∥
L2((a,b);r0dx)

= 0. (3.45)

Hence, by (3.44) and (3.45), {fn}∞n=1 is a Cauchy sequence in (D0((a, b)), ‖·‖p0,α).

Therefore, by Lemma 3.5, there exists a unique f̃ ∈ Ḣp0,α((a, b))∩L2((a, b);βdx)
such that

lim
n→∞

[∥∥fn − f̃∥∥p0,α +
∥∥fn − f̃∥∥L2((a,b);βdx)

]
= 0. (3.46)

Since β > 0 a.e. on (a, b), (3.46) implies that there exists Ñ ⊂ (a, b) and a subse-
quence {fnk}∞k=1 of {fn}∞n=1 such that |Ñ | = 0 (here | · | temporarily abbreviates
Lebesgue measure) and

lim
k→∞

fnk(x) = f̃(x), x ∈ (a, b)\Ñ . (3.47)



On Perturbative Hardy-Type Inequalities 147

Similarly, since r0 > 0 a.e. on (a, b), (3.44) implies that there exists N ⊂ (a, b)
and a subsequence {fnkj }

∞
j=1 such that |N | = 0 and

lim
j→∞

fnkj (x) = f(x), x ∈ (a, b)\N. (3.48)

Taken together, relations (3.47) and (3.48) imply f = f̃ . Since f̃ ∈ Ḣp0,α,0((a, b))
by (3.46) and (3.21), the conclusion of the theorem now follows from an applica-
tion of Theorem 3.7.

Next, suppose, in addition, that (3.41) holds and that f 6= 0. Since f = f̃ ,
(3.46) implies the existence of a subsequence {gk}k∈N of {fn}n∈N, and a set N̂ ⊂
(a, b) of Lebesgue measure zero, such that for all x ∈ (a, b)\N̂ ,

lim
k→∞

gk(x) = f(x) and lim
k→∞

g′k(x) = f ′(x).

Then, for all x ∈ (a, b)\N̂ ,

lim
k→∞

[
u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

gk(x)

]′
=

[
u0(λ0, x)−1

(∫ x

a
dt p0(t)

−1u0(λ0, t)
−2
)−1/2

f(x)

]′
.

By (3.41), u0(λ0, ·)−1
( ∫ •

a dt p0(t)
−1u0(λ0, t)

−2
)−1/2

f is not a constant function

on (a, b). Thus, one can repeat the calculations in (3.29), with fnk replaced by
gk, and obtain

0 <

∫ b

a
dx
{
p0(x)|f ′(x)|2 + [q0(x)− λ0r0(x)−W (x)]|f(x)|2

}
.

As the proof of strict inequality in (3.40) if (3.42) holds is entirely analogous, we
omit it.

The case B = A is permitted in Corollary 3.14 as long as (3.38) is satisfied.
Once more, in the case B = A (so that D0((a, b)) ⊆ dom(B) = dom(A)),

the analog of Remark 3.8 applies to optimality of the constant 1/4 in (3.39) and
(3.40).

Finally, returning once more to our starting point, the classical Hardy in-
equality situation, we offer the following fact:

Remark 3.15. If p0 = r0 = u0(0, ·) = 1, q0 = λ0 = 0, and a, b ∈ R, it has
been shown in [4, Lemma 3.4] that ‖ · ‖p0,α and ‖ · ‖p0,r0 are equivalent norms on
D0((a, b)). Thus, in this case,

Ḣp0,α,0((a, b)) = Hp0,r0,0((a, b)) = H2
0 ((a, b)).
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Збуренi нерiвностi типу Хардi
Fritz Gesztesy, Roger Nichols, and Michael M.H. Pang

Для даного трьохкоефiцiєнтного диференцiального виразу Штурма–
Лiувiлля τ0 = r−1

0 [−(d/dx)p0(d/dx)+q0] та його збурення τq1 = τ0+r−1
0 q1

на iнтервалi (a, b) ⊆ R, ми використовуємо iснування строго додатного
розв’язку u0(λ0, ·) > 0 на (a, b) для τ0u0 = λ0u0 для того, щоб одержати
для τq1 нерiвнiсть у квадратичнiй формi, яка природно узагальнює добре
вiдому нерiвнiсть Хардi i зводиться до неї в окремому випадку p0 = r0 =
u0(0, ·) = 1, q0 = λ0 = 0, a ∈ R, b =∞.

Ключовi слова: нерiвнiсть Хардi, головнi i неголовнi розв’язки, теорiя
коливань, оператори Штурма–Лiувiлля
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