Journal of Mathematical Physics, Analysis, Geometry 2005, v. 1, No. 2, p. 192–208

On isometric dilations of commutative systems of linear operators

V.A. Zolotarev

Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61077, Ukraine E-mail:Vladimir.A.Zolotarev@univer.kharkov.ua

Received October 28, 2004

The isometric dilation of two parameter semigroup $T(n) = T_1^{n_1}T_2^{n_2}$, where $n = (n_1, n_2) \in \mathbb{Z}_+^2$, for a commutative system $\{T_1, T_2\}$ of linear bounded operators, one of which is a contraction, $||T_1|| \leq 1$, is constructed. The building of the dilation is based on characteristic qualities of the commutative isometric expansion $\{V_s, V_s^+\}_{s=1}^2$, which was given in the previous work by the author [8]. The isometric dilations U(n) and $\stackrel{+}{U}(n)$ of the semigroups T(n) and $T^*(n)$ are shown to be unitarily linked.

Mathematics Subject Classification 2000: 47A45.

Key words: dilation, commutative systems of linear operators.

The functional model of the contractive linear operator T is commonly considered as an analogue of the spectral decomposition for the nonunitary operator T, [4, 9]. The construction of the functional models is based on the study of the basic properties of the unitary dilation U of the operator T, [4].

In this work, the isometric dilation U(n) for the two-parameter semigroup $T(n) = T_1^{n_1}T_2^{n_2}$ where $n = (n_1, n_2) \in \mathbb{Z}_+^2$ is constructed using the construction of the commutative isometric expansion $\left\{V_s, V_s^+\right\}_1^2$ for the commutative operator system $\{T_1, T_2\}$ such that $||T_1|| \leq 1$ (which was presented in the work [8]). The construction of the dilation U(n) is based on consistency conditions for systems of equations that are corresponding to the expansions $\{V_1, V_2\}$. Similarly, the isometric dilation $\{V_1, V_2\}$, $n \in \mathbb{Z}_+^2$, is constructed using corresponding consistency conditions for equations that are corresponding to the expansions $\{V_1, V_2\}$. It turns

© V.A. Zolotarev, 2005

The work has been done with support of the Weizmann Institute Warron Fund, Israel.

out that the dilations U(n) and U(n) are acting in the separate Hilbert spaces $\mathcal{H}_{N,\Gamma}$ and $\mathcal{H}_{N^*,\Gamma^*}$, besides, the spaces $\mathcal{H}_{N,\Gamma}$ and $\mathcal{H}_{N^*,\Gamma^*}$ are intersecting and their intersection $\mathcal{H} = \mathcal{H}_{N,\Gamma} \cap \mathcal{H}_{N^*,\Gamma^*}$ has such property that $U^*(n_1,0)f = \stackrel{+}{U}(n_1,0)f$, where $f \in \mathcal{H}$ and $n_1 \in \mathbb{Z}_+$. Moreover, the restriction of the dilation $U(n_1,0)$ on \mathcal{H} is a unitary operator such that $P_H U(n_1,0)|_H = T_1^{n_1}, n_1 \in \mathbb{Z}_+$.

I. Consider the commutative system of linear bounded operators $\{T_1, T_2\}$, $[T_1, T_2] = T_1T_2 - T_2T_1 = 0$, in the separable Hilbert space H. Hereinafter, we will suppose that one of the operators of the system $\{T_1, T_2\}$, e.g., T_1 , is a contraction, $||T_1|| \leq 1$. Following [6, 8], define the commutative unitary expansion for the system $\{T_1, T_2\}$.

Definition 1. Let the commutative system of linear bounded operators $\{T_1, T_2\}$ be given in Hilbert space H where T_1 is a contraction, $||T_1|| \leq 1$. The set of mappings

$$V_{1} = \begin{bmatrix} T_{1} & \Phi \\ \Psi & K \end{bmatrix}; \quad V_{2} = \begin{bmatrix} T_{2} & \Phi N \\ \Psi & K \end{bmatrix}; \quad H \oplus E \to H \oplus \tilde{E};$$

$$^{+}_{V1} = \begin{bmatrix} T_{1}^{*} & \Psi^{*} \\ \Phi^{*} & K^{*} \end{bmatrix}; \quad ^{+}_{V2} = \begin{bmatrix} T_{2}^{*} & \Psi^{*} \tilde{N}^{*} \\ \Phi^{*} & K^{*} \end{bmatrix}: \quad H \oplus \tilde{E} \to H \oplus E,$$
(1)

where E and \tilde{E} are Hilbert spaces, is called the commutative unitary expansion of the commutative system of operators T_1 , T_2 in H, $[T_1, T_2] = 0$, if there are such operators σ , τ , N, Γ and $\tilde{\sigma}$, $\tilde{\tau}$, \tilde{N} , $\tilde{\Gamma}$ in the Hilbert spaces E and \tilde{E} , where σ , τ , $\tilde{\sigma}$, $\tilde{\tau}$ are selfadjoint, that the following relations are taking place:

1)
$$\overset{+}{V_1} V_1 = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix};$$
 $V_1 \overset{+}{V_1} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix};$
2) $V_2^* \begin{bmatrix} I & 0 \\ 0 & \tilde{\sigma} \end{bmatrix} V_2 = \begin{bmatrix} I & 0 \\ 0 & \sigma \end{bmatrix};$ $\overset{+}{V_2^*} \begin{bmatrix} I & 0 \\ 0 & \tau \end{bmatrix} \overset{+}{V_2} = \begin{bmatrix} I & 0 \\ 0 & \tilde{\tau} \end{bmatrix};$
3) $T_2 \Phi - T_1 \Phi N = \Phi \Gamma;$ $\Psi T_2 - \tilde{N} \Psi T_1 = \tilde{\Gamma} \Psi;$ (2)
4) $\tilde{N} \Psi \Phi - \Psi \Phi N = K \Gamma - \tilde{\Gamma} K;$

5) $\tilde{N}K = KN.$

Consider the following class of commutative systems of linear operators $\{T_1, T_2\}$.

Definition 2. The commutative system of operators T_1 , T_2 is attributed to the class $C(T_1)$ and is called the contracting T_1 operator system if:

1)
$$T_1$$
 is a contraction, $||T_1|| \leq 1$;
2) $E = \underbrace{\tilde{D}_1 H}_{\tilde{D}_2 H}; \quad \tilde{E} = \overline{D_1 H} \supseteq \overline{D_2 H};$
3) dim $\overline{T_2 \tilde{D}_1 H}$ = dim E ; dim $\overline{D_1 T_2 H}$ = dim $\tilde{E};$
4) operators $D_1|_{\tilde{E}}, \quad \tilde{D}_1 T_2^* \Big|_{\overline{T_2 \tilde{D}_1 H}}, \quad \tilde{D}_1\Big|_E, \quad T_2^* D_1|_{\overline{D_1 T_2 H}}$
are boundedly invertible, where $D_s = T_s^* T_s - I,$
 $\tilde{D}_s = T_s T_s^* - I, \ s = 1, 2.$
(3)

It is easy to see that if $\{T_1, T_2\} \in C(T_1)$ then unitary expansion (1) always exists, [6, 8]. Indeed, let

$$\begin{split} \Psi &= \sqrt{\tilde{\sigma}_{1}} = \sqrt{-D_{1}}; \quad \Phi = \tilde{D}_{1}T_{2}^{*}\sqrt{\sigma_{1}^{-1}}; \quad K = \sqrt{\tilde{\sigma}_{1}}T_{1}^{*}T_{2}^{*}\sqrt{\sigma_{1}^{-1}}; \\ N &= -\sqrt{\sigma_{1}^{-1}}T_{2}\tilde{D}_{2}T_{1}^{*}\sqrt{\sigma_{1}^{-1}}; \quad \tilde{N} = -\sqrt{\tilde{\sigma}_{1}^{-1}}T_{1}^{*}\tilde{D}_{2}T_{1}^{*-1}\sqrt{\tilde{\sigma}_{1}^{-1}}; \\ \Gamma &= \sqrt{\sigma_{1}^{-1}}T_{2}\left(\tilde{D}_{2} - \tilde{D}_{1}\right)\sqrt{\sigma_{1}^{-1}}; \quad \tilde{\Gamma} = \sqrt{\tilde{\sigma}_{1}^{-1}}T_{2}^{*-1}\left(D_{2} - D_{1}\right)\sqrt{\tilde{\sigma}_{1}^{-1}}; \\ \sigma &= -\sqrt{\sigma_{1}^{-1}}T_{1}\tilde{D}_{2}T_{1}^{*}\sqrt{\sigma_{1}^{-1}}; \quad \tilde{\sigma} = -\sqrt{\tilde{\sigma}_{1}^{-1}}D_{2}\sqrt{\tilde{\sigma}_{1}^{-1}}: \\ \tau &= -\sqrt{\sigma_{1}^{-1}}T_{2}\tilde{D}_{2}T_{2}^{*}\sqrt{\sigma_{1}^{-1}}; \quad \tilde{\tau} = -\sqrt{\tilde{\sigma}_{1}^{-1}}T_{1}^{*-1}T_{1}^{*}D_{2}T_{1}T_{2}^{-1}\sqrt{\tilde{\sigma}_{1}^{-1}}, \end{split}$$

taking into account (3).

Then it is easy to see that relations 1)-5 (2) are true [8].

II. Following the work [8], define the vector-functions of discrete argument $h_n \in H$, $u_n \in E$, $v_n \in \tilde{E}$ at the points of integer-valued grid $n = (n_1; n_2) \in \mathbb{Z}_+^2$ $(n_k \geq 0; k = 1, 2; n_k \in \mathbb{Z})$. Consider [8] the system of equations

$$\begin{pmatrix} \partial_1 h_n = T_1 h_n + \Phi u_n; & h_{(0,0)} = h_0; \\ \partial_2 h_n = T_2 h_n + \Phi N u_n; & n \in \mathbb{Z}_+^2; \\ v_n = \Psi h_n + K u_n; \end{pmatrix} = \begin{bmatrix} h_n \\ u_n \end{bmatrix} = \begin{bmatrix} \partial_s h_n \\ v_n \end{bmatrix}, s = 1, 2, \quad (4)$$

where $\partial_1 h_n = h_{(n_1+1;n_2)}$, $\partial_2 h_n = h_{(n_1;n_2+1)}$ are the corresponding shifts by different variables. The next theorems are dedicated to the study of consistency conditions for the discrete system of equations (4).

Theorem 1. The system (4) is consistent only if the vector-function u_n is a solution of the equation

$$\{N\partial_1 - \partial_2 + \Gamma\} u_n = 0.$$
(5)

194

The proof of the theorem follows from the equality of the mixed shifts $\partial_1 \partial_2 h_n = \partial_2 \partial_1 h_n$ taking into account condition 3) (2), [8].

Theorem 2. Suppose that u_n is a solution of equation (5) and the vectorfunctions h_n and v_n are given by relations (4). Then v_n satisfies the following equation

$$\left\{\tilde{N}\partial_1 - \partial_2 + \tilde{\Gamma}\right\} v_n = 0.$$
(6)

The proof of the Theorem 2 is given in [8]. The following conservation laws

1)
$$\begin{aligned} \|\partial_{1}h_{n}\|^{2} + \|v_{n}\|^{2} &= \|h_{n}\|^{2} + \|u_{n}\|^{2}; \\ \|\partial_{2}h_{n}\|^{2} + \langle \tilde{\sigma}v_{n}, v_{n} \rangle &= \|h_{n}\|^{2} + \langle \sigma u_{n}, u_{n} \rangle; \\ 2) \quad \langle (\tilde{\sigma}_{1} - \tilde{\sigma}_{2}) v_{n}, v_{n} \rangle + \langle \tilde{\sigma}_{2}\partial_{1}v_{n}, \partial_{1}v_{n} \rangle - \langle \tilde{\sigma}_{1}\partial_{2}v_{n}, \partial_{2}v_{n} \rangle \\ &= \langle (\sigma_{1} - \sigma_{2}) u_{n}, u_{n} \rangle + \langle \sigma_{2}\partial_{1}u_{n}, \partial_{1}u_{n} \rangle - \langle \sigma_{1}\partial_{2}u_{n}, \partial_{2}u_{n} \rangle \end{aligned}$$
(7)

are true for the discrete system of equations (4). Obviously, the relations 1) (7) are a simple corollary of 1), 2) (2), while the equality 2) (7) follows from the coincidence of the norms $\|\partial_1\partial_2h_n\|^2 = \|\partial_2\partial_1h_n\|^2$ and plays an important role hereinafter.

Similarly to (4), consider (see [8]) the vector-functions $\tilde{h}_n \in H$, $\tilde{u}_n \in E$, $\tilde{v}_n \in \tilde{E}$ at the integer-valued grid points $n = (n_1; n_2) \in \mathbb{Z}_-^2$ $(n_k < 0; k = 1, 2; n_k \in \mathbb{Z})$. Define the two-variable dual type of system of equations (4)

$$\begin{cases} \tilde{\partial}_{1}\tilde{h}_{n} = T_{1}^{*}\tilde{h}_{n} + \Psi^{*}\tilde{v}_{n}; & \tilde{h}_{(-1;-1)} = \tilde{h}_{-1}; \\ \tilde{\partial}_{2}\tilde{h}_{n} = T_{2}^{*}\tilde{h}_{n} + \Psi^{*}\tilde{N}^{*}\tilde{v}_{n}; & n \in \mathbb{Z}_{-}^{2}; & V_{s} \begin{bmatrix} \tilde{h}_{n} \\ \tilde{v}_{n} \end{bmatrix} = \begin{bmatrix} \tilde{\partial}_{s}\tilde{h}_{n} \\ \tilde{u}_{n} \end{bmatrix}, s = 1, 2, \\ \tilde{u}_{n} = \Phi^{*}\tilde{h}_{n} + K^{*}\tilde{v}_{n}; \end{cases}$$

$$(8)$$

where $\tilde{\partial}_1 \tilde{h}_n = \tilde{h}_{(n_1-1;n_2)}$, $\tilde{\partial}_2 \tilde{h}_n = \tilde{h}_{(n_1;n_2-1)}$ are shifts by different variables formally adjoint to ∂_1 and ∂_2 , so that $\tilde{\partial}_s = \partial_s^*$, s = 1, 2, in the metric of the space l^2 . Statements similar to the Theorems 1 and 2 are true for the system (8).

Theorem 3. Consistency of the system of equations (8) takes place only if \tilde{v}_n is the solution of the equation

$$\left\{\tilde{N}^*\tilde{\partial}_1 - \tilde{\partial}_2 + \tilde{\Gamma}^*\right\}\tilde{v}_n = 0.$$
(9)

Theorem 4. Vector-function \tilde{u}_n (8) satisfies the following equation

$$\{N^*\partial_1 - \partial_2 + \Gamma^*\}\,\tilde{u}_n = 0\tag{10}$$

under the conditions that \tilde{v}_n is the solution of (9) and \tilde{h}_n are given by relations (8).

Similarly to (7), the following conservation laws

1)
$$\begin{aligned} \left\| \tilde{\partial}_{1}\tilde{h}_{n} \right\|^{2} + \left\| \tilde{u}_{n} \right\|^{2} &= \left\| \tilde{h}_{n} \right\|^{2} + \left\| \tilde{v}_{n} \right\|^{2}; \\ \left\| \tilde{\partial}_{2}\tilde{h}_{n} \right\|^{2} + \langle \tau \tilde{u}_{n}, \tilde{u}_{n} \rangle &= \left\| \tilde{h}_{n} \right\|^{2} + \langle \tilde{\tau} \tilde{v}_{n}, \tilde{v}_{n} \rangle; \\ 2) \quad \left\langle (\tau_{1} - \tau_{2}) \tilde{u}_{n}, \tilde{u}_{n} \right\rangle + \left\langle \tau_{2}\tilde{\partial}_{1}\tilde{u}_{n}, \tilde{\partial}_{1}\tilde{u}_{n} \right\rangle - \left\langle \tau_{1}\tilde{\partial}_{2}\tilde{u}_{n}, \tilde{\partial}_{2}\tilde{u}_{n} \right\rangle \\ &= \left\langle (\tilde{\tau}_{1} - \tilde{\tau}_{2}) \tilde{v}_{n}, \tilde{v}_{n} \right\rangle + \left\langle \tilde{\tau}_{2}\tilde{\partial}_{1}\tilde{v}_{n}, \tilde{\partial}_{1}\tilde{v}_{n} \right\rangle - \left\langle \tilde{\tau}_{1}\tilde{\partial}_{2}\tilde{v}_{n}, \tilde{\partial}_{2}\tilde{v}_{n} \right\rangle \end{aligned}$$
(11)

are true for the dual system (8) in view of 2) (2).

III. Turn to the construction of the dilation for the operator systems $\{T_1, T_2\}$ of the class $C(T_1)$ (3). First of all, construct the unitary dilation [4, 6, 9] for the contraction T_1 . As usually [6, 8], we will denote by $l_M^2(G)$ the Hilbert space of G-valued functions $u_k \in G$, where $k \in M$ pnd $M \subseteq \mathbb{Z}$ are such that $\sum_{k \in M} ||u_k||^2 < \infty$.

Let \mathcal{H} be the Hilbert space of the following type

$$\mathcal{H} = D_{-} \oplus H \oplus D_{+}, \tag{12}$$

where $D_{-} = l_{\mathbb{Z}_{-}}^{2}(E)$ and $D_{+} = l_{\mathbb{Z}_{+}}^{2}(\tilde{E})$. Specify the dilation U on the vectorfunctions $f = (u_{k}, h, v_{k})$ from \mathcal{H} (12) in the following way:

$$Uf = \left(P_{D_{-}}u_{k-1}, \tilde{h}, \tilde{v}_{k}\right), \tag{13}$$

where $h = T_1h + \Phi u_{-1}$, $\tilde{v}_0 = \Psi h + K u_{-1}$, $\tilde{v}_k = v_{k-1}$ (k = 1, 2 ...,) and P_{D_-} is the operator of contraction on D_- . The unitary property of U (13) in \mathcal{H} follows from 1) (2). Take advantage now of equations (5) and (6) as a way to continue the incoming D_- and outgoing D_+ subspaces

$$D_{-} = l_{\mathbb{Z}_{-}}^2(E); \quad D_{+} = l_{\mathbb{Z}_{+}}^2(\tilde{E})$$
 (14)

by the second variable " n_2 ". At first, continue functions $u_{n_1} \in l^2_{\mathbb{Z}_-}(E)$ from the semiaxis \mathbb{Z}_- into the domain

$$\tilde{\mathbb{Z}}_{-}^{2} = \mathbb{Z}_{-} \times (\mathbb{Z}_{-} \cup \{0\}) = \left\{ n = (n_{1}; n_{2}) \in \mathbb{Z}^{2} : n_{1} < 0; n_{2} \le 0 \right\},$$
(15)

using the following Cauchy problem

$$\begin{cases} \tilde{\partial}_2 u_n = \left(N \tilde{\partial}_1 + \Gamma \right) u_n; & n = (n_1, n_2) \in \tilde{\mathbb{Z}}_-^2; \\ u_n|_{n_2=0} = u_{n_1} \in l_{\mathbb{Z}}^2(E). \end{cases}$$
(16)

As a result, we obtain the Hilbert space $D_{-}(N, \Gamma)$ which is formed by u_n , the solutions of (16), at the same time the norm in $D_{-}(N, \Gamma)$ is induced by the norm of initial data $||u_n|| = ||u_{n_1}||_{l^2_{\pi}(E)}$.

N ot e 1. Note that the formal continuation of the function $u_{n_1} \in l_{\mathbb{Z}_-}^2(E)$ from the semiaxis \mathbb{Z}_- using the Cauchy problem (16) has wider domain of existence then $\tilde{\mathbb{Z}}_-^2$ (15). Really, if we continue u_{n_1} with nulls on \mathbb{Z}_+ then using recurrent relation, we obtain u_n that is given in the cone \mathcal{K}_- :

$$\mathcal{K}_{-} = \left\{ n = (n_1, n_2) \in \mathbb{Z}^2 : n_2 \le 0; n_1 + n_2 < 0 \right\}.$$
(17)

Similarly, continue functions $v_{n_1} \in l^2_{\mathbb{Z}_+}(\tilde{E})$ from the semiaxis \mathbb{Z}_+ into the domain $\mathbb{Z}^2_+ = \mathbb{Z}_+ \times \mathbb{Z}_+$ using the Cauchy problem

$$\begin{cases} \tilde{\partial}_2 v_n = \left(\tilde{N}\tilde{\partial}_1 + \tilde{\Gamma}\right) v_n; & n = (n_1, n_2) \in \mathbb{Z}_+^2; \\ v_n|_{n_2=0} = v_{n_1} \in l_{\mathbb{Z}_+}^2(E). \end{cases}$$
(18)

Thus, we obtain Hilbert space $D_+(\tilde{N}, \tilde{\Gamma})$ that is made of solutions v_n (18), besides $||v_n|| = ||v_{n_1}||_{l^2_{\mathbb{Z}_+}(\tilde{E})}$. Unlike the evident recurrent scheme (16) of the layer-to-layer calculation of $n_2 \to n_2 - 1$ for u_n , in this case, while constructing v_n in \mathbb{Z}^2_+ , we are dealing with the implicit linear system of equations for layer-to-layer calculation of $n_2 \to n_2 + 1$ for the function v_n . Therefore it is necessary to study solvability and uniqueness of Cauchy problem (18). First, study reversibility of linear pencils of operators $Nz + \Gamma$ and $\tilde{N}z + \tilde{\Gamma}$.

Lemma 1. Suppose the commutative unitary expansion V_s , $\overset{+}{V}_s$ (1) is such that

$$\operatorname{Ker} \Phi = \operatorname{Ker} \Psi^* = \{0\}$$
(19).

Then Ker $N \cap$ Ker $\Gamma = \{0\}$ given Ker $K^* = \{0\}$, and respectively Ker $\tilde{N}^* \cap$ Ker $\tilde{\Gamma}^* = 0$ given Ker $K = \{0\}$.

Proof. Let $G = \text{Ker } N \cap \text{Ker } \Gamma$ then it follows from the equality $T_2 \Phi = T_1 \Phi N + \Phi \Gamma$ that the subspace $L = \text{span} \{T_1^k \Phi g : g \in G; k \in \mathbb{Z}_+\}$ from H has properties $T_1 L \subset L, T_2 L = 0$. It follows from the equality $T_2^* T_2 + \Psi^* \tilde{\sigma} \Psi = I$ that $h = \Psi^* \tilde{\sigma} \Psi h$ takes place for all $h \in L$, therefore $\Phi g = \Psi^* \tilde{g} = \Psi^* \tilde{\sigma} \Psi \Phi g$ and so $\tilde{g} = \tilde{\sigma} \Psi \Phi g$, in view of Ker $\Psi^* = 0$ (19). Since $T_2^* \Phi N + \Psi^* \tilde{\sigma} K = 0$ then $K^* \tilde{g} = K^* \tilde{\sigma} \Psi \Phi g = -N^* \Phi^* T_2 \Phi g = 0$; then $\tilde{g} = 0$ because of Ker $K^* = 0$. So $\Phi g = \Psi^* \tilde{g} = 0$ and thus g = 0 in view of Ker $\Phi = 0$ (19). Similarly, one proves the second statement of the lemma.

N ot e 2. Note that if the suppositions of the Lemma 1 are true and the spaces E and \tilde{E} are finite dimensional, then the linear pencils $Nz+\Gamma$ and $\tilde{N}^*z+\tilde{\Gamma}^*$

are reversible operators for all $z \in \mathbb{C}$, except for the finite number of points that are zeroes of polynomials $\det(Nz + \Gamma) = 0$ and $\det\left(\tilde{N}^*z + \tilde{\Gamma}^*\right) = 0$ respectively. Since reversibility of $\tilde{N}z + \tilde{\Gamma}$ and of the adjoint to it operator $\tilde{N}^*\bar{z} + \tilde{\Gamma}^*$ are equivalent in the finite dimensional space \tilde{E} , then reversibility of $\tilde{N}z + \tilde{\Gamma}$ follows from the Lemma 2 when dim $\tilde{E} < \infty$.

Turn to the solvability of Cauchy problem (18).

Statement 1. Let dim $E < \infty$ and the assumptions of the Lemma 1 be true, then the solution v_n of Cauchy problem (18) exists and is unique in the domain \mathbb{Z}^2_+ for all initial data v_{n_1} from $l^2_{\mathbb{Z}_+}(\tilde{E})$.

Proof. First, consider the case of the finite initial data v_{n_1} , i.e., let $v_{n_1} = 0$ when $n_1 > n$, where $n \in \mathbb{Z}_+$. Show that the vector-function $v(n_1, 1)$ which is a solution of problem (18) that also turns to zero when $n_1 > n$, is uniquely defined by initial data v_{n_1} . It is necessary to prove that the homogeneous linear system of equations generated by (18) has only trivial solution. It follows from (18) when $v_{n_1} = 0$, that function $v(n_1, 1)$ satisfies the system of equations

$$\begin{cases} \tilde{\Gamma}v(0,1) = 0; \\ \tilde{N}v(0,1) + \tilde{\Gamma}v(1,1) = 0; \\ \dots \\ \tilde{N}v(n-1,1) + \tilde{\Gamma}v(n,1) = 0; \\ \tilde{N}v(n,1) = 0. \end{cases}$$
(20)

Multiply the second equality in (20) by z, the third one — by z^2 , and so on, finally, the last one — by z^{n+1} ($z \in \mathbb{C}$); then after summation we obtain that

$$(Nz + \Gamma) \{v(0, 1) + zv(1, 1) + \dots + z^n v(n, 1)\} = 0$$

It follows from the Note 2, in view of reversibility of $Nz + \Gamma$, that

$$\sum_{k=0}^{n} z^k v(k,1) = 0$$

for all $z \in \mathbb{C}$ except for a finite number of points. Therefore v(k, 1) = 0 for all $k, 0 \leq k \leq n$. Thus, the first layer v(k, 1) is defined from equations (18) by the initial data $v_k, 0 \leq k \leq n$ unambiguously. Realizing in that way layer-to-layer reconstruction of v(k, p + 1) by v(k, p), we will obtain the unique solution of the Cauchy problem (18) in the domain \mathbb{Z}_+^2 . The general case follows from the considered case of the finite initial data as a result of natural approximation.

Journal of Mathematical Physics, Analysis, Geometry, 2005, v. 1, No. 2

N o t e 3. It is not difficult to establish (similarly to the Note 1) that the solution of Cauchy problem (18) exists in the conic domain \mathcal{K}_+ :

$$\mathcal{K}_{+} = \left\{ n = (n_1, n_2) \in \mathbb{Z}^2 : n_2 \ge 0; n_1 + n_2 \ge 0 \right\}.$$
 (21)

Consider now the operator-function of discrete argument

$$\tilde{\sigma}_{\Delta} = \begin{cases} I : \Delta = (1;0); \\ \tilde{\sigma}; \Delta = (0;1). \end{cases}$$
(22)

Let L_0^n be the nonincreasing broken line that connects points O = (0,0) and $n = (n_1, n_2) \in \mathbb{Z}_+^2$ and linear segments of which are parallel to the axes OX $(n_2 = 0)$ and OY $(n_1 = 0)$. Denote by $\{P_k\}_0^N$ all integer-valued points from \mathbb{Z}_+^2 , $P_k \in \mathbb{Z}_+^2$ $(N = n_1 + n_2)$ that lay on L_0^n , beginning with (0,0) and finishing with the point (n_1, n_2) , that are numbered in nondescending order (of one of the coordinates of P_k). Assuming that $P_{-1} = (-1, 0)$, establish the quadratic form

$$\left\langle \tilde{\sigma} v_k \right\rangle_{L_0^n}^2 = \sum_{k=0}^N \left\langle \tilde{\sigma}_{P_k - P_{k-1}} v_{P_k}, v_{P_k} \right\rangle, \tag{23}$$

on the vector-functions $v_k \in D_+(\tilde{N}, \tilde{\Gamma})$.

Similarly, consider the nondecreasing broken line L_m^{-1} in $\tilde{\mathbb{Z}}_-^2$ (15) that connects points $m = (m_1, m_2) \in \tilde{\mathbb{Z}}_-^2$ and (-1, 0), the straight segments of which are parallel to OX and OY. Let $\{Q_s\}_M^{-1}$ $(M = m_1 + m_2)$ be all integer-valued points on L_m^{-1} , beginning with $m = (m_1, m_2)$ and finishing with (-1, 0), that are numbered in nondescending order (of one of the coordinates of Q_s). Define the metric in $D_-(N, \Gamma)$,

$$\left\langle \sigma u_k \right\rangle_{L_m^{-1}}^2 = \sum_{s=M}^{-1} \left\langle \sigma_{Q_s - Q_{s-1}} u_{Q_s}, u_{Q_s} \right\rangle, \tag{24}$$

besides $Q_M - Q_{M-1} = (1, 0)$, and the operator-function σ_{Δ} is defined similarly to $\tilde{\sigma}_{\Delta}$ (22). Denote by \tilde{L}_{-n}^{-1} the broken line in \mathbb{Z}_{-}^2 that is obtained from the curve L_0^n in \mathbb{Z}_{+}^2 $(n \in \mathbb{Z}_{+}^2)$ using the shift by "n":

$$\tilde{L}_{-n}^{-1} = \left\{ Q_s = (l_1, l_2) \in \tilde{\mathbb{Z}}_{-}^2 : (l_1 + n_1 + 1, l_2 + n_2) = P_k \in L_0^n \right\}.$$
 (25)

IV. Having now the Hilbert space $D_{-}(N, \Gamma)$, that is formed by the solutions of Cauchy problem (16), and space $D_{+}(\tilde{N}, \tilde{\Gamma})$, that is formed by the solutions of (18) respectively, we can define Hilbert space

$$\mathcal{H}_{N,\Gamma} = D_{-}(N,\Gamma) \oplus H \oplus D_{+}(\tilde{N},\tilde{\Gamma}), \qquad (26)$$

the norm in which is defined by the norm of the initial space $\mathcal{H} = D_- \oplus H \oplus D_+$ (12). Denote by $\hat{\mathbb{Z}}^2_+$ the subset in \mathbb{Z}^2_+ ,

$$\hat{\mathbb{Z}}_{+}^{2} = \mathbb{Z}_{+}^{2} \setminus (\{0\} \times \mathbb{N}) = \{(0,0)\} \cup (\mathbb{N} \times \mathbb{Z}_{+}),$$
(27)

that obviously is an addition semigroup.

For every $n \in \hat{\mathbb{Z}}^2_+$ (27), define an operator-function U(n) that acts on the vectors $f = (u_k, h, v_k) \in \mathcal{H}_{n,\Gamma}$ (26) in the following way:

$$U(n)f = f(n) = (u_k(n), h(n), v_k(n)),$$
(28)

where $u_k(n) = P_{D_-(N,\Gamma)}u_{k-n}$ $(P_{D_-(N,\Gamma)})$ is an orthoprojector that corresponds with the restriction on $D_-(N,\Gamma)$; $h(n) = y_0$, besides $y_k \in H$ $(k \in \mathbb{Z}^2_+)$ is a solution of the Cauchy problem

$$\begin{cases} \partial_1 y_k = T_1 y_k + \Phi u_{\tilde{k}}; \\ \tilde{\partial}_2 y_k = T_2 y_k + \Phi N u_{\tilde{k}}; \\ y_n = h; \quad k = (k_1, k_2) \in \mathbb{Z}_+^2 \quad 0 \le k_1 \le n_1 - 1, \quad 0 \le k_2 \le n_2; \end{cases}$$
(29)

at the same time $\tilde{k} = k - n$, when $0 \le k_1 \le n_1 - 1$, $0 \le k_2 \le n_2$, and finally

$$v_k(n) = \hat{v}_k + v_{k-n} \tag{30}$$

and $\hat{v}_k = K u_{\tilde{k}} + \Psi y_k$, where y_k is a solution of the Cauchy problem (29).

The vector-function $u_{\tilde{k}}$, that is obtained as a result of the shift by "*n*", automatically satisfies the consistency equation (5), since, according to the construction, u_k is a solution of the Cauchy problem (16). And it follows from the equation (6) that $v_k(n)$ (30) continues uniquely into the whole domain \mathbb{Z}^2_+ as a solution of the equation (18), that is always possible in the context of the suppositions of the Statement 1.

The following facts justify that U(n) (28) is defined if $n \in \hat{\mathbb{Z}}_{+}^{2}$ (27): first, $\{T_{1}, T_{2}\} \in C(T_{1})$ (3); second, the choice of the metric (23), and third, the construction of the space $D_{+}(\tilde{N}, \tilde{\Gamma})$ that is generated by the Cauchy problem (18) with the initial data from the semiaxis \mathbb{Z}_{+} .

Thus, the operator-function U(n) (28) maps the space $\mathcal{H}_{N,\Gamma}$ (26) into itself for all $n \in \hat{\mathbb{Z}}^2_+$ (27).

Theorem 5. Suppose dim $\tilde{E} < \infty$ and the suppositions of Lemma 1 are taking place, then the following conservation law is true for the vector-function f(n) = U(n)f(28):

$$\|h(n)\|^{2} + \langle \tilde{\sigma} v_{k}(n) \rangle_{L_{0}^{\hat{n}}}^{2} = \|h\|^{2} + \langle \sigma u_{k} \rangle_{\tilde{L}_{-n}^{-1}}^{2}$$
(31)

Journal of Mathematical Physics, Analysis, Geometry, 2005, v. 1, No. 2

for all $n \in \mathbb{Z}_{+}^{2}$ (27) and for all nondecreasing broken lines $\hat{L}_{0}^{\hat{n}}$ that connect points O = (0,0) and $\hat{n} = (n_{1} - 1, n_{2}) \in \mathbb{Z}_{+}^{2}$, where $\tilde{L}_{-\hat{n}}^{-1}$ is a broken line that is obtained from L_{0}^{n} by the shift (25) by "n", at the same time the corresponding σ -forms in (31) have the appearance of (23) and (24). The operator-function U(n) (28) is a semigroup, $U(n) \cdot U(m) = U(n+m)$, for all $n, m \in \mathbb{Z}_{+}^{2}$ (27).

P r o o f. The equality (31) easily follows from the isometric correspondence of the operators V_1 , V_2 (1) in accordance with 1) and 2) (2). The fact that the operator-function U(n) (28) is a semigroup when $n \in \mathbb{Z}^2_+$ (27) follows from the elementary calculations taking into account the continuation of the function $v_k(n)$ (30) into the domain \mathbb{Z}^2_+ by the equation (18).

It follows from (31) that it is natural to define in the space $\mathcal{H}_{N,\Gamma}$ (26) the indefinite, generally speaking, metric

$$\langle f \rangle_{\sigma}^2 = \langle \sigma u_k \rangle_{L^{-1}_{-\infty}}^2 + \|h\|^2 + \langle \tilde{\sigma} v_k \rangle_{L^{\infty}_0}^2 , \qquad (32)$$

where L_0^{∞} and $L_{-\infty}^{-1}$ are nondecreasing broken lines in \mathbb{Z}_+^2 and in $\hat{\mathbb{Z}}_-^2$ (15) connecting point O = (0,0) with $\infty = (\infty,\infty)$ and point $-\infty = (-\infty,-\infty)$ with (-1;0) respectively, straight segments of these broken lines are parallel to the axes OX and OY.

Consider the subspace \mathcal{K} from \mathbb{Z}^2_+ that contains O = (0, 0) and is an addition semigroup. T(n) denotes the semigroup of linear operators over \mathcal{K} ,

$$T(n) = T_1^{n_1} T_2^{n_2}, \quad n = (n_1, n_2) \in \mathcal{K},$$
(33)

assuming that the commutative system of linear operators $\{T_1, T_2\}$ belongs to the class $C(T_1)$ (3).

Definition 3. [4] Semigroup of operators U(n); U(n)U(m) = U(n+m); $\forall n, m \in \mathcal{K}$, that is given in the Hilbert space \mathcal{H} such that

$$\mathcal{H} \supseteq H; \quad P_H U(n)|_H = T(n), \quad n \in \mathcal{K},$$
(34)

where P_H is an orthoprojector on H, is called the dilation of a discrete operator semigroup T(n) (33) that is acting in the Hilbert space H. If for every $n \in \mathcal{K}$ the operator-function U(n) is an isometric or unitary operator in \mathcal{H} then U(n) is called isometric or unitary dilation T(n).

Consider the family of one-parameter semigroup $G_+(p)$ in \mathbb{Z}^2_+ ,

$$G_{+}(p) = \left\{ np : p \in \hat{\mathbb{Z}}_{+}^{2}, n \in \mathbb{Z}_{+} \right\},$$
(35)

besides the point $p = (p_1, p_2) \in \mathbb{Z}_+^2$ is such that numbers p_1 and p_2 are coprime. In particular, if $p_1 = (1, 0)$ then it is obvious that $G_+(p) = \mathbb{Z}_+$. Narrow now the semigroup T(n) (33) on $G_+(p)$ (35), i.e., for the given $p = (p_1, p_2) \in \mathbb{Z}_+^2$ consider the one-parameter semigroup $T_n(p) = (T_1^{p_1}T_2^{p_2})^n$ from $n \in \mathbb{Z}_+$, which looks like $T_n(p_1) = T_1^n$ when $p = p_1 = (1, 0)$. Choose now fixed broken line L_0^p with linear segments that are parallel to the axes OX and OY, which connects points O and $p \in \mathbb{Z}_+^2$; and then make its group shift in \mathbb{Z}_+^2 ,

$$L_0^{\infty}(p) = \{n + kp : n \in L_0^p, k \in \mathbb{Z}_+\}$$
(36)

and similarly shift L_0^p in \mathbb{Z}_-^2 ,

$$L_{-\infty}^{-1}(p) = \{ n + k \, (p_1 + 1, p_2) : n \in L_0^{\infty}, k \in \mathbb{Z}_- \} \,. \tag{37}$$

In accordance with (32), specify the quadratic form in $\mathcal{H}_{N,\Gamma}$ (26) that is associated with the semigroup $G_{+}(p)$ (35),

$$\langle f \rangle_{\sigma,p}^2 = \langle \sigma u_k \rangle_{L^{-1}_{-\infty}(p)}^2 + \|h\|^2 + \langle \tilde{\sigma} v_k \rangle_{L^{\infty}_0(p)}^2.$$
(38)

The next statement follows from the Theorem 5.

Theorem 6. Suppose $\{T_1, T_2\} \in C(T_1)$ (3), dim $\tilde{E} < \infty$ and the suppositions of the Lemma 1 are true, then for every $p \in \hat{\mathbb{Z}}^2_+$ (27) the operator semigroup $T_n(p) = T(np)$ that is narrowed on $G_+(p)$ (35) has the isometric (in metric $\langle f \rangle^2_{\sigma,p}$ (38)) dilation $U_n(p) = U(np)$ (28) that acts in the Hilbert space $\mathcal{H}_{N,\Gamma}$ (26).

N ot e 4. Using the semigroup property of dilation $U_n(p)$ (28) by parameter $n \in \mathbb{Z}_+$ and isometric property of $U_n(p)$ in metric (38), we obtain that

$$\langle U_n(p)h, U_m(p)h' \rangle_{\sigma,p} = \langle T_{n-m}(p)h, h' \rangle,$$
(39)

when $n \ge m$ $(n,m \in \mathbb{Z}_+)$ and for all $h, h' \in H$. Thus, the subspace

$$\operatorname{span}\left\{U_n(p)H:n\in\mathbb{Z}_+,p\in\hat{\mathbb{Z}}_+^2\right\}$$

in $\mathcal{H}_{N,\Gamma}$ (26) is defined by the initial commutative operator system $\{T_1, T_2\} \in C(T_1)$ (3).

V. Similarly to the stated in the Paragraph III method of continuation of subspaces D_+ and D_- (14) from the semiaxes \mathbb{Z}_+ and \mathbb{Z}_- by the second variable " n_2 ", consider the dual situation corresponding to equations (9) and (10). Denote by $D_+\left(\tilde{N}^*,\tilde{\Gamma}^*\right)$ the Hilbert space generated by solutions \tilde{v}_n of Cauchy problem

$$\begin{cases} \partial_2 \tilde{v}_n = \left(\tilde{N}^* \partial_1 + \tilde{\Gamma}^*\right) \tilde{v}_n; \quad n = (n_1, n_2) \in \mathbb{Z}_+^2; \\ \tilde{v}_n|_{n_2=0} = v_{n_1} \in l_{\mathbb{Z}_+}^2(\tilde{E}). \end{cases}$$

$$\tag{40}$$

Journal of Mathematical Physics, Analysis, Geometry , 2005, v. 1, No. 2

the norm in which is induced by the norm of the initial data

$$\begin{cases} \partial_2 \tilde{v}_n = \left(\tilde{N}^* \partial_1 + \tilde{\Gamma}^*\right) \tilde{v}_n; & n = (n_1, n_2) \in \mathbb{Z}^2_+; \\ \tilde{v}_n|_{n_2=0} = v_{n_1} \in l^2_{\mathbb{Z}_+}(\tilde{E}). \end{cases}$$

$$\tag{40}$$

Continuing the function $v_{n_1} \in l^2_{\mathbb{Z}_+}(E)$ by null on the left semiaxis, as in the case of (18), it is easy to establish that the solution of the Cauchy problem (40) exists in the cone \mathcal{K}_+ (21).

Continue now every function $u_{n_1} \in l^2_{\mathbb{Z}_-}(E)$ into the domain $\tilde{\mathbb{Z}}^2_-$ (15) using the Cauchy problem

$$\begin{cases} \partial_2 \tilde{u}_n = (N^* \partial_1 + \Gamma^*) \tilde{u}_n; & n = (n_1, n_2) \in \tilde{\mathbb{Z}}_{-}^2; \\ \tilde{u}_n|_{n_2 = 0} = u_{n_1} \in l_{\mathbb{Z}_{-}}^2(E). \end{cases}$$
(41)

As a result, we obtain the Hilbert space $D_{-}(N^*, \Gamma^*)$ generated by \tilde{u}_n , solutions of (41), besides $\|\tilde{u}_n\| = \|u_{n_1}\|_{l^2_{\mathbb{Z}_-}(E)}$. Constructing the solutions \tilde{u}_n of the Cauchy problem (41), we have the implicit scheme of layer-to-layer calculation of $n_2 \rightarrow n_2 - 1$ solutions \tilde{u}_n . Using now the Lemma 1 and Note 2, we can formulate an analogue of the Statement 1.

Statement 2. Let dim $E < \infty$ and the suppositions of Lemma 1 be true, then the solution \tilde{u}_n of the Cauchy problem (41) exists and is unique in the domain $\tilde{\mathbb{Z}}_{-}^2$ (15) for all initial data $u_{n_1} \in l_{\mathbb{Z}_{-}}^2(E)$.

Note that, as in the case of the problem (40), solutions of the Cauchy problem (41) have wider domain of existence and uniqueness, namely, \mathcal{K}_{-} (17).

N ot e 5. The sufficient condition for the simultaneous existence of solutions of Cauchy problems (18) and (41), in view of the reversibility of operators K and K^* , according to the Lemma 1, is following: all the requirements of the Lemma 1 are met and dim $E = \dim \tilde{E} < \infty$.

Hence we come to the Hilbert space

$$\mathcal{H}_{N^*,\Gamma^*} = D_-(N^*,\Gamma^*) \oplus H \oplus D_+\left(\tilde{N}^*,\tilde{\Gamma}^*\right),\tag{42}$$

the metric in which is induced by the norm of the initial space $\mathcal{H} = D_- \oplus H \oplus D_+$ (12). Note the dual features of the spaces $\mathcal{H}_{N,\Gamma}$ (26) and $\mathcal{H}_{N^*,\Gamma^*}$ (32), which consist in that that differential operators of Cauchy problems (16) and (41) and operators (18) and (40) also, are adjoint with each other correspondingly in the metric l^2 .

Define now in the space $\mathcal{H}_{N^*,\Gamma^*}$ (42) the operator-function $\overset{-}{U}(n)$ for $n \in \hat{\mathbb{Z}}^2_+$ (27), which acts on $\tilde{f} = (\tilde{u}_k, \tilde{h}, \tilde{v}_k) \in \mathcal{H}_{N^*,\Gamma^*}$ in the following way:

$$\overset{+}{U}(n)\tilde{f} = \tilde{f}(n) = \left(\tilde{u}_k(n), \tilde{h}(n), \tilde{v}(n)\right), \qquad (43)$$

where $\tilde{v}_k(n) = P_{D_+(\tilde{N}^*,\tilde{\Gamma}^*)}\tilde{v}_{k+n} (P_{D_+(\tilde{N}^*,\tilde{\Gamma}^*)} \text{ is an orthoprojector on } D_+(\tilde{N}^*,\tilde{\Gamma}^*));$ $\tilde{h}(n) = \tilde{y}_{(-1;0)}, \text{ besides } \tilde{y}_k \ (k \in \tilde{\mathbb{Z}}_-^2) \text{ satisfies the Cauchy problem}$

$$\begin{cases} \partial_{1}\tilde{y}_{k} = T_{1}^{*}\tilde{y}_{k} + \Psi^{*}\tilde{v}_{\tilde{k}}; \\ \partial_{2}\tilde{y}_{k} = T_{2}^{*}\tilde{y}_{k} + \Psi^{*}\tilde{N}^{*}\tilde{v}_{\tilde{k}}; \\ \tilde{y}_{(-n_{1};-n_{2})} = h; \ k = (k_{1};k_{2}) \in \tilde{\mathbb{Z}}_{-}^{2}(-n_{1} \leq k_{1} \leq -1; \ -n_{2} \leq k_{2} \leq 0); \end{cases}$$

$$(44)$$

besides $\tilde{k} = k + n \text{ in } (-n_1 \le k_1 \le -1; -n_2 \le k_2 \le 0);$ and finally

$$\tilde{u}_k(n) = \hat{u}_k + \tilde{u}_{k+n},\tag{45}$$

and $\hat{u}_k = K^* \tilde{v}_{\tilde{k}} + \Phi^* \tilde{y}_k$, where \tilde{y}_k is a solution of the system (44).

As in the case of the mapping U(n) (28), the function $\tilde{v}_{\tilde{k}}$ is obtained after the shift by "-n" and automatically satisfies the consistency condition for (10) and the function $\tilde{u}_k(n)$ (45) has natural continuation into the whole domain $\tilde{\mathbb{Z}}_{-}^2$ (15) on account of the equation (41).

Similarly to (22), define the operator-function

$$\tau_{\Delta} = \begin{cases} I; \quad \Delta = (-1,0); \\ \tau; \quad \Delta = (0,-1). \end{cases}$$
(46)

Denote by L_m^{-1} the nondecreasing broken line in \mathbb{Z}_-^2 (15) with linear segments that are parallel to the axes OX and OY which connects points $m = (m_1, m_2) \in \mathbb{Z}_-^2$ and (-1,0). Choose now all the points $\{Q_s\}_M^{-1}$ $(M = m_1 + m_2)$ on L_m^{-1} that are numerated in the nonascending order (of one of the coordinates Q_s) beginning with the point (-1,0) and finishing with $m = (m_1, m_2) \in \mathbb{Z}_-^2$. Define in the space $D_-(N^*, \Gamma^*)$ the quadratic form

$$\langle \tau \tilde{u}_k \rangle_{L_m^{-1}}^2 = \sum_{s=M}^{-1} \langle \tau_{Q_s - Q_{s+1}} \tilde{u}_{Q_s}, \tilde{u}_{Q_s} \rangle,$$
 (47)

where $Q_0 = (0,0)$. For the broken line L_0^n in \mathbb{Z}_+^2 , $n = (n_1, n_2) \in \mathbb{Z}_+^2$, of the similar type with points $\{P_k\}_0^N$ $(N = n_1 + n_2)$ on L_0^n which are also chosen in the nonascending order, define the quadratic form for the functions $\tilde{v}_k \in D_+(\tilde{N}^*, \tilde{\Gamma}^*)$

$$\left\langle \tilde{\tau}\tilde{v}_k \right\rangle_{L_0^n}^2 = \sum_{k=0}^N \left\langle \tilde{\tau}_{P_k - P_{k+1}} \tilde{v}_{P_k}, \tilde{v}_{P_k} \right\rangle, \tag{48}$$

where $P_N - P_{N+1} = (-1, 0)$ and $\tilde{\tau}_{\Delta}$ is defined similarly to τ_{Δ} (48). Denote by \tilde{L}_0^m the broken line in \mathbb{Z}_+^2 obtained from the curve L_m^{-1} from $\tilde{\mathbb{Z}}_-^2$ using the shift by "m"

$$\tilde{L}_0^m = \left\{ P_k = (l_1, l_2) \in \mathbb{Z}_+^2 : (l_1 + m_1, l_2 + m_2) = Q_s \in L_m^{-1} \right\},$$
(49)

Journal of Mathematical Physics, Analysis, Geometry , 2005, v. 1, No. 2

where $m = (m_1, m_2) \in \mathbb{Z}_{-}^2$. Similarly to the Theorem 5, the following statement takes place.

Theorem 7. Suppose dim $E < \infty$ and the requirements of the Lemma 1 are met, then for the vector-function $\tilde{f}(n) = \stackrel{+}{U}(n)\tilde{f}$ (43) the equality

$$\|\tilde{h}(n)\|^{2} + \langle \tau \tilde{u}_{k}(n) \rangle_{L^{-1}_{-n}}^{2} = \|h\|^{2} + \langle \tilde{\tau} \tilde{v}_{k} \rangle_{\tilde{L}^{-n}_{0}}$$
(50)

takes place for all $n \in \hat{\mathbb{Z}}_{+}^{2}$ (27) and for all broken lines L_{-n}^{-1} connecting points $-n = (-n_{1}, -n_{2}) \in \tilde{\mathbb{Z}}_{-}^{2}$ and (-1, 0) where \tilde{L}_{0}^{-n} is a curve in \mathbb{Z}_{+}^{2} obtained from L_{-n}^{-1} using the shift (49) by "-n" and corresponding τ -forms in (50) have the appearance of (47) and (48). The operator-function $\overset{+}{U}(n)$ (43) has the semigroup property, $\overset{+}{U}(n) \overset{+}{U}(m) = \overset{+}{U}(n+m)$ for all $n, m \in \hat{\mathbb{Z}}_{+}^{2}$ (27).

As in the case of the theorem 5, the proof is reduced to the use of the isometric property of $\overset{+}{V_1}$ and $\overset{+}{V_2}$ (1) in view of 1) and 2) (2). The check of the semigroup property of the operator-function $\overset{+}{U}(n)$ (43) is quite simple as in the proof of the Theorem 5.

Define in $\mathcal{H}_{N^*,\Gamma^*}$ (43) the quadratic form

$$\langle \tilde{f} \rangle_{\tau}^2 = \langle \tau \tilde{u}_k \rangle_{L^{-1}_{-\infty}}^2 + \|\tilde{h}\|^2 + \langle \tilde{\tau} \tilde{v}_k \rangle_{L^{\infty}_0}^2 , \qquad (51)$$

where $L_{-\infty}^{-1}$ and L_0^{∞} are nondecreasing allowable broken lines in $\tilde{\mathbb{Z}}_{-}^2$ and \mathbb{Z}_{+}^2 (with segments parallel to the axes OX and OY) connecting points $-\infty = (-\infty, -\infty)$ with (-1, 0) and (0, 0) with $\infty = (\infty, \infty)$ respectively.

Further, consider the family of one-parameter semigroup in $\mathbb{Z}^2_- \cup (0,0)$

$$G_{-}(q) = \left\{ nq : q = (q_1, q_2) \in \tilde{\mathbb{Z}}_{-}^2; n \in \mathbb{Z}_{+} \right\},$$
(52)

where numbers q_1 and q_2 are coprime ideals and, moreover, $(-q_1 - 1, -q_2) \in \hat{\mathbb{Z}}^2_+$ (27). Choose fixed allowable broken line $L_{\tilde{q}}^{-1}$ in $\tilde{\mathbb{Z}}^2_-$ connecting points $\tilde{q} = (q_1, q_2) \in \tilde{\mathbb{Z}}^2_-$ (where $(-q_1 - 1, -q_2) \in \hat{\mathbb{Z}}^2_+$) and (-1, 0) and make its group shift in $\tilde{\mathbb{Z}}^2_-$,

$$L_{-\infty}^{-1}(q) = \left\{ n + kq : n \in L_{\tilde{q}}^{-1}; k \in \mathbb{Z}_+ \right\},$$
(53)

and in \mathbb{Z}^2_+ ,

$$L_0^{\infty}(q) = \left\{ n + kq : n \in L_q^{-1}; k \in \mathbb{Z}_- \right\},$$
(54)

respectively. Similarly to (38), define the metric along $G_{-}(p)$ (52) in the space $\mathcal{H}_{N^*,\Gamma^*}$

$$\langle f \rangle_{\tau,q}^2 = \langle \tau \tilde{u}_k \rangle_{L^{-1}_{-\infty}(q)}^2 + \|\tilde{h}\|^2 + \langle \tilde{\tau} \tilde{v}_k \rangle_{L^{\infty}_0(q)}^2 , \qquad (55)$$

where broken lines $L^{-1}_{-\infty}(q)$ and $L^{\infty}_{0}(q)$ have the appearance of (53) and (54).

Theorem 8. Suppose $\{T_1, T_2\} \in C(T_1)$ (3), dim $E < \infty$, and the conditions of lemma 1 are met, then for all $q \in \mathbb{Z}_{-}^2$ (15) such that $(-q_1 - 1, -q_2) \in \mathbb{Z}_{+}^2$ (27), the operator semigroup $T_n^*(q) = T^*(-nq)$ (33) from $n \in \mathbb{Z}_+$, narrowed on $G_-(q)$ (50), always has an isometric (in the metric $\langle \tilde{f} \rangle_{\tau,q}^2$ (55)) dilation $\overset{+}{U}_n$ (|q|) $\stackrel{+}{=} \overset{+}{U}$ (-nq) (43) which acts in the space $\mathcal{H}_{N^*,\Gamma^*}$ (42).

N ot e 6. For the dual dilation $\stackrel{+}{U}(|q|) = \stackrel{+}{U}(-nq)$ (43), as well as for $U_n(p) = U(np)$ (28), the relation

$$\left\langle \overset{+}{U}_{n}\left(|q|\right)h, \overset{+}{U}_{m}\left(|q|\right)h'\right\rangle_{\tau,q} = \left\langle T^{*}_{n-m}(q)h, h'\right\rangle$$
(56)

is true when $n \ge m$ and for all $h, h' \in H$. Hence, the subspace

span
$$\left\{ \overset{+}{U}_{n}(|q|)h: h \in H, n \in \mathbb{Z}_{+}, (-q_{1}-1, -q_{2}) \in \hat{\mathbb{Z}}_{+}^{2} \right\}$$

in $\mathcal{H}_{N^*,\Gamma^*}$ (42) is defined by the initial operator system $\{T_1, T_2\}$ from $C(T_1)$ (3).

V. Note that Hilbert spaces $\mathcal{H}_{N,\Gamma}$ (26) and $\mathcal{H}_{N^*,\Gamma^*}$ (42) have the common part, namely the space \mathcal{H} (12) which per se defines them in view of the corresponding Cauchy problems (16), (18) and (40), (41). Moreover, narrowings of the dilations $U(n_1; 0)$ (28) and $\stackrel{+}{U}(n_1; 0)$ (43) on the invariant subspace \mathcal{H} are unitary operators, besides $U^*(n_1; 0) = \stackrel{+}{U}(n_1; 0) \forall n_1 \in \mathbb{Z}_+$. It follows from the Note 4 that the dilation U(n) (28) has the "+ minimality" property, that means the "observability" of the system (4), and it follows from the Note 6 respectively that dilation $\stackrel{+}{U}(n)$ (43) satisfies "- minimality" condition, that corresponds with "controllability" of the open system (8), [2, 7, 9]. The next definition follows from notes made earlier.

Definition 4. Consider the operator semigroup T(n), defined when $n \in \mathbb{Z}_{+}^{2}$ (27), that corresponds to the commutative operator system $\{T_{1}, T_{2}\}$ from the class $C(T_{1})$ (3). Let U(n) be the isometric dilation (in terms of the Definition 3 of the semigroup T(n)) that acts in the space \mathcal{H}_{+} and the operator-function $\stackrel{+}{U}(n)$, defined in \mathcal{H}_{-} , be the isometric dilation of the adjoint semigroup $T^{*}(n)$. The pair of dilations U(n) and $\stackrel{+}{U}(n)$ is called minimally-unitarily connected if the following conditions are met.

1) The Hilbert space $\mathcal{H}_0 = \mathcal{H}_+ \cap \mathcal{H}_-$ is invariant with regard to the operatorfunctions $U(n_1; 0)$ and $\stackrel{+}{U}(n_1; 0) \forall n_1 \in \mathbb{Z}_+$, besides restrictions of $U(n_1; 0)$ and

 $\overset{+}{U}(n_1;0)$ on \mathcal{H}_0 are unitary operators and, moreover, $U^*(n_1;0) = \overset{+}{U}(n_1;0) \forall n_1 \in \mathbb{Z}_+$.

2) Restriction of the semigroup $U(n_1; 0)$ on \mathcal{H}_0 is the minimal [4, 9] unitary dilation of the semigroup $T_1^{n_1}$ when $n_1 \in \mathbb{Z}_+$,

$$\mathcal{H}_0 = \operatorname{span} \left\{ U(n_1; 0) \, h : h \in H; n \in \mathbb{Z} \right\}.$$

3) The equalities

$$egin{split} \mathcal{H}_+ &= \mathrm{span} \left\{ U(n) \mathcal{H}_0 : n \in \hat{\mathbb{Z}}_+^2
ight\}; \ \mathcal{H}_- &= \mathrm{span} \left\{ egin{split} U(n) \mathcal{H}_0 : n \in \hat{\mathbb{Z}}_+^2
ight\} \end{split}$$

are taking place.

Note that Point 3) of the Definition 4 means that there are no adduction subspaces in \mathcal{H}_+ and \mathcal{H}_- for the operators U(n) and $\stackrel{+}{U}(n)$ on which U(n) and $\stackrel{+}{U}(n)$ are unitary and which are not connected with the initial system $\{T_1, T_2\}$. It is easy to see that minimally-unitary connected dilations U(n) in \mathcal{H}_+ and $\stackrel{+}{U}(n)$ in \mathcal{H}_- are defined up to isomorphism. As is well known [4, 9], the minimal unitary dilation $U(n_1; 0)$ of the contraction semigroup $T_1^{n_1}(n_1 \in \mathbb{Z}_+)$ in \mathcal{H}_0 is defined uniquely (up to isomorphism). And from the point 3) of the Definition 4 follows that corresponding isomorphism between U(n) in \mathcal{H}_+ and U'(n) in \mathcal{H}'_+ (for example) could be defined in the following way: $U(n)f \to U'(n)f$ where $f \in \mathcal{H}_0$, though this correspondence not necessarily is a unitary operator. Note that from the constructions of the dilations U(n) (28) in $\mathcal{H}_{N,\Gamma}$ (26) and $\stackrel{+}{U}(n)$ (43) in $\mathcal{H}_{N^*,\Gamma^*}$ (42), it follows that the pair U(n) and $\stackrel{+}{U}(n)$ is defined "unambiguously" by the initial operator system $\{T_1, T_2\}$ from $C(T_1)$ (3) in accordance with (49) and (55).

References

- M.S. Livšic, Commutative operators and solutions of systems of differential equations in partial derivatives that are generated by them. Soobsh. Acad. Nauk Gruz.SSR 91 (1978), No. 2, 281–284. (Russian)
- [2] M.S. Livšic, N. Kravitsky, A. Markus, V. Vinnikov, Theory of commuting nonselfadjoint operators. Math. and Appl. 332, Kluver Acad. Publ. Groups, Dordrecht, 1995.
- [3] V.A. Zolotarev, Time cones and functional model on the Riemann surface. Mat. Sb. 181 (1990), 965–995. (Russian)

- [4] B. Szekefalvi-Nagy and Ch. Foyaş, Harmony analisys of operators in the Hilbert space. Mir, Moscow, 1970. (Russian)
- [5] S. Parrott, Unitary dilations for commuting contractions. Preprint, Boston, 1969.
- [6] V.A. Zolotarev, Model representations of commutative systems of linear operators.
 Funkts. Analiz i yego Prilozhen. 22 (1988), 66-68.
- [7] M.S. Brodskiy, Unitary operator knots and their characteristic functions. Uspekhi Mat. Nauk 33 (1978), No. 4, 141–168. (Russian)
- [8] V.A. Zolotarev, Isometric expansions of commutative systems of linear operators.
 Mat. fiz., analiz, geom. 11 (2004), 282–301. (Russian)
- [9] V.A. Zolotarev, Analitic methods of spectral representations of nonselfadjoint and nonunitary operators. MagPress, Kharkov, 2003. (Russian)