On Sets with Extremely Big Slices

Yevgen Ivakhno
Department of Mechanics and Mathematics, V.N. Karazin Kharkov National University 4 Svobody Sq., Kharkov, 61077, Ukraine
E-mail:ivakhnoj@yandex.ru

Received March 29, 2005
A new characterization of the Radon-Nikodym property in terms of sizes of slices and equivalent norms is presented. A property opposite to the Radon-Nikodym property is studied in the context of 1-unconditional sums of Banach spaces.

Key words: Radon-Nikodym property, big slice property, 1-unconditional sums of Banach spaces.

Mathematics Subject Classification 2000: 46B20, 46B22, 46G10, 46B03.

1. Introduction

In this note Ω stands for a set, Σ for a σ-algebra on Ω, λ for a probability measure on (Ω, Σ), and Σ_{A}^{+}for the set of all positive Σ-measurable subsets of $A \in \Sigma$ whenever $\lambda(A)>0$. The set of all probability densities supported in $A \in \Sigma_{\Omega}^{+}$is denoted by Γ_{A}, i.e.,

$$
\Gamma_{A}=\left\{\varphi \in L_{1}(\lambda): \varphi \text { is supported in } A, \varphi \geq 0, \text { and }\|\varphi\|=1\right\}
$$

X is a Banach space, $B(X)$ is the closed unit ball of $X, B(x, \alpha)=x+\alpha B(X)$ is the ball of radius α centered in x. A slice of a subset $C \subset X$ determined by a functional $x^{*} \in X^{*}$ and $\alpha>0$ is the set

$$
\begin{equation*}
S\left(C, x^{*}, \alpha\right)=\left\{x \in C: x^{*}(x) \geq \sup _{y \in C} x^{*}(y)-\alpha\right\} \tag{1}
\end{equation*}
$$

The diameter of $C \subset X$ is denoted by $\mathrm{d}(C)$. The radius of C is defined as

$$
\mathrm{r}(C)=\inf \{r: C \subset B(x, r) \text { for some } x \in X\}
$$

We recall that a Banach space X is said to have the Radon-Nikodym property $(X \in \mathrm{RNP})$ if the following equivalent conditions hold:
(i) For every probability measurable space $(\Omega, \Sigma, \lambda)$ and for every X-valued measure μ on (Ω, Σ) if $\mu(A) / \lambda(A) \in B(X)$ for all $A \in \Sigma_{\Omega}^{+}$then there is an $f \in L_{1}(\lambda, X)$ (actually from $L_{\infty}(\lambda, X)$) such that

$$
\mu(A)=\int_{A} f(\omega) d \lambda(\omega) \quad \forall A \in \Sigma
$$

(ii) Every bounded linear operator $T: L_{1}(\lambda) \rightarrow X$ with $T\left(\Gamma_{\Omega}\right) \subset B(X)$ is representable in the sense that there exists a function $f \in L_{\infty}(\lambda, X)$ such that

$$
T g=\int g f d \lambda \quad \forall g \in L_{1}(\lambda)
$$

(iii) Every closed convex bounded subset $C \subset X$ has slices of arbitrarily small diameter.

There are many other equivalent definitions of this property, for more details see, for instance, [1] and [2].

In Section 2, "Radon-Nikodym property and balls with big slices", we find criteria of this property in terms of equivalent norms and radiuses of slices of $B(X)$ (Theorem 2) and slices of general closed convex bounded sets (Theorem 1).

An obvious inequality

$$
\begin{equation*}
\mathrm{r}(C) \leq \mathrm{d}(C) \leq 2 \mathrm{r}(C) \tag{2}
\end{equation*}
$$

implies that we may formulate the Radon-Nikodym property equivalently as the property that every closed convex bounded set $C \subset X$ has slices of arbitrarily small radius. In the other words, the negation of the Radon-Nikodym property just means that the radiuses of slices of some closed convex bounded set are separated from zero. Theorem 2 shows that passing to equivalent norms in a space $X \notin$ RNP allows to obtain such a unit ball that the radiuses of all its slices are separated from zero even by $1-\varepsilon$, where ε is arbitrarily small.

The following result is used in the proof of this theorem.

Definition 1. We say that X has the r-diminition property ($X \in \mathrm{rDP}$) if for some positive $\alpha<1$ (the parameter of $r D P$) every subset $C \subset X$ with $r(C)<\infty$ has a slice S satisfying

$$
r(S)<\alpha \cdot r(C)
$$

Obviously, $X \in \mathrm{RNP}$ if and only if $X \in \mathrm{rDP}$ with all arbitrarily small positive values of parameter α. The result of our Theorem 1 is just the statement that a single value of $\alpha>0$ is sufficient for RNP.

While in the second section the negation of the Radon-Nikodym property is considered as a property that the radiuses of slices of the unit balls (of equivalent norms) uniformly tend to the radiuses of these balls, in Sect. 3, "r-big slice property", we consider and investigate the limit case of these normed spaces.

Definition 2. We say that X has the r-big slice property ($X \in \mathrm{rBSP}$) when every slice of $B(X)$ is of the radius 1 .

Obviously, this property is a strengthened negation of the Radon-Nikodym property. We investigate this notion in the context of 1 -unconditional sums of sequences of spaces (by a space with a 1-unconditional basis). Namely, we investigate the connection between the rBSP of a 1-unconditional sum of a sequence of spaces and the rBSP of summands. It terns out that the sum has the rBSP provided that every summand also has the rBSP. Conversely, we obtain a complete characterization of such spaces with a 1-unconditional basis that the fixed summand inherits the rBSP of the whole 1-unconditional sum.

We may speak about the d-big slice property (dBSP), i.e., the property when every slice S of $B(X)$ is of the diameter $\mathrm{d}(S)=\mathrm{d}(B(X))=2$. Obviously, this property is stronger than the r-big slice property, due to the inequality (2). However, we still do not know, whether these properties coincide.

In the last section (Sect. 4 "d-big slice property") we prove that every space containing an isomorphic copy of c_{0} can be equivalently renormed to possess the d-big slice property.

2. Radon-Nikodym property and balls with big slices

At first as announced above, we prove the following theorem:
Theorem 1. $X \in$ RNP if and only if $X \in \mathrm{rDP}$.
In order to prove this theorem we modify the proof ([1], ch. 5) of the result that RNP (iii) implies RNP (ii). In this proof we use two lemmas.

Lemma 1 ([1], p. Lemma 5.6). An operator $T: L_{1}(\lambda) \rightarrow X$ is representable if and only if for every $\varepsilon>0$ and $A \in \Sigma_{\Omega}^{+}$there exists a subset $B \in \Sigma_{A}^{+}$with $\mathrm{d}\left(T\left(\Gamma_{B}\right)\right)<\varepsilon$.

Lemma 2 ([1], p. Lemma 5.9). Let S be a slice of $T \Gamma_{A}$, where $A \in \Sigma_{\Omega}^{+}$. Then there is a subset $B \in \Sigma_{A}^{+}$such that $T \Gamma_{B} \subset S$.

Proof of Th eorem 1 . Let X have the r-diminition property with a parameter $1-\delta$. We fix a bounded linear operator $T: L_{1}(\lambda) \rightarrow X$ satisfying $T \Gamma_{\Omega} \subset B(X)$ and show that it is representable using Lemma 1. Consider a set $A \in \Sigma_{\Omega}^{+}$and $\varepsilon>0$. By the r-diminition property of X, there is a slice S of $T \Gamma_{A}$ with $r(S) \leq r\left(T \Gamma_{A}\right) \cdot(1-\delta)$. Applying Lemma 2, we find a subset $B \in \Sigma_{A}^{+}$such that $T \Gamma_{B} \subset S$, hence, $r\left(T \Gamma_{B}\right) \leq r\left(T \Gamma_{A}\right) \cdot(1-\delta)$.

Continuing in this way, we find a decreasing sequence of subsets $B_{n} \in \Sigma_{A}^{+}$ $\left(B_{0}=A, B_{1}=B, \ldots\right)$ with the property that $r\left(T \Gamma_{B_{n}}\right) \leq r\left(T \Gamma_{B_{n-1}}\right) \cdot(1-\delta) \leq$ $r\left(T \Gamma_{B_{0}}\right) \cdot(1-\delta)^{n} \rightarrow 0$. So, for some n the set B_{n} satisfies $r\left(T \Gamma_{B}\right)<\varepsilon$. By arbitrariness of ε, T is representable. So, $X \in$ RNP, as needed. The other direction is trivial.

Now we are able to prove the main result of this section.
Theorem 2. $X \notin \mathrm{RNP}$ if and only if for every $\varepsilon>0$ there is such an equivalent norm $p(x)$ on X that every slice S of $B_{p}(X)$ satisfies $r_{p}(S)>1-\varepsilon$.

Lemma 3. If $X \notin \mathrm{rDP}$, then for every $\delta>0$ there is such a closed convex bounded symmetric subset $C \subset X$ that every slice S of C satisfies

$$
r(S)>(1-\delta) \cdot r(C)=1-\delta
$$

Proof. Since the r-diminition property with any parameter is equivalent to the Radon-Nikodym property, X does not have the rDP with any parameter, arbitrarily close to 1 . Therefore, we can find a bounded set $V \subset X$ such that every slice S of V is of the radius $r(S)>\left(1-\frac{\delta}{2}\right) \cdot r(V)$. Besides, without loss of generality we may assume V to be closed and convex and to be of the radius which is greater than one. By the definition of radius, there is such $x \in X$ that $V \subset B\left(x, r(V)+\frac{\delta}{2}\right)$. Denote $W=V-x$. Then $W \subset B\left(0, r(W)+\frac{\delta}{2}\right)$ and every slice S of W satisfies $r(S)>\left(1-\frac{\delta}{2}\right) \cdot r(W)$. Take

$$
C=\operatorname{co}(W \bigcup-W)
$$

Since $-W \subset B\left(0, r(W)+\frac{\delta}{2}\right), C$ also lies in $B\left(0, r(W)+\frac{\delta}{2}\right)$, so, $r(C)<r(W)+\frac{\delta}{2}$. Besides, $r(C) \geq r(W)>1$. For every slice S of C either $S \bigcap W$ or $S \bigcap-W$ is a slice of W or $-W$ respectively. Therefore,
$r(S)>\left(1-\frac{\delta}{2}\right) \cdot r(W)>\left(1-\frac{\delta}{2}\right) \cdot\left(r(C)-\frac{\delta}{2}\right)>r(C) \cdot\left(1-\frac{\delta}{2}-\frac{\delta}{2 r(C)}\right)>r(C) \cdot(1-\delta)$.
Dividing C by $r(C)^{-1}$ gives us the desired set.
Proof of Theorem 2. Applying Lemma 3 to $X \in \operatorname{rDP}$ and $\delta<\varepsilon^{2}$, take the corresponding set C. Now consider a new norm p taking as its closed unit
ball B_{p} the closure of $C+\varepsilon B_{\|\cdot\|}$. Since $B_{p} \subset(1+\varepsilon) \cdot B_{\|\cdot\|}$, the radius r_{p} of every set $V \subset X$ in the sense of the new norm satisfies the inequality $r_{p}(V) \geq \frac{1}{1+\varepsilon} r_{\| \| \|}(V)$.

Let S be a slice of B_{p}. By the construction of B_{p}, there is an element $x \in \varepsilon B_{\|\cdot\|}$ and a slice \tilde{S} of C such that $x+\tilde{S} \subset S$. So, $r_{\|\cdot\|}(S)>(1-\delta) \cdot r_{\|\cdot\|}(C)=1-\delta$. Then $r_{p}(S)>\frac{1-\delta}{1+\varepsilon}>\frac{1-\varepsilon^{2}}{1+\varepsilon}=1-\varepsilon$, as needed. The inverse implication is also valid, since the unit ball of a space with RNP has slices of arbitrarily small diameter.

Remark. A natural question is the validity of Theorem 2 with diameters instead of radiuses. But the same technique does not suffice to prove the theorem. So, this question remains open. However, Theorem 1 still holds in the case of diameters and has the same proof.

3. r-Big slice property

In this section the unit sphere of a Banach space X is denoted by $S(X)$. The (open) slice of $B(X)$ determined by a functional $x^{*} \in S\left(X^{*}\right)$ and $\varepsilon>0$ is the set

$$
S\left(x^{*}, \varepsilon\right)=\left\{x \in B(X): x^{*}(x)>1-\varepsilon\right\} .
$$

We will use this form of slices of $B(X)$ instead of slices of the general form (1) to simplify our arguments. Obviously, the r-big slice property in terms of open slices coincides with the same property in the case of closed ones.

In this section E stands for a Banach space with a 1-unconditional normalized Schauder basis. We can think of the elements of E as sequences with the property that

$$
\left\|\left(a_{1}, a_{2}, \ldots\right)\right\|_{E}=\left\|\left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots\right)\right\|_{E} \quad \forall\left(a_{j}\right) \in E
$$

Suppose that X_{1}, X_{2}, \ldots are Banach spaces. Their E-sum $X=\left(X_{1}, X_{2}, \ldots\right)_{E}$ consists of all sequences $\left(x_{j}\right)$ with $x_{j} \in X_{j}$ and $\left(\left\|x_{j}\right\|\right) \in E$ with the norm $\left\|\left(x_{j}\right)\right\|=$ $\left\|\left(\left\|x_{j}\right\|\right)\right\|_{E}$. Note that E^{*} can be represented by all sequences (a_{j}^{*}) such that

$$
\sup _{n}\left\|\left(\left|a_{1}^{*}\right|, \ldots,\left|a_{n}^{*}\right|, 0,0, \ldots\right)\right\|_{E^{*}}<\infty
$$

and X^{*} can be represented by all sequences $\left(x_{j}^{*}\right), x_{j}^{*} \in X_{j}^{*}$, such that

$$
\left\|x^{*}\right\|=\sup _{n}\left\|\left(\left\|x_{1}^{*}\right\|, \ldots,\left\|x_{n}^{*}\right\|, 0,0, \ldots\right)\right\|_{E^{*}}<\infty .
$$

Theorem 3. If $X_{1}, X_{2}, \cdots \in \mathrm{rBSP}$, then their E-sum $X \in \mathrm{rBSP}$.
Proof. Assume to the contrary that $S\left(x^{*}, \delta\right) \subset x+r \cdot B(X)$ for some $x \in X$, $r<1$, and some slice $S\left(x^{*}, \delta\right)$. Consider such positive δ_{k} that $\sum_{k \geq 1} \delta_{k}<\delta / 2$.

Since $\left\|x^{*}\right\|=1$, there is such element $a=\left(a_{k}\right) \in S(E)_{+}$that $\sum_{k \geq 1}\left\|x_{k}\right\| a_{k}>$ $1-\delta / 2$. Now for every k with $a_{k} \neq 0$ we consider a slice of $a_{k} \cdot B\left(X_{k}\right)$ of the form

$$
\begin{equation*}
S_{k}=\left\{y_{k} \in X_{k}:\left\|y_{k}\right\| \leq a_{k}, x_{k}^{*}\left(y_{k}\right)>\left\|x_{k}^{*}\right\| \cdot a_{k}-\delta_{k}\right\} \tag{3}
\end{equation*}
$$

and put $S_{k}=\{0\}$ otherwise. Since every $y=\left(y_{k}\right) \in X$ with $y_{k} \in S_{k}$ for all k satisfies the inequalities

$$
\begin{gathered}
\quad x^{*}(y)=\sum_{k \geq 1} x_{k}^{*}\left(y_{k}\right)>\sum_{k \geq 1}\left\|x_{k}^{*}\right\| a_{k}-\sum_{k \geq 1} \delta_{k}>1-\delta \\
\text { and }\|y\|=\left\|\left(\left\|y_{1}\right\|,\left\|y_{2}\right\|, \ldots\right)\right\|_{E} \leq\left\|\left(a_{1}, a_{2}, \ldots\right)\right\|_{E}=1,
\end{gathered}
$$

the following inclusion holds:

$$
\begin{equation*}
T_{1}+T_{2}+\ldots \subset S\left(x^{*}, \delta\right)-x \subset r \cdot B(X), \tag{4}
\end{equation*}
$$

where T_{k} stands for $S_{k}-x_{k}$. Consider any $r^{\prime} \in(r, 1)$ and let us show that

$$
\begin{equation*}
T_{k_{0}} \subset a_{k_{0}} \cdot r^{\prime} \cdot B\left(X_{k_{0}}\right) \tag{5}
\end{equation*}
$$

for at least one value of k_{0} with $a_{k_{0}} \neq 0$. If such k_{0} does not exist, take a $y=\left(y_{1}, y_{2} \ldots\right) \in T_{1}+T_{2}+\ldots$, such that $\left\|y_{k}\right\| \geq a_{k} \cdot r^{\prime} ;$ then $\left\|\left(\left\|y_{1}\right\|,\left\|y_{2}\right\|, \ldots\right)\right\| \geq$ $\left\|\left(a_{1} r^{\prime}, a_{2} r^{\prime}, \ldots\right)\right\|=r^{\prime} \cdot 1$, which is a contradiction with (4). So, inclusion (5) holds. Dividing it by $a_{k_{0}} \neq 0$, we obtain the following inclusion of a slice of $B\left(X_{k_{0}}\right)$:

$$
\frac{1}{a_{k_{0}}} \cdot S_{k_{0}} \subset \frac{x_{k_{0}}}{a_{k_{0}}}+r^{\prime} \cdot B\left(X_{k_{0}}\right),
$$

which is a contradiction with $X_{k_{0}} \in \mathrm{rBSP}$.
For every $k=1,2, \ldots$ consider a mapping $\gamma_{k}: E \rightarrow \mathbb{R}_{+}$with

$$
\gamma_{k}(a)=\left\|\left(a_{1}, \ldots, a_{k-1}, 0, a_{k+1}, a_{k+2}, \ldots\right)\right\|_{E} .
$$

Theorem 4. Consider a number $n \in\{1,2, \ldots\}$ and let

$$
\begin{equation*}
\sup \gamma_{n}\left(S\left(h^{*}, \delta\right)\right)=1 \tag{6}
\end{equation*}
$$

for every slice $S\left(h^{*}, \delta\right)$ of $B(E)$. Let $X=\left(X_{1}, \ldots, X_{n-1}, X_{n}, X_{n+1}, \ldots\right)_{E}$. Then $X_{1}, \ldots, X_{n-1}, X_{n+1}, \ldots \in \mathrm{rBSP}$ implies that $X \in \mathrm{rBSP}$, independently of properties of X.

Proof. Assume to the contrary that $S\left(x^{*}, \delta\right) \subset x+r \cdot B(X)$ for some $x \in X$, $r<1$, and some slice $S\left(x^{*}, \delta\right)$. Take $h^{*}=\left(\left\|x_{1}^{*}\right\|,\left\|x_{2}^{*}\right\|, \ldots\right) \in S\left(E^{*}\right)_{+}$and such $\delta_{k}>0$ that $\sum_{k \geq 1} \delta_{k}<\delta / 2$. Applying (6) to $S\left(h^{*}, \delta / 2\right)$, we get such $a \in B(E)$ that $h^{*}(a)>1-\delta / 2$ and $\gamma_{n}(a)>\sqrt{r}$. By analogy with (3) for every k define a slice S_{k} and again deduce that

$$
\begin{equation*}
T_{1}+T_{2}+\ldots \subset S\left(x^{*}, \delta\right)-x \subset r \cdot B(X) \tag{7}
\end{equation*}
$$

where T_{k} stands for $S_{k}-x_{k}$. Observe that, due to positivity of $\gamma_{n}(a)$, the set $K=\left\{k: a_{k} \neq 0, k \neq n\right\}$ is nonempty. Let us show that

$$
\begin{equation*}
T_{k_{0}} \subset a_{k_{0}} \cdot \sqrt{r} \cdot B\left(X_{k_{0}}\right) \tag{8}
\end{equation*}
$$

for at least one value of $k_{0} \in K$. If such k_{0} does not exist, take a $y=\left(y_{1}, \ldots, y_{n-1}\right.$, $\left.0, y_{n+1}, \ldots\right) \in T_{1}+T_{2}+\ldots$, such that $\left\|y_{k}\right\| \geq a_{k} \cdot \sqrt{r}(k \neq n)$; then

$$
\|y\| \geq \sqrt{r} \cdot\left\|\left(a_{1}, \ldots, a_{n-1}, 0, a_{n+1}, \ldots\right)\right\|=\sqrt{r} \cdot \gamma_{n}(a)>r
$$

which is a contradiction with (7). So, inclusion (8) holds. Dividing it by $a_{k_{0}} \neq 0$, we obtain the following inclusion of a slice of $B\left(X_{k_{0}}\right)$:

$$
\frac{1}{a_{k_{0}}} \cdot S_{k_{0}} \subset \frac{x_{k_{0}}}{a_{k_{0}}}+\sqrt{r} \cdot B\left(X_{k_{0}}\right),
$$

which is a contradiction with $X_{k_{0}} \in \mathrm{rBSP}$.
Let us show that there is a space E satisfying the condition (6). Take $E=l_{\infty}^{2}$ and n from $\{1,2\}$. Obviously, every slice of $S\left(l_{\infty}^{2}\right)$ includes some points from the set $\{(1,1),(1,-1),(-1,1),(-1,-1)\}$ and γ_{n} maps every such point to 1 . Therefore, (6) is fulfilled. So, $\left(X_{1}, X_{2}\right)_{l_{\infty}^{2}} \in \mathrm{rBSP}$ if and only if one or both spaces $X_{n} \in \mathrm{rBSP}$.

It is easy to understand that every other 2-dimensional space with a 1 -unconditional basis does not satisfy (6). So, the class of spaces which do not satisfy the condition (6) is not empty either.

The next Theorem 5 is the converse to Theorem 4.
Theorem 5. Consider a number $n \in\{1,2, \ldots\}$. If there is a slice $S\left(h^{*}, \delta\right)$ of $S(E)$ with

$$
\begin{equation*}
\sup \gamma_{n}\left(S\left(h^{*}, \delta\right)\right)<1 \tag{9}
\end{equation*}
$$

then $\left(X_{1}, X_{2}, \ldots\right)_{E} \in \mathrm{rBSP}$ implies $X_{n} \in \mathrm{rBSP}$.

Proof. Assume $n=1$. In every other case the proof does not differ in essence. Assume to the contrary that $X_{1} \notin \mathrm{rBSP}$, i.e., $S\left(y_{1}^{*}, \delta_{1}\right) \subset y_{1}+r_{1} \cdot B\left(X_{1}\right)$ for some $y_{1} \in X_{1}, r_{1}<1$, and some slice $S\left(y_{1}^{*}, \delta_{1}\right)$. Denote $C=\sup \gamma_{1}\left(S\left(h^{*}, \delta\right)\right)<$ 1 and observe that an arbitrarily small δ may be chosen. Since $h_{1} \neq 0$ (otherwise $C=1$), we may take $\delta<\delta_{1} \cdot\left|h_{1}^{*}\right| \cdot(1-C)$. Finally, we may pass to a positive functional $h^{*} \in S(E)_{+}$without any loss of generality. Now we are going to construct a slice $S\left(x^{*}, \delta\right)$ and an element $y \in X$ such that

$$
\begin{equation*}
S\left(x^{*}, \delta\right) \subset y+r \cdot B(X) \tag{10}
\end{equation*}
$$

for some r. It will contradict with $X \in \operatorname{rBSP}$, so, the theorem will be proved.
Take any functional $x^{*} \in X^{*}$ with $x_{1}^{*}=y_{1}^{*} \cdot h_{1}^{*}$ and satisfying $\left\|x_{k}^{*}\right\|=h_{k}^{*}$ for all k. We define $y=\left(y_{1}, 0,0, \ldots\right)$ and $r=1-\left(1-r_{1}\right) \cdot(1-C)$. Observe that it is enough to prove (10) for the set $S=S\left(x^{*}, \delta\right) \bigcap S(X)$ (a slice of $S(X)$) instead of $S\left(x^{*}, \delta\right)$. So, let us show for any $x \in S$ that $\|x-y\|<r$. If $x \in S$, then

$$
x_{1}^{*}\left(x_{1}\right)=x^{*}(x)-\sum_{k \geq 2} x_{k}^{*}\left(x_{k}\right)>1-\delta-\sum_{k \geq 2}\left\|x_{k}^{*}\right\|\left\|x_{k}\right\|=\left\|x_{1}^{*}\right\|\left\|x_{1}\right\|-\delta .
$$

Besides, $\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right) \in S\left(h^{*}, \delta\right)$, therefore, $\left\|x_{1}\right\| \geq 1-C$, since $\left\|x_{1}\right\| \geq\|x\|-$ $\left\|\left(0,\left\|x_{2}\right\|,\left\|x_{3}\right\|, \ldots\right)\right\|=1-\gamma_{1}\left(\left\|x_{1}\right\|,\left\|x_{2}\right\|, \ldots\right)$. Consequently,

$$
y_{1}^{*}\left(x_{1}\right)>\left\|x_{1}\right\|-\delta / h_{1}^{*}>\left\|x_{1}\right\| \cdot\left(1-\delta_{1} \cdot(1-C) /\left\|x_{1}\right\|\right)>\left\|x_{1}\right\| \cdot\left(1-\delta_{1}\right) .
$$

It means that x_{1} lies in the slice $\left\|x_{1}\right\| \cdot S\left(y_{1}^{*}, \delta_{1}\right)$, hence, $\left\|x_{1}-y_{1}\right\| \leq r_{1} \cdot\left\|x_{1}\right\|$. So,

$$
\begin{equation*}
\|x-y\| \leq\left\|\left(\left\|x_{1}\right\| \cdot r_{1},\left\|x_{2}\right\|,\left\|x_{3}\right\|, \ldots\right)\right\| \tag{11}
\end{equation*}
$$

for all $x \in S$. Define a convex function $g\left(r_{1}\right)$ as the right part of (11). Then
$\|x-y\| \leq g\left(r_{1}\right) \leq g(1) \cdot r_{1}+g(0) \cdot\left(1-r_{1}\right) \leq r_{1}+\left(1-r_{1}\right) \cdot C=1-\left(1-r_{1}\right)(1-C)=r$, as needed.

R e mark. Let us call the spaces possessing an equivalent norm with the r -big slice property the erBSP-spaces (equivalent r -big slice property-spaces). We don't know whether all the spaces without the RNP are erBSP-spaces. We don't know even whether a space with a erBSP-subspace is a erBSP-space itself. What can be easily deduced from the previous results is that a space with a complemented erBSP-subspace is a erBSP-space. In fact, if $X=Y \oplus Z$, and Y is renormed to have the r-big slice property, then the l_{∞}-sum of Y and Z will be a space with the r-big slice property isomorphic to X.

There are some other properties of Banach spaces concerning extremely large slices of the unit ball, for example the Daugavet property ($[3,4]$), which is strictly stronger than rBSP. The question, whether a 1 -unconditional sum of spaces with the Daugavet property inherits this property, is solved [5] and the solution is far different from the result in the case of rBSP.

4. d-Big slice property

Recall that a Banach space X is said to have the d-big slice property ($X \in$ dBSP) if every slice of $S(X)$ is of diameter 2 . In the other words, for every $\varepsilon>0$ and every slice S of $S(X)$ there are such x and $y \in S$ that $\|x-y\|>2-\varepsilon$. For example, $c_{0} \in \mathrm{dBSP}$. Obviously, d-big slice property is stronger than the r-big slice property, but we do not know, whether these properties coincide.

We remark that all theorems in the previous section hold true with the d-big slice property instead of r-big slice property, but the proofs are slightly longer.

Definition 3. A Banach space X has the equivalent d-big slice property ($X \in$ edBSP) if X is isomorphic to a space having the d-big slice property.

By the same reason as in the Remark at the end of the previous section if X has a complemented subspace with the (equivalent) d-big slice property, then $X \in$ edBSP. The case of noncomplemented subspaces is open with one exception:

Theorem 6. If X has a subspace isomorphic to c_{0}, then $X \in \operatorname{edBSP}$.
Proof. Without loss of generality we assume that c_{0} is a subspace of X. Consider the collection \mathbb{E} of all subspaces $Y \subset X$, such that $c_{0} \subset Y$ and codimension of c_{0} in Y is finite. Equip \mathbb{E} with a filter \mathcal{F}, induced by the natural order: the base of \mathcal{F} is formed by collections of the form $\left\{Y \in \mathbb{E}: Y \supset Y_{0}\right\}$, where $Y_{0} \in \mathbb{E}$. Let \mathcal{U} be an ultrafilter, majorating \mathcal{F}. For each $Y \in \mathbb{E}$ select a projection $P_{Y}: Y \rightarrow c_{0}$ with $\left\|P_{Y}\right\| \leq 2$. Such a projection exists due to the Sobczyk theorem ([2, p. 71]). For every $x \in X$ and every $Y \in \mathbb{E}$ with $x \in Y$ denote $\|x\|_{Y}=\left\|P_{Y} x\right\| \bigvee\left\|x-P_{Y} x\right\|$, where \bigvee stands for maximum of two numbers. The equivalent norm on X which we need, we define as follows: $\|x\|^{\prime}=\lim _{\mathcal{U}}\|x\|_{Y}$. The expression under the limit is defined for $Y \in \mathbb{E}$ big enough, it is bounded, so the limit exists. It is evident, that $\|\cdot\|^{\prime}$ is an equivalent norm on $X, \frac{1}{2}\|x\| \leq\|x\|^{\prime} \leq 3\|x\|$. Let us prove, that ($X,\|\cdot\|^{\prime}$) possesses the d-big slice property. Fix a slice S of the unit ball $B\left(X,\|\cdot\|^{\prime}\right)$, generated by a functional f and an $\varepsilon>0$. Let $e \in S$,

$$
\begin{equation*}
f(e)>1-\frac{\varepsilon}{2} . \tag{12}
\end{equation*}
$$

Denote by $e_{n}, e_{n}^{*}, n \in \mathbb{N}$ the canonical basic of c_{0} and the corresponding coordinate functionals. Since $\left\{e_{n}\right\}$ tends weakly to 0 , there is an $m \in \mathbb{N}$ with

$$
\begin{equation*}
\left|f\left(e_{m}\right)\right|<\frac{\varepsilon}{4} . \tag{13}
\end{equation*}
$$

Consider elements of the form $e+t e_{m}$. For every $Y \in \mathbb{E}, e \in Y$ we have
$\left\|e+t e_{m}\right\|_{Y}=\left\|P_{Y}\left(e+t e_{m}\right)\right\| \bigvee\left\|e+t e_{m}-P_{Y}\left(e+t e_{m}\right)\right\|=\left\|P_{Y}(e)+t e_{m}\right\| \bigvee\left\|e-P_{Y} e\right\|$

$$
\begin{equation*}
=\left|t+e_{m}^{*}\left(P_{Y} e\right)\right| \bigvee\left\|P_{Y} e-e_{m}^{*}\left(P_{Y} e\right) e_{m}\right\| \bigvee\left\|e-P_{Y} e\right\| \tag{14}
\end{equation*}
$$

Denote $a=\lim _{\mathcal{U}} e_{m}^{*}\left(P_{Y} e\right), q=\lim _{\mathcal{U}}\left\|P_{Y} e-e_{m}^{*}\left(P_{Y} e\right) e_{m}\right\| \bigvee\left\|e-P_{Y} e\right\|$ and remark, that a and q do not depend on t. According to (14)

$$
\begin{equation*}
\left\|e+t e_{m}\right\|^{\prime}=\max \{|t+a|, q\} \tag{15}
\end{equation*}
$$

Since $e \in S$, we know that $|a| \leq 1$ and $q \leq 1$. By (15) the elements $x_{1}=$ $e+(1-a) e_{m}, x_{2}=e-(1+a) e_{m}$ belong to the unit ball $B\left(X,\|\cdot\|^{\prime}\right)$, and due to (12) and (13), $f\left(x_{j}\right) \geq 1-\varepsilon, j=1,2$. Hence $x_{1}, x_{2} \in S$. To complete the proof it is sufficient to notice that $\left\|x_{1}-x_{2}\right\|^{\prime}=2$.

References

[1] Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. V. 1. AMS, Coll. Publ.-48, Providens, RI, 2000.
[2] J. Diestel, Sequences and series in Banach spaces. Graduate texts in Math. 92. Springer-Verlag, New York, 1984.
[3] I.K. Daugavet, On a property of completely continuous operators in the space C. - Usp. Mat. Nauk 18 (1963), No. 5, 157-158 (Russian).
[4] V.M. Kadets, R.V. Shvidkoy, G.G. Sirotkin, and D. Werner, Banach spaces with the Daugavet property. - Trans. Amer. Math. Soc. 352 (2000), 855-873.
[5] D. Bilik, V. Kadets, R. Shvidkoy, and D. Werner, Narrow operators and the Daugavet property for ultraproducts. - Positivity 9 (2005), 45-62.

