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We study minimal and totally geodesic surfaces in the standart three-
dimensional geometry Sol® with the left-invariant metric ds? = e?*dz? +
e~ dy? + dz2.
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A three-dimensional geometry Sol? can be presented as matrix group

e? 0 =z
0 e vy |,
0 0 1

homeomorphic to R? with the left-invariant metric ds? = e?*dz? + e~?*dy? 4 dz>
[1, p. 127]. Its group of isometries is of dimension 3, consists from 8 components,
and the component of unit e = (0,0,0) coincides with Sol?, acting by left trans-
lations. The stabilizer of origin consists of 8 linear transformations of space R?
taking the form (z,y,2z) — (+z, ty, 2z) and (z,y, z) — (ty, £z, —2). These eight
transformations are isomorphisms and isometries of group Sol?. In this note we
find some examples of ruled minimal surfaces and minimal surfaces, invariant
under the action of some 1-parameter group of isometris of Sol®>. The techniques
of finding ruled minimal surfaces is similar to those, wich we used in [2], but in
contrast to geometry Nil?, in geometry Sol? there is a family of totally geodesic
surfaces.
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1. Minimal ruled surfaces in geometry Sol?

Acting as in [2|, we at first write down the system of ordinary differential
equations for geodesics of Sol3:

2" (t) + 22" (t)2'(t) — 0,

y"(t) = 2/ ()2 (1) -0,
Z”(t) _ eZz($l)2 + e—2z(yl)2 =0.

The obvious solutions to the system are 1) "vertical” geodesics (z = xg,y =

Yo,z = t), 2) "horizontal” geodesics (z = :l:%e_zot + 2o,y = i%ezot + Y0,z =

2p)). Find at first all ruled minimal surfaces, composed of "vertical” geodesics:
r(s,t) = (z(s),y(s),t). Compute the first and the second fundamental forms of
this surface.

Proposition 1. 1) The first fundamental form of the surface r(s,t) = (z(s),
y(s),t) in the geometry Sol® is

I = (e () + e (yy)?)ds” + dt?;
2) the second fundamental form of the surface is

(z"y' — x'y")ds? + 4z'y dsdt

U e

Proof. Thenonzero Cristoffel symbols of Sol® metric are T'1; = 1, F23 =—

7

I3, = —e?, '3, = e7?*. The tangent vectors to the surface are rs = (2/,4/,0),
= (0,0,1), and from here we easily obtain the first fundamental form. The
(e—2tyl 782t ’ )

normal vector isn = The coefficients of the second fundamental

(e 2tm12+e—2ty12)1/2
form can be computed using formulas (43.4), (43.5) from [3, p. 180], which for
given surface in Sol® take the form (latin indices vary from 1 to 2, and greek
indices from 1 to 3):

bij = e*'n'(rj; + T),rhir") + e 'n?(rd; + T, 7

w37 uuzg)""n(r +F3 “V)

2L

Corollary 1. The ruled minimal surfaces, composed from ’vertical’ geodesics
in Sol3, are the surfaces of the form r(s,t) = (s,as+b,t) orr(s,t) = (as+b,s,1),
where a,b — arbitrary constants.

P r o o f. For the surface, composed from ’vertical’ geodesics, minimality
", l /l

condition 2H = by1g92 — 2b12g12 + boogi1 = 0 takes the form z''y =
whence the statement follows.
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Corollary 2. The totally geodesic surfaces in Sol3, composed from "vertical”
geodesics are the surfaces of the form r(s,t) = (s,b,t) and r(s,t) = (a,s,t).

P r oo f It must be fulfilled the condition b7 = b3 = 0, whence the
statement follows.

Remark, that isometries of Sol® of the form (z,y,z) — (y,z,—2) transform
“vertical” totally geodesic surfaces, "parallel” to Oz to the "vertical” totally
geodesic surfaces, "parallel” to yOz.

Proposition 2. Arbitrary minimal surface, composed from "wertical” geode-
sics, 1s stable.

P roof. For the surface in Sol® with parametrization r(s,t) = (s,as + b, t)
the coefficients of the first fundamental form are g1 = e€?* + a7, g9 = 0,
goo = 1. The coefficients of the second fundamental form are by; = byy = 0,

bio = M#)W Nonzero components of Rimann tensor of geometry Sol?
are Ris19 = 1, Ri313 = —eQz, Roso3 = —e— 2%, The unique nonzero component of
Ricci tensor of geometry Sol® is R33 = —2. Since the normal to studed surface

(ae=2t,—e2t)0)
(@ rate1/E
Ric(n,n) = R,pn®n® = 0. The norm of squared second fundamental |[b||? (the

sum of squared principal curvatures) is ||b||? = %. For the Laplace—

is of the form n = the Ricci curvature in the normal direction is

Beltrami Ajs operator of the surface we obtain the following expression:

82
o2

1 82 2t 2 _—2t 8
AM—W(@W —ae @)*

Hence, for the Jacobi operator L = Aps + Ric(n,n)+||b||* we find the expres-

sion
1 L AN 842
b=areen <W T mae )5 ) T er Y @ are e

It is directly checked that the following positive function f(t) = (e? 4 a2e~2t)~1/2
solves the equation Lf = 0. Then according to theorem of Fisher—Colbrie-Schoen
[4, Th. 1] the studed minimal surface is stable.

To solve the problem of classification of all totally geodesic surfaces in the
geometry Sol® we need the expressions for the coefficients of the first and second
fundamental forms of the surface r(x,y) = (z,y, 2(x,y)), which has nondegenerate
projection on the plane zOy. In this case the tangent vectors and normal to the

(—2ze7%,—24€% 1) .
e T E 2 The coefficients

surface are r; = (1,0, 2;), ry = (0,1, 2y), n =
of the first and second fundamental forms are

2z 2 —2z 2
g1 =€ + 25, g12 = 22y, g22 =€ + 2y,
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Zpw — 2z§ — e

(z%e_% + 2562'2 + 1)1/2 ’

Zay
_ )
(z%e 2z +Z§€2z + 1)1/2

b1 = bio =

Zyy + 2z§ +e %
z2e7%% + 22e? + 1z’

by =
(

Proposition 3. There is no totally geodesic surface in the geometry Sol® with
nondegenerate projection to the zOy.

P r o o f. Suppose that there exists the totally geodesic surface in the form
(z,y,2(z,y)). Then the condition bjs = 0 implies z(z,y) = ¢(z) + ¥(y). The
conditions b1; = bgs = 0 yield the following system for ¢(z) and ¥ (y):

¢II o 2¢§. o 62(¢+¢) — 0, d)yy + 21[); + 6—2(¢+¢) =0.
It can be rewritten in the form

(e720@N" = _9e¥W) (e2¢(y))gy — 9 20(7)

Since the left hand side of the second equation does not depend of z, we can
differentiate it two times by x, getting (e=2%)”, = 0, but then the first equation
takes the form —2e2¥(¥) = 0, that is impossible.

We will find now all ruled minimal surfaces composed of "horizontal" geode-
sics. This surface admits the parametrization

1 1

z(s,t) = —=e *t +a(s), y(s,t) = —=e*Ot +b(s), z(s,t) = z(s).

(5= 7 () vlst) = 7 (s), 2(s,8) = 2(s)
The problem consists in finding of triple of unknown functions (a(s), b(s), z(s)),
which yield minimal surface in the geometry Sol®. Note, that by virtue of men-
tioned dihedral isometries it is sufficient to restrict search to the case of the pointed

out surfaces. The tangent vectors and normal to the surface are
1 1 1

—e®2t+ 0,2, rp = (—=e %, —¢%,0),

V2 V2§ V2

(ZI, —62221, \/ﬁezzlt —ale?? + b/)
n= ,
A
where A = (2¢%22"? + (V2e%2't — d'e** + 1/)?)
The calculations yield the following values for the coefficients of the first and
second fundamental forms:

= (-7

V2

— ! !
e “Zt+d,

1/2
(e*a’ +e77V), g2 =1,

1
QIQZE
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2
bll — %(Zl/(b/efz_alez)+2zl2(alez+blefz)

"n_z /1 _o—z\ ! 2 ! —z1! ! 1z / —2z\2
+(a"e* —b'e )2 + (efd + e V) (V22't — d'e® + b e™?)?),
V2¢e? e?a’ N e b

A V2 V2

The minimality condition 2H = b11g22 — 2b12g12 + ba2g11 = 0 leads to the
equation

b12 = (Z,t -

)2, by = 0.

(Ve % —d'e?) + (a"e —b'e ) + (a'e* +b'e™?) (222 + (V22 t — d'e* + b e™%)?)
=2(d'e® + Ve ?)(Zt+be? —de?)?
After conversion we get linear by variable ¢ equation:
Z'(We? —d'e’) + (a"e” —b'e 7))
+(e*a 4+ e77) (222 +2(V2 = 2)(Ve™® — d'e*) 't — (Ve — d'e?)?) = 0.

From here follows, that it must be fulfilled the system of two equations, getting
by setting equal to zero the coefficient by ¢ and constant term:

Z(a'e* +be ?)(d'e® — Ve ?) =0,
zll(ble—z _ alez) + (allez _ blle—z)zl + (alez + ble—z)(2zl2 - (ble—z _ alez)2) =0.

The analysis of the system gives that 1) if 2/ = 0, the solution is complete
minimal surface z = zg (analog of the plane), 2) if a’e* —b'e~#=0, then differentiate
this relation we get a”e* — b'e™* = —2'(d'e® + b'e ?).

Then the second equation of the system takes the form 22(a'e* 4+ b'e™?) = 0,
if 2/ # 0, we may assume that z(s) = s, and then we find that a = ag,b = by —
arbitrary constants. The solution obtained we can write in the form

1 1
z(s,t) = —=e *t+ ag, y(s,t) = —=e’t + by, z(s,t) =s. 1
(5:6) = 7 o) = (5.0 )
Finally, let us consider the last possibility 3) a’e® + b'e # = 0. Differentiating
this relation, we get a”’e* = —b"e % + 20/2'e ?. Substituting it to the second
equation of the system, we get the following equation 2"b — 2'b" + 2”20 = 0.
Integrating it we find 2’ = #’c. Whence, integrating it once more, we get b =
c1€% + ¢o. Then from the relation @’ = —e~2%b we find @ = ¢1e~% + ¢3. Hence the
solution we get in the form z(s,t) = %efz(s)t +cre ? +c3, y(s,t) = %ez(s)t +

cr1€% + ¢o, 2(s,t) = z(3).
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It is evident that if we introduce new variables 5 = z(s), £ = t+1/2c1, then we
get the parametrization (1), that we find earlier in the case 2). Hence, we have
proved the following statement.

Proposition 4. Arbitrary complete minimal ruled surface composed from
“horizontal” geodesics is either analog of the "plane” z = zy, or the analog of the
"helicoid” with the parametrization (1) (as well the surfaces obtained from they by
dihedral isometries in Sol3) .

2. Minimal surfaces in Sol?, invariant under action
of 1-parameter subgroup

It is known that if the metric on the Lie group is biinvariant then every 1-
parameter subgroup is geodesic with respect to the Levi-Civita connection [5,
p. 184]. In the case of Sol?® considered left-invariant metric is not biinvariant, so
in general not every l-parameter subgroup is geodesic. The law of multiplication
in the Sol® can be written in the form
z

(z,y,2) (", 2") = (x + e 2",y + %y, 2 + 7).

0 01
The basis of the Lie algebra sol® consists of the vectorse; = | 0 0 0 |,
000
0 00 -1 0 0
eo= 0 0 1 |,e3= 0 1 0 |],with brackets [e1,e3] =0, [e1,e3] = eq,
0 00 000
[62, 63] = —e9.

Denote by G (t) the 1-parameter subgroup exp(ae; +bez)t— E+ (ae; +beg)t.
Consider the surface in Sol® , generated with the aid of curve r(s) = (s, 0, z(s))
in the following way:

R(s,t) = Gap(t)r(s) = (at,bt,0)(s,0,2(s)) = (at + s,bt, 2(s)).

It is evident, that the surface R(s,t) is invariant under the action of the group
Gap, that is Gop(t)R(s,t) = Gap(t + t)R(s,0).

Note that 1-parameter subgroup G,;(t), in general, is not a geodesic of Sol?,
excepting the case |a| = |b| = %, when we get "horizontal” geodesic. We will find
minimal surfaces R(s,t) in Sol?, invariant under the action of subgroup G (t).
The tangent vectors and normal to the surface R(s,t) are

(b2'e=2%, —az'e?*, —b)
B )

Rs = (1,0,2,), Rt = (a'a ba 0)3 n =

where B = (a22/%e?* 4 b*2"%e=2%% 4+ b?)'/2,
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Calculation of the first and second fundamental forms yields

2z 2 2z 2 2z 2 _—2z
g1 =€" + 27, gig=a€e", gpp=a’e +b% )

b b b
by = —=(22"2 — 2" + €22), by = %(2,2'2 + €%), byy = ——(—a?e®* + b2e™??).

B B(
Minimality condition 2H = g11b22 — 2g12b12 + g22b11 = 0 leads to the equation

zl/(a262z + b2672z) + 212(0,2622 o b26722) =0.

Integrating it, we get 2"2(a%e* +b?e™%*) = ¢, and further on [ Va2e2? + b2e—22dz
= cs.

So the following statement is valid.

Proposition 5. Minimal surfaces in Sol®, invariant under the action of the
subgroup exp(aey + bes)t, admit the parametrization

R(s,t) = (at + s,bt, 2(s)),

where the function z(s) can be found from the equation [ Va?e** + b%e=2?dz = cs.

R em ar k. The minimal surface equation in Sol?, which admits nondegen-
erate projection on xQy, takes the form

_2zz:% +e%2 22 =0.

(e_2z + Z;)Zm — 2232y 2y + (e2z + z:%)zyy —e )

The analog of helicoid, founded in Sect. 1, admits in the domain (z > 0,y > 0)
the parametrization (z,y, %ln(%)), and among the surfaces discussed in 2, there
are (x,y,—In(c — x)), which obtained, taking a =0, b = 1.
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