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It is demonstrated that there exist surfaces of constant negative Gauss

curvature in E
4 whose Grassmann image consists of either hyperbolic or

parabolic or elliptic points. As a consequence, there exist surfaces of con-

stant negative Gauss curvature in E4 which do not admit Backlund transfor-

mations with help of pseudospherical congruencies. A geometric represen-

tation for pseudospherical surfaces in E4 with parabolic Grassmann image

is proposed.
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1. Introduction

The theory of surfaces with constant negative Gauss curvature K = �1 in

three-dimensional Euclidean space E3 is one of the most attractive branches of

the classical di�erential geometry. Initially the pseudospherical surfaces in E3

were of a great interest for many geometers since each surface with constant nega-

tive Gauss curvature realizes locally the hyperbolic geometry. Another important

reason for the studying of pseudospherical surfaces was the discovery of elegant

geometric transformations constructed and studied by L. Bianchi, A. Backlund,

G. Darboux and others. The corresponding geometric construction based on the

notion of pseudospherical congruencies in E3 has various nontrivial properties,

we shall mention two of them. Firstly, if two surfaces in E3 are connected by a

pseudospherical congruence, then both surfaces are of the same constant negative

Gauss curvature. Secondly, an arbitrary pseudospherical surface in E3 admits a

large family of Backlund transformations. So an iteration of Backlund transfor-

mations generates a family of pseudospherical surfaces from a given one [1�3].
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The pseudospherical surfaces in E3 may be interpreted via solutions of the

well-known sine-Gordon equation @xy' = sin', and the geometric Backlund

transformations of pseudospherical surfaces correspond to analytic transforma-

tions of solutions of SGE. This interpretation resulted in the general fundamental

idea of Backlund transformations for solutions of nonlinear partial di�erential

equations (integrable systems) [1�3].

Large majority of results from the classical theory of pseudospherical surfaces

in E3 and their Backlund transformations were generalized for n-dimensional

pseudospherical submanifolds in E2n�1 [4�7].

An attempt to generalize the mentioned constructions and ideas for two-

dimensional pseudospherical surfaces in four-dimensional Euclidean space E4 nec-

essarily leads to the consideration of Cartan surfaces. By de�nition, a Cartan

surface in E4 is characterized by the existence of a well-de�ned net of conjugate

curves. Besides, a Cartan surfaces in E4 may be de�ned in terms of the Grass-

man image (generalized Gauss image): the Grassmann image of a Cartan surface

consists of hyperbolic points (here we apply a classi�cation of points on surfaces

in E4 proposed by Yu. Aminov [1, Ch. 8, x 6]). It was remarked in [8�10], that

pseudospherical congruencies in E4 and corresponding Backlund transformations

may be constructed either for pseudospherical Cartan surfaces in E4 or for pseu-

dospherical hypersurfaces in E3 � E4 only.

On the other hand, there are many surfaces in E4 which are neither Cartan

surfaces nor hypersurfaces in E3 � E4. We speak about the surfaces whose Grass-

mann image consists of elliptic and/or parabolic points. By de�nition, a surface

with elliptic Grassmann image, an E-surface, is characterized by the absence of

conjugate directions in tangent planes. A surface with parabolic Grassmann im-

age, a P -surface, has a well-de�ned asymptotic direction at each its point. So

a P -surfaces in E4 is foliated in a unique way by asymptotic curves; the ruled

surfaces in E4 which are not hypersurfaces in E3 � E4 present a particular class

of P -surfaces.

The following question was of the major interest for us: do there exist sur-

faces of constant negative Gauss curvature in E4
which don't admit Backlund

transformations with help of pseudo-spherical congruencies? We reformulate this

question as follows: do there exist E-surfaces and/or P -surfaces with constant

negative Gauss curvature in E4
? It turns out that the answer is positive.

Theorem 1.

1. There exist P -surfaces with constant negative Gauss curvature in E4.

2. There exist E-surfaces with constant negative Gauss curvature in E4.

3. There exist Cartan surfaces with constant negative Gauss curvature in E4.

The E-surfaces as well as Cartan surfaces form two general classes of surfaces

in E4. Hence the existence of pseudospherical E-surfaces in E4 seems to be
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rather expected. We demonstrate that each pseudospherical E-surface in E4 may

be represented by one function of two variables and two functions of one variable.

The same situation is valid for the Cartan surfaces of constant negative curvature

in E4. As for the P -surfaces, they form a very particular class of surfaces in E4.

So the existence of pseudospherical P -surfaces is very surprising. We demonstrate,

that each pseudospherical P -surface in E4 may be represented by four functions

of one variable. From the geometric point of view, the corresponding initial data

for constructing of a pseudospherical P -surface F 2 in E4 are a generic curve  in

some E3
0 � E4 and a generic �eld of two-planes � along  which are tangent to 

and transversal to E3
0 ; the surface F

2 passes through  and at each point x of 

the tangent plane TxF
2 coincides with �(x), (see Th. 2 in Sect. 4).

The proven theorem leads us directly to the positive answer for the principal

question stated above.

Corollary. There exist pseudospherical surfaces in E4 which don't admit

Backlund transformations with help of pseudospherical congruencies.

It is an open question whether a similar statement holds for pseudo-spherical

Cartan surfaces in E4.

In order to deduce Corollary from Theorem 1, one can apply, for instance,

Theorem 4 from [8] which asserts that a pseudospherical E-surface in E4 doesn't

admit linear congruencies. The same is true for pseudospherical P -surfaces in E4.

Thus the direct generalization of Backlund transformations with help of pseu-

dospherical congruencies can not be applied to all pseudospherical surfaces in E4.

It would be very interesting to �nd an analogue of Backlund transformations for

pseudospherical E- and P -surfaces in E4, such an analogue has to be constructed

without any use of pseudospherical congruencies.

2. Classi�cation of Points on Surfaces in E4

Let F 2 be a regular two-dimensional surface in the four-dimensional Euclidean

space E4. Choose two normal �elds, ~n1, ~n2, on F 2 which form a frame in the

normal planes NxF
2. Let II� = L�

ij
duiduj , � = 1; 2, stand for the second funda-

mental forms of F 2 corresponding to the above choice of normals ~n1, ~n2.

Similarly to the classical case, various properties of the second fundamental

forms II� may be applied to classify points of F 2 � E4. We brie�y describe one

such classi�cation, which is based on the consideration of conjugate and asymp-

totic directions in tangent planes to F 2.

Let us recall some fundamental notions. The point codimension of F 2 at a

point x 2 F 2 (the dimension of the �rst normal space to F 2 at x) is de�ned by
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the following formula:

codimx = Rank

�
L1
11 L1

12 L1
22

L2
11 L2

12 L2
22

�
:

Two directions X = (X1 : X2), Y = (Y 1 : Y 2) in the tangent plane TxF
2 are

called conjugate if

L1
11X

1Y 1 + L1
12(X

1Y 2 +X2Y 1) + L1
22X

2Y 2 = 0; (1)

L2
11X

1Y 1 + L2
12(X

1Y 2 +X2Y 1) + L2
22X

2Y 2 = 0: (2)

A self-conjugate direction X = (X1 : X2) in TxF
2 is called an asymptotic direc-

tion, its coordinates solve the following equations:

L1
11(X

1)2 + 2L1
12X

1X2 + L1
22(X

2)2 = 0;

L2
11(X

1)2 + 2L2
12X

1X2 + L2
22(X

2)2 = 0:

The existence of conjugate directions in TxF
2 depends on the solvability of

the system of algebraic equations (1)�(2). Write (1)�(2) as a system of two linear

equations with respect to Y 1, Y 2:�
L1
11X

1 + L1
12X

2 L1
12X

1 + L1
22X

2

L2
11X

1 + L2
12X

2 L2
12X

1 + L2
22X

2

��
Y 1

Y 2

�
=

�
0

0

�
: (3)

There exists a nonzero solution Y = (Y 1 : Y 2) of (3) if and only if

det

�
L1
11X

1 + L1
12X

2 L1
12X

1 + L1
22X

2

L2
11X

1 + L2
12X

2 L2
12X

1 + L2
22X

2

�
= 0;

i.e., if X = (X1 : X2) solves the following second-order homogeneous equation:

(X1)2(L1
11L

2
12�L

1
12L

2
11)+X

1X2(L1
11L

2
22�L

1
22L

2
11)+(X2)2(L1

12L
2
22�L

1
22L

2
12) = 0:

(4)

By symmetry, the same equation is satis�ed by Y = (Y 1 : Y 2).

Thus, the conjugate directions in TxF
2 are determined by solutions of (4).

The solvability of (4) depends on the coe�cients L�

ij
. Firstly, it is easy to see

that (4) is nondegenerate if and only if codimx is equal to 2. Secondly, in the

nondegenerate case the number of solutions of (4) depends on the sign of the

following discriminant:

D = (L1
11L

2
22 � L1

22L
2
11)

2 � 4(L1
11L

2
12 � L1

12L
2
11)(L

1
12L

2
22 � L1

22L
2
12):

If D > 0, then there exist two independent solutions X = (X1 : X2) and

Y = (Y 1 : Y 2), they determine a well-de�ned pair of independent conjugate

directions in TxF
2; in this case the point x 2 F 2 is said to be hyperbolic.
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If D = 0, then there exist a unique solution X = (X1 : X2), it determines a

well-de�ned asymptotic direction in TxF
2; in this case the point x 2 F 2 is said

to be parabolic.

If D < 0, then there no exist nonzero solutions of (4), so the tangent plane

TxF
2 doesn't contain neither conjugate directions nor asymptotic ones; in this

case the point x 2 F 2 is said to be elliptic.

If codimx is equal to 1, the left hand side of (4) vanishes. It means that for

an arbitrary direction X = (X1;X2) in TxF
2 there exist a well-de�ned conjugate

direction Y = (Y 1; Y 2), which may be determined from (3).

If codimx is equal to 0, then the equations (1)�(2) degenerate, so arbitrary

directions in TxF
2 are conjugate.

Thus, we described �ve classes of points in F 2 � E4 with very di�erent

extrinsic-geometric properties depending on the point codimension and on the

sign of the discriminant D. The proposed classi�cation is well known, it cor-

responds to the so-called a�ne and Grassmannian classi�cations introduced by

A.A. Borisenko and by Yu.A. Aminov respectively (see [1, Ch. 8, x 6], [11, Ch. 3,
x 1]).

If a surface in E4 consists of hyperbolic points, it is called a Cartan surface;

such a surface carries a well-de�ned net of conjugate curves. A surface in E4 is

called a P -surface, if it consists of parabolic points; such a surface is foliated in

a unique way by asymptotic curves. A surface in E4 is called an E-surface, if it

consists of elliptic points; such a surface does not admit neither conjugate tangent

directions nor asymptotic ones.

If the point codimension is less than 2 at all points of a surface in E4, then

either such a surface belongs to some hyperplane E3 � E4 or it is ruled and has

a degenerate Grassmann image.

3. Pseudospherical Surfaces in E
4

The surface F 2 � E4 is said to be pseudospherical if its Gauss curvature K is

equal to �1. In view of the classi�cation discussed in the previous section, it is

naturally to analyze what kind of points may belong to F 2.

Let us suppose that F 2 � E4 is represented explicitly:

x1 = u; x2 = v; x3 = U(u; v); x4 = V (u; v); (5)

where U(u; v), V (u; v) are some Ck, k � 2, functions de�ned on a neighborhood of

the origin (0; 0) 2 R2. An easy calculation provides us with the following simple

formula for the Gauss curvature K [1, Ch. 6, x 7, p. 176]:

K =
�
(1 + (Uu)

2 + (Uv)
2)(VuuVvv � (Vuv)

2)

+(1 + (Vu)
2 + (Vv)

2)(UuuUvv � (Uuv)
2)
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�(UuVu + UvVv)(UuuVvv � 2UuvVuv + UvvVuu))

=
�
1 + (Uu)

2 + (Uv)
2 + (Vu)

2 + (Vv)
2 + (UuVv � UvVu)

2
�2
:

Therefore the explicit surface F 2 � E4 is pseudospherical, K � �1, if and only

if the functions U(u; v) and V (u; v) satisfy the following second order partial

di�erential equation:

(1 + (Uu)
2 + (Uv)

2)(VuuVvv � (Vuv)
2) + (1 + (Vu)

2 + (Vv)
2)(UuuUvv � (Uuv)

2)

�(UuVu + UvVv)(UuuVvv � 2UuvVuv + UvvVuu)

+
�
1 + (Uu)

2 + (Uv)
2 + (Vu)

2 + (Vv)
2 + (UuVv � UvVu)

2
�2

= 0: (6)

It is easy to see, that (6) may be written in the following form:

Uuu =
A(Uu; Uv ; Uuv; Uvv ; Vu; Vv; Vuu; Vuv; Vvv)

(1 + (Vu)2 + (Vv)2)Uvv � (UuVu + UvVv)Vvv
; (7)

where A denotes some polynomial. By a corresponding existence and unique-

ness theorem from PDE theory [12, Ch. I, x 2, p. 24], for an arbitrary choice of

analytical functions V (u; v), U(0; v) = P (v), Uu(0; v) = Q(v) which obeys

(1 + (Vu)
2 + (Vv)

2)Uvv � (UuVu + UvVv)Vvv j(0;0)

= (1 + (Vu)
2 + (Vv)

2)Pvv � (QVu + PvVv)Vvv j(0;0) 6= 0;

there exists a unique analytical solution U(u; v) of (7) de�ned in a neighborhood

of (0; 0) 2 R2. Such a solution describes some pseudospherical surface in E4 via

the explicit representation (5).

In order to control the kind of points on F 2, we have to write the discriminant

D in terms of functions U(u; v) and V (u; v):

D = (UuuVvv � VuuUvv)
2 � 4(UuuVuv � VuuUuv)(UuvVvv � VuvUvv): (8)

As for the point codimension codim, it is determined by the following formula:

codim(u;v) = Rank

�
Uuu Uuv Uvv

Vuu Vuv Vvv

�
: (9)

Therefore, the surface F 2 � E4 consists of elliptic points if and only if the

functions U(u; v) and V (u; v) satisfy two conditions:

(UuuVvv � VuuUvv)
2 � 4(UuuVuv � VuuUuv)(UuvVvv � VuvUvv) < 0; (10:1)

Rank

�
Uuu Uuv Uvv

Vuu Vuv Vvv

�
= 2: (10:2)
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Moreover, in order to construct a pseudospherical E-surface in E4 the function

V (u; v) and the initial data U(0; v) = P (v), Uu(0; v) = Q(v) for (7) has to be cho-

sen in such a way that (10.1)�(10.2) hold at (0; 0). (For example, one can choose

V (u; v), P (v), Q(v) with Vuu(0; 0) = Vvv(0; 0) = 0, Vuv(0; 0) = 1=2, Pvv(0) 6= 0,

jQv(0)j <
p
3=2.) For such a choice of initial data there exists a solution U(u; v)

of (7), which satis�es (10.1) and (10.2) in a neighborhood of (0; 0) 2 R2. Then

(5) will describe a pseudospherical E-surface in E4.

Similarly, the surface F 2 � E4 consists of hyperbolic points if and only if the

functions U(u; v) and V (u; v) satisfy two following conditions:

(UuuVvv � VuuUvv)
2 � 4(UuuVuv � VuuUuv)(UuvVvv � VuvUvv) > 0; (11:1)

Rank

�
Uuu Uuv Uvv

Vuu Vuv Vvv

�
= 2: (11:2)

Besides, in order to construct a pseudospherical Cartan surface in E4 the function

V (u; v) and the initial data U(0; v) = P (v), Uu(0; v) = Q(v) for (7) has to be cho-

sen in such a way that (11.1)�(11.2) hold at (0; 0). (For example, one can choose

V (u; v), P (v), Q(v) with Vuu(0; 0) = Vvv(0; 0) = 0, Vuv(0; 0) = 1=2, Pvv(0) 6= 0,

jQv(0)j >
p
3=2.) For such a choice of initial data there exists a solution U(u; v)

of (7), which satis�es (11.1) and (11.2) in a neighborhood of (0; 0) 2 R2. Then

(5) will describe a pseudospherical Cartan surface in E4.

Finally, the surface F 2 � E4 consists of parabolic points if and only if the

functions U(u; v) and V (u; v) satisfy two conditions

(UuuVvv � VuuUvv)
2 � 4(UuuVuv � VuuUuv)(UuvVvv � VuvUvv) = 0; (12:1)

Rank

�
Uuu Uuv Uvv

Vuu Vuv Vvv

�
= 2: (12:2)

Therefore, in order to construct a pseudospherical P -surface in E4, we have to

solve two second order nonlinear partial di�erential equations, (6) and (12.1),

completed by the partial di�erential relation (12.2).

Consider (6) and (12.1) as a system of algebraic equations with respect to the

partial derivatives Uuu and Vuu. The equation (6) is linear, whereas (12.1) is a

second-order equation of parabolic type. So it's easy to see, that if Uu, Uv, Uuv,

Uvv , Vu, Vv, Vuv, Vvv satisfy some polynomial inequality

�(Uu; Uv; Uuv; Uvv ; Vu; Vv; Vuv ; Vvv) > 0; (13)

then (6) and (12.1) may be solved with respect to Uuu and Vuu as follows:

Uuu = A1(Uu; Uv; Uuv; Uvv ; Vu; Vv; Vuv; Vvv); (14:1)
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Vuu = A2(Uu; Uv; Uuv; Uvv ; Vu; Vv; Vuv ; Vvv); (14:2)

where A1 and A2 are some analytical functions de�ned on an open domain

D =
�
(y1; : : : ; y8) 2 R8 j�(y1; : : : ; y8) > 0

	
:

Choose analytical initial data

U(0; v) = P (v); Uu(0; v) = Q(v); V (0; v) = R(v); Vu(0; v) = S(v) (15)

in such a way that

(Q(0); Pv(0); Qv(0); Pvv(0); S(0); Rv(0); Sv(0); Rvv(0)) 2 D: (16)

Then by Cauchy�Kowalewskaya theorem [12, Ch. I, x 2, p. 24] there exists a unique
analytical solution U(u; v), V (u; v) of (14.1)�(14.2), which is de�ned in a neigh-

borhood of (0; 0) 2 R2.

The constructed solution U(u; v), V (u; v) obeys the additional constraint

(12.2) in a neighborhood of (0; 0) 2 R2 if P (v), Q(v), R(v) and S(v) satisfy

the following inequality:

Qv(0)Rvv(0) � Pvv(0)Sv(0) 6= 0: (17)

Consider the open domain

~D =
�
(y1; : : : ; y8) 2 R8jy3y8 � y4y7 6= 0

	
� R8:

It's easy to verify that the intersection D \ ~D � R8 is nonempty, for instance

it contains the point (0; 0; 1; 1; 0; 0; 0; 1). Hence D? = D \ ~D is a nonempty

open domain in R8. Therefore, it is really possible to choose the initial data

P (v), Q(v), R(v), S(v) in such a way, that (16) and (17) hold. As consequence,

the corresponding solution U(u; v), V (u; v) of (14.1)�(14.2) will satisfy (12.2) in

a neighborhood of (0; 0) 2 R2. So, the explicit representation (5) will describe

a pseudospherical P -surface in E4, q.e.d.

R e m a r k 1. If a point x 2 F 2 is �xed, one can always specify the Cartesian

coordinates in E4 in such a way that P is the origin and TxF
2 is the (x1; x2)-plane.

For the explicit representation (5) such a speci�cation means that

U(0; 0) = 0; V (0; 0) = 0; Uu(0; 0) = 0; Vu(0; 0) = 0; Uv(0; 0) = 0; Vv(0; 0) = 0:

So, without loss of generality one can consider the initial data P (v), Q(v), R(v),

S(v) which satisfy

P (0) = 0; R(0) = 0; Q(0) = 0; S(0) = 0; Pv(0) = 0; Rv(0) = 0: (18)
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If (18) hold then the initial data P (v), Q(v), R(v), S(v) are said to be reduced.

It is easy to verify that

�(0; 0; y3; y4; 0; 0; y7; y8) = (y4)2 + (y8)2 � (y3y8 � y4y7)2:

Therefore if P (v), Q(v), R(v), S(v) are reduced then (16) reads

P 2
vv

+R2
vv
� (PvvSv �RvvQv)

2 > 0: (19)

The initial data P (v), Q(v), R(v), S(v) are referred to as appropriate if they obey

(17)�(19). For any choice of appropriate initial data corresponds a well-de�ned

pseudospherical P -surface in E4.

4. Geometric Representation of Pseudospherical P -Surfaces in E
4

The initial data P (v), Q(v), R(v), S(v) may be interpreted geometrically. Due

to (5), the functions P (v), R(v) represent a curve  2 F 2 explicitly given by

x1 = 0; x2 = v; x3 = P (v); x4 = R(v): (20)

The curve  is the intersection of F 2 with the hyperplane E3
0 � E4 given by

x1 = 0. At each point x of  the tangent plane TxF
2 is spanned by two vectors:

xu(0; v) = (1; 0; Uu(0; v); Vu(0; v)) = (1; 0; Q(v); S(v)) ; (20.1)

xv(0; v) = (0; 1; Uv(0; v); Vv(0; v)) = (0; 1; Pu(v); Ru(v)) : (20.2)

Obviously, xv(0; v) is the tangent vector to . Besides, TxF
2 6� E3

0 . The curve 

being given, the tangent planes to F 2 along  are one-to-one determined by Q(v)

and S(v).

The initial data P (v), Q(v), R(v), S(v) are reduced, i.e., (18) holds, if and

only if the origin O belongs to  and the tangent plane TOF
2 is the (x1; x2)-plane.

The analytic constraints (17) and (19) impose some restrictions on the dynamical

properties of  and TxF
2 at O.

Conversely, consider an arbitrary regular analytical curve  in some E3
0 � E4

and an analytical �eld of two-planes �2 along . Suppose that  and �2 satisfy

the following conditions:

A1) the planes �2 are tangent to , i.e., at each point x of  the tangent vector

to  belongs to �2(x);

A2) there is a point O 2  such that �2(O) doesn't belong to E3
0 .

Introduce Cartesian coordinates x1; : : : ; x4 in E4 in such a way that O is the

origin, the tangent line to  at O is the x2-axe, and E3
0 � E4 is the hyperplane

x1 = 0. Since the tangent line to  at O is the x2-axe, the curve  may be

represented explicitly, x1 = 0, x2 = v, x3 = P (v), x4 = R(v), where P (v) and

146 Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 2



On Pseudospherical Surfaces in E4
with Grassmann Image of Prescribed Type

Q(v) are some functions. Moreover, since �2(O) contains the vector tangent to

 at O, i.e., (0; 1; Pv(0); Rv(0)) 2 �2(O), and it doesn't belong to the hyperplane

x1 = 0, one may conclude that the orthogonal projection from �2(O) to the

(x1; x2)-plane in E4 is bijective. The same is valid for all �2(x) at points x 2 

su�ciently close to O. Therefore, at each such point x(v) 2  the plane �2(x) is

spanned by the vectors (0; 1; Pv(v); Rv(v)) and (1; 0; Q(v); S(v)). The functions

P (v), Q(v), R(v) and S(v) constructed from  and �2 satisfy P (0) = 0, Pv(0) = 0,

R(0) = 0, Rv(0) = 0. It is easy to see that these functions form reduced initial

data if and only if  and �2 satisfy the additional condition:

A3) the plane �2(O) is orthogonal to E3
0 , i.e., it contains the normal straight

line to E3
0 � E4 at O.

De�nition.  and �2 are referred to as appropriate geometric initial data if

they satisfy A1)�A3) and if P (v), Q(v), R(v) and S(v) corresponding to  and

�2 obey (17) and (19).

Thus, the following representation statement holds.

Theorem 2. Let  and �2 be appropriate geometric initial data. Then there

exists a unique pseudospherical P -surface F 2 � E4 which contains  and whose

tangent planes at points of  coincide with two-planes �2.
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