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1. Introduction

In this paper the letters X,Y, F will be used for real Banach spaces, ;1 and v
will be used for finite o-additive measures on a o-algebra 3 of subsets of a fixed
set Q. By Lq(p, X) we denote the space of X-valued Bochner integrable functions
on Q; by Li(A, u, X) we denote the subspace of Ly (u, X), consisting of functions
supported on A. We denote the closed unit ball of a Banach space X by B(X)
and its unit sphere by S(X).

A Banach space X is said to have the Daugavet property 7| if every rank-1
operator T: X — X satisfies

IId+T| =1+|T]|. (1.1)

In [8], an approach to the study of the class of operators satisfying (1.1) using the
notion of a narrow operator was suggested, built on precursors from [5] and [10].

The work of the second-named Author was supported by a fellowship from the Alezander-
von-Humboldt Stiftung.
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Narrow Operators on Bochner Li-Spaces

Let us give the definition of a narrow operator.

Definition 1.1. The (open) slice of S(X) determined by a functional z* €
S(X*) and € > 0 is the set

S(z*,e) ={x € S(X): z*(z) > 1—¢}.
Note that S(z*,e) C S(X).

Definition 1.2. An operator T: X — F is said to be narrow if for every x,y €
S(X), every € > 0 and every slice S(z*,¢) containing = there is a z € S(z*,¢)
such that |T(z — z)|| <€ and ||z +y|| > 2 —¢.

Remark 1.3. It was proved in [8] that instead of the slice S(z*,€) in the defi-
nition above one can also take the intersection of an arbitrary weak neighbourhood
of x with the sphere in the definition above.

For X = L;(p) the following characterization of narrow operators was proved
in [8, Th. 6.1].

Definition 1.4. Let (2,2, 1) be an atomless probability space. A function
f € Ly = Ly(p) is said to be a balanced e-peak on A € X if there is a subset
Ay C A with u(Ay) < € such that

1. f=—=1forte A\ Ay, supp f C A,

3. foduzo.

Theorem 1.5. An operator T: Li(p) — E is narrow if and only if for every
e > 0, and for every A € X there erists such a balanced e-peak f on A that

1T < e

One can find more about the characterization of narrow operators on Lj(u)
as well as open problems in [6].

In the present paper we study narrow operators on the space Ly (u, X) of the
vector-valued Bochner integrable functions. It is proved that for a wide class of
spaces X the narrow operators allow a description similar to Th. 1.5. At the same
time there are spaces where the analogous description of narrow operators does
not hold. Similar investigations about operators on C(K, X)-spaces were made
in [2].

More precisely we introduce the following concept.

Journal of Mathematical Physics, Analysis, Geometry, 2006, v. 2, No. 4 359



K. Boyko, V. Kadets, and D. Werner

Definition 1.6. Let z € X, z* € X* ¢ > 0 and A € 3. A function f €
Ly(A, p, X) is said to be an (z,z*,e, A)-peak if there is a subset Ay C A with
(A1) < e such that

1. f(t)=xz fort € A\ Ay;
2. [4, IF @O du(t) < (L+e)u(A)|=|,

3. | [az*(f(1) du(t)] <e.

An operator T: Li(u, X) — E is said to be L-narrow if for every x € X, x* € X*,
e >0 and A €X there is an (z,x*, e, A)-peak f with |T(f)] < e.

The L-narrow operators form a generalization of the property which is a cha-
racterization of narrow operators in the scalar case according to Theorem 1.5.

We will prove that every L-narrow operator on Lj (i, X) is narrow (see Th. 2.4).

In Theorem 3.5 we shall describe properties of X which are sufficient for the
coincidence of the classes of L-narrow and narrow operators on Lj(u,X). In
Ex. 3.8 it will be shown, however, that for some spaces the classes mentioned
above do not coincide.

2. L-Narrow Operators

First of all we prove a lemma that has also been used in [4].

Lemma 2.1. Let z* € S(X*), e > 0. Then for every x € S(z*,¢) and every
d € (0,¢) there is a y* € S(X™) such that x € S(y*,0) and S(y*,d) C S(z*,¢).

P r o of. Fix a supporting functional f; of z. Let ctg > 0 be a root of equation

1+ a(l—e¢)

=1-0. 2.2
Il fz + ax*|| 22)

Such a root exists, because the left part F'(a) of (2.2) is a continuous function of
a, F(0) =1>1-4 and limy ,00 F() =1 —e <1 —4. Put

* fz + apx”

Y =0 ol
Ifz + coz*|

Then
1+ agz*(z) 14+ ap(l—¢)

y (z) = =
) = ¥ aor ]~ o+ aon]

ie., z € S(y*,0d). To prove the inclusion S(y*,d) C S(x*,e) we take an arbitrary
y € S(y*,6). Then

— 4,

L4+ apx™(y) > foly) + aoz™(y) > (L =) || fo + aoz™|| = 1 + ap(l — ).
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So z*(y) > 1 — e, which means y € S(z*,¢).
Next we formulate and prove a criterion for an operator defined on Ly (u, X)
to be narrow.

Theorem 2.2. For an operator T: Ly(u, X) — E the following are equivalent:
1. T: Ly(pu, X) — E is narrow.

2. For every x,y € X, z* € X*, ¢ > 0 and A € ¥ there is a function f €
Ly (A, p, X) with

o

[0 -a)autn| <
A

1T(f —zxa)ll < e,
LA = w(A)lll,
If +yxall > (1 =euA)lzll + llyl)-

Proof (1) = (2). The cases z = 0 or u(A) = 0 are trivial (just take
f = 0), so we may exclude them from our consideration. Since L; (2, u, X)
can be represented as [;-sum of Li(A,p, X) and L1 (Q\ A, p, X), the restriction
of T to Li(A,u,X) is narrow [3, Th. 4.4]. To deduce the statement (2) let
us apply Remark 1.3 to the restriction of T to Li(A,pu,X), sufficiently small

g1 > 0, the element & = H?;—ﬁ\l € S(L1(A, u, X)), the weak neighbourhood W of

& consisting of all functions g € L1 (A, u, X) with | [, 2*(g(t) — &(t)) du(t)| < e1,
and the element § = ”g,gg—ﬁ“ € S(Li(A,pu, X)). Then we get an element 2z €
WNS(Li(A, u, X)) with the properties that ||T(2—2)|| < e1 and ||Z+7| > 2—¢1.
Then f = ||z]|u(A)z will be what we need.

(2) = (1). Let z,y € S(L1(u, X)), and S be an e-slice of S(Li(u, X)) con-
taining z. Fix €1 < £/2 and a slice S1 = S(z*,e1) C S such that z € S; (we use
Lemma 2.1).

By density arguments we may assume without loss of generality that x and
y are step functions taking values in a finite dimensional subspace ¥ C X. Let
e* = 2%, (uy)- Observe that Li1*(u,Y) = Loo(p,Y™), so we can consider e* €
S(Loo(tt,Y™)). Then (e*,z) > 1 —¢e; (since z(t) € Y, (e*,z) makes sense). By
finite dimensionality of Y, e* can be approximated by step functions. So we may
assume that there is a partition A;,..., A, of @ such that z = >}, zxxa,,
Y =D p_1YkXA,, where zp,yp € Y, and e* = > efxa,, € € Y*. Extend ¢}
to be elements of X* of the same norm.
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For every k = 1,...,n apply condition (2) to § > 0, x, Yk, e, and Ag. So
there exist f € Li(Ag, 1, X) with

|T(fk — zexa )l < 4,
[ eti® - anyaut] < o
Ag

Ifell = wn(Ap)lzl,
I fe +yexall > (L—0)u(Ag)(lzell + llyel)-

Define v,z € Lq(u, X) as follows:

i v
“:ka, z:—llvlh'
=1

When ¢ is small enough, the element z € S(L;(p, X)) will satisfy all the conditions
of the definition of a narrow operator.

Remark 2.3. Let T: Ly(p, X) — E be an L-narrow operator. Then for every
z€X,z" € X*, >0 and A € X there is an (z,x*, ¢, A)-peak g with || T(g)|| < e
and with

/||9(t)|| dp(t) = (1 +&)u(A)||z]
Aq

for a corresponding A1 C A from Definition 1.6.

Proof Lete <1, e <¢/2and f bean (z,z% ¢, A)-peak with cor-
responding Ay, u(A1) # 0. For a 6 < min{u(A)/2,eu(A1)/(16p(A))} fix an
(z,z*,d, Ay)-peak h. Consider gy = f + Ah where A > 0 is a parameter. Let us
note that for A € [0, 5] the function gy is an (z,2*, ¢, A)-peak with the same A;
as f. In fact for such a A

£
Tl < 5+ <e

and
\/&%mu»wu><§+waSa
A

Consider F(A) = [, llgx(t)||du(t). If X = 0 then F(A) < (1 + e)u(A)|lz]|. For
A= 5
€ € 1
FQ) 2 55 lIhll = 2u(Allzll 2 |zl 7a(A1) = 2u(A)llz] > 2p(A)|z]].

So there is a Ag € [0, 5] with F(Ag) = (1 + &)u(A)||z||. Then g = gy, is the
function we need.
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Theorem 2.4. Every L-narrow operator T: Ly(u, X) — E is narrow.

Proof Letz,ye X,z € X*, e >0and A€ X, let g € L1(A,pu,X) be
an (z,x*,0, A)-peak with |T(g)|| < ¢ for § small enough, and let A; C A be a
corresponding subset from Definition 1.6. According to the previous remark we
may assume that

/Hg(t)H dp(t) = (1 + 6)p(A)]|z|.
Ay

Consider .

f= —mQXAl-
Then [|f|| = u(A)|lz| and

1 1
f—xxa = —xxa, — Trgoxa™ (1—+59 - HJ)XA\Al
1 0
= TITXA — 1—+59 - 1—+59€XA\A1-
Hence 5 5
. - < — .
| / 2 (7(6) ~ 2) du(0)| < el + s + TsnAle]
A
By the same argument
1T — ox) < SllelIT] + —— + (AT
XA = 1+6 1+0" ‘

So, when § is small, the first three conditions of part (2), Theorem 2.2 are satisfied.
The last condition follows from the fact that the support of f is of an arbitrarily
small measure d, so ||f + yxa|l almost equals the sum || f|| + [|yxall-

3. Reasonable Spaces

The aim of the rest of this paper is to prove the converse to Theorem 2.4 for
a wide class of spaces X (containing in particular all spaces with the RNP).

Lemma 3.1. Let u,v € L1(Q,%,v), A € X, § >0, u(t),v(t) € (0,2) for all
t € Q. Let us assume that

/udu > 2u(A) =9, (3.1)

A
/vdu
A

IA
>,

(3.2)
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and that there are o > 0 and ¢ < 2 such that

{te At w(t) <a} C {teA:u(t) <c}. (3.3)
fhen 20(1 + )
v(A) < e (3.4)

Proof Denote Ay = {t € A:v(t) < a}, Ay = {t € A: v(t) > a}. Then
according to (3.2)

V(AQ) S

9
(@]

Due to (3.1)
2v(A) -0 < /udu—i— /udu < cv(A) —1—22.
Ay A

So (2 —c)r(A) < 2@, which proves (3.4).

We now introduce a geometric condition that is in a sense opposite to the
Daugavet property. We recall the following notions. The radius of a subset
AC X atye X isry(A) =sup{|la —y||: a« € A}, and the Chebyshev radius of A
relative to another subset B C X is rg(A) = inf{ry(A): y € B}.

Definition 3.2. A point z € S(X) is said to be reasonable if there is a slice
S(z*,e) with z*(x) = 1, and there is a y € S(X) such that ry(S(z*,€)) < 2. The
set of all reasonable points € S(X) will be denoted by Reas(X). A Banach space
X is said to be reasonable if the closed convex hull of Reas(X) contains the whole
unit ball.

In other words, x € S(X) is reasonable if rg(x)(S) < 2 for some slice S =
S(z*, ) as above.

Evidently, every strongly exposed point of the unit ball is reasonable. There-
fore every Banach space with the Radon—Nikodym property is a reasonable space
in every equivalent norm, because then every closed convex bounded subset is the
closed convex hull of its strongly exposed points (see, e.g., [1, Th. 5.17]). Also,
every locally uniformly convex space is reasonable. But no space with the Dau-
gavet property is reasonable. Indeed, by [7, Lemma 2.1] a Banach space X has the
Daugavet property if and only if no point in S(X) is reasonable; a reformulation
of that lemma is that rg(x)(S) = 2 for every slice.

There are other nonreasonable spaces; for example, if X has the Daugavet
property, then the only reasonable points of Y = X @; R, which fails the Daugavet
property, are (0,+1). Indeed, (0,+1) are obviously strongly exposed points of Y.
Now let (z,a) € S(Y) with = # 0, and let (z*,b) be a functional in S(Y*) =
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S(X* @y R) attaining its norm at (x,a). Then ||z*|| = 1. Consider the slice S =
S((z*,b),e) C S(Y) and the slice S(z*,e) C S(X). By the Daugavet property
there is, given a point (y,a) € S(Y), some z € S(z*, &) such that ||y — z|| >
lyll + |||l — €. Then (2,0) € S, yet

1y, ) = (2,0)[l = lly — zll + | = [lyll + [I2]] + o] —e =2 —e.

Hence (z,a) is not reasonable.

There is a hierarchy of largeness conditions of slices of the unit ball. The
strongest one is the Daugavet property, viz., rg(x)(S) = 2 for every slice. A strictly
weaker property is rg(S) = 2 for every slice; see [4] for more on this. Still weaker
is the condition that every slice has diameter 2. The following example shows
that a relatively “bad” space can also be reasonable.

Example 3.3. Although every slice of the unit sphere of cy is of diameter 2,
every point of the unit sphere of cy is a reasonable point.

P roof. We first present an elementary argument that every slice of S(cg) has
diameter 2; see [9] for a more general statement. Let z* = (a1, aq9,...) € £; with
> lan| = 1 and consider the slice S(z*,¢). Pick N so that 3.7 |a,| > 1 —¢/2
and define z,y € S(cp) by z, = signa, forn < N, zxy =1, 2, =0 forn > N
and y, = signa, for n < N, yy = —1, y, = 0 for n > N. Then z,y € S(z*,¢)
and ||z — y|| = 2.

Now we show that every z € S(cp) is reasonable. Pick k£ € N such that
|zx| = 1, say 2, = 1 without loss of generality. For the &' unit vectors e, € S(co)
and e; € S(¢1) we have €} (z) = 1, and for z = (21,22,...) € S(e},¢) it follows
zp >1—¢so that ||z — el < 1.

The importance of reasonable points stems from the following lemma.

Lemma 3.4. Let x € Reas(X). Then for every Banach space E, every narrow
operator U: Ly(u, X) — E, every ¢ > 0, every y* € S(X™) and every A € X there
is an (z,y*, e, A)-peak f with |[U(f)] < e.

Proof. Let U: Li(u, X) — E be a narrow operator, y* € S(X*). Consider
an auxiliary operator T: Li(u, X) =Y = E @ R, acting as follows:

7(5) = (U1, [, 50) du).

Q

Being a ~-sum (in the sense of [8]) of a narrow operator and a functional, T" is
narrow by [8, Cor. 3.14].

We need to prove that for every ¢ > 0 and every A € ¥ there is an f €
Li(A, p, X) with the following properties:
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Lo p{te A: f(t) =z} > u(A) —¢,

2. / £ (&) du(t) < p(A) and
{teA: T(t)#a}
3.NTHI <e.

According to the definition of Reas(X), there are z* € S(X*), y € S(X) and
a € (0,1) such that z*(xz) = 1 and

ry(S(z*,a)) =c < 2. (3.5)

Without loss of generality one can assume p(A) =1 (otherwise we multiply p by
an appropriate constant). Fix a § > 0 and apply Th. 2.2; hence there is a function
g € Li(A,p, X) with ||g|l1 =1 and

/(x*,g(t))du > 1.5 (3.6)
A
IT(g —zxa)ll < 6, (3.7)

lg —yxall > 2-4. (3-8)

Claim. Let B = {t € A: ||g(t)||x <1}, D = {t € A: ||g(t)||x > 1}. Then

[lslcas < 229, (39)
B
u(D) < 22((; fco‘)) (3.10)
P r o o f of the Claim. Since g € S, due to (3.6) we have
loll = [ " g0 dn <
A
. ol
A/[1 . <$ e >] lg(t)| du < 6. (3.11)
Condition (3.8) can be rewritten as
/(||9(t)|| +1=ly —g@l) du < 6. (3.12)
A
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Since the expressions under the integrals in (3.11) and (3.12) are non-negative,
one can pass to a smaller set:

a(t)
B/ 1= (o ) s an < s (3.13)
and [5([lg(t)|| +1 = |ly — g(t)||) dw < 8. The last inequality means
/ ly = g(®)l| du > u(B) + / lo(®) ) du — b (3.14)
B B

By the triangle inequality

Jlv=g@ndn < [(lgtenty - a0 + [lgtey - ) a
B B
g(t)
< [ ly= L) dn+ n(3) - / lo(t) | d
B
Substituting this into (3.14) we obtain
g(t
/ v 2 ool du > 2 [ gt (3.15)
B

Using (3.13) and (3.15) we can apply Lemma 3.1 to

g9(t) (g 9@ N,
ol "0 =1= " o)

(condition (3.5) means exactly that (3.3) is fulfilled). This gives (3.9).
Let us now turn to the proof of (3.10). As before, passing in (3.11) and (3.12)
to the smaller set D we obtain the inequalities

/[1 N <$*’ ||zg;|| >] i < /[1 - <33*, II%;II >] lg(t)]] dps < 6, (3.16)
D D

/ ly — g(t)l i > (D) + / lg(®)]) dp — . (3.17)
D D

dv = |lg(t)| dp, A =B, u(t) = Hy_

and

By the triangle inequality

Z ly — o)l ds < / (=g + ooy = ) e

< /H T u+/||g )y~ (D)

Journal of Mathematical Physics, Analysis, Geometry, 2006, v. 2, No. 4 367



K. Boyko, V. Kadets, and D. Werner

Substituting this into (3.17) we obtain

/ v ||38|| | > 20(0) (3.18)
D

Using (3.16) and (3.18) we can apply Lemma 3.1 to

9(t) . 9(0)
v=p, A=D, uft) = ly- L] o) =1 - (a7, L0,
lg @)l lg @)l
This gives (3.10).
The Claim is proved.
Now we continue the proof of Lemma 3.4. Put f = —gxp+xxpB. Let us prove

the properties (1) to (3) formulated at the beginning of the proof for this f under
the assumption that ¢ is small enough.

(1) uft € A: f(1) = 2} > p(B) = p(A) = u(D) > p(4) = =g (we have
used (3.10)).

@ f IO < [yl du < lgll = 1 = (A)
{teA: f(t)#x}
B) 1T < 1T(g — zxA)ll + [ Tllllgxsll + ITu(D). By (3.7), (3.9) and
(3.10) this means : )
46(1 —«
T <0+ g =S I

This completes the proof of the lemma.

Theorem 3.5. Let X be a reasonable space. Then every narrow operator T
acting from Li(p, X) to any other Banach space Y is L-narrow.

Proof. Letusfix y* € S(X*) and A € X, and denote by W the set of all
z € X such that for every ¢ > 0 there is an (z,y*, ¢, A)-peak f with ||Tf|| < e. We
have to show that W = X. By homogeneity it is enough to check that W O S(X).

The previous lemma shows that Reas(X) C W.

Now let 2z € S(X) be an arbitrary element. Fix a 6 > 0 and find a convex

combination .
€= E LYk,
k=1

where y, € Reas(X), d-approximating z: ||z —el| < §. For every k = 1,...,n
there is a (yg, y*, %, A)-peak gx with ||Tgx|| < 0. Consider

n
9= Z akGk
k=1
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and denote by B the set of all ¢t € A with ¢(¢) = e.
By our construction u(B) > u(A) =46, | Tg|| <6,

/ Lol du(t) < (1 + 6)u(A) + 4,
A\B

and | [, 2*(g(¢)) du(t)] < 6. So, if § is small enough, the function f = g+(z—e)xn
will be the (z,y*, e, A)-peak we need.

We are now going to present an example of a narrow operator that is not
L-narrow.

Definition 3.6. Let T: X — Y be a linear operator. Denote by Tr: Ly (p, X) —
Li(u,Y) the operator defined by (Tr f)(t) = T(f(t)).

Lemma 3.7. Let the operator T: X — Y be narrow. Then the operator Ty:
Li(p, X) = Li(p,Y) is also narrow.

P r oo f Since T is narrow, for every z,y € S(X) and for every weak
neighbourhood W' = {w: |z*(w — x)| < €} of z there exists z € W N S(X*) with
IT(z—2)|| <e,and ||y + z|| > 2 —e.

Consider z,y € X, z* € S(X*),e > 0,A € ¥ and use the criterion from
Theorem 2.2 for T7,. We can suppose without loss of generality that ||z| = 1.
Let us use the above property of a narrow operator for the vectors z, ﬁ and the
given . Then we get a vector z € S(X) such that

¥z — )| <&, |T(zx—2)| <e, HLH >2 e

[yl

Consider the following two cases:
1) Suppose that ||y|| > 1. Then we have

2 =)llyll <lly +llyll - zll < My + 2l + Iz = lyll - zll = [ly + 2] + [lyl| = 1.
Hence
ly + 2l > 1+ llyll —ellyll > (1 =&)X+ lyl) = (1 —e)(llzll + [lyl)-

2) Suppose that ||y|| < 1. In this case we have

2—¢ <

2+l < syl + [y - o
Il Il

= Dz 4yl + (7 = 1) el = 2+l + 1= .

1
Iyl
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Hence
Iz +yll >yl +1—e> 1 =)+ lyll) = 1 —e)llzll + lyll)-

In both cases we have ||z + y|| > (1 — &)(||z]| + |ly|]|). Now let f = zxa,
f € Li(A, u, X). Then for this f we have

‘/ )—= du()‘ = pA)l"(z —z)| <e,

ITo(f — ax )| = / 1Tz — ) dys < e,

A
1= n(4) = n(A)|=l],
If +yxall = p(Allz +yll > (1 =e)u(A)lzll +[lyl)-

Thus the function f satisfies all the conditions of Th. 2.2, so T7, is narrow.

Example 3.8. Let T: X = Y, T # 0, be a narrow operator. Then the operator
Tr, is an example of a narrow operator which is not L-narrow.

P r o o f. This operator is narrow by Lemma 3.7. Let us show that an operator
of the form 77, cannot be L-narrow. For this we will show that there exist z € X,
z*¥ € X* >0, A € ¥ so that for every (z,z*, ¢, A)-peak ||TL(f)] > e.

Let us choose A = 2,0 < ¢ < min{3x(2), 11(Q)||T||}. We choose the element
z € S(X) so that |T(z)|| > $||T||, z* is arbitrary. Let f be an (z,z*,¢, A)-peak.
Let us estimate || T (f)]:

(Dl = / 170 () (0) | dua() / \T () ] dia()

Y

IT(f DI du(t) = [T ()| p({t € Q: f(t) = z})
{te: f(t)=z}

SITI((Q) — &) > Tu(@)7] > <.

\%

Thus ||TL(f)|| > € and T}, is not L-narrow.

There is no contradiction between this example and Th. 3.5. Indeed, if there
is a narrow operator on X, then X has the Daugavet property and hence is not
reasonable.
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