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1. Introduction

In this paper the letters X;Y;E will be used for real Banach spaces, � and �

will be used for �nite �-additive measures on a �-algebra � of subsets of a �xed

set 
. By L1(�;X) we denote the space of X-valued Bochner integrable functions

on 
; by L1(A;�;X) we denote the subspace of L1(�;X), consisting of functions

supported on A. We denote the closed unit ball of a Banach space X by B(X)

and its unit sphere by S(X).

A Banach space X is said to have the Daugavet property [7] if every rank-1

operator T : X ! X satis�es

kId + Tk = 1 + kTk: (1.1)

In [8], an approach to the study of the class of operators satisfying (1.1) using the

notion of a narrow operator was suggested, built on precursors from [5] and [10].

The work of the second-named Author was supported by a fellowship from the Alexander-

von-Humboldt Stiftung.
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Let us give the de�nition of a narrow operator.

De�nition 1.1. The (open) slice of S(X) determined by a functional x� 2

S(X�) and " > 0 is the set

S(x�; ") = fx 2 S(X): x�(x) > 1� "g:

Note that S(x�; ") � S(X).

De�nition 1.2. An operator T : X ! E is said to be narrow if for every x; y 2

S(X), every " > 0 and every slice S(x�; ") containing x there is a z 2 S(x�; ")

such that kT (z � x)k < " and kz + yk > 2� ".

Remark 1.3. It was proved in [8] that instead of the slice S(x�; ") in the de�-

nition above one can also take the intersection of an arbitrary weak neighbourhood

of x with the sphere in the de�nition above.

For X = L1(�) the following characterization of narrow operators was proved

in [8, Th. 6.1].

De�nition 1.4. Let (
;�; �) be an atomless probability space. A function

f 2 L1 = L1(�) is said to be a balanced "-peak on A 2 � if there is a subset

A1 � A with �(A1) < " such that

1. f = �1 for t 2 A nA1, suppf � A,

2. f � �1,

3.
R


f d� = 0.

Theorem 1.5. An operator T : L1(�) ! E is narrow if and only if for every

" > 0, and for every A 2 � there exists such a balanced "-peak f on A that

kT (f)k < ".

One can �nd more about the characterization of narrow operators on L1(�)

as well as open problems in [6].

In the present paper we study narrow operators on the space L1(�;X) of the

vector-valued Bochner integrable functions. It is proved that for a wide class of

spaces X the narrow operators allow a description similar to Th. 1.5. At the same

time there are spaces where the analogous description of narrow operators does

not hold. Similar investigations about operators on C(K;X)-spaces were made

in [2].

More precisely we introduce the following concept.
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De�nition 1.6. Let x 2 X, x� 2 X�, " > 0 and A 2 �. A function f 2

L1(A;�;X) is said to be an (x; x�; "; A)-peak if there is a subset A1 � A with

�(A1) < " such that

1. f(t) = x for t 2 A n A1;

2.
R
A1
kf(t)k d�(t) � (1 + ")�(A)kxk,

3. j
R
A
x�(f(t)) d�(t)j < ".

An operator T : L1(�;X) ! E is said to be L-narrow if for every x 2 X, x� 2 X�,

" > 0 and A 2 � there is an (x; x�; "; A)-peak f with kT (f)k < ".

The L-narrow operators form a generalization of the property which is a cha-

racterization of narrow operators in the scalar case according to Theorem 1.5.

We will prove that every L-narrow operator on L1(�;X) is narrow (see Th. 2.4).

In Theorem 3.5 we shall describe properties of X which are su�cient for the

coincidence of the classes of L-narrow and narrow operators on L1(�;X). In

Ex. 3.8 it will be shown, however, that for some spaces the classes mentioned

above do not coincide.

2. L-Narrow Operators

First of all we prove a lemma that has also been used in [4].

Lemma 2.1. Let x� 2 S(X�), " > 0. Then for every x 2 S(x�; ") and every

Æ 2 (0; ") there is a y� 2 S(X�) such that x 2 S(y�; Æ) and S(y�; Æ) � S(x�; ").

P r o o f. Fix a supporting functional fx of x. Let �0 > 0 be a root of equation

1 + �(1 � ")

kfx + �x�k
= 1� Æ: (2.2)

Such a root exists, because the left part F (�) of (2.2) is a continuous function of

�, F (0) = 1 > 1� Æ and lim�!1 F (�) = 1� " < 1� Æ. Put

y� =
fx + �0x

�

kfx + �0x�k
:

Then

y�(x) =
1 + �0x

�(x)

kfx + �0x�k
>

1 + �0(1� ")

kfx + �0x�k
= 1� Æ;

i.e., x 2 S(y�; Æ). To prove the inclusion S(y�; Æ) � S(x�; ") we take an arbitrary

y 2 S(y�; Æ). Then

1 + �0x
�(y) � fx(y) + �0x

�(y) > (1� Æ)kfx + �0x
�
k = 1 + �0(1� "):
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So x�(y) > 1� ", which means y 2 S(x�; ").

Next we formulate and prove a criterion for an operator de�ned on L1(�;X)

to be narrow.

Theorem 2.2. For an operator T : L1(�;X)! E the following are equivalent:

1. T : L1(�;X)! E is narrow.

2. For every x; y 2 X, x� 2 X�, " > 0 and A 2 � there is a function f 2

L1(A;�;X) with

���
Z

A

x�(f(t)� x) d�(t)
��� < ";

kT (f � x�A)k < ";

kfk = �(A)kxk;

kf + y�Ak > (1� ")�(A)(kxk + kyk):

P r o o f. (1) ) (2). The cases x = 0 or �(A) = 0 are trivial (just take

f = 0), so we may exclude them from our consideration. Since L1(
; �;X)

can be represented as l1-sum of L1(A;�;X) and L1(
 n A;�;X), the restriction

of T to L1(A;�;X) is narrow [3, Th. 4.4]. To deduce the statement (2) let

us apply Remark 1.3 to the restriction of T to L1(A;�;X), su�ciently small

"1 > 0, the element x̂ = x�A
kx�Ak

2 S(L1(A;�;X)), the weak neighbourhood W of

x̂ consisting of all functions g 2 L1(A;�;X) with j
R
A
x�(g(t) � x̂(t)) d�(t)j < "1,

and the element ŷ = y�A
kx�Ak

2 S(L1(A;�;X)). Then we get an element ẑ 2

W \S(L1(A;�;X)) with the properties that kT (ẑ� x̂)k < "1 and kẑ+ ŷk > 2�"1.

Then f = kxk�(A)ẑ will be what we need.

(2) ) (1). Let x; y 2 S(L1(�;X)), and S be an "-slice of S(L1(�;X)) con-

taining x. Fix "1 < "=2 and a slice S1 = S(x�; "1) � S such that x 2 S1 (we use

Lemma 2.1).

By density arguments we may assume without loss of generality that x and

y are step functions taking values in a �nite dimensional subspace Y � X. Let

e� = x�jL1(�;Y ). Observe that L1
�(�; Y ) �= L1(�; Y �), so we can consider e� 2

S(L1(�; Y �)). Then he�; xi > 1 � "1 (since x(t) 2 Y , he�; xi makes sense). By

�nite dimensionality of Y , e� can be approximated by step functions. So we may

assume that there is a partition A1; : : : ; An of 
 such that x =
Pn

k=1 xk�Ak ,

y =
Pn

k=1 yk�Ak , where xk; yk 2 Y , and e� =
Pn

k=1 e
�

k�Ak , e
�

k 2 Y �. Extend e�k
to be elements of X� of the same norm.
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For every k = 1; : : : ; n apply condition (2) to Æ > 0, xk, yk, e
�

k and Ak. So

there exist fk 2 L1(Ak; �;X) with

kT (fk � xk�Ak)k < Æ;���
Z

Ak

e�k(fk(t)� xk) d�(t)
��� < Æ;

kfkk = �(Ak)kxk;

kfk + yk�Akk > (1� Æ)�(Ak)(kxkk+ kykk):

De�ne v; z 2 L1(�;X) as follows:

v =

nX
k=1

fk; z =
v

kvk1
:

When Æ is small enough, the element z 2 S(L1(�;X)) will satisfy all the conditions

of the de�nition of a narrow operator.

Remark 2.3. Let T : L1(�;X) ! E be an L-narrow operator. Then for every

x 2 X, x� 2 X�, " > 0 and A 2 � there is an (x; x�; "; A)-peak g with kT (g)k < "

and with Z

A1

kg(t)k d�(t) = (1 + ")�(A)kxk

for a corresponding A1 � A from De�nition 1.6.

P r o o f. Let " < 1, "1 < "=2 and f be an (x; x�; "1; A)-peak with cor-

responding A1, �(A1) 6= 0. For a Æ < minf�(A)=2; "�(A1)=(16�(A))g �x an

(x; x�; Æ; A1)-peak h. Consider g� = f + �h where � � 0 is a parameter. Let us

note that for � 2 [0; "
2Æ
] the function g� is an (x; x�; "; A)-peak with the same A1

as f . In fact for such a �

kT (g�)k <
"

2
+ �Æ � "

and ���
Z

A

x�(g�(t)) d�(t)
��� < "

2
+ �Æ � ":

Consider F (�) =
R
A1
kg�(t)k d�(t). If � = 0 then F (�) < (1 + ")�(A)kxk. For

� = "
2Æ

F (�) �
"

2Æ
khk � 2�(A)kxk �

"

Æ
kxk

1

4
�(A1)� 2�(A)kxk > 2�(A)kxk:

So there is a �0 2 [0; "
2Æ
] with F (�0) = (1 + ")�(A)kxk. Then g = g�0 is the

function we need.
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Theorem 2.4. Every L-narrow operator T : L1(�;X) ! E is narrow.

P r o o f. Let x; y 2 X, x� 2 X�, " > 0 and A 2 �, let g 2 L1(A;�;X) be

an (x; x�; Æ; A)-peak with kT (g)k < Æ for Æ small enough, and let A1 � A be a

corresponding subset from De�nition 1.6. According to the previous remark we

may assume that Z

A1

kg(t)k d�(t) = (1 + Æ)�(A)kxk:

Consider

f = �
1

1 + Æ
g�A1

:

Then kfk = �(A)kxk and

f � x�A = �x�A1
�

1

1 + Æ
g�A +

� 1

1 + Æ
g � x

�
�AnA1

= �x�A1
�

1

1 + Æ
g �

Æ

1 + Æ
x�AnA1

:

Hence ���
Z

A

x�(f(t)� x) d�(t)
��� � Ækxk +

Æ

1 + Æ
+

Æ

1 + Æ
�(A)kxk:

By the same argument

kT (f � x�A)k � ÆkxkkTk +
Æ

1 + Æ
+

Æ

1 + Æ
�(A)kxkkTk:

So, when Æ is small, the �rst three conditions of part (2), Theorem 2.2 are satis�ed.

The last condition follows from the fact that the support of f is of an arbitrarily

small measure Æ, so kf + y�Ak almost equals the sum kfk+ ky�Ak.

3. Reasonable Spaces

The aim of the rest of this paper is to prove the converse to Theorem 2.4 for

a wide class of spaces X (containing in particular all spaces with the RNP).

Lemma 3.1. Let u; v 2 L1(
;�; �), � 2 �, Æ > 0, u(t); v(t) 2 (0; 2) for all

t 2 
. Let us assume that Z

�

u d� � 2�(�)� Æ; (3.1)

Z

�

v d� � Æ (3.2)
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and that there are � > 0 and c < 2 such that

ft 2 �: v(t) < �g � ft 2 �: u(t) < cg: (3.3)

Then

�(�) �
2Æ(1 + �)

�(2� c)
: (3.4)

P r o o f. Denote �1 = ft 2 �: v(t) < �g, �2 = ft 2 �: v(t) � �g. Then

according to (3.2)

�(�2) �
Æ

�
:

Due to (3.1)

2�(�)� Æ �

Z

�1

u d� +

Z

�2

u d� � c�(�) + 2
Æ

�
:

So (2� c)�(�) � 2
Æ(1+�)

�
, which proves (3.4).

We now introduce a geometric condition that is in a sense opposite to the

Daugavet property. We recall the following notions. The radius of a subset

A � X at y 2 X is ry(A) = supfka� yk: a 2 Ag, and the Chebyshev radius of A

relative to another subset B � X is rB(A) = inffry(A): y 2 Bg.

De�nition 3.2. A point x 2 S(X) is said to be reasonable if there is a slice

S(x�; ") with x�(x) = 1, and there is a y 2 S(X) such that ry(S(x
�; ")) < 2. The

set of all reasonable points x 2 S(X) will be denoted by Reas(X). A Banach space

X is said to be reasonable if the closed convex hull of Reas(X) contains the whole

unit ball.

In other words, x 2 S(X) is reasonable if rS(X)(S) < 2 for some slice S =

S(x�; ") as above.

Evidently, every strongly exposed point of the unit ball is reasonable. There-

fore every Banach space with the Radon�Nikodym property is a reasonable space

in every equivalent norm, because then every closed convex bounded subset is the

closed convex hull of its strongly exposed points (see, e.g., [1, Th. 5.17]). Also,

every locally uniformly convex space is reasonable. But no space with the Dau-

gavet property is reasonable. Indeed, by [7, Lemma 2.1] a Banach space X has the

Daugavet property if and only if no point in S(X) is reasonable; a reformulation

of that lemma is that rS(X)(S) = 2 for every slice.

There are other nonreasonable spaces; for example, if X has the Daugavet

property, then the only reasonable points of Y = X�1R, which fails the Daugavet

property, are (0;�1). Indeed, (0;�1) are obviously strongly exposed points of Y .

Now let (x; a) 2 S(Y ) with x 6= 0, and let (x�; b) be a functional in S(Y �) =
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S(X� �1 R) attaining its norm at (x; a). Then kx�k = 1. Consider the slice S =

S((x�; b); ") � S(Y ) and the slice S(x�; ") � S(X). By the Daugavet property

there is, given a point (y; �) 2 S(Y ), some z 2 S(x�; ") such that ky � zk �

kyk+ kzk � ". Then (z; 0) 2 S, yet

k(y; �) � (z; 0)k = ky � zk+ j�j � kyk+ kzk+ j�j � " = 2� ":

Hence (x; a) is not reasonable.

There is a hierarchy of largeness conditions of slices of the unit ball. The

strongest one is the Daugavet property, viz., rS(X)(S) = 2 for every slice. A strictly

weaker property is rS(S) = 2 for every slice; see [4] for more on this. Still weaker

is the condition that every slice has diameter 2. The following example shows

that a relatively �bad� space can also be reasonable.

Example 3.3. Although every slice of the unit sphere of c0 is of diameter 2,

every point of the unit sphere of c0 is a reasonable point.

P r o o f. We �rst present an elementary argument that every slice of S(c0) has

diameter 2; see [9] for a more general statement. Let x� = (a1; a2; : : : ) 2 `1 withP
n janj = 1 and consider the slice S(x�; "). Pick N so that

PN
n=1 janj > 1� "=2

and de�ne x; y 2 S(c0) by xn = sign an for n < N , xN = 1, xn = 0 for n > N

and yn = signan for n < N , yN = �1, yn = 0 for n > N . Then x; y 2 S(x�; ")

and kx� yk = 2.

Now we show that every x 2 S(c0) is reasonable. Pick k 2 N such that

jxkj = 1, say xk = 1 without loss of generality. For the kth unit vectors ek 2 S(c0)

and e�k 2 S(`1) we have e�k(x) = 1, and for z = (z1; z2; : : : ) 2 S(e�k; ") it follows

zk > 1� " so that kz � ekk � 1.

The importance of reasonable points stems from the following lemma.

Lemma 3.4. Let x 2 Reas(X). Then for every Banach space E, every narrow

operator U : L1(�;X) ! E, every " > 0, every y� 2 S(X�) and every A 2 � there

is an (x; y�; "; A)-peak f with kU(f)k < ".

P r o o f. Let U : L1(�;X) ! E be a narrow operator, y� 2 S(X�). Consider

an auxiliary operator T : L1(�;X)! Y = E �1 R, acting as follows:

T (f) =
�
Uf;

Z




hy�; f(t)i d�
�
:

Being a �-sum (in the sense of [8]) of a narrow operator and a functional, T is

narrow by [8, Cor. 3.14].

We need to prove that for every " > 0 and every A 2 � there is an f 2

L1(A;�;X) with the following properties:
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1. �ft 2 A: f(t) = xg > �(A)� ";

2.
R

ft2A: f(t)6=xg

kf(t)k d�(t) � �(A) and

3. kT (f)k < ".

According to the de�nition of Reas(X), there are x� 2 S(X�), y 2 S(X) and

� 2 (0; 1) such that x�(x) = 1 and

ry(S(x
�; �)) = c < 2: (3.5)

Without loss of generality one can assume �(A) = 1 (otherwise we multiply � by

an appropriate constant). Fix a Æ > 0 and apply Th. 2.2; hence there is a function

g 2 L1(A;�;X) with kgk1 = 1 and

Z

A

hx�; g(t)i d� > 1� Æ; (3.6)

kT (g � x�A)k < Æ; (3.7)

kg � y�Ak > 2� Æ: (3.8)

Claim. Let B = ft 2 A: kg(t)kX < 1g, D = ft 2 A: kg(t)kX � 1g. Then

Z

B

kg(t)kX d� <
2Æ(1 + �)

�(2 � c)
; (3.9)

�(D) <
2Æ(1 + �)

�(2 � c)
: (3.10)

P r o o f of the Claim. Since g 2 S, due to (3.6) we have

kgk1 �

Z

A

hx�; g(t)i d� < Æ;

i.e., Z

A

h
1�

D
x�;

g(t)

kg(t)k

Ei
kg(t)k d� < Æ: (3.11)

Condition (3.8) can be rewritten as

Z

A

(kg(t)k + 1� ky � g(t)k) d� < Æ: (3.12)
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Since the expressions under the integrals in (3.11) and (3.12) are non-negative,

one can pass to a smaller set:Z

B

h
1�

D
x�;

g(t)

kg(t)k

Ei
kg(t)k d� < Æ; (3.13)

and
R
B
(kg(t)k + 1� ky � g(t)k) d� < Æ. The last inequality meansZ

B

ky � g(t)k d� > �(B) +

Z

B

kg(t)k d� � Æ: (3.14)

By the triangle inequalityZ

B

ky � g(t)k d� �

Z

B

�

kg(t)ky � g(t)


+ 

kg(t)ky � y



� d�

�

Z

B

ky �
g(t)

kg(t)k
kkg(t)k d� + �(B)�

Z

B

kg(t)k d�:

Substituting this into (3.14) we obtainZ

B




y � g(t)

kg(t)k




kg(t)k d� > 2

Z

B

kg(t)k d� � Æ: (3.15)

Using (3.13) and (3.15) we can apply Lemma 3.1 to

d� = kg(t)k d�; � = B; u(t) =



y � g(t)

kg(t)k




; v(t) = 1�
D
x�;

g(t)

kg(t)k

E
;

(condition (3.5) means exactly that (3.3) is ful�lled). This gives (3.9).

Let us now turn to the proof of (3.10). As before, passing in (3.11) and (3.12)

to the smaller set D we obtain the inequalitiesZ

D

h
1�

D
x�;

g(t)

kg(t)k

Ei
d� �

Z

D

h
1�

D
x�;

g(t)

kg(t)k

Ei
kg(t)k d� < Æ; (3.16)

and Z

D

ky � g(t)k d� > �(D) +

Z

D

kg(t)k d� � Æ: (3.17)

By the triangle inequalityZ

D

ky � g(t)k d� �

Z

D

�


y � g(t)

kg(t)k




+



g(t)� g(t)

kg(t)k





�
d�

�

Z

D




y � g(t)

kg(t)k




 d�+

Z

D

kg(t)k d� � �(D)
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Substituting this into (3.17) we obtain

Z

D




y � g(t)

kg(t)k




 d� > 2�(D)� Æ: (3.18)

Using (3.16) and (3.18) we can apply Lemma 3.1 to

� = �; � = D; u(t) =



y � g(t)

kg(t)k




; v(t) = 1�
D
x�;

g(t)

kg(t)k

E
:

This gives (3.10).

The Claim is proved.

Now we continue the proof of Lemma 3.4. Put f = �g�D+x�B. Let us prove

the properties (1) to (3) formulated at the beginning of the proof for this f under

the assumption that Æ is small enough.

(1) �ft 2 A: f(t) = xg � �(B) = �(A) � �(D) > �(A) �
2Æ(1��)

�(2�c)
(we have

used (3.10)).

(2)
R

ft2A: f(t)6=xg

kf(t)k d�(t) �
R
D
kg(t)k d� � kgk = 1 = �(A)

(3) kT (f)k � kT (g � x�A)k + kTkkg�Bk + kTk�(D). By (3.7), (3.9) and

(3.10) this means

kT (f)k � Æ +
4Æ(1 � �)

�(2 � c)
kTk:

This completes the proof of the lemma.

Theorem 3.5. Let X be a reasonable space. Then every narrow operator T

acting from L1(�;X) to any other Banach space Y is L-narrow.

P r o o f. Let us �x y� 2 S(X�) and A 2 �, and denote by W the set of all

x 2 X such that for every " > 0 there is an (x; y�; "; A)-peak f with kTfk < ". We

have to show thatW = X. By homogeneity it is enough to check thatW � S(X).

The previous lemma shows that Reas(X) �W .

Now let x 2 S(X) be an arbitrary element. Fix a Æ > 0 and �nd a convex

combination

e =

nX
k=1

akyk;

where yk 2 Reas(X), Æ-approximating x: kx � ek < Æ. For every k = 1; : : : ; n

there is a (yk; y
�; Æ

n
; A)-peak gk with kTgkk < Æ. Consider

g =

nX
k=1

akgk
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and denote by B the set of all t 2 A with g(t) = e.

By our construction �(B) > �(A)� Æ, kTgk < Æ,

Z

AnB

kg(t)k d�(t) � (1 + Æ)�(A) + Æ;

and j
R
A
x�(g(t)) d�(t)j < Æ. So, if Æ is small enough, the function f = g+(x�e)�B

will be the (x; y�; "; A)-peak we need.

We are now going to present an example of a narrow operator that is not

L-narrow.

De�nition 3.6. Let T : X ! Y be a linear operator. Denote by TL: L1(�;X)!

L1(�; Y ) the operator de�ned by (TLf)(t) = T (f(t)).

Lemma 3.7. Let the operator T : X ! Y be narrow. Then the operator TL:

L1(�;X) ! L1(�; Y ) is also narrow.

P r o o f. Since T is narrow, for every x; y 2 S(X) and for every weak

neighbourhood W = fw: jx?(w � x)j < "g of x there exists z 2 W \ S(X?) with

kT (x� z)k < "; and ky + zk > 2� ".

Consider x; y 2 X, x? 2 S(X?); " > 0; A 2 � and use the criterion from

Theorem 2.2 for TL. We can suppose without loss of generality that kxk = 1.

Let us use the above property of a narrow operator for the vectors x; y
kyk

and the

given ". Then we get a vector z 2 S(X) such that

jx?(z � x)j < "; kT (x� z)k < ";



 y

kyk
+ z




 > 2� ":

Consider the following two cases:

1) Suppose that kyk � 1. Then we have

(2� ")kyk < ky + kyk � zk � ky + zk+ kz � kyk � zk = ky + zk+ kyk � 1:

Hence

ky + zk > 1 + kyk � "kyk > (1� ")(1 + kyk) = (1� ")(kzk + kyk):

2) Suppose that kyk < 1. In this case we have

2� " <



z + y

kyk




 � kz + yk+



y � y

kyk





= kz + yk+

� 1

kyk
� 1

�
kyk = kz + yk+ 1� kyk:
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Hence

kz + yk > kyk+ 1� " > (1� ")(1 + kyk) = (1� ")(kxk + kyk):

In both cases we have kz + yk > (1 � ")(kxk + kyk). Now let f = z�A,

f 2 L1(A;�;X). Then for this f we have

���
Z

A

x�(f(t)� x) d�(t)
��� = �(A)jx�(z � x)j < ";

kTL(f � x�A)k =

Z

A

kT (z � x)k d� < ";

kfk = �(A) = �(A)kxk;

kf + y�Ak = �(A)kz + yk > (1� ")�(A)(kxk + kyk):

Thus the function f satis�es all the conditions of Th. 2.2, so TL is narrow.

Example 3.8. Let T : X ! Y , T 6= 0, be a narrow operator. Then the operator

TL is an example of a narrow operator which is not L-narrow.

P r o o f. This operator is narrow by Lemma 3.7. Let us show that an operator

of the form TL cannot be L-narrow. For this we will show that there exist x 2 X,

x� 2 X�, " > 0, A 2 � so that for every (x; x�; "; A)-peak kTL(f)k � ".

Let us choose A = 
, 0 < " < minf1
2
�(
); 1

4
�(
)kTkg. We choose the element

x 2 S(X) so that kT (x)k � 1
2
kTk, x� is arbitrary. Let f be an (x; x�; "; A)-peak.

Let us estimate kTL(f)k:

kTL(f)k =

Z




kTL(f)(t)k d�(t) =

Z




kT (f(t))k d�(t)

�

Z

ft2
: f(t)=xg

kT (f(t))k d�(t) = kT (x)k �(ft 2 
: f(t) = xg)

>
1

2
kTk(�(
)� ") >

1

4
�(
)kTk > ":

Thus kTL(f)k > " and TL is not L-narrow.

There is no contradiction between this example and Th. 3.5. Indeed, if there

is a narrow operator on X, then X has the Daugavet property and hence is not

reasonable.
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