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1. Introduction

In [1], A.V. Straus described the generalized resolvents of the symmetric ope-
rator generated by a formally selfadjoint differential expression of even order in
a scalar case. In [2] these results were used for the operator case. A differential
expression with a nonnegative weight generates a linear relation. This relation
is not an operator, in general. The generalized resolvents formulae for these
relations are given in [3-5]. However, in these papers either the finite-dimensional
case [3, 5] or the infinite-dimensional case |3, 4] under conditions that the kernel
(the null space) of the maximal relation contained only solutions of the corres-
ponding homogeneous equation was considered. In our paper a general situation is
considered. We use projective and inductive limits of special spaces in the singular
case to construct the spaces where a characteristic operator function acts. We
consider the case of semi-axis instead of the general singular case only to simplify
notations. The detailed bibliography is given in [1-5] and in the monograph [6].
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2. Notations and Auxiliary Formulae

Let H be a separable Hilbert space with the scalar product (+,-) and the norm
|Ill; A(t) be an operator function strongly measurable on the interval [a,00);
the values of A(t) are bounded operators in H such that for all z € H the scalar
product (A(t)x,z) > 0 almost everywhere. Suppose the norm ||A(¢)]| is integrable
on every compact interval [a, 8] C [a, o).

We denote by [ the differential expression of order r (r = 2n or r = 2n + 1):

ly] =

kil (DM @a-r(y*N® — il (gn-k )y ™) + (i (£)y* =)} + pa(t)y,

n
) (=1 {il(gn—k (£)y®)ED 4 (g (B)yFTD)YB] + (p_ o (£)y*))*)}.

Coefficients of [ are bounded selfadjoint operators in H. The leading coefficients,
po(t) in the case of r = 2n and ¢y(t) in the case of r = 2n + 1, have the bounded
inverse operator almost everywhere. The functions p, ,(t) are strongly differen-
tiable k times and the functions ¢,_x(t) are strongly differentiable & times in the
case r = 2n, and k41 times in the case r = 2n 4 1. In general, we do not assume
the coefficients of the expression [ to be smooth as we have just said. According to
[7] we treat [ as a quasidifferential expression. Quasi-derivatives for the expression
[ are defined in [7]. Suppose the functions p;(t), ¢m(t) are strongly measurable,
the function ¢o(t) in the case r = 2n + 1 is strongly differentiable, and the norms
of functions

pal(t)v Pal(t)QO(t)a QO(t)pal(t)qU(t)v pl(t)v et pn(t)v qU(t)v 7qn71(t)
(in the case r = 2n ),
(1), a1(t), - s qn(t), po(t), - pu(t)

(in the case r =2n + 1)

are integrable on every compact interval [a, 5] C [a, 00).
We define the scalar product

oo

(y1,n) = / (At (£), o (8) i,

a

oo
where y;(t) are H-valued functions continuous on [a, 00), and [ HAI/Z(t)yi(t) H2 dt

a
< 00, i = 1,2. By identifying with zero the functions y such that (y,y) = 0
and making the completion, we obtain the Hilbert space. We denote this space
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by B = Lo(H, A(t);a,00). Let § be some element belonging to B, i.e., ¢ is
a corresponding class of functions. If y;,y2 € g, then y1,y2 are identified with
respect to the norm generated by the scalar product (-,-). By ¢ we denote the
class of functions containing y. Suppose y € §. Without loss of generality, further
we will often say that y() belongs to B.

Let (ag,bg) C [a,00) and By = Lo(H, A(t); ag,bp). If § € By, then extending
y by zero to the whole interval [a,c0) we can consider that y € B. If g € B, then
restricting y to the interval (ag, by) we can consider that § € By (it is not excepted
that ¢ # 0 in B and § = 0 in By).

Let G(t) be the set of elements z € H such that A(¢t)z = 0, and H () be the
orthogonal complement of G(t) in H, H = H(t) ® G(t), and Ay(t) be the restric-
tion of A(t) to H(t). Suppose H(t), —oo < T < 00, is the Hilbert scale of spaces
[8, Ch. 2| generated by the operator A,'(t). For the fixed ¢, operator Aé/2(t)
is a continuous one-to-one mapping of H(t) = Ho(t) onto Hj/5(t). We denote
the adjoint operator of A(l]/Z(t) by Aéﬂ(t). The operator A(l]/Z(t) is a continuous
one-to-one mapping of H_5(t) onto H(t) and Aéﬂ(t) is an extension of Aé/2 (t).
Let Ag(t) = 14(1)/2(15)121(1)/2 (t). The operator Ag(t) is a continuous one-to-one map-
ping of H_j/5(t) onto H5(t) and Ag(t) is an extension of Ag(t). We denote
A(t) (vespectively AY2(t)) the operator defined on H_y ;5 @ G(t) such that A(t)
(A'/2(1)) is equal to Ag(t) (respectively Ay/*(£)) on H_y5(t) and A(t)(AV/2(1)) is
equal to zero on G(t). The operator A(t) (A'/2(t)) is an extension of A(t) (A'/?(t)
respectively).

In [3] it is proved that spaces H_;/y(t) are measurable with respect to pa-
rameter ¢ [9, Ch. 1] whenever we take functions of the form Ag'(t)A'/2(t)h(t)
instead of measurable functions, where h(t) is a measurable H-valued function.
The space B is a measurable sum of spaces H_; /Q(t) and B consists of elements
(i.e., classes of functions) with representatives of the form Ag'(t)AY2(t)h(t),

o
where h(t) € Lo(H;a,0), ie., [ |h(¢)||>dt < oo. If yy, yo are representatives

a
of the class of functions § € B, then AY/2(t)y,(t), A'/?(t)ya(t) are the same func-
tions in the space Ly(H;a,00). We denote this function by AL/2(¢)g.

We define minimal and maximal relations generated by the expression [ and
the function A(t) in the following way. Let Dy be the set of finite on (a;o0) func-
tions y satisfying the following conditions: a) the quasi-derivatives ylol . ylr]
of function y exist, they are absolutely continuous up to the order r — 1; b)
Ily)(t) € Hy/5(t) almost everywhere; c) the function A5 (#)I]y] belongs to B. To
each class of functions identified in B with y € D}, we assign the class of functions
identified in B with A5'(#)I[y]. This correspondence L} may not be an operator
as it may happen that some function vy is identified with zero in B and fla L))
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is not equal to zero. So, we get a linear relation Lj, in the space B. The closure
of Li we denote by Lg. The relation Ly is called as a minimal one. Let L be the
relation adjoint of Lg. L is called the maximal relation.

Terminology concerning linear relations can be found in the monographs [6,
8]. Further the following notations are used: R as a range of values; {-,-} as an
ordered pair.

We consider the differential equation [[y] = AA(t)y, where A is a complex
number. Let W;(t,\) be the operator solution of this equation satisfying the
initial conditions: Wj[kfl](a, A) = 0;xE (E is the identity operator, d;; is the
Kronecker symbol, j,k = 1,...,r). By W(t,\) we denote the one-row operator
matrix (Wyi(¢,A),..., W,(t,A)). The operator W (¢, \) maps continuously H" into
H for fixed ¢, A. The adjoint operator W*(¢, A) maps continuously H into H".
If I[y] exists for the function y, then we denote § = (y,y!", ...,y (we treat
7 as a one-columned matrix). Let z = (21,...,2p) be some system of functions
such that [[z;] exists for each j. By Z we denote the matrix (21,...,2y,). The
analogous notations are used for the operator functions.

We consider the operator matrices of orders 2n and 2n + 1 for the expression [
in cases r = 2n and r = 2n + 1 respectively:

-F

J2n (t) =

Jon+1(t) = 2iqq (1) :

where all the elements, that are not indicated, are equal to zero. (In matrix
Jon+1(t) the element 2ig, ' (t) stands on the intersection of the row n + 1 and the
column n 4 1.) Suppose the expression [ is defined for the functions ¥, z, then, in
these notations, Lagrange’s formula has the following form:

B B
/ (Uly), 2)dt - / (o1t = (L (0,20, a<a<f<oo (1)

«

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4 375



V.M. Bruk

It follows from "method of the variation of arbitrary constants" that general
solution of the equation

Iyl = MA(t)y = A(t)f (1)
is represented in the form:

t

y0) =W | e I @) [ W) e | )

a
where ¢ € H". Consequently,

t

G(t) = Wt ) | ¢+ T Ya) / W* (s, \)A(s) f(s)ds | . (3)

a

3. Construction of a Space Containing the Range
of the Characteristic Operator Function M ())

Let Qo be a set of elements ¢ € H" such that function W (¢, 0)c is identified
o.@]

with zero in the space B, ie., [ HAI/Z(S)W(S,O)CH2 ds = 0. It follows from the
a

equalities
W (t,\)e = W (t,0) | ¢+ X (a) / W*(s,0)A(s)W (s, Neds | (4)
W (t,0)c =W (t,\) | ¢ — M, (a) / W*(s,\)A(s)W (s,0)cds (5)

that the function W (¢, \)c is identified with zero in the space B if and only if
¢ € Qo (in the finite-dimensional case this fact was obtained in [7]). By Q we
denote an orthogonal complement of Qo in H", H" = Q & Q.

Let [a, Bm], m = 1,2, ..., be asystem of intervals such that [a, 5] C [a, Bm+1)
and (3, — oo as m — oco. We denote B,,, = Lyo(H, A(t); a,Bm). Suppose Qo(m)
is the set of elements ¢ € @ such that the function W (¢, A)c is identified with zero

Bm
in the space By, i.e., [ HAI/Z(S)W(S, )\)cH2 ds = 0. Tt follows from (4), (5) that

a
Qo(m) does not depend on A. Let Q(m) be the orthogonal complement of Qg (m)
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in Q, ie., Q=Q(m)® Qo(m). Obviously, Qo(1) D Qo(2) D ... D Qo(m) D ...
and Q(1) CQ(2)C...CcQ(m)C...CQ.
We define the quasiscalar product
8i
(¢, d) :/(A(S)W(S,O)C,W(S,O)d)ds, ¢,d € Q,

a
in space ). This quasiscalar product generates the semi-norm
1/2

Bi
i 2 .
Il = | [ a2 ewsoe| as| <l ceq y=at>0. ©

Clearly, |- < [l-]*".

Note that if ¢ € Q(m), then HCH(,m) > 0 for ¢ # 0. Therefore the semi-norm
||| is a norm on the set Q(m) for i > m. By Q(f) (m) we denote the completion of
(Q(m) with respect to this norm. It follows from (4), (5) that we obtain the same
set Q(f) (m) with the equivalent norm whenever we replace W (s,0) by W (s, )
in (6). The inclusion map Q(,k)(m) C Q(f) (m) is continuous for k > 1 > m. We
denote Q_(m) = ng) (m).

Let ker(a, Bm, A) be a closure of the set of elements (i.e., of classes of functions)
in the space By, with the representatives of the form W (t, )z, where z € Q(m).
(We denote these classes by W (t,A)z.) It follows from (4-6) that the operator
¢ — W(t,M)c (¢ € Q—(m)) is the continuous one-to-one mapping of Q_(m) onto
ker(a, Bm,A). By Wp,()\) we denote this operator. Here W (¢, A)c is the class of

functions such that the sequence {W (¢, \)¢;} converges to W (¢, A)c in the space
B, whenever {cx} converges to ¢ in the space Q_(m).
By Q(n,m) we denote the orthogonal complement of Q(m) in Q(n) for n > m,

ie, Q(n) =Q(m)® Q(n,m). Then
Q-(n) = QW (m)+Q™ (n,m), (7)

where Q(Il) (n,m) is the completion of Q(n,m) with respect to the norm ||||(,n)
Hence denoting

ker(Q(m), a, Bn, A) = Wn(NQ™ (m), ker(Q(n,m), a, Bn, A) = Wn(N)Q™ (n, m),
we obtain

ker(a, By, A) = ker(Q(m), a, By, >‘)+ ker(Q(n,m), a, B, A). (8)
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We define the linear mappings g, : ker(a, B, A) — ker(a, Bim, A) (n > m) in
the following way. Let gmnz = Wi (A)jmn W, L(N)z for z € ker(Q(m),a, By, \)

n
and gmpz = 0 for z € ker(Q(n,m),a,Bp,A) (here jn, is the inclusion map of

Q(_") (m) into @_(m)). It follows from (7), (8) and the properties of the operators
Wi (\) that mappings g, are continuous.
Moreover, we introduce the linear mappings Ay, : Q—(n) = Q_(m) (n > m)

in accordance with (7) in the following way. Since the inclusion map of Q(Il) (m)
into @ _(m) is continuous, we define h;,¢ = jmnc whenever ¢ € Q(,n) (m), and we

define h,nc = 0 whenever ¢ € Q(Il) (n,m). Mappings A, are continuous.

By ker(a, 0o, ) we denote a projective limit of the family {ker(a, 8,,A); n €N}
with respect to mappings g,,, and by QQ_ we denote a projective limit of the family
{Q_(n));n €N} with respect to mappings Ay, i.e.,

ker(a, 00, ) = lim(pr)gmn ker(a, Bn, A), Q- = lim(pr)h;,,Q—(n).

It follows from the definition of projective limit [10, Ch. 2] that Q_ is a sub-
space of the product [[Q_(n) and @ _ consists of the elements ¢ = {¢, } such that
n

Cm = hmncy for all m < n. Similarly, ker(a, 00, \) is a subspace of [ ker(a, By, A)
n
and the analogous statement is true in regard to ker(a, o0, \). By p,, pl, we de-
note the projections [[ Q- (n) and []ker(a, By, A) onto Q_(n) and ker(a, B,, A)
n n

respectively.

The mappings gmn, hmn and the operators Wy, (\) : Q_(n) — ker(a, Sy, )
satisfy the equality: gmn = Wmn(A)hmaW,, 1(\). Consequently, the family of
operators {Wp,(\)} generates the isomorphism (i.e., the linear homeomorphism)
W(A) : Q- — ker(a,00,A). If ¢ = {¢cp} € [[Q=(n), then W(A)c = {Wy(N)ecn}

and W(A)Q_ = ker(a, 0o, \). Moreover,
Pn(WN)Q-) = Wa(MNpn(Q-)- (9)

Lemma 1. Let w, be a representative of the class of functions wy, = Wy(\)d
(d € Q_(n)) and let wy, be restriction of wy, to [a,Bm] (m < n). Then

i = Win(\) B d. (10)

P roof. According to (7) we represent d in the form d = d' + d”, where
d e Q(_n)(m) C Q_(m), d" € Q(_n)(n,m). Suppose the sequences {d}}, {d]
(dj, € Q(m), dj} € Q(n,m)) converge to d’, d’ in the spaces Q(_") (m), Q(_") (n,m)
respectively. Then the sequence {W (¢, \)d}} converges to W, (\)d' in the space
B,,. Therefore {W(t, A)d)} converges to Wi, (X)jmnd in By, and the functions
W (t, \)dy are identified with zero in B,,. Hence follows (10). Lemma 1 is proved.
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Let ¢ € H". Then the function AY2(t)W (¢, A)¢ belongs to La(H;a, B,) for
all n and AY2(t)W (t,\)¢ coincides with A'/2(t)W (¢, \)¢" in this space, where
d" = P,Pyc € Q(n), Py is the orthogonal projection of H" onto @, P, is the
orthogonal projection of @ onto Q(n). Suppose the sequence {dy}, dx € Q(n),
converges to d in the space Q_(n); then classes of functions W (¢, A)dy € By
with the representatives of W (, \)dj converge to the class of functions W (t, \)d
in B,. Therefore functions AY2(t)W (¢, A)d), converge to the function z(t) =
A'Y2(t)W (t, \)d in the space Ly(H;a, B,). It follows from (10) that the restriction
of z(t) to the interval [a, 8], m < n, coincides with AY2(£)W (£, A\)hpnd.

Suppose ¢ = {¢,} € Q_; then ¢, = hppen (m < n). It follows from (10)
that the restriction of function A'2(t)W(t,\)¢, to the interval [a,8,,] coin-
cides with the function AY2(£)W (¢, A)em in the space Lo(H;a, By). Therefore
by A'Y2(t)W (t, \)c we denote the function coinciding with AY2(t)W (¢, )¢, on
any interval [a, 8,]. Correspondingly, by W (¢, A)¢ we denote the H_y)5(t) ® G(t)-
valued function coinciding with W (t,\)¢, in the spaces B,, for all n. It follows
from (9), (10) that W (¢, A)en = W (£, \)cp in the space By, m < n.

4. Construction of a Domain of the Characteristic Operator
Function M ()

The space Q_(n) can be treated as a negative one with respect to Q(n).
By @Q+(n) we denote a corresponding space with the positive norm. It follows
from (7) that Q4 (n) = QT) (m)—i—Qg:L) (n,m), where QT) (m), QT) (n,m) are the
corresponding positive spaces with respect to Q(_n)(m), Q(m) and Q(_n)(n,m),
Q(n,m). The inclusion Q4 (m) C QS:L) (m) is dense and continuous. Consequently
the inclusion map of @4 (m) into Q4 (n) is continuous for m < n.

Suppose k. : Qy(m) — Q4 (n), n > m, is the adjoint mapping of Ay, ; then
h;t.. is the continuous inclusion map of Q1 (m) into Q4 (n). By Q4 we denote
inductive limit [10, Ch. 2| of the family {Qy(n);n € N} with respect to mappings
ht., ie, Qy = lim(ind)h}, Q4 (n). It follows from [10, Ch. 4| that @, is the
adjoint space of _. The space Q4 can be treated as the union Q1 = |JQ+(n)

n
with the strongest topology such that all inclusion maps of Q4 (n) into Q4 are
continuous [10, Ch. 2.

Let § € B,, and m < n. Suppose y is a representative of the class of func-
tions g, then we can treat ¢ as an element of the space B,, whenever we extend y
by zero out of the interval [a, 5,,]. If m < n, then the space By, can be treated
as a subspace B,. The topology of B,, is induced by the topology of B,. Let
inm be the inclusion map of B,, into B,. By B we denote the inductive limit of
the spaces B, with respect to the mappings inm, i.e., B = lim(ind)in,B,. The
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space B can be treated as B = |UB,, with the strongest topology such that all
n

inclusion maps of B,, into B are continuous.

Suppose {F,}, n € N, is a family of locally convex spaces such that F,, C
F, for m < n and this inclusion map is continuous. According to [8, Ch. 1],
an inductive limit F' = lim(ind)F,, of the locally convex spaces Fj,, n € N, is
called a regular one if for every bounded set S C F there is n € N such that
S C F, and S is a bounded set in F),. It follows from [8, Ch. 1] that the inductive
limits Q4 and B are regular. According to [10, Ch. 2|, the inductive limit of
bornological spaces is a bornological space. Since Q)+, B are the inductive limits
of the reflexive Banach spaces, we see that Q, B are bornological.

Suppose F), are bornological spaces such that their inductive limit F' is regular.
Let Fy be a locally convex space. It follows from [10, Ch. 2] that a linear mapping
u : F — Fy is continuous if and only if for every n € N restriction of u to Fj,
maps every bounded set S C F), into the bounded set u(S) C Fy. According to
[10, Ch. 2, Ex. 17|, we can take a bounded sequence instead of the bounded set
S C F,. Further, these statements will be used for the proof of the continuity
of corresponding operators. We take the space (Q_ instead of Fy. Then the
following conditions are equivalent: (i) the set u(S) is bounded in Q_; (ii) the
sets pru(S) are bounded in the spaces ppQ_ = Q_(k) for every k € N; (iii) the
sets Wi (A)pru(S) are bounded in the spaces By for every k& € N; (iiii) the sets
consisting of elements of the form W (¢, A)¢j, are bounded for every k € N, where
¢ € prulS) C Q- (k).

Thus the following lemma, is proved.

Lemma 2. Suppose the spaces Fy, are bornological and their inductive limit F
18 reqular. The linear operator u : F — Q_ s continuous if and only if for every
n € N and every bounded set S C F, and every k € N the sets consisting of
elements of the form W (t,N)cy are bounded in By, where ¢ € ppu(S) C Q_ (k).
Any bounded sequence can be taken in place of bounded set S.

Further, we shall take a family of space {Q+(n)} or {B,} in place of {F),}.
Then FF = Q4 or F = B respectively. As it was mentioned above, the operator
Wn(A) is a continuous one-to-one mapping of @_(n) onto the closed subspace
ker(a, By, A) of the space B,,. Then the adjoint operator W5 (\) maps continuously
B, onto Q4 (n). Therefore W;¥(\) is the continuous operator of B, into Q4. The
operator W () has the following form:

Bn 00
WO F = /W*(s,A)A(s)f(s)ds _ /W*(S,A)A(s)f(s)ds, (11)

where f € B and f vanishes outside [a, 3,].
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We note that the norms HW*(s, M) A2 (s) H, HAI/Z(s)f(s) H belong to La(a, 5y)-
Hence the integral in the right side of (11) exists.

Since B consists of finite functions, in accordance with (11) we can define the
operator W, ()\) mapping B onto Q. by the formula

wqu:/ww&mj@ﬂg@.

It follows from the reasoning given before Lemma 2 that the operator Wi (}) :
B — @4 is continuous. Obviously, W.(A)f = W (\)f for f € B,,.

5. The Main Result

To prove the main theorem we need several lemmas.

Lemma 3. § € B belongs to the range R(Ly — AE) of the relation Ly — \E if
and only if there is an interval (a, By,) such that g is finite on (a,B,) and

Bn
/W*(S,A)A(s)g(s)ds = 0. (12)
a
Proof. Letg be finite and (12) is true. We denote
t
2(t) = W(t,\) | J. (a) /W*(s,)\)fi(s)g(s)ds
a

From (2), (3), (12) we obtain that the ordered pair {2,g} € Ly — \E.
Vice versa, let {Z,g} € L{ — AE. It follows from (2), (3) that there is a rep-
resentative z of the class of functions 2z such that the equality

2@:W@M(%L%®/W%JM@%MS

is true, where ¢ € (). Since the function z is finite, we see that ¢ = 0 and ¢ is

finite on some interval (a, 3,) and equality (12) is true. Lemma 3 is proved.
Remark InLemma 3 we can replace the interval (a,f,) by any interval
such that the function z vanishes out of this interval, where {z,g} € L{ — AE.

Equality (12) and the equality (g, W (¢, A\)c)g, = 0 are equivalent for all ¢ €
Q (n).
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Lemma 4. If the ordered pair {7, f} € Lj— AE, then y can be represented in
the following form.:

a

where c € Q_.
Proof We denote

u(t) = W(t, A) Jrl(a)/W*(s,)\)A(s)f(s)ds

Let {#,§} € Ly — AE and 2(t) = 0 for t > f3,. From Lagrange’s formula (1),
we obtain

Bn Bn
[ @g(s)utods = [ (Az(s), () o

The equality

Bn Bn
/M@aﬁmm@—/d@A%ﬂmwzo

is true for every ordered pair {7, f} € L¥ — MAE. It follows from the last two
equalities that (g,9 — @)p, = 0. Since ker(a, B, A) is closed and g € R(Ljy — \E)
is arbitrary, from Lemma 3 and remark we obtain the equality § — @ = W (£, \)cy.
Since the interval (a, f,,) is taken arbitrarily, we obtain (13) where ¢ = {¢,} € Q_.

Note that Lemmas 3, 4 follow also from paper: V.M. Bruk, J. Math. Phys.,
Anal., Geom. 2 (2006), 1-10.

Theorem. FEuvery generalized resolvent Ry, ImA # 0, of the relation Ly is
the integral operator

RAf:/K(t,s,A)/i(s)f(s)ds (f € B).

The kernel K (t,s,\) has the form

K(t,s,) = W(t, \)(M(X) — (1/2)sgn(s — £)J; (@) W*(s, D),
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where M()\) : Q4 — Q_ is the continuous operator such that M()\) = M*(\) and
(ImA\) ' Tm(M (N\)z,z) >0 (14)

for every fized X\, Tm\ # 0, and for every x € Q4. The operator function M(\)x
is holomorphic for every x € Q4+ in the semi-planes Im\ # 0.

P roof First, we prove the theorem for the functions finite on (a,o0) .
Suppose f € B and f is a finite function. It follows from (13) that § = Ry f has
the following form:

t

§=4(t, f.0) =W(t,N) | e(f, ) + (1/2) 7" (a) /W*(S,X)A(S)f(S)dS

a

- (1/2)Jrl(a)/W*(S,/_\)fi(S)f(S)ds ; (15)
t

where c(f, A) € Q- and c(f, A) is uniquely determined by f and X, ImX\ # 0.
Indeed, if it is not so, then W (¢, A)e(f,A) = R\0 = 0, and this equality is true
whenever ¢(f, ) = 0. Therefore, ¢(f,\) = C(\)f where C()\) : B — Q_ is the
linear operator.

Now we show that the operator C'()) is continuous for every fixed A. Let the
sequence {fx} (fr € By,) be bounded in B,, for a fixed number n € N. Then {f}} is
bounded in B. Hence the sequence { Ry fi.} is bounded in B. Consequently, { Ry fx}
is bounded in B,,. It follows from (15) that the sequence {W (t, \)pmc(fi, A)} is
bounded in B,,. Since n,m € N are arbitrary and according to Lemma 2, it
follows that the operator C(\) is continuous.

Now we prove that ¢(f, A) is uniquely determined by the element W.()) ANf e
Q.. We assume that W,(A\)f = 0. Then the ordered pair {%, f} € Ly — \E,

where

s =N | /27 /W V£ (s)ds

—(1/2)J, /W*SAA f(s)ds

Since (Lo — AE)~' C Ry, we obtain that W (t, \)e(f, \) belongs to the range of
the operator Ry. Hence ¢(f,\) = 0.

Thus C(\) = M(AN)W,(A)f, where M()\) : Q; — Q_ is an everywhere defined
operator. We prove that M () is continuous for every fixed A. Let the sequence
{gx} = {W.(\)fi} be bounded in Q4(n). By B{") we denote the orthogonal
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complement of ker W*(\) in the space B,. The operator W*(\) is a continuous

one-to-one mapping of BSZU) onto @4 (n). Consequently, there exists a bounded

sequence {gr} (Jr € BS’)) in B, such that g, = W.(\)fr, = W;¥(A\)gr. Then the
sequence {R)gr} is bounded in B. Consequently, {Rxgx} is bounded in B,, for
every m € N. Hence the sequence {W (¢, \)pmM (N)gi} is bounded in B,,. It
follows from Lemma 2 that the operator M ()) is continuous.

Now we prove that the function M (X)z is holomorphic (ImA # 0) for every
z € Q4. Tt follows from (15) and holomorphicity of Ry that the function A —
W (t,\)pnC(N)f is holomorphic in B, for every f € Bj, n,j € N. Substitu-
ting ppC(N\)f for ¢ in equality (4), we get that function A — W (¢,0)p,C(A)f
is holomorphic. Since the operator & — W (t,0)z is a continuous one-to-one
mapping of Q_(n) onto ker(a, 3,) and ker(a, 8,) is closed in B,,, we obtain that
A= pnC()\)f = pnM()\)W;‘(j\)f is the holomorphic function for every f € B;.
Now holomorphicity of function A — p, M (\)z follows from the lemma proved
in [11].

Lemma 5. Suppose bounded operators Ss(\) : By — Bs, S1(\) : By — By,
S2(A) : By — Bs satisfy the equality Ss(A) = So(X)S1(X) for every fized X belon-
ging to some neighborhood of a point Ny and suppose the range of operator Si(Ag)
coincides with By, where By, By, Bs are Banach spaces. If functions Si()\),
S3(A) are strongly differentiable in the point \g, then in this point function So(\)
18 strongly differentiable.

In this lemma it should be taken that By = Bj, By = Q4(j), B3 = Q_(n),
S1(A) =W;(A), S2(A) = ppM(A), S3(A) = pnC(N).

So, the operator function A — p, M (\)z is strongly differentiable for every
n € N and for every z € Q4. Now holomorphicity of the operator function
M(XN)z for every z € Q4 follows from the closeness of @_ in the product of
spaces @_(n) [10, Ch. 2| and from the definition of topology of the product
space.

It follows from the equality R} = Ry that M(\) = M*()\) and

AV2()K*(t, 8, ) A2 (t) = A2 (s)K (s, t, \) AY2(¢). (16)

Now we show inequality (14). First, we prove the following statement.

Lemma 6. Suppose 4, Gy, 0, Uy € By, satisfy the equalities

- t _ .
a(t) = W(t,\)(c+ J " (a) [ W*(s, A)A(s)uo(s)ds),

56 = W (6 A)(d + T, (@) [ W* (5, 2)A(s)vo(s)ds),
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Brn _ o~
where d € Q_(n), c = —J, Y(a) [ W*(s,\)A(s)uo(s)ds. Then

r

Bn Bn
/ (A(tyuo (), () dt — / (At)u(t), vo (£)) de
Bn
—~(@)ed) = (=) [ (AWu), o) (18)

Proof. Since J.(a)c € Q+(n), we see that the right-hand side (18) exists.
Let dr € Q(n) and the sequence {dy} converges to d as k — oo in the space
Q—(n). If we replace d by dj in (17), then we obtain the function denoted by
0k (t). The sequence {o} converges to ¥ in the space B,,. We apply Lagrange’s
formula (1) to the functions u, v,. From the equalities 4(8,) = 0, A(t)ug(t) =
I[u] = NA(t)u, A(t)vo(t) = l[vg] — AA(t)vg, we obtain the equality of the form (18),
where v is replaced by vg. By calculating to the limit as k — oo, we obtain (18).
The lemma is proved.

In order to prove inequality (14), we take the arbitrary element 2 € Q5. Then
there is n € N such that z € Q4 (n). Consequently, there exists f € B, such that

/W*(s, NA(s)f(s)ds = Wo(A) f = .

a

Let z(t) = Wgt, A (M(N)z + (1/2)J (a)z). Suppose § = Ryf has the form
of (15), where c(f,\) = M(\)z. Having made some elementary transformations
we can apply Lemma 6 to the functions w =g — 2, a9 = f, 0 =9+ 2, 09 = f.

Then we have

B b
J (A f,z+y)dt — [ (At)(y — 2), f)dt
B

=2(z, M(\)z) = (A= X) [ (A@)(y — 2),y + 2)dt.

a

Consequently,
(Im\) Im(M(\)z, z)

= (z,2)B, + {A =N B, N, — (LR )B.] — (BAf, Raf)B, ). (19)

The operator function Ry is a generalized resolvent of the minimal relation
generated in the space B, by the expression [ and the function A(t) (the proof
is similar to the proof of the corresponding statement for the operator from [1]).
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Consequently, the addend in figurate brackets in the right-hand side (19) is non-
negative. Now (14) follows from (19).

Now we assume that f € B is not finite, in general. By V; we denote the ope-
rator z — W (t, \)(M(X\)z + (1/2)J;"(a)z). The operator V; maps continuously
Q@+ (n) into B for every n € N. Indeed, for any bounded sequence {z} in Q4 (n)
there exists a bounded sequence {gx} (gr € B%U)) in By, such that = = W} (\)gk.
Then the sequence {R\gx} is bounded in B. The functions gj vanish out of the
interval [a, 8,]. Consequently, the equality

Ragi = W(t, \)(M(N)zp + (1/2)J " (a)z)

is true out of the interval [a,3,]. Therefore the sequence {W (¢, \)(M(\)zy, +
(1/2)JY(a)rk)} is bounded in the space B. This implies that the operator V; is
continuous. Hence we obtain the inequality

/(/I(t)W(t, A (M(Nz + (1/2) T  (a)z, W (t, ) (M (N)z + (1/2) 07 (a)z)dt

<k 2lG, @y E(n,A) > 0. (20)

Now suppose f € B and f is a nonfinite function, in general. We take the
sequence {f,} converging to f in the space B, where f, € B and functions f,
are finite. Using (20) and (16), we obtain that for every finite function g (g € B)
there exists the limit

Tim [ (AV2(8) [ K (85, \)A(3) fu(s)ds, A1/2(0)g(0))d
= lim [ (A2()fu(s), AV2(3) | K (5,8, ) A(0)g(t)dt)

o0

= [ (AY2(s) [ (s), A" (s)

a

K(s,t,\)A(t)g(t)dt).

9\8

Hence the sequence ¢ [ K(t,s, )\)A(s)fn(s)ds} converges to Ryf as n — 0o

a
at least weakly in the space B. The theorem is proved.

References

[1] A.V. Straus, On the Generalized Resolvents and Spectral Functions of the Differ-
ential Operator of the Even Order. — Izv. Acad. Nauk SSSR. Ser. Mat. 21 (1957),
No. 1, 785-808. (Russian)

[2] V.M. Bruk, On the Generalized Resolvents and Spectral Functions of the Differential
Operator of the Even Order in the Space of Vector Functions. — Mat. Zametki 15
(1974), No. 6, 945-954. (Russian)

386 Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4



Generalized Resolvents of Symmetric Relations Generated on Semi-Axis...

3]

[4]

[5]

(6]

7]

8]
9]
[10]

[11]

V.M. Bruk, On the Linear Relation in the Space of Vector Functions. — Mat.
Zametki 24 (1978), No. 4, 499-511. (Russian)

V.M. Bruk, On the Generalized Resolvents of the Linear Relations Generated by
Differential Expression and Nonnegative Operator Function. — The editorial of
Siberian mathematical journal, Novosibirsk, 1985. Dep. VINITI, No. 8827-B&5, 18 p.
(Russian)

V.I. Khrabustovsky, Spectral Analysis of Periodical Systems with Degenerate Weight
on Axis and Semi-axis. — Theory Funct., Funct. Anal. and Appl., Kharkov Univ.,
Kharkov 44 (1985), 122-133. (Russian)

F.S. Rofe-Beketov and A.M. Kholkin, Spectral Analysis of Differential Operators.
World Sci. Monogr. Ser. Math., Vol. 7, 2005.

V.I. Kogan and F.S. Rofe-Beketov, On Square-Integrable Solutions of Symmet-
ric Systems of Differential Equations of Arbitrary Order. — In: Proc. Roy. Soc.
Edinburgh. A 74 (1975), 5-40.

V.I. Gorbatchuk and M.L. Gorbatchuk, Boundary Value Problems for Differential-
Operator Equations. Kluwer Acad. Publ., Dordrecht—Boston—-London, 1991.

J.L. Lions and E. Magenes, Problemes aux Limities non Homogenenes et Applica-
tions. Dunod, Paris, 1968.

H. Schaefer, Topological Vector Spaces. The Macmillan Company, New York;
Collier-Macmillan Lim., London, 1966.

V.M. Bruk, On Boundary Value Problems Associated with Holomorphic Families
of Operators. — Funct. Anal., Ulyanovsk 29 (1989), 32—42. (Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2006, vol. 2, No. 4 387



