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For a 2 (0; 1) let Lkm(a) be an error of the best approximation of the func-

tion sgn (x) on two symmetric intervals [�1;�a][ [a; 1] by rational functions
with the only possible poles of degree 2k � 1 at the origin and of 2m� 1 at

in�nity. Then the following limit exists
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Dedicated to the memory of B.Ya. Levin

1. Introduction

This is the second step (for the �rst one see [5]) on the way to understand

better the di�culties that up to now do not allow to �nd the Bernstein constant.

Recall that Sergey Natanovich Bernstein found [3, 4] that for the error En(p) of
the best uniform approximation of jxjp, p being not an even integer, on [�1; 1] by
polynomials of degree n the following limit exists:

lim
m!1

npEn(p) = �(p) > 0:

For p = 1 this result was obtained by Bernstein in 1914, and he posed the question,
whether one could express �(1) in terms of the known transcendental functions.

This question is still open.

Actually, we solve here a problem on asymptotics of the best approximation of

sgn (x) on the union of two intervals [�1;�a][[a; 1] by rational functions. In 1877,
E.I. Zolotarev [6, 2] found an explicit expression, in terms of elliptic functions,

of the rational function of the given degree which is uniformly closest to sgn (x)
on this set. This result was a subject of a number of generalizations, and it has

applications in electric engineering. In Zolotarev's case position of the poles of the

rational function is free, the natural question is to �nd the best approximation

when the poles and their multiplicities are �xed. In [5] A. Eremenko and the

second co-author of the current paper solved the polynomial case. Here we allow

the rational function to have one more pole in (�a; a), more precisely, admitted

are two poles � one at in�nity and one in the origin.

Thus the problem is:

Problem 1.1. For k;m 2 N, �nd the best approximation of the function

sgn (x), jxj 2 [a; 1], by functions of the form

f(x) =
a�(2k�1)

x2k�1
+ :::+ a2m�1x

2m�1

and the approximation error Lk

m
(a).

One can be interested in many di�erent asymptotics for Lk

m
(a) when m or

k, or both of them go to in�nity in a certain prescribed way. In this paper we

concentrate on the case when k is �xed and m ! 1. Note, however, that due

to the evident symmetry Lk

m
(a) = Lm

k
(a) and a bit less evident (6.2) we have

simultaneously asymptotic for k ! 1, m is �xed and k ! 1, m ! 1 so that

k = m.

As it appears the tricks which are used in [5] to �nd precise asymptotic work

in this general case (so we have a method in hands):
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1. For each certain k and m we reveal the structure of the extremal function

by representing it with the help of an explicitly given conformal mapping.

2. The system of conformal mappings (k is �xed, m is a parameter) converges

(in the Caratheodory sense) after appropriate renormalization. The limit

map does not depend on a, thus we obtain asymptotics for Lk

m
(a) in terms

of a-depending parameters, that we use for renormalization, (an explicit for-

mula) and a k-depending constant, say Yk, which is a certain characteristic

of this �nal conformal map (kind of capacity).

Of course, it is very tempting to guess Yk directly from the given explicitly con-

formal map. It might be that we have here special functions that are given in

such a form that we are unable to recognize them. In any case, we would consider

this way of �nding Yk as a very interesting open problem. However we are able

to �nd Yk using the third step below our strategy. Problem 1.1 in an evident way

is equivalent to

Problem 1.2. For p = 2k � 1 and n = 2(k +m � 1), �nd the best weighted

polynomial approximation and the minimal deviation

E�
n(p; a) = inf

fP :degP�ng
sup

jxj2[a;1]

���� jxjp � P (x)

xp

���� : (1.2)

Thus we have E�
n
(p; a) = Lk

m
(a). Note that Bernstein himself solved the un-

weighted problem.

Problem 1.3. For a �xed non even p, �nd asymptotics for the minimal devi-

ation

En(p; a) = inf
fP :degP�ng

sup
jxj2[a;1]

jjxjp � P (x)j ; (1.3)

when n goes to in�nity through the even integers.

3. Due to the evident relation

lim
a!1

lim
n!1

E�
n(p; a)

En(p; a)
= 1;

we can recalculate the constant in Probl. 1.3 to the constant related to

Probl. 1.2 and thus to get explicitly eYk =
�(k+ 1

2 )
�

.

This interplay between Problems 1.2 and 1.3 indicates that most likely one can

�nd our asymptotic formula (0.1) by using original Bernstein's method, though

up to the last step our consideration is very direct and simple. However we can go
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in the opposite direction. In particular, in this work we show that the extremal

polynomials of Probl. 1.3, at least for p = 1, also have special representations in

terms of conformal mappings. The boundaries of the corresponding domains are

not so explicit as in Probl. 1.1, they are described in terms of certain functional

equations with an unknown function being involved, its Hilbert transform and

independent variable (7.2). Precise constants that characterize these equations

(counterparts of the constants Yk), related to the conformal mappings and their

asymptotics leave enough space for the hope that for a = 0 one also would be

able to characterize very similar equations in terms of classical constants.

Acknowledgment. We are thankful to Alex Eremenko for friendly conver-

sations while writing the paper.

2. Special Functions

In this section we introduce certain special conformal mappings that we need

in what follows. They are marked by a natural parameter k, but in this section k

can be just real, k > 1=2.
For the given k, consider the domain

�k = C + n fw : Rew = � log t; jImw � k�j � arccos t; t 2 (0; 1]g: (2.1)

De�ne the conformal map

Hk : C + ! �k;

normalized by Hk(0) =11, Hk(1) =12 (on the boundary we have two in�nite

points denoted 11;12 respectively), and moreover

Hk(�) = � + : : : ; � !1

(that is the leading coe�cient is �xed). By Dk we denote the positive number

such that Hk(�Dk) = 0.
Note that for Hk we have the following integral representation

Hk(�) = � +Dk +

1Z
0

�
1

t� �
� 1

t+Dk

�
�k(t)dt; (2.2)

where �k(t) =
1
�
ImHk(t). Evidently �k(t)! k + 1

2 , t! +1.

Lemma 2.1. The function Hk possesses the asymptotic

lim
�!�1

�
Hk(�)� � +

�
k +

1

2

�
log(��)

�
= Yk; (2.3)

98 Journal of Mathematical Physics, Analysis, Geometry, 2007, v. 3, No. 1



Uniform Approximation of sgn(x) by Rational Functions with Prescribed Poles

where

Yk := Dk +

�
k +

1

2

�
logDk �

1Z
0

�k(t)�
�
k + 1

2

�
t+Dk

dt: (2.4)

P r o o f. Since

1Z
0

�
1

t� �
� 1

t+Dk

��
�k(t)�

�
k +

1

2

��
dt! �

1Z
0

�k(t)�
�
k + 1

2

�
t+Dk

dt (2.5)

and

�
k +

1

2

� 1Z
0

�
1

t� �
� 1

t+Dk

�
dt = �

�
k +

1

2

�
(log(��)� logDk); (2.6)

we get (2.3).

Finally, note that Yk, as it was de�ned here, has sense for all real k > 1
2 . As it

is shown in Sect. 5, for the integer k we have

Yk = log �

�
k +

1

2

�
� log �:

We do not know wether these values coincide for non integers k.

3. Extremal Problem

Problems 1.1 and 1.2 are related in a trivial way. Recall, for p = 2k � 1 and

n = 2(k +m� 1), we have

E�
n
(p; a) = Lk

m
(a) = inf

fP :degP�2(m+k�1)g
sup

jxj2[a;1]

���� jxj2k�1 � P (x)

x2k�1

���� ; (3.1)

where a 2 (0; 1), k;m 2 N. Evidently, Lk

m
(a) can be rewritten in the terms of

the best approximation of the function sgn (x) by functions of the form

f(x) =
a�(2k�1)

x2k�1
+ :::+ a2m�1x

2m�1:

Also, it is trivial that in the �rst case the extremal polynomial is even and the ex-

tremal function f = f(x; k;m; a) is odd.
For a parameter B > 0, and k;m 2 N, we denote by 
k

m(B) a subdomain of

the half-strip

fw = u+ iv : v > 0; 0 < u < (k +m)�g

Journal of Mathematical Physics, Analysis, Geometry, 2007, v. 3, No. 1 99



F. Peherstorfer and P. Yuditskii

that we obtain by deleting the subregion

fw = u+ iv : ju� �kj � arccos

�
coshB

cosh v

�
; v � Bg: (3.2)

Let �(z) = �(z; k;m;B) be a conformal map of the �rst quadrant onto 
k
m
(B)

such that �(0) = 11, �(1) = (k +m)�, �(1) = 12. Let a = ��1(0). Then a

is a continuous strictly increasing function of B, moreover limB!0 a(B) = 0 and

limB!1 a(B) = 1. Thus we may consider the inverse function B(a) = Bk

m
(a),

a 2 (0; 1).

Theorem 3.1. The error of the best approximation is

Lk

m
(a) =

1

coshBk
m
(a)

(3.3)

and the extremal function is of the form

f(x; k;m; a) = 1� (�1)kLk

m
(a) cos �(x; k;m;B(a)); x > 0:

P r o o f. Basically the proof is the same as in [5]. A comparably important

di�erence is as follows. We have to note and prove that on the imaginary axis

the extremal function has precisely one zero (there are no critical points and

the behavior at i0 and at i1 is evident). At this point � = k�+ iB and we have

(3.3).

4. Asymptotics

Theorem 4.1. The following limit exists

lim
m!1

�
Bk

m(a)�
�
m� 1

2

�
log

1 + a

1� a
�
�
k +

1

2

�
log(2m� 1)

�

=

�
k +

1

2

�
log

a

1� a2
� Yk:

(4.1)

P r o o f. As in [5], we use the symmetry principle and make convenient

changes of variables to have a conformal map �m(Z) = �(Z; k;m;B) of the upper
plane in the region

i(
k

m
(B) [
k

m
(B)) [ (0; i�(m + k)):

This conformal map has the following boundary correspondence

�m : (�Cm;�Am; 0; Am; Cm)! (�12;�11; 0;11;12);
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here Am = aCm and Cm will be chosen later.

For �m we have the following integral representation

�m(Z) =

�
m� 1

2

�
log

1 + Z

Cm

1� Z

Cm

+

1Z
Am

�
1

X � Z
� 1

X + Z

�
vm(X) dX;

where

vm(X) =

(
1
�
Im�m(X); Am � X � Cm

k + 1
2 ; X > Cm:

(4.2)

Put now

Hk

m
(�) = �m(Z)�Bm; Z = Am + �;

then

Hk

m
(�) =

�
m� 1

2

�
log

1 + a+ �

Cm

1� a� �

Cm

+

1Z
0

�
1

t� �
� 1

t+ 2Am + �

�
v̂m(t) dt�Bm;

where v̂m(t) = vm(t + Am). Let us rewrite Hk

m in the form that is close to

the integral representation of Hk:

Hk

m
(�) =

�
m� 1

2

�
log

1 + �

Cm(1+a)

1� �

Cm(1�a)
+Dk +

1Z
0

�
1

t� �
� 1

t+Dk

�
v̂m(t) dt

+

�
m� 1

2

�
log

1 + a

1� a
�Dk +

1Z
0

�
1

t+Dk

� 1

t+ 2Am + �

�
v̂m(t) dt�Bm:

(4.3)

Now, we put

Cm =
2m� 1

1� a2
:

In this case the �rst line in (4.3) converges to Hk(�). Since

lim
m!1

1Z
0

�
1

t+Dk

� 1

t+Am + �

��
v̂m(t)�

�
k +

1

2

��
dt =

1Z
0

�k(t)�
�
k + 1

2

�
t+Dk

dt

(4.4)

and 1Z
0

�
1

t+Dk

� 1

t+ 2Am + �

�
dt = log

2Am

Dk

+ log

�
1 +

�

2Am

�
; (4.5)
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we have from the second line in (4.3) that

lim
m!1

�
Bm �

�
m� 1

2

�
log

1 + a

1� a
�
�
k +

1

2

�
log 2Am

�

= �Dk �
�
k +

1

2

�
logDk +

1Z
0

�k(t)�
�
k + 1

2

�
t+Dk

dt = �Yk:
(4.6)

Thus we get (4.1). In order to prove (0.1) we have to �nd the constant 2eYk .

5. The Constant

From the point of view of the best weighted polynomial approximation of

the function jxjp (see Sect. 3) our current result has the form

lim
m!1

�
1 + a

1� a

�n
2
+1

n
p

2
+1E�

n
(p; a) =

�
(1 + a)2

2a

� p
2
+1

c(p): (5.1)

On the other hand for the uniform approximation of jxjp (see details in

Appendix 1)

lim
m!1

�
1 + a

1� a

�n
2
+1

n
p
2
+1En(p; a) = 2

p
2
+1a

p
2
�1 (1 + a)2

2
��� ��p

2

��� : (5.2)

Since

lim
a!1

lim
n!1

E�
n(p; a)

En(p; a)
= 1;

we obtain

c(p)
������p

2

���� = 2:

Using
��� ��p

2

���� �p2 + 1
�
= �, we have

c(p) =
2

�
�
�p
2
+ 1

�
:

This �nishes the proof of (0.1).

6. Case m = k, m!1

It is quite evident that the �nal con�guration of the conformal mapping in this

case should be just a symmetrization of the map that we had in the case k = 0,
m ! 1. However it is even much simpler to make this reduction by a suitable

change of variables. First, we put a = �2, then x 2 [a; 1] means y = x

�
2 [�; ��1]
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and we have one more symmetry y 7! 1=y. Therefore the extremal function is

symmetric and possesses the representation

~f(y;m;m) := f(x;m;m; a) = P2m�1

�
y + y�1

�+ ��1

�
; (6.1)

where P2m�1(t) is the best polynomial approximation of sgn (t) on
h
�1;� 2�

1+�2

i
[h

2�
1+�2

; 1
i
. Thus we have

Lm

m
(a) = L0

m

�
2
p
a

1 + a

�
; (6.2)

and

lim
m!1

Lm

m
(a)

�
1 +

p
a

1�pa
�2m�1

(2m� 1)
1

2 =
1� ap

�
p
a(1 + a)

: (6.3)

7. Unweighted Extremal Polynomial via Conformal Mapping

Let Pm(z; a) be the best uniform (unweighted) approximation of jxj by polyno-
mials of degree not more than 2m on two intervals [�1;�a][ [a; 1] and L = Lm(a)
be an approximation error.

In this section we prove

Theorem 7.1. There is a curve 
 = 
m(a) inside the half�strip

fw = u+ iv : u 2 (0; (m+ 1)�); v > 0g (7.1)

such that the extremal polynomial possesses the representation

Pm(z; a) = z + L cos�m(z; a);

where �m(z; a) is the conformal map of the �rst quadrant onto the region in the

half-strip (7.1) bounded on the left by 
m(a), which is normalized by �m(a; a) = 0,
�m(1; a) = (m + 1)� and �m(1; a) = 1. Moreover, the curve 
 is an image

of the imaginary half�axis under this conformal map that satis�es the following

functional equation


m(a) = fu+ iv = �m(iy; a) : L sinu(y) sinh v(y) = y; y > 0g: (7.2)

P r o o f. First we clarify the shape of the extremal polynomial. In particular,

we prove that Pm(0; a) > L. On the way we show the fact that is probably

interesting on its own: P 0
m(x; a) looks much similar to the polynomial of the best

approximation of sgn (x) on two symmetric intervals [5], with the only di�erence
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that the deviations in area should be equal, instead of the maximum modulus.

However it can be shown that P 0
m
(x; a) is not the best L1 approximation of sgn (x).

Due to the symmetry of Pm(x; a), we can use the Chebyshev theorem with

respect to the best approximation of
p
x on [a2; 1] by polynomials of degree m. It

gives us that Pm(z; a) hasm+2 points fxjg on the interval [a; 1] where Pm(xj ; a) =
xj � L (the right half of the Chebyshev set in this case). Moreover, x0 = a and

xm+1 = 1. At all other points, in addition, we have P 0
m(xj ; a) = 1, 1 � j � m.

Between each two of them we have a point yj, where P 00
m
(yj) = 0. Therefore

we obtain 2(m� 1) zeros of the second derivative in (�1;�a) [ (a; 1) and this is

precisely its degree. Thus there is no other critical points of P 0
m
(z; a), in particular,

in (�a; a) and on the imaginary axis.

From the �rst consequence, we conclude that on (�a; a) the P 0
m
(z; a) increases.

That is on (a; x1) the graph of Pm(z; a) is under the line x � L, depending on

the value Pm(a; a), that, recall, should be a+ L or a� L. Therefore, it is under

the line x + L and Pm(a; a) � a = L, Pm(x1; a) � x1 = �L. Continuing in this

way we get values of Pm(xj ; a) at all other points xj by alternance principle. Note

that as a byproduct we get

xiZ
xi�1

jP 0
m(x; a)� 1j dx = 2L

for all 1 � i � m+ 1.
From the second consequence we have that ImP 0

m
(iy) � 0 on the imaginary

axis, that is Pm(iy; a), being real, decreases with y, starting from Pm(0; a) > L to

�1. From this remark and the argument principle we deduce that the equation

Pm(z; a) � z = tL (7.3)

has no solution in the open �rst quarter for all t 2 (�1; 1).
Indeed, since Pm(z; a) � z alternates between �L in the interval [a,1], (7.3)

has m + 1 solutions, which we denote by xj(t). Consider now the contour that

runs on the positive real axis to xj(t)� �, then it goes around xj(t) on the half-

circle of the radius � clockwise. After the last of xj 's we continue to go along the

contour to the big positive R. The next piece of the contour is a quarter-circle up

to imaginary axis. Finally, from iR we go back to the origin. On each half-circle

of the radius � the argument of the function changes by ��. On the quarter-

circle it changes by about degPm(z; a)� �

2 = m�. On the imaginary axis we have

Re(Pm(iy; a) � iy) = Pm(iy; a) and Im(Pm(iy; a) � iy) = �y. Since Pm(iy; a)
decreases much faster than �y (degree of Pm is at least two), the change of the

argument on the last piece of the contour is about �. Thus the whole change is

�(m + 1)� +m� + � = 0. Since the function has no poles, it has no zeros in

the region.
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Thus arccos Pm(z;a)�z
L

is well de�ned in the quarter-plane. We �nish the proof

by inspection of the boundary correspondence.

Note two facts: the curve (7.2) has the asymptote u! �, v ! +1 (y ! +1)

and we have uniqueness of the solution of the functional equation (7.2) due to

uniqueness of the extremal polynomial.

8. Appendix 1

As it is said in [1], problem 42:

El

�
1

(b+ x)s

�
� ls�1

j�(s)j
(b�pb2 � 1)l

(b2 � 1)
s+1
2

; b > 1; s 6= 0; (8.1)

where El[f(x)] is an error of approximation of the function f(x) on the interval

[�1; 1] by polynomials of degree not more than l.

We change the variable

y =
b+ x

b+ 1

and put a2 = b�1
b+1 . Then we have

inf
P :degP�l

max
y2[a2;1]

jy�s � P (y)j = (1 + b)sEl

�
1

(b+ x)s

�
:

That is

E2l(�2s; a) = (1 + b)sEl

�
1

(b+ x)s

�
: (8.2)

Note that

b =
1 + a2

1� a2
; b2 � 1 =

4a2

(1� a2)2
;

and therefore p
b2 � 1 =

2a

1� a2
; b�

p
b2 � 1 =

1� a

1 + a
:

Thus from (8.1) and (8.2) we get

E2l(�2s; a) �
�

2

1� a2

�
s
ls�1

j�(s)j
�
1� a

1 + a

�
l
�
1� a2

2a

�s+1

=a�s
ls�1

j�(s)j
�
1� a

1 + a

�l�1� a2

2a

�

=a�s�1 ls�1

j�(s)j
�
1� a

1 + a

�l+1 (1 + a)2

2
:
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9. Appendix 2

Here we present a "solvable model" for the problem under consideration: we

replace the comparably complicated con�guration (3.2), that we remove from

the strip, by just two slits. We used this model on the �rst step of rough un-

derstanding of the form of asymptotic and it might be useful for the reader, in

particular, it contains the hint that in a nonmodel case the asymptotic of L
qm

m (a)
for m!1 can also be found for an arbitrary q 2 N �xed, see (9.12).

For B > 0, consider the conformal mapping w = �(z) of the upper half-plane
C + on the strip

� = fw : 0 < Imw < (k +m)�g (9.1)

with the cut


B = fw : Imw = k�; jRewj � Bg (9.2)

under the normalizations

�(0) = 0; �(�1) = �12; (9.3)

where12 denotes the point on the boundary of the domain when we go to in�nity

on the level k� < Imw < (k+m)�. By11 we denote the point on the boundary

that corresponds to the level 0 < Imw < k�. Put a = �(�1)(+11) (therefore

�a = �(�1)(�11)).
Let us �nd a precise formula for this map as well as the relation between a

and B. We have

�(z) =k

1Z
a

�
1

x� z
� 1

x+ z

�
dx+m

1Z
1

�
1

x� z
� 1

x+ z

�
dx

+k log
x� z

x+ z

����
1

a

+m log
x� z

x+ z

����
1

1

=k log
a+ z

a� z
+m log

1 + z

1� z
:

(9.4)

Further, for a < x < 1 we have

Re�(x) = k log
x+ a

x� a
+m log

1 + x

1� x
(9.5)

and B corresponds to the critical value of this function on the given interval.

For the critical point c we have

(Re�)0 (c) = � 2ka

c2 � a2
+

2m

1� c2
= 0: (9.6)
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Therefore

c =

r
ma2 + ka

m+ ka
(9.7)

and

B = k log
c+ a

c� a
+m log

1 + c

1� c
: (9.8)

Let us mention that the relation between a and B is monotonic, and a runs

from 0 to 1 as B runs from 0 to 1.

As the next step, we calculate the asymptotic behavior of B for the �xed a as

m!1. First, we write the asymptotic for c

c =

r
ma2 + ka

m+ ka
= a+

k

2m
(1� a2) + : : : : (9.9)

Therefore

B =k log

�
2a+

k

2m
(1� a2) + : : :

�
� k log

�
k

2m
(1� a2) + : : :

�

+m log
1 + a+ k

2m (1� a2) + : : :

1� a� k

2m (1� a2) + : : :

=k log
2a

1� a2
+ k log

2m

k
+ : : :

+m log
1 + a

1� a
+m log

1 + k

2m (1� a) + : : :

1� k

2m (1 + a) + : : :

=m log
1 + a

1� a
+ k log 2m+ k log

2a

1� a2
+ k � k log k + : : : :

(9.10)

Actually, it was important for us to note that in the second (logarithmic) term

in asymptotic we have the factor k.

To �nish this section let us discuss asymptotic for the case

k = qm; m!1

for a �xed q. Note that now c is just a constant

c =

s
a2 + qa

1 + qa
(9.11)

and we have

B =m

�
q log

c+ a

c� a
+ log

1 + c

1� c

�
; (9.12)

and B = 2m log 1+
p
a

1�pa for q = 1.
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