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1. Formulation of the Problem

Consider a bounded domain 
 in R
3 with smooth boundary @
. This domain

is �lled with viscous incompressible �uid with a large number N" = O("�3) of

interacting small ball-shaped solids Qi

". Further we will call them "the particles".

We suppose that the radii of particles ri" = ri"1+�, 0 < � < 2, the distances

r"
ij

= cr
ij
" between the nearest particles and the interacting forces f "

ij
= c

f

ij
"2

depend on a small parameter ". Here 0 < c1 � cr
ij
; c

f

ij
; ri � c2 < 1, where c1

and c2 do not depend on ". We assume that the interacting forces f "
ij
between the

particles are central, i.e. their directions coincide with the lines of their centers.

Furthermore, we suppose that the particles located in a boundary layer with

the thickness " interact with the boundary, and the system of all particles is in

equilibrium when the �uid is at rest. The potential energy due to the interaction

between the particles for small displacements (ui"; �
i

") from the equilibrium state
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is written in the following form:

H"(u") = H"(0) +
1

2

N"X
i;j=1

hCij

"
[ui" � uj

"
]; ui

"
� uj

"
i+ h(u"); (1.1)

where h ; i stands for the dot product in R
3 , ui" is the displacement of the particle

center Qi

"
, u

"
= (u1

"
; :::; uN"

"
). We also denote by h(u

"
) the terms of smaller order.

Matrix C
ij

" is given by

Cij

"
u = kij"2h u

jxi
"
� x

j

"j
; eijieij ; (1.2)

where 0 < k1 � kij � k2 < 1, the constants k1 è k2 do not depend on ", and

eij =
xi" � x

j

"

jxi
"
� x

j

"j
. Furthermore, we suppose that only the particles Qi

"
and Q

j

" that

are close (distance between them is of order ") interact with each other O("), such

that the interaction matrix C
ij

" � 0, if jxi
" � x

j

"j � C0", 0 < C0 <1.

We introduce the following notations:


" = 
 n
NS
i=1

Qi

"
is the domain �lled with the �uid;

� is the speci�c mass density of the �uid;

� is the dynamic viscosity of the �uid;

�s is the speci�c mass density of solid particles;

xi" is the position of center of particle Qi

" which corresponds to the equilibrium;

�i" is the rotation vector of particle Qi

";

mi

" is the mass of particle Qi

";

Ii
"
=

2

5
mi

"
(ri
"
)2 is the inertia moment of the ball-shaped particle Qi

"
.

Then a linearized system of equations which describes small nonstationary

motions of the �uid with solid particles can be written as follows:

�
@v"
@t

� ��v" = rp"; divv" = 0 x 2 
"; (1.3)

v" = _ui
" +

_�
i

" � (x� xi"); x 2 Si"; (1.4)

mi

"�u
i

" +

Z
Si
"

�[v"]� ds = �rui
"
H"; (1.5)

Ii"
��
i

" +

Z
Si
"

(x� xi")� �[v"]� ds = �r
�
i

"

H"(� 0): (1.6)
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Here v
"
= v

"
(x; t) is the velocity of the �uid, p" = p"(x; t) is the pressure, � is

the unit inner normal vector to the surface Si
"
= @Qi

"
, and

�[v] =
�
�kl[v] = �

�@v
k

@xl
+
@v

l

@xk

�
� p"Ækl

	3
k;l=1

is the stress tensor.

The system of equations is supplemented by the initial conditions

v
"
(x; 0) = v

"0(x); x 2 
"; (1.7)

ui
"
(0) = 0; _ui

"
(0) = vi

"
; �i

"
(0) = 0; _�

i

"
(0) = �i

"1 (1.8)

and the boundary condition on @


v
"
(x; t) = 0; x 2 @
: (1.9)

Theorem 1. There exists a unique solution of the problem (1:3)�(1:9).

We do not give here the proof of the theorem as well as the class the solution

is sought in.

The main goal of the paper is to study the asymptotic behaviour of the problem

(1.3)�(1.9) solution as "! 0. The cases of the particles of critical sizes (d"
i
= di"

3

and d"
i
= di") were studied in [1] and [2]. Here we study the case of the particles

of intermediate size (d"
i
= di"

1+�; 0 < � < 2).

Before formulating the main result we introduce some assumptions and

de�nitions.

2. Additional Assumptions and the Main Result

Denote by Ri

"
the distance from the particle Qi

"
to other particles and to the

boundary @
, and ri
"
= ri"1+� is the radius of this particle.

We suppose that

C1" � Ri

"
� C2"; (2.1)

where constants C1 and C2 do not depend on ", 0 < C1 < C2 <1.

Consider a cube K
y

h
with the side length h, "� h� 1, centered at y 2 
. We

assume that the edges of this cube are parallel to the coordinate axis. Introduce

the following class of vector-functions:

J"[K
y

h
] =

fw
"
2 H1(K

y

h
); divw

"
(x) = 0; x 2 Ky

h
; w

"
(x) = wi

"
+vi

"
�(x�xi

"
); x 2 Qi

"
\Ky

h
g;
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where wi

"
and vi

"
are arbitrary vectors, and consider a minimization problem in

this class for the following functional:

A


"h
(w

"
; y; �; T ) = E

K
y

h

[w
"
; w

"
] +

1

�
I"
K
y

h

[w
"
; w

"
]

+P
"hT

K
y

h

�
w
"
(x)�

3X
n;p=1

Tnp'
np(x� y); w

"
(x)�

3X
q;r=1

Tqr'
qr(x� y)

�
; (2.2)

where

EG[u"; v"] = 2�

Z
G

3X
k;l=1

ekl[u"]ekl[v"]dx; (2.3)

I"
G
[u

"
; v

"
] =

1

2

X
i;j

G

hCij

"
[u

"
(xi

"
)� u

"
(xj

"
)]; v

"
(xi

"
)� v

"
(xj

"
)i; (2.4)

P
"hT

K
y

h

[u
"(x); v"(x)] = h�2�"3

X
i K

y

h

hu"(xi"); v"(xi")i+ h�2�
Z
K
y

h

hu
"(x); v"(x)i dx;

(2.5)

'qr(x) =
1

2
(xre

q + xqe
r)� Æqr

3

3X
n=1

xne
n; (2.6)

ekl[u] =
1

2

�@uk
@xl

+
@ul

@xk

�
, T = fTqrg is an arbitrary symmetric second rank tensor,

and
P
i G

stands for the summation over all particles Qi

" � G which are located

inside the domain G, 0<<2, � > 0. It can be proved that there exists the unique

vector-function which minimizes the functional (2:2); the minimal value of this

functional is a quadratic function of the tensor T :

min
w
"
2J"[K

y

h
]
A


"h
(w

"
; y; �; T ) =

3X
n;p;q;r=1

a
npqr

(y; �; "; h)TnpTqr; (2.7)

where a


npqr(y; �; "; h) are the components of the fourth rank tensor, de�ned as

follows

a
npqr

(y; �; "; h) = E
K
y

h

[wnp; wqr] +
1

�
I"
K
y

h

[wnp; wqr]

+P
"hT

K
y

h

�
wnp(x)� 'np(x� y); wqr(x)� 'qr(x� y)

�
: (2.8)

Here wnp(x) is the vector-function from J"[K
y

h
] that minimizes the functional (2:2)

as T = T np =
1

2
(en 
 ep + ep 
 en); en, n = 1; 2; 3, form an orthonormal basis

in R
3 .

138 Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2



The Asymptotic Behavior of Viscous Incompressible Fluid Small Oscillations...

Starting from the solution fv
"
(x; t); ui

"
; �i

"
; i = 1; N"g of the problem (1.3)�

(1.9), we construct the vector function

~v"(x; t) = �"(x)v"(x; t) +

N"X
i=1

�i"(x)[ _u
i

" +
_�
i

" � (x� xi")]; (2.9)

where �"(x) is the characteristic function of the domain 
", �lled with the �uid,

and �i
"
(x) is the characteristic function of a particle Qi

"
.

We assume that the following conditions hold:

2.1) the sequence of initial vector-functions ~v
"0(x) = ~v

"
(x; 0) as "! 0 converges

in L2(
) to a continuous vector-function v0(x);

2.2) for each � > 0 and some real number  > 0 the following limits exist

heterogeneously at x 2 
:

lim
h!0

lim
"!0

a


npqr(x; �; "; h)

h3
= lim

h!0
lim
"!0

a


npqr(x; �; "; h)

h3
= anpqr(x; �);

where fanpqr(x; �)g is a continuous at x 2 
 and � > 0 positive de�nite

tensor.

We formulate here the main mathematical result of the paper.

Theorem 2. Let the conditions 2.1)�2.2) hold. Then the vector-functions

~v
"
(x; t), de�ned by (2:9), converge weakly in L2(
 � [0; T ]) (for any T > 0) to

a vector-function v(x; t), which is a solution of the following homogenized problem:

�
@v

@t
� ��v

�
3X

n;p;q;r=1

@

@xp

� tZ
0

a1npqr(x; t� �)eqr[v(x; �)] d�
	
en = rp; x 2 
; t > 0; (2.10)

div v = 0 x 2 
; t > 0; (2.11)

v(x; t) = 0; x 2 @
; t > 0; (2.12)

v(x; 0) = v0(x); x 2 
: (2.13)

Here fa1npqr(x; t)g is a continuous at x 2 
 and t > 0 tensor de�ned by

anpqr(x; �)� 2�Inpqr =

1Z
0

a1
npqr

(x; t)e��t dt; (2.14)
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where the tensor fanpqr(x; �)g is de�ned in condition 2.2) for � > 0, and the

components of the tensor fInpqrg have the form

Inpqr =
1

2
(ÆnqÆpr + ÆnrÆpq)�

1

3
ÆnpÆqr: (2.15)

The problem (2.10)�(2.13) has the unique solution.

We prove this theorem in Sects. 3�5 by using the Laplace transform (Sect. 3)

to obtain a time independent analog of the problem (1.3)�(1.9) with the spec-

tral parameter �. In Section 4 we establish the convergence of this stationary

problem solution to the solution of the limiting stationary problem. Then we

study the analytical properties of these solutions in the parameter � and their

behaviour as j�j ! 1 and, by taking the inverse Laplace transform, we prove the

theorem (Sect. 5).

3. Variational Formulation of the Stationary Problem

Use the Laplace transform of the functions v
"(x; t) ! v"(x; �); p"(x; t) !

p"(x; �); u
i

"
(t) ! ui

"
(�); �i

"
(t)! �i

"
(�). Taking into account the properties of the

Laplace transform and (1.1), we rewrite the problem (1.3)�(1.6) in the form

���v" + ��v" �rp" = �v"0(x); div v" = 0; x 2 
"; (3.1)

v" = �[ui" + �i" � (x� xi")]; x 2 Si"; (3.2)

�2mi

"
ui
"
+

Z
Si"

�[v
"
]� ds = � 1

�

X
j

i

Cij

"
[v
"
(xi

"
)� v

"
(xj

"
)] +mi

"
vi
"
; (3.3)

�2Ii
"
�i
"
+

Z
Si"

(x� xi
"
)� �[v

"
]� ds = Ii

"
�i
"1; (3.4)

v"(x) = 0; x 2 @
: (3.5)

Here Re� > 0,
P
j

i

stands for the summation over all particles Q
j

" which

interact with the particle Qi

". We extend the velocity function v"(x; �) onto the

particles Qi
" according to (3.2) using the same notations for the extended function.

Denote by

�"(x) = ��"(x) + �s

N"X
i=1

�i"(x)

the density of suspension of type the �uid-the particles.
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Fix now � > 0. Then the problem (3.1)�(3.5) is equivalent to the variational

problem

�"(v") = min
v0
"
2

Æ

J"(
)

�"(v
0

"
); (3.6)

where
Æ

J " (
) is the class of divergence free vector-functions from
Æ

H1 (
) which

are equal to ai
"
+bi

"
�(x�xi

"
) on the particles Qi

"
(ai

"
and bi

"
are arbitrary vectors),

and

�"(v") =

Z



�
2�

3X
k;l=1

e2
kl
[v
"
] + �h�"v"; v"i � 2h�"v"0; v"i

	
dx (3.7)

+
1

2�

N"X
i;j=1

hCij

"
[v
"
(xi

"
)� v

"
(xj

"
)]; v

"
(xi

"
)� v

"
(xj

"
)i;

where � > 0.

Consider the minimization problem

�0(v) = min
v02

Æ

J(
)

�0(v
0); (3.8)

where
Æ

J (
) is the class of divergence free vector-functions from
Æ

H1 (
) and

�0(v) =

Z



� 3X
n;p;q;r=1

anpqr(x; �)enp[v]eqr[v] + �h�v; vi � 2h�v0; vi
	
dx: (3.9)

The minimizer of this problem is the solution of the following boundary value

problem:

��v � ��v �
3X

n;p;q;r=1

@

@xp

�
a1
npqr

(x; �)eqr[v]
�
en = �v0 +rp; x 2 
; (3.10)

div v = 0; x 2 
; (3.11)

v(x; t) = 0; x 2 @
: (3.12)

The asymptotic behavior as "! 0 of the solution of problem (3:6) is given by

the following theorem.

Theorem 3. Let the conditions 2.1)�2.2) hold. Then the solution v"(x; �) of

the problem (3.6) for any � > 0 converges as "! 0 to the solution v(x; �) of the

problem (3.8) in the following sense:

v
"
(x; �) ���!

"!0
v(x; �) strongly in L2(
):

The proof of this theorem is given in Sect. 4.
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4. Convergence Theorem for Variational Problem (3.6)

Let v
"
(x; �) be the solution of the problem (3.6). Since 0 2 Æ

J" (
), we have

�"(v") � �"(0) = 0. From this, taking into account (3.7) and nonnegativity of

the matrices C
ij

" (x; y), it follows:

Z



�
2�

3X
k;l=1

e2
kl
[v
"
] + �h�"v"; v"i

	
dx � 2k�"v"0kL2(
) � kv"kL2(
):

Due to the second Korn's inequality

kv
"
k2
H1(
) � c

�Z



3X
n;p=1

e2
np
[v
"
] dx+

Z



jv
"
(x)j2 dx

	
; (4.1)

this implies that

kv"k2H1(
) � C: (4.2)

Therefore the set of the vector-functions fv
"
(x; �); " > 0g is weakly compact in

H1(
). Due to the embedding theorem, this set is compact in L2(
). Hence, there

exists a subsequence of the sequence fv
"
(x; �); " > 0g which converges to some

vector-function v(x; �) (weakly in H1(
) and strongly in L2(
)). As it is shown

below, the limiting vector-function v(x; �) is a solution of the problem (3.8). But

since this problem has the unique solution, then the sequence fv"(x; �); " > 0g is
also convergent:

v
" * vweakly inH1(
); v" ! v strongly inL2(
): (4.3)

Clearly, that v(x) 2 Æ

J (
).

Show that for any vector-function w 2 Æ

J (
) the following inequality holds:

�0(v) � �0(w): (4.4)

1. For any vector-function w 2 Æ

J (
)
T
C2
0 (
) we construct a special vector-

function w"h 2
Æ

J" (
), such that

lim
h!0

lim
"!0

�"(w"h) � �0(w): (4.5)

Now we describe this construction. Cover the domain 
 with cubes Kx�

h

centered at points x� 2 
 with the edges of length h, which are parallel to the

coordinate axis: 
 � S
�2�

Kx�

h
. Let the centers x� 2 
 of these cubes form
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a cubic lattice of period h � h1+


2 ; 0 <  < 2. Denote by Kx�

h
0 the cubes with

the edges of length h
0

= h � 2h1+


2 which are concentric to Kx�

h
. It is well

known ([2]) that there exists a set of functions f��(x) 2 C10 (
)g�2� (called

a special partition of unity) such that:

1) ��(x) =

(
1; x 2 Kx�

h
0

0; x 62 Kx�

h

; 2) 0 � ��(x) � 1; 3) jr��(x)j �
c

h1+


2

;

4)
X
�2�

��(x) � 1; x 2 
; 5) ��(x) = Ci

"
; x 2 B(Qi

"
); (4.6)

where Ci
"
are the constants (0 � Ci

"
� 1), and B(Qi

"
) are the balls containing the

particles Qi

"
and centered at points xi

"
and having the radii

Ri
"

3
(see (2.1)).

For any divergence-free vector-function w(x) 2 C2
0 (
) we construct the vector-

function w"h(x) 2
Æ

J" (
) possessing the following properties. First, it approxi-

mates (in L2(
)) a given vector-function w(x) 2 Æ

J (
) for small " and h. Second,

it "almost" minimizes the functional (2.2).

Note that any vector-function w(x) 2 C2(Kx�

h
) can be written in the form

w(x) = w(x�) +

3X
n;p=1

�
enp[w(x

�)]'np(x� x�)

+wnp[w(x
�)] np(x� x�)

�
+ g

�
(x); x 2 Kx�

h
; (4.7)

where

"np[w(x�)] =
1

2

�@wn

@xp
(x

�
)+

@wp

@xn
(x

�
)
�
; wnp[w(x�)] =

1

2

�@wn

@xp
(x

�
)� @wp

@xn
(x

�
)
�
;

the vector-function 'np(x) is de�ned in (2.6),

 np(x) =
1

2
(xne

p � xpe
n); (4.8)

and Dkg
�
(x) = O(h2�k); k = 0; 2. De�ne the quasiminimizer w"h(x) as follows:

w"h(x) =
X
�2�

�
w(x�) +

3X
n;p=1

"np[w(x�)]v
np

�;"h
(x)

+

3X
n;p=1

wnp[w(x�)] 
np(x� x

�
)
	
� ��(x) + �

"h
(x) = z

"h
(x) + �

"h
(x); (4.9)
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here the vector-functions v
np

�;"h
(x) are the minimizers of the functional (2.2) as

T = T np =
1

2
(en 
 ep + ep 
 en), and the vector-function �

"h
(x) is constructed

according to the following lemma (see [2]).

Lemma 1. For any function F"(x) 2 L2(
) which satis�es the conditions:

1: F"(x) = 0; x 2
[
i

B(Qi

"
);

2:

Z



F"(x) dx = 0;

there exists a function �
"
(x) 2 H1

0 (
) such that

div �
"
(x) = F"(x); x 2 
;

�
"
(x) = �i

"
; x 2 B(Qi

"); k�
"
kH1(
) � CkF"(x)kL2(
);

where �i
"
are constant vectors, and C does not depend on ".

Due to (4.9), the vector-function z"h(x) 2 H1(
) is equal to zero on the

boundary @
, and since Z



div z
"h(x) = 0:

Moreover, we can show that

div z
"h
(x) = 0; x 2 B(Qi

"
):

Applying Lemma 1 to the function F"(x) = �div z"h(x), we construct the diver-
gence-free vector-function �

"h
(x), which is equal to the constant vectors �i

"
on the

balls B(Qi

"
) and zero on @
. Now it is obvious that w

"h
(x) 2 Æ

J" (
).

Let us calculate the functional (3.7) on the vector-function w
"h
(x).

Similarly to [2], we can show that

lim
h!0

lim
"!0

k�
"h
kH1(
) = 0; lim

h!0
lim
"!0

I
[�
"h
; �

"h
] = 0;

E
[w"h
; w

"h
] =

X
�2�

3X
n;p;q;r=1

enp[w(x�)]eqr[w(x�)]EK
x�

h
0

[v
np

�;"h
; v

qr

�;"h
] + L1("; h);

(4.10)

I"
[w"h
; w

"h
] �

X
�2�

3X
n;p;q;r=1

enp[w(x�)]eqr[w(x�)]I
"

K
x�

h
0

[v
np

�;"h
; v

qr

�;"h
]
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+L2("; h) + c I"


"1

h0

[z
"h
; z

"h
]: (4.11)

Here lim
h!0

lim
"!0

Li("; h) = 0; i = 1; 2, and 
"1

h0 = 
 n S
�2�

Kx�

h
00 , where K

x�

h
00 are cubes

with the edges of length h
00

= h
0 � "1 which are concentric to Kx�

h
0 ; "1 = 2C0" is

a doubled radius of the particles interaction (see (1.2)).

To prove that

lim
h!0

lim
"!0

I"


"1

h0

[z
"h
; z

"h
] = 0; (4.12)

we use the following lemma (see [3]).

Lemma 2. Let v
np

�;"h
(x) be the minimizer of the functional (2:2) as T = T np =

1

2
(en 
 ep + ep 
 en). If condition 2.2) holds, then for su�ciently small h and

" < "̂(h) the following estimates can be obtained:

EK
x�

h
nK

x�

h
0

[v
np

�;"h
(x); v

np

�;"h
(x)] = o(h3);

I"
K
x�

h
nK

x�

h
0

[v
np

�;"h
(x); v

np

�;"h
(x)] = o(h3);

"3
X
i K

x�

h
nK

x�

h
0

jvnp
�;"h

(xi")� 'np(xi" � x
�)j2 = o(h5+):

We use these estimates to obtain (4:12). We only have to show that

lim
h!0

lim
"!0

X
�2�

X
i;j

K
x�

h
nK

x�

h
0

hCij

" [z"h(x
i

")� z"h(x
j

")]; z"h(x
i

")� z"h(x
j

")i = 0:

For this purpose we write the vector-function z
"h
(x) in the form

z"h(x) =
X
�2�

fw(x) +
3X

n;p=1

"np[w(x�)]
�
v
np

�;"h
(x)� 'np(x� x�)

�
� g

�
(x)g � ��(x)

= w(x) +
X
�2�

f
3X

n;p=1

"np[w(x�)]
�
v
np

�;"h
(x)� 'np(x� x�)

�
� g

�
(x)g � ��(x):

Hence

z"h(x
i

")� z"h(x
j

") = w(xi")� w(xj") +
X
�2�

� 3X
n;p=1

"np[w(x�)]

�
�
v
np

�;"h
(xi")� v

np

�;"h
(xj")� 'np(xi" � xj")

�
+ g

�
(xj")� g

�
(xi")

�
� ��(xi")
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+
X
�2�

� 3X
n;p=1

"np[w(x�)]
�
v
np

�;"h
(xi

"
)� 'np(xi

"
� x

�
)
�
� g

�
(xi

"
)
	
�
�
��(x

i

"
)� ��(x

j

"
)
�
:

Using the inequality

X
i;j

G

hCij

"
u; vi �

�X
i;j

G

hCij

"
u; ui

� 1

2

�X
i;j

G

hCij

"
v; vi

� 1

2

and the fact that the support of function ��(x) belongs only to the �nite number

of cubes K
x

h
containing the slab Kx�

h
nKx�

h
0 , we obtain the following estimate:

lim
h!0

lim
"!0

X
�2�

X
i;j

K
x�

h
nK

x�

h
0

hCij

"
[z"h(x

i

"
)� z

"h
(xj

"
)]; z

"h
(xi

"
)� z

"h
(xj

"
)i

� c lim
h!0

lim
"!0

�X
�2�

X
i;j

K
x�

h
nK

x�

h
0

hCij

" [v
np

�;"h
(xi

")� v
np

�;"h
(xj

")]; v
np

�;"h
(xi

")� v
np

�;"h
(xj

")i

+
X
�2�

X
i;j

K
x�

h
nK

x�

h
0



Cij

"
[v
np

�;"h
(xi

"
)� 'np(xi

"
� x�)]; v

np

�;"h
(xi

"
)� 'np(xi

"
� x�)

�

�
�
��(x

i

")� ��(x
j

")
��

+ o(1); (4.13)

where by o(1) we denote a contribution of the terms

w(xi
"
)� w(xj

"
); 'np(xi

"
� xj

"
)��(x

i

"
);

�
g
�
(xj

"
)� g

�
(xi

"
)
�
��(x

i

"
); g

�
(xi

"
)
�
��(x

i

"
)� ��(x

j

"
)
�
:

Next, due to the second estimate from Lem. 2 for small " and h, the term

X
�2�

X
i;j

K
x�

h
nK

x�

h
0

hCij

"
[v
np

�;"h
(xi

"
)� v

np

�;"h
(xj

"
)]; v

np

�;"h
(xi

"
)� v

np

�;"h
(xj

"
)i

is of order
j
j � o(h3)

h3
= o(1).

Evaluate now the second term in (4.13) by using (1.2) and (4.6):

X
�2�

X
i;j

K
x�

h
nK

x�

h
0



Cij

" [v
np

�;"h
(xi")� 'np(xi" � x�)]; v

np

�;"h
(xi")� 'np(xi" � x�)

�

�
�
��(x

i

")� ��(x
j

")
�2
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� c"2

h2+�
� j
j
h3

X
i;j

K
x�

h
nK

x�

h
0

"2kij

jxi
"
� x

j

"j
??hvnp

�;"h
(xi

"
)� 'np(xi

"
� x

�
); eiji

??2

� c"3

h5+�

X
i K

x�

h
nK

x�

h
0

jvnp
�;"h

(xi
"
)� 'np(xi

"
� x�)j2;

which vanishes in the limit due to Lem. 2. So, the equality (4.12) is obtained.

From (4.10) and (4.11), taking into account (2.8), we obtain

E
[w"h
; w

"h
] +

1

�
I"
[w"h

; w
"h
]

�
X
�2�

3X
n;p;q;r=1

a
npqr

(x; �; "; h)"np[w(x�)]"qr[w(x�)] + o(1); "� h� 1: (4.14)

Now we make use of inequality (4.14) to estimate the functional (3.7):

�"(w"h) �
X
�2�

h3
3X

n;p;q;r=1

a


npqr(x�; �; "; h)

h3
"np[w(x�)]"qr[w(x�)]

+�

Z



h�"w"h; w"hi � 2

Z



h�"v"0; w"hi dx+�("; h); (4.15)

where

lim
h!0

lim
"!0

�("; h) = 0:

Taking into account (4.9), we can show that

lim
h!0

lim
"!0

kw"h � wkL2(
) = 0:

Then, passing to the limit in (4.15) as "! 0 and h! 0 and taking into conside-

ration 2.1)�2.2) and the fact that w(x) 2 C2(
), we obtain

lim
h!0

lim
"!0

�"(w"h
) � �0(w):

Thus inequality (4.5) is proved. Next, from (4.5) and an obvious inequality

�"(v") � �"(w"h) there follows the upper bound:

lim
"!0

�"(v") � �0(w); 8w 2 Æ

J (
): (4.16)

2. Prove now the lower bound

�0(v) � lim
"!0

�"(v"); (4.17)

where the vector-function v(x) is de�ned in (4.3). We need the following lemma.
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Lemma 3. Let the sequence of vector-functions u
"
(x) is bounded in

H1(
) uniformly in ". Denote by Ba and Bd the concentric balls in 
, such that

Ba � Bd � 
 (a<1). Then the following estimate holds:

j < u
"
>d � < u

"
>a j �

ku
"
kH1(Bd)p
a

;

where by < u
"
>a and < u

"
>d we denote the mean values of the vector-functions

u
"
(x) on the balls Ba and Bd respectively.

P r o o f. Write an obvious equality:

u"(�; ')� u
"
(r; ') =

�Z
r

@u
"

@R
dR:

Multiply this equality on r2�2 and then integrate it over the segments 0 � r � a,

0 � � � d and over a surface of unit ball S1. We have

a3

3

Z
S1

dZ
0

u"(�; ')�
2 d� dS � d3

3

Z
S1

aZ
0

u"(r; ')r
2 dr dS

=

Z
S1

aZ
0

dZ
0

�Z
r

@u"
@R

dR r2�2 dr d� dS:

It is easy to see that

< u" >d � < u" >a=
9

4�a3d3

Z
S1

aZ
0

dZ
0

�Z
r

@u
"

@R
dR r2�2 dr d� dS:

From this equality we obtain

j < u" >d � < u" >a j

� 9

4�a3d3

aZ
0

dZ
0

Z
S1

???
�Z

r

�@u"
@R

R
�2
dR
???1

2

dS
???

�Z
r

dR

R2

??? 1

2

r2�2 dr d�

� 9

4�a3d3

aZ
0

dZ
0

Z
S1

� dZ
0

jru"j2R2 dR
� 1

2

dS

r
j1
r
� 1

�
j r2�2 dr d�
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� 9

4�a3d3

aZ
0

dZ
0

�Z
S1

dZ
0

jru
"
j2R2 dR dS

� 1

2 jS1j
1

2

p
j�� rj r 3

2�
3

2 dr d�

=
9kru

"
kL2(Bd)

2
p
�a3d3

aZ
0

dZ
0

p
j�� rj r 3

2 �
3

2 dr d�

� 9ku
"
kH1(Bd)

2
p
�a3d3

� aZ
0

aZ
0

a
1

2 r
3

2�
3

2 dr d�+

aZ
0

dZ
a

p
� r

3

2 �
3

2 dr d�
�

� 9ku"kH1(Bd)

2
p
�a3d3

� 4

25
a
11

2 +
2

15
a
5

2 d3
�
� ku"kH1(Bd)p

a
:

Thus Lemma 3 is proved.

Prove the inequality (4.17) assuming that the limiting vector-function

is smooth enough: v(x) 2 Æ

J (
)
T
C2
0(
).

Consider a partition of the domain 
 by the nonintersecting cubes Kx�

h
,

aligned along the coordinate axes. In each cube the vector-function v(x) can

be written in the form

v(x) = v(x�) +

3X
n;p=1

�
enp[v(x

�)]'np(x� x�)

+wnp[v(x
�)] np(x� x�)

�
+O(h2); x 2 Kx�

h
: (4.18)

Then in every internal cubeKx�

h
(which does not intersect the boundary @
) with

respect to the domain 
, consider a vector-function

u�
" (x) = v"(x)� v(x�)�

3X
n;p=1

wnp[v(x
�)] np(x� x�): (4.19)

It is clear that u�
"
(x) 2 J"[K

x�

h
], enp[u

�

"
] = enp[v"] in Kx�

h
and I"

K
x�

h

[u�
"
; u�

"
]

= I"
K
x�

h

[v
"
; v

"
]. Therefore, from (2.2) and (2.7) for Tnp = enp[v(x�)] we obtain

EK
x�

h

[v"; v"] + P
"hT

K
y

h

�
u�" (x)

�
3X

n;p=1

enp[v(x�)]'
np(x� x

�
); u�

"
(x)�

3X
n;p=1

enp[v(x�)]'
np(x� x

�
)
�

+
1

�
I"
K
x�

h

[v
"
; v

"
] �

3X
n;p;q;r=1

a
npqr

(x
�
; �; "; h)"np[v(x�)] � "qr[v(x�)]: (4.20)
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Estimate now the second term in the LHS of inequality (4.20). Taking into account

(2.5), (4.18), (4.19), we have

Z
K
x�

h

??u�" (x)�
3X

n;p=1

enp[v(x�)]'
np(x� x

�
)
??2 dx = O(h7);

"3
X
i K

x�

h

ju�
"
(xi

"
)�

3X
n;p=1

enp[v(x�)]'
np(xi

"
� x

�
)j2

� "3
X
i K

x�

h

jv
"
(xi

"
)� v(xi

"
)j2 + "3

X
i K

x�

h

jv(xi
"
)� v(x�)

�
3X

n;p=1

wnp[v(x
�)] np(xi

"
� x�)�

3X
n;p=1

enp[v(x�)]'
np(xi

"
� x

�
)j2: (4.21)

The last term in (4.21), due to (4.18), is of order O(h7). Next, since the vector-

function v"(x) satis�es the rigid displacement condition (3.2) and v(x) 2 C2
0 (
),

we obtain

"3
X
i K

x�

h

jv"(xi")� v(xi")j2 � c"3
X
i K

x�

h

O("2)

+"3
X
i K

x�

h

j < v" >ri
"
� < v" >R

i
"

2

j2+"3
X
i K

x�

h

j < v" >R
i
"

2

� < v >
R
i
"

2

j2; (4.22)

where the values ri
"
and Ri

"
are de�ned at the beginning of Sect. 2.

Sum up the inequality (4.22) over all cubes of our partition

"3
N"X
i=1

jv
"
(xi

"
)� v(xi

"
)j2 � c"3

N"X
i=1

O("2)

+"3
N"X
i=1

j < v" >ri"
� < v" >R

i
"

2

j2 + "3
N"X
i=1

j < v" >R
i
"

2

� < v >
R
i
"

2

j2

� cO("2) + "2��kv
"
k2
H1(
) +

Z



jv
"
(x)� v(x)j2 dx: (4.23)

We use Lem. 3 to estimate the second term in (4.23) and the Cauchy�Schwartz

inequality to estimate the third term. From (4.20)�(4.23) it follows that

�"(v") �
X
�2�

h3
3X

n;p;q;r=1

a


npqr(x�; �; "; h)

h3
"np[v(x�)]"qr[v(x�)]
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+�

Z



h�"v"; v"i � 2

Z



h�"v"0; v"i dx+O(h2�) + o(1); "� h� 1: (4.24)

Then, passing to the limit as " ! 0 and h ! 0 in (4.24) " ! 0, and taking

into account 2.1)�2.2), the fact that v(x) 2 C2(
) and  < 2, we obtain

lim
"!0

�"(v") �
Z



� 3X
n;p;q;r=1

anpqr(x)"np[v(x)] � "qr[v(x)] dx

+�h�v; vi � 2h�v0; vi
	
dx = �0(v):

Thus, the required inequality (4.17) is obtained under the assumption that

the limiting vector-function v(x) is smooth. The proof for a nonsmooth case

(v(x) 2 Æ

J (
)) is more technical, though its scheme is the same: it is necessary to

construct the smooth approximations v
�
(x) of the limiting vector-functions, then

to obtain the inequality for these approximations, which is analogous to that of

(4.17), and to pass to the limit as � ! 0. The details of this construction are

presented in [1].

The inequality (4.4) follows from (4.16) and (4.17). Theorem 3 is proved.

5. Proof of Theorem 2

Note, that the convergence in Th. 3 was proved for � > 0 only. Besides, the

coe�cients anpqr(x; �) were de�ned for � > 0 only. The following lemma enables

us to extend these functions analytically into the complex plane. Moreover, the

behavior of the extended functions as �!1 is established.

Lemma 4. The function anpqr(x; �) de�ned for � > 0 can be analytically ex-

tended into the complex plane with the section along the line � � 0. The extended

function can be written in the form

anpqr(x; �) = 2�Inpqr + a1
npqr

(x; �); (5.1)

and for any Æ > 0 the following estimate holds in the domain �Æ = f� 2 C :

jarg �� �j � Æ > 0g:

ja1
npqr

(x; �)j < C
� 1

j�j 12
�
; �!1; (5.2)

where C > 0 does not depend on �; the tensor fInpqrg is de�ned by equality (2.15).

P r o o f. We write the minimizer w"(x) of the functional (2.2) in the form

wT

" (x; �) = �T
"
(x) + vT" (x; �); (5.3)
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where �T
"
(x) is the divergence-free vector-function, which is equal to

the constant vectors �i
"
on the balls Gi

"
containing the particles and having the

radius (1 + �)ri
"
= O("1+�), � > 0. Moreover, this vector-function coincides

with the vector-function �T (x) �
3P

q;r=1

Tqr'
qr(x� y) outside the balls with radius

(1 + 2�)ri", which are concentric to Gi
"
. The following estimates hold

k�T
"
� �T kL2(
) � c max

i

fri
"
g; j�T

"
(xi

"
)� �T (xi

"
)j � c ri

"
;

k�T
"
kH1(G) � c k�T kH1(G); j�i

"
� �j

"
j � c dist(Qi

"
; Qj

"
);

where G is any subdomain of the domain 
. The existence of such a vector-

function is established in [2].

Then, substituting (5.3) into (2.8), we obtain

anpqr(y; �; "; h) = a0npqr(y; "; h) + a1npqr(y; �; "; h); (5.4)

where

a0npqr(y; "; h) = EK
y

h

[�np
"
; �qr

"
]

+h�2�"3
X
i K

y

h

h�np
"
(xi

"
)� 'np(xi

"
� y); �qr

"
(xi

"
)� 'qr(xi

"
� y)i; (5.5)

a1
npqr

(y; �; "; h) = E
K
y

h

[vnp
"
; vqr

"
] + h�2�"3

X
i K

y

h

hvnp
"
(xi

"
); vqr

"
(xi

"
)i

+E
K
y

h

[�np
"
; vqr

"
] + h�2�"3

X
i K

y

h

h�np
"
(xi

"
)� 'np(xi

"
� y); vqr

"
(xi

"
)i

+E
K
y

h

[vnp" ; �
qr

"
] + h�2�"3

X
i K

y

h

hvnp" (xi"); �
qr

"
(xi")� 'qr(xi" � y)i

+
1

�

�
I"
K
y

h

[�np
"
; �qr

"
] + I"

K
y

h

[vnp
"
; vqr

"
] + I"

K
y

h

[�np
"
; vqr

"
] + I"

K
y

h

[vnp
"
; �qr

"
]
�
: (5.6)

Taking into account the properties of the vector-function �T
"
(x), we can easily

show that

lim
h!0

lim
"!0

a0
npqr

(y; "; h)

h3
= 2�Inpqr:

The analyticity of the functions a1npqr(x; �) over � and the estimate (5.2) can

be obtained similarly to [2].
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From Lemma 4 it follows that the function anpqr(x; �) is the Laplace transform

anpqr(x; �) =

1Z
0

e��tanpqr(x; t) dt (5.7)

of the function

anpqr(x; t) = 2�InpqrÆ(t) + a1npqr(x; t); (5.8)

where Æ(t) is the Dirac delta function, and a1
npqr

(x; t) is a continuous at x 2 


and t > 0 function.

It may be shown that the family of the solutions v
"
(x; �) of the problem

(3.1)�(3.5) is analytic in the domain G" = fRe� > 0gS��Æ

Tfj�j > �1(")g
	
.

Moreover, in this domain the following estimates hold

kv"(x; �)kL2(
) �
C

Re�
; Re� > 0; (5.9)

kv"(x; �)kL2(
) �
C1"

j�j ; (5.10)

where the constant C does not depend on ".

The similar statement is also true for the solution of the problem (3.10)�(3.12).

Namely, this solution is analytic in the domain G = fRe� > 0gS���

3

Tfj�j >
�2g

	
, and in this domain

kv(x; �)kL2(
) �
C

j�j : (5.11)

Now, taking into account the estimate (5.9) which is a uniform in ", we can

use the Vitaly theorem (see [5]) to show that the sequence of the vector-functions

v
"
(x; �) converges in L2(
) uniformly to the vector-function v(x; �) inside the

domain Re� > 0.

Due to the estimates (5.10) and (5.11), we can apply the inverse Laplace

transform and prove the statement of Th. 3 (see details in [1, 4]).

6. Explicit Formulas for the Elastic Modulas

for Periodic Array of Particles

Now we show the existence of limit 2.2) for a particular example of a periodic

cubic lattice. We consider a periodic array when particles Qi

"
are balls with

the radius ri
"
= r"1+�, r <

1

2
, and their centers xi

"
form a cubic lattice where

each vertex is connected by a spring to its nearest neighbors NN (the edges

of the periodicity cube), to its next nearest neighbors NNN (the diagonals of
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the faces of the cube) and to the next-to-next neighbors NNNN (the diagonals

of the cube). So, each vertex is connected to 33 � 1 = 26 vertexes in the lattice.

The elastic constants kij (see (1:2)) of these springs are k1, k2, k3 respectively

(see �gure).

Figure. The basic periodic cell.

On this �gure a �xed ball Qi

" with the center at the point xi" is shown as a dark

ball and all its neighbors Q
j

" are shown as lighter balls.

We prove the following.

Theorem 4. For the cubic lattice described above (see also �gure) the elas-

tic modulas a1npqr(x; �) in (5:1) are constants with respect to x and given by the

following formulas:

a1
nnnn

(�) = �2annpp(�) =
1

�

�2
3
k1 +

p
2

3
k2
�
;

a1npnp(�) =
1

�

�p2

2
k2 +

4
p
3

9
k3
�
; n; p = 1; 3;

a1npqr(�) = 0 in all other cases.

R e m a r k. If we introduce notations a = a1nnnn, b = a1npnp, c = a1nnpp =

�1

2
a, then the equations (2.10)�(2.13) can be written in terms of displacements

u(x; t) =
tR
0

v(x; �) d� :
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8>>>>>>>>><
>>>>>>>>>:

�(x)
@2u(x; t)

@t2
� ��

@u(x; t)

@t
� b�u(x; t)� (a� 2b� c)

3X
r=1

@2ur(x; t)

@x2r
e
r

= rp(x; t); div u(x; t) = 0; x 2 
; t > 0;

u(x; t) = 0; x 2 @
; t � 0;

u(x; 0) = 0;
@u(x; t)

@t

�����
t=0

= v0(x); x 2 
:

P r o o f. Consider a particle Qi
"
placed inside a cube Ki

"
of side length ",

so that both the particle and the cube are centered at the point xi
"
. Then Di

"
=

Ki
"
nQi

"
is a periodicity cell �lled with the �uid. To obtain a standard unit cell, we

rescale Di
" by the factor "�1 and shift its center to the origin. Then the domain

D" = K n Q" is a unit periodicity cell where K is a cube of the side length 1

centered at the origin, and Q" is a ball in K with radius r"�, r <
1

4
.

Let K
y

h
be a cube of the side length h, h � ", centered at the point y 2 
.

Consider a function

unp" (x) = rot
�
�"(x)u

np(x)
�
; (6.1)

where

�"(x) = �
� x

r"�

�
; �(x) =

(
1; jxj � 1

0; jxj > 2
;

and unp(x) is a smooth vector-function such that

rotunp(x) = � np(x); junp(x)j � Cjxj2:

Since the function u
np

" (x) is equal to zero on the boundary @K, it admits

a periodic extension on R
3 .

We seek a function wnp(x; �) that minimizes the functional (2:2) for

T = T np =
1

2
(en 
 ep + ep 
 en) in the form

wnp(x; �) = Unp

" (x) + vnp" (x; �); (6.2)

where

Unp

" (x) =  np(x� y
"
) + "~unp"

�x� y
"

"

�
: (6.3)

Here ~unp
"
(x) is a periodic extension of the function u

np

" (x) and y
"
= xi

"
is the

nearest to y center of particles Qi

". Using the properties of the functions  np(x)

and u
np

" (x), we have
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Unp

"
(x) =  np(xj

"
� y

"
); x 2 Qj

"
; (6.4)

divUnp

"
(x) = 0; x 2 Ky

h
: (6.5)

Next we obtain a variational problem for the corrector v
np

" (x; �). Analising the

problem and then substituting (6.2)�(6.4) into (2.8) with reference to periodicity

of the structure, we get

1

h3
a
npqr

(y; �; "; h) =
1

h3
E
K
y

h

[ np

"
;  qr

"
] +

1

h3�
I
K
y

h

[ np

"
;  qr

"
] + o(1); "� h� 1:

The statement of Th. 4 follows from the above representation.

The Author thanks Prof. E. Khruslov for the statement of the problem and

for the attention he paid to the paper.
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