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Introduction

We denote byM "
3 the 3-dimensional Riemannian manifold depending on a small

parameter " and described in the following way. Let D"

j
be a union of "holes" in

R
3 � balls of the radius "3 with the centers x"

j
2 R3 and distributed periodically

in R3 with the period ". Let


" = R
3n
[
j

D"

j :

We consider two copies 
"
1 and 
"

2 of the domain 
". Let 
"
1 and 
"

2 be the

upper and the lower sheets respectively. The boundaries of these sheets consist of

the spheres @D"
1j and @D

"
2j . We join @D"

1j and @D
"
2j by means of 3-dimensional

tubes ("wormholes") G"

j
= S"

j
� [0; 1], where S"

j
is a sphere in R3 of the radius "3.
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Then we obtain the 3-dimensional oriented manifold

M "

3 = (
"

1 [ 
"

2)
[0
@N(")[

j=1

G"

j

1
A :

We introduce di�erential structure on M "
3 in the standard way (see, e.g., [1]).

This manifold is illustrated in �gure. The points of M "
3 we denote by ~x

�
1

�

�
2

�

�
jG

Figure. Manifold M "
3 .

We de�ne a Riemannian structure on M "
3 by the metric tensor g"

ik
(~x) depend-

ing on ".

By M "
4 we denote the 4-dimensional manifold (space and time)

M "

4 =M "

3 � R

and introduce a pseudo Riemannian metric on M "
4 by the formula

ds2 = [c"(~x)]
2dt2 �

3X
i;k=1

g"ikdxidxk;

where c"(~x) > 0.

The Cauchy problem for the wave equation is considered on M "
4 :

2
"u" � 1

c"(~x)2
@2u"

@t2
� 1

c"(~x)
p
G
"

3X
i;k=1

@

@xi

�
gik" c"(~x)

p
G
" @u"

@xk

�
= 0; (0.1)

u"(~x; 0) = f "; (0.2)

u"t (~x; 0) = g": (0.3)
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(G" = det g"
ik
, gik" , i; k = 1; 2; 3, are the components of the tensor inverse to g"

ik
.)

Suppose that the following conditions hold: on the upper sheet the metric

coincides with the Euclidean metric (outside of some small neighborhoods of the

"holes" D"
j
), and c"(~x) = 1; while on the lower sheet the metric increases or

c" ! 0 (the proper time becomes slower) as "! 0 (in the latter case it is possible

to choose the radiuses of "holes" more than "3).

Then we have the following result. The solution of the problem (0.1)�(0.3)

converges on the upper sheet to the solution of the Cauchy problem for the Klein�

Gordon equation

@2u

@t2
��u" +mu = 0; ~x 2 R3 ; t > 0;

u(x; 0) = f(x);

ut(x; 0) = g(x);

where m de�nitely depends on the characteristics of "wormholes", metric and the

function c"(~x).

This fact admits the following interesting physics interpretation: as a result

of connection with the lower sheet by means of "wormholes" G"
j
a scalar massless

particle gets a mass m as "! 0. In the paper this fact is proved in a more general

statement.

1. The Increasing Metric Case

1.1. The Problem Setting and the Statement of Main Result

Let fD"

j
; j = 1 : : : N(")g be a system of disjoint small domains in R

3 with

a smooth border. Suppose that this system depends on the parameter " > 0 in

such a way that the diameters of the sets D"
j
tend to zero as " ! 0, and their

total number N(") tends to in�nity. Denote 
" = R
3n

N(")S
j=1

D"

j
. We consider two

copies 
"
1 and 
"

2 of the set 

". Let 
"

1 and 
"
2 be called the upper and the lower

sheets, respectively.

Let G"
j
be 3-dimensional manifolds with the boundaries consisting of two dis-

joined components �"1j and �"2j being di�eomorphic to @D"
j
.

By means of these di�eomorphisms and taking account of orientation, we glue

�"1j to the copy of @D"
j
on the upper sheet and �"2j to the copy of @D"

j
on the

lower sheet.

As a result we obtain a di�erentiable manifold M ":

M " = (
"

1 [ 
"

2)
[0
@N(")[

j=1

G"

j

1
A :
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We denote by ~x the points of this manifold. If the point ~x 2 
"

k
, then we

assign a pair (x; k) to ~x, where x 2 R3 is a coordinate.

Let B(D"

j
) be the smallest ball containing D"

j
, with the center x"

j
and the

radius d"
j
. We denote



0
"

k
=

8<
:~x = (x; k) 2 
"

k
: x 2 R3n

N(")[
j=1

B(D"

j )

9=
; :

On M " we introduce a metric g"
ik
(~x) that coincides with the Euclidean metric

in 

0"
1 (g"

ik
= Æik) and increases in 


0"
2 as follows:

g"ik =
Æik

�"
; �" > 0 and �" ! 0; "! 0: (1.1)

Consider the following Cauchy problem on M ":

�
"u" � @2u"(~x; t)

@t2
��"u"(~x; t) = 0; ~x 2M "; t > 0; (1.2)

u"(~x; 0) = f "(~x); (1.3)

u"t (~x; 0) = g"(~x); (1.4)

with �" being the Laplace�Beltrami operator on M "

�" =
1p
G
"

3X
i;k=1

@

@xi

�p
G
"

gik"
@

@xk

�
;

where G" = det g"
ik
, gik" , i; k = 1; 2; 3, are the components of the tensor inverse to

g"
ik
, and f ", g" are the smooth functions.

The purpose of this paper is to describe the asymptotic behavior of u"(~x; t)

on the upper sheet as "! 0.

Introduce the notation: r"
j
= dist

 
B(D"

j
);
S
i6=j

B(D"
i
)

!
,

B"

kj =

�
~x = (x; k) 2 
"

k : d
"

j < jx� x"jj < d"j +
r"
j

2

�
;

G
0"

j = G"

j

2[
k=1

�
~x = (x; k) 2 
"

k : x 2 B(D"

j)nD"

j

	
;

~G"

j = G
0"

j

2[
k=1

B"

kj; S"kj = @ ~G"

j \ 
"

k:
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We consider the following boundary-value problem in the domain ~G"

j
:

�"v = 0; ~x 2 ~G"

j; (1.5)

v = 1; ~x 2 S"1j; (1.6)

v = 0; ~x 2 S"2j: (1.7)

Let v"
j
= v"

j
(~x) be the solution of (1.5)�(1.7). We set

V "

j =

Z
~G"

j

3X
i;k=1

gik"
@v"

j

@xi

@v"
j

@xk
d~x;

where d~x =
p
G"dx1dx2dx3 is the volume element on M ", and introduce the

generalized function

V "(x) =

N(")X
j=1

V "

j Æ(x � x"j):

We introduce the following functional spaces:

L2(M ") is the Hilbert space of real valued functions on M " with the norm

ku"k0" =

8<
:
Z
M"

(u")2d~x

9=
;

1=2

;

H1(M ") is the Hilbert space of real valued functions on M " with the norm

ku"k1" =

8<
:
Z
M"

0
@ 3X

i;k=1

gik"
@u"

@xi

@u"

@xk
+ (u")2

1
A d~x

9=
;

1=2

:

We say that the function f " 2 L2(M ") converges on the upper sheet

to f 2 L2(R3 ), if for any bounded domain 
 � R
3

lim
"!0

kQ"f " � fkL2(
) = 0; (1.8)

where the operator Q" : L2(M ")! L2(R3) is de�ned by the formula

[Q"f "](x) =

8><
>:
f "(~x); ~x = (x; 1) 2 


0"
1 ;

0; x 2
N(")S
j=1

B(D"
j
):
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Similarly, we say that u"(~x; t) 2 L2(M "� [0; T ]) converges on the upper sheet

to u(x; t) 2 L2(R3 � [0; T ]), if for any bounded domain 
 � R
3

lim
"!0

TZ
0

kQ"u"(�; t) � u(�; t)kL2(
)dt = 0: (1.9)

Let us formulate the basic theorem

Theorem 1. Suppose that the following conditions hold:

(i) lim
"!0

max
j

d"
j
= lim

"!0
max
j

r"
j
= 0;

(ii) for any domain G � R
3

lim
"!0

X
x"
j
2G

(d"
j
)2

(r"
j
)3
� C1measG;

and r"
j
> C0d

"

j
(here 0 < C0, C1 <1);

(iii) lim
"!0

max
j

(r"
j
)8

�3"
= 0;

(iv) there exists a limit (in D0(R3))

lim
"!0

V "(x) = V (x);

where V (x) is a measurable bounded nonnegative function;

(v) for any domain G � R
3X

x"
j
2G

measG
0"

j ! 0 ("! 0);

(vi) norms kf "k1" are uniformly bounded with respect to "; when "! 0: f "(~x)

and g"(~x) converge in the sense of (1.8) to the functions f 2 H1(R3 )

and g 2 L2(R3), respectively, andZ



0"

2

S

j

G
0"

j

�
jf "j2 + jg"j2

�
d~x! 0; "! 0:

Then the solution of the problem (1.2)�(1.4) u"(~x; t) converges in the sense of

(1.9) to the solution u(x; t) of the following problem:

@2u

@t2
= �u� V (x)u; ~x 2 R3 ; t > 0; (1.10)

u(x; 0) = f(x); (1.11)

ut(x; 0) = g(x): (1.12)

The proof of the theorem is based on a study of asymptotic behavior of the

operator ��" resolvent as "! 0.
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1.2. Asymptotic Behavior of the Solution of the Stationary Problem

We consider the following problem:

��"u" + �u" = F"; ~x 2M "; (1.13)

u" 2 H1(M "); (1.14)

where � > 0;F" 2 L2(M "):

As it is known, there exists a unique solution u"(x; �) of this problem. The fol-

lowing theorem describes the asymptotic behavior of u"(x; �) on the upper sheet.

Theorem 2. Suppose that conditions (i)�(v) of the Th. 1 hold and suppose

(vi0) F"(x) converges in the sense of (1.8) to the function F(x) 2 L2(R3) as

"! 0 and Z



0"

2

S

j

G
0"

j

(F")2d~x! 0("! 0):

Then the solution of the problem (1.13)�(1.14) converges in the sense of (1.8)

to the solution u(x) of the following problem:

��u+ �u+ V (x)u = F ; x 2 R3 ; (1.15)

u" 2 H1(R3 ): (1.16)

P r o o f. As we know, the solution u"(x; �) of the problem (1.13)�(1.14)

minimizes the functional

J"[u"] =

Z
M"

8<
:

3X
i;k=1

gik"
@u"

@xi

@u"

@xk
+ �(u")2 � 2F"u"

9=
; d~x (1.17)

in the class of functions H1(M "), while the solution u(x; �) of the problem (1.15)�

(1.16) minimizes the functional

J [u] =

Z
R3

�
jruj2 + �u2 + V (x)u� 2Fu

	
dx (1.18)

in the classH1(R3). The converse assertions are also true. Therefore it is su�cient

to show that the solution of the problem of minimizing (1.17) converges to the

solution of the problem of minimizing (1.18).

Consider an abstract scheme for solving the problem. Let H" be a Hilbert

space depending on the parameter " > 0, (u"; v")"; ku"k" be a scalar product and
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a norm in this space, F " be the continuous linear functionals in H" which are

uniformly bounded with respect to ". Let H be a Hilbert space with the scalar

product (u; v) and norm kuk, F be a continuous linear functional in H.

Consider the following two problems of minimization:

ku"k2" + F "[u"]! inf; u" 2 H"; (1.19)

kuk2 + F [u]! inf; u 2 H: (1.20)

We have the following theorem proved in [3].

Theorem 3. Let M be a dense subset of H, and let �" : H" ! H and

P " :M ! H" be the operators satisfying the following conditions:

(a) k�"w"k � Ckw"k;8w" 2 H";

(b1) �
"P "w! w weakly in H as "! 0;8w 2M ;

(b2) lim
"!0

kP "wk" = kwk;8w 2M ;

(b3) for any sequence " 2 H", such that �"" !  weakly as "! 0, for any

w 2M one has

lim
"!0

j(P "w; ")"j � Ckwkkk;

(c) for any sequence " 2 H", such that �"" !  weakly as "! 0, we have

lim
"!0

F "["] = F []:

Then the solution u" of the minimization problem (1.19) converges to

the solution of the minimization problem (1.20) in the following sense:

�"u" !
"!0

u weakly in H:

Note, that Th. 3 holds true if conditions (b3) and (c) hold only for such

sequences " that the norms k"k" are uniformly bounded with respect to " (as in

the proof of Th. 3, the conditions (b3) and (c) are used only with these sequences).

Now we consider our abstract scheme. Let H" be the Hilbert space H1(M ")

of the functions on M " with the scalar product

(u"; v")" =

Z
M"

8<
:

3X
i;k=1

gik"
@u"

@xi

@v"

@xk
+ �u"v"

9=
; d~x; (1.21)

and let F " be the linear functional on it de�ned by the formula

F "[u"] =

Z
M"

�2F"u"d~x: (1.22)
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Let H be the Hilbert space H1(R3 ) with the scalar product

(u; v) =

Z
R3

� 3X
i=1

@u

@xi

@v

@xi
+ �uv + V (x)uv

�
dx (1.23)

and F be the linear functional on it de�ned by the formula

F [u] =

Z
R3

�2Fudx: (1.24)

Since jF "[u"]j � 2kF"k0"ku"k0" � 2kF"k0"ku"k" and norms kF"k0" are uni-

formly bounded with respect to ", then the functionals F " are uniformly bounded

with respect to ".

Now we introduce the operators �" and P " satisfying the conditions (a)�(c)

of Th. 3. Let u" 2 H1(M "), u
0" be a contraction of u" on 


0"
1 . Then u

0" can

be extended to
N(")S
j=1

B(D"
j
) so that the obtained function ~u

0
" belongs to the space

H1(R3 ) and satis�es the inequality

k~u0
"k � Cku"k";
"

1
; (1.25)

where C does not depend on " [4].

Since this kind of extensions is not unique, we require the norms of the

extended function in the space H1(
S
j

B(D"
j
)) to be minimal. Then we obtain

a unique extension ~u": For this reason we set �"u" = ~u":

It follows from (1.25) that the condition (a) of Th. 3 holds.

We introduce an operator P ". Let '(r) be a twice continuously di�erentiable

non-negative function on the half-line [0;1), which is equal to 1 for r 2 [0; 1=4]

and to 0 for r � 1=2. We set

'"j = '

� jx� x"
j
j � d"

j

r"
j

�
; '"j0 = '

� jx� x"
j
j � d"

j

C0d
"
j

�
:

Let M = C2
0 (R

3 ) be a dense subset of H1(R3) and let w 2 M . De�ne the

operator P " by the equalities

[P "w](~x) =

8>>>>>><
>>>>>>:

w(x) +
N(")P
j=0

(w"

j
� w(x))'"

j0
+

N(")P
j=0

(v"
j
(x)� 1)'"

j
w"

j
; ~x 2 


0"
1 ;

v"
j
(~x)w"

j
; ~x 2 G0

"
j
;

N(")P
j=0

v"
j
(x)'"

j
w"

j
; ~x 2 


0"
2 ;

(1.26)

where w"

j
= w(x"

j
).
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To be sure that the conditions (b1)�(b3) hold we use the following estimates

for the solution v"
j
of the problem (1.5)�(1.7).

Lemma 1. Let ~x = (x; k) 2 B"

kj
and jx� x"

j
j � d"

j
(1 + C0). Then

jD�(v"j (~x)� Æ1k)j � C
d"
j

jx� x"
j
j1+j�j ;

where j�j = 0; 1, and C does not depend on �.

Lemma 2. The following estimates are valid:

Z
B"

kj

jv"j � Æ1kj2d~x �
(
C(d"

j
)3(1 + r"

j
=d"

j
); k = 1;

C(d"
j
)3(1 + r"

j
=d"

j
)�
�3=2
" ; k = 2:

The proofs of these lemmas are carried out in the same way as those of Lems. 1,

2 in [5], by using the inequality 0 � v"
j
� 1, which follows from the maximum

principle.

We verify that the condition (b2) holds. Let w 2M , G = supp(w). Then

kP "u"k2" =
Z



0"

1

(
3X

i=1

�
@w

@xi

�2
+ �w2

)
dx+

X
x"
j
2G

( Z
B"

1j

3X
i=1

�
@v"

j

@xi

�2
w2
jdx

+

Z
G

0"

j

3X
i;k=1

gik"
@v"

j

@xi

@v"
j

@xk
w2
jd~x+

Z
B"

2j

�"

3X
i=1

�
@v"

j

@xi

�2
w2
jd~x

)

+�1(") + �2(") + �G("); (1.27)

where�1(");�2(");�G(") are the remaining integrals over 

0"
1 ;


0"
2 ; G

0"

j
, estimated

as follows:

j�1(")j � c1(w)
X
x"
j
2G

(d"j)
3 + c2(w)

(X
x"
j
2G

Z
B1j

 
3X

i=1

����@vj@xi

����+ jvj � 1j
!
dx

+
X
x"
j
2G

Z
R"

1j

 
3X

i=1

�
@v"

j

@xi

�2
+ (v"j � 1)2

1

(r"
j
)2

!
dx+

X
x"
j
2G

Z
B"

1j

(v"j � 1)2dx

)
;

j�G(")j � c3(w)
X
x"
j
2G

Z
G

0"

j

(v"j )
2;
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j�2(")j � c4(w)

(X
x"
j
2G

Z
R"

2j

"
3X

i=1

�
@v"

j

@xi

�2
+ (v"j )

2 1

(r"
j
)2

#
�"d~x+

X
x"
j
2G

Z
B"

2j

(v"j )
2d~x

)
;

where R"

kj
=
n
~x = (x; k) 2 


0
"

k
: d"

j
+

r"
j

4
< jx� x"

j
j < d"

j
+

r"
j

2

o
.

We estimate the integrals over R"

kj
by means of Lem. 1 and the integrals over

B"

kj
by means of Lem. 2. Taking into account that in 


0"
2 : d~x = �

�3=2
" dx1dx2dx3,

we have

�1(") � c(w)

( X
x"
j
2G

(d"
j
)2

(r"
j
)3

max
j

d"j(r
"

j )
3 +

 X
x"
j
2G

(r"j )
3
X
x"
j
2G

(d"
j
)2

(r"
j
)3

!1=2

�
�
max r"j +max(r"j)

2
�
+

 X
x"
j
2G

(d"
j
)2

r"
j

3
max
j

(r"j )
2

!
+

 X
x"
j
2G

(d"
j
)2

(r"
j
)3

max
j

(r"j )
4

!)
;

�2(") � c(w)

( X
x"
j
2G

(d"
j
)2

r"
j

3
max
j

(r"
j
)2

�
1=2
"

+
X
x"
j
2G

(d"
j
)2

(r"
j
)3

max
j

(r"
j
)4

�
3=2
"

)
;

�G(") � c(w)
X
x"
j
2G

measG
0
"

j :

By conditions (i)�(iii) and (v) of the theorem

lim
"!0

(�1(") + �G(") + �2(")) = 0: (1.28)

It follows from (1.27), (1.28) and the condition (iv) that

lim
"!0

kP "wk" = kwk:

Thus the condition (b2) holds.

Now we verify the condition (b3). Let w 2 M , G = supp(w), the sequence

" is such that the norms k"k" are uniformly bounded with respect to " and

such that �"" ! (" ! 0) weakly in H. Denote by (u; v)1 the following scalar

product in H1(R3)

(u; v)1 =

Z
R3

"
3X

i=1

@u

@xi

@v

@xi
+ �uv

#
dx:

Integrating by parts, we have

(P "w; ")" = (w;�"")1 + I"1 + I"2 + I"3 ; (1.29)
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where

I"1 =�
X
x"
j
2G
w"

j

" Z
R"

1j

 
2

3X
i=1

@v"
j

@xi

@'"
j

@xi
+ (v"j � 1)�'"j

!
"dx

+

Z
R"

2j

�"

 
2

3X
i=1

@v"
j

@xi

@'"
j

@xi
+ v"j�'

"

j

!
"d~x

#
;

I"2 = �
X
x"
j
2G
w"

j

" Z
B"

1j

(v"j � 1)'"j
"dx+

Z
B"

2j

v"j'
"

j
"d~x+

Z
G

0"

j

v"j
"d~x

#
;

jI"3 j � C(w)

" X
x"
j
2G

(d"j)
3

#1=2
k�""k1 � C(w)

 
max
j

(d"j)max
j

(r"j)
3
X
x"
j
2G

(d"
j
)2

(r"
j
)3

!1=2

:

Since the norms k�""k1 are uniformly bounded with respect to ", it follows from

(i), (ii):

lim
"!0

I"3 = 0: (1.30)

Estimating the integrals over R"

kj
by means of Lem. 1 and the integrals over

B"

kj
by means of Lem. 2, we have the following estimates:

jI"1 j � C

" X
x"
j
2G

(d"
j
)2

(r"
j
)3
jw"

j j2
#1=2

k�""k0G + C(w)

" X
x"
j
2G

�1=2"

(d"
j
)2

(r"
j
)3

#1=2
k"k0";

jI"2 j � C(w)

("
max
j

(r"j)
4
X
x"
j
2G

(d"
j
)2

(r"
j
)3

#1=2

+

"
max
j

(r"
j
)4

�
3=2
"

X
x"
j
2G

(d"
j
)2

(r"
j
)3

#1=2
+
h
meas

[
G

0
"

j

i1=2)
k"k0";

where k � k0G denotes the norm in L2(G3).

Since �"" converges weakly in H1(R3) to , from the embedding theorem

we have

lim
"!0

k�""k0G = kk0G � kk:
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Since k"k0" � k"k" � C, by the conditions (i)�(iii), (v)

lim
"!0

jI1j � Ckwk0kk0 � Ckwkkk; (1.31)

lim
"!0

I2 = 0: (1.32)

It follows from (1.29)�(1.32) that the condition (b3) holds.

We verify the condition (b1). Let w 2M . Since

k�"P "wk � ckP "wk ! ckwk;

we have

k�"P "wk � C(w) uniformly with respect to "(" < "0):

Moreover, in the same way as in (b2), it is easy to show that �"P "w ! w strongly

in L2(R3); thus the condition (b1) also holds .

And, �nally, verify that condition (c) holds. Let sequence " 2 H" be such

that the norms k"k" are uniformly bounded with respect to " and �"" ! 

weakly in H. Then

jF "["]� F []j � 2

�����
Z
R3

(Q"F" � �"" � F)dx
����� + 2

�����
Z



0"

2

S

j

G
0"

j

F""d~x

�����: (1.33)

It follows from (1.33) and the condition (vi0) that jF "["]� F []j ! 0("! 0);

so the condition (c) holds.

Thus all the conditions of Th. 3 hold. Hence �"u" ! u weakly inH. Therefore

by the embedding theorem �"u" ! u strongly in L2(
), where 
 is a bounded

domain in R3 . Moreover, for any bounded domain G � R
3

X
x"
j
2G

measB(D"

j) = C
X
x"
j
2G

(d"j)
3 � C

X
x"
j
2G

(d"
j
)2

(r"
j
)3

max
j

(r"j )
3max

j

d"j ! 0; "! 0:

(1.34)

Then by (1.34) u" ! u in the sense (1.9). The theorem is proved.

1.3. Asymptotic Behavior of the Solution of the Nonstationary

Problem

We consider the following problem for the complex values of the parameter �:

��"u" + �2u" = �f " + g"; ~x 2M "; (1.35)

u" 2 H1(M "): (1.36)
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The solution u(~x; �) of this problem is the Laplace transform of the solution

of the problem (1.2)�(1.4). It is proved that for �2 > 0 (that is � 2 Rnf0g)
the solution of the problem (1.35)�(1.36) converges in the sense of (1.8) to the

solution of the problem

��u+ �2u+ V (x)u = �f + g; x 2 R3 ; (1.37)

u 2 H1(R3): (1.38)

Theorem 20. Let � = f� : Re� � Æ > 0g and all conditions of Th. 2 hold.

Then the solution of the problem (1.35)�(1.36) u"(�; �) is a holomorphic function

in �
�

, the following estimate holds:

kQ"u"(�; �)k0 � C; (1.39)

where C does not depend on � and ", and u"(�; �) converges (uniformly on each

bounded subset of �) in the sense of (1.8) to the solution u(�; �) of the problem

(1.37)�(1.38). Besides, u(�; �) is holomorphic in � and satis�es the estimate

(1.39).

P r o o f. Since ��" induces a nonnegative selfadjoint operator in L2(M "),

then for all � 2 �

u" =

1Z
0

dEt(�f
" + g")

t+ �2
;

where Et is a resolution of identity of the operator ��".

Then

ku"k0" �
j�j � kf "k0" + kg"k0"
dist (�2; (�1; 0])

; (1.40)

dist
�
�2; (�1; 0]

�
=

(
jIm�2j; j arg �j > �=4

j�2j; j arg �j � �=4

=

(
j2Im�Re�j; j arg �j > �=4

j�2j; j arg �j � �=4
�
(
2Æj�j sin �=4; j arg �j > �=4

Æj�j; j arg �j � �=4
: (1.41)

It follows from (1.40),(1.41) and the condition (vi) of Th. 1 that (1.39) holds.

Moreover, Q"u"(�; �) and u(�; �) are holomorphic functions for Re� 6= 0 (as

the resolvent is holomorphic outside of the operator spectrum).

Since Q"u"(x; �) converges to u(x; �) in L2(R3 ) for � 2 Rnf0g, then

by the Vitaly theorem, when � 2 �, then Q"u"(x; �) converges (uniformly on

�

As a function of complex variable with values in L2(M").
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each bounded subset of �) in L2(R3) to the function U(x; �). Moreover, U(x; �)

is holomorphic and satis�es the estimate (1.39). Since U(x; �) = u(x; �) for � 2
Rnf0g, then by the uniqueness theorem U(x; �) = u(x; �) for � 2 �. The theorem

is proved.

First, we prove that Q"u�(x; t) converges to u(x; t) weakly in L2(R3 � [0; T ]).

Let D be a set of functions of the form

g(x; t) = '(x) (t);

where '(t) 2 L2(R3),  (x) 2 C2
0 [0; T ].

We note, that in view of properties of the Laplace transform, since the solution

u"(~x; �) of the problem (1.13)�(1.14) is the Laplace transform for u"(~x; t), then

u
"(~x;�)

�2
is the Laplace transform for

tR
0

sR
0

u"(~x; �)d�ds, and one has

tZ
0

sZ
0

u"(~x; �)d�ds =
1

2�i

�+i1Z
��i1

u"(~x; �)

�2
e�td�:

Integrating by parts we have

TZ
0

Z
R3

Q"u"(x; t)'(x) (t)dxdt =

Z
R3

'(x)

TZ
0

 tZ
0

sZ
0

Q"u"(x; �)d�ds

!
 00dtdx

=

Z
R3

'(x)

TZ
0

1

2�i

 �+i1Z
��i1

Q"u"(x; �)

�2
e�td�

!
 00dtdx

=
1

2�i

�+i1Z
��i1

 
1

�2

Z
R3

'(x)Q"u"(x; �)dx

TZ
0

e�t 00dt

!
d�: (1.42)

Here the change of order of integration is valid since, in view of the following

inequalities: Z
R3

jQ"u"(x; �)jj'(x)jdx � kQ"u"k0k'k0 � C(');

TZ
0

je�tjj 00jdt � C( ); Re � = �;

the last repeated integral in (1:42) converges absolutely.
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By Theorem 2, Z
R3

Q"u"(x; �)'(x)dx!
Z
R3

u(x; �)'(x)dx:

Since the norms kQ"u"(�; �)k0" are uniformly bounded with respect to " and

the convergence is uniform on each bounded subset of �, we may pass to the limit

under the integral sign in (1.42).

On the other hand, similarly, we have

TZ
0

Z
R3

u(x; t)'(x) (t)dxdt =
1

2�i

�+i1Z
��i1

0
@ 1

�2

Z
R3

'(x)u(x; �)dx

TZ
0

e�t 00dt

1
A d�:

We will prove later that the set fu"g is uniformly bounded in H1(M "� [0; T ]);

hence, since D is a dense subset in L2(R3 � [0; T ]), then Q"u"(x; t) converges to

u(x; t) weakly in L2(R3 � [0; T ]). In view of (1.34), �"u"(x; t) converges to u(x; t)

weakly in L2(R3 � [0; T ]), where the operator �" : H1(M ")! H1(R3 ) is de�ned

in the proof of Th. 2.

Prove that the set f�"u"g is uniformly bounded in H1(M " � [0; T ]). In view

of (1.2), it is easy to see that the following equation holds

Z
M"

2
4�@u"(~x; t)

@t

�2
+

3X
i;k=1

gik"
@u"(~x; t)

@xi

@u"(~x; t)

@xk

3
5d~x

=

Z
M"

2
4(g"(~x))2 + 3X

i;k=1

gik" (~x)
@f "(~x)

@xi

@f "(~x)

@xk

3
5 d~x: (1.43)

In addition, 8t < T

Z
M"

(u")2d~x =

Z
M"

0
@ tZ

0

@u"(~x; t)

@t
dt+ f "(~x)

1
A
2

d~x

� 2

Z
M"

0
@T

TZ
0

�
@u"(~x; t)

@t

�2
dt+ (f "(~x))2

1
A d~x: (1.44)

By (1.43), (1.44) and the condition (vi) it follows that the set fu"g is uniformly

bounded in H1(M " � [0; T ]), so in view of (1.25), the set f�"u"g is uniformly

bounded in H1(R3 � [0; T ]). Then for any bounded domain 
 � R
3 the set

f�"u"g is compact in L2(
� [0; T ]). Hence �"u" ! u strongly in L2(
� [0; T ]).

Hence u" converges to u in the sense of (1.9). Theorem 1 is proved.
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1.4. Example

We consider a concrete example of the Riemannian manifold M ". Let D"
j
be

a system of balls with the radius d" = a"3 and the centers at x"
j
periodically

distributed in 
 � R
3 , that is

D"

j =
n
x 2 R3 : jx� x"j j � d"; x"j = "

3X
i=1

eiz
j

i

o
;

where r" = " is a period, fei; i = 1; 2; 3g is an orthonormal basis in R3 , z
j

i
2 Z

and D"

j
� 
; j = 1 : : : N(").

G"
j
is the "pipe", that is G"

j
=
n
('; ; z) : ' 2 [0; 2�];  2 [��=2; �=2];

z 2 [0; 1]
o
= S3 � [0; 1]:

On M " we introduce a metric g"
ik
(~x) that coincides with the Euclidean metric

in 

0"
1 , increases in 


0"
2 in the sense of (1.1), and in the "pipe" G

0"

j
we de�ne it by

the following formula for the square of the element of length:

ds2 = q"jdz
2 + (d")2(cos2  d'2 + d 2); (1.45)

where q"
j
> 0.

We introduce the spherical coordinates (r; ';  ) in B"

kj8><
>:
x1 = r sin' cos ;

x2 = r cos' cos ;

x3 = r sin ; r 2 [d"; r"=2];  2 [��=2; �=2]; ' 2 [0; 2�]:

(1.46)

We will state the function v"
j
, supposing that it depends neither on ', nor on  .

We denote

v"j =

8><
>:
v1; if ~x 2 B"

1j ;

vg; if ~x 2 G
0"

j
;

v2; if ~x 2 B"
2j :

Then v1; v2; vg satisfy the equations8>><
>>:

1
r2

@

@r

�
r2 @v1

@r

�
= 0; d" < r < r"=2;

@2vg

@z2
= 0; 0 < z < 1;

1
r2

@

@r

�
r2 @v2

@r

�
= 0; d" < r < r"=2;

the boundary conditions (
v1(r

"=2) = 1;

v2(r
"=2) = 0;
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and conditions on the boundaries of the upper and the lower sheets

(
v1(d

") = vg(0);

v2(d
") = vg(1);

8<
:

@v1

@r
= � 1p

q
"

j

@vg

@z
;

1p
�
"

@v2

@r
= 1p

q
"

j

@vg

@z
:

Hence we have

v"j =

8><
>:

a1

r
+ b1; ~x 2 B"

1j ;

Az +B; ~x 2 G0
"
j
;

a2

r
+ b2; ~x 2 B"

2j ;

where

a1 = �d"
 p

q"
j

d"
+
�
1 +

p
�
"

��
1� 2d"

r"

�!�1
; A = a1

p
q"
j

(d")2
; a2 = �a1

p
�
"
:

If q"
j
can be represented in the form q"

j
= q"l2

j
, lj = l(x"

j
), where l(x) is

a continuous function on 
 and there exists the limit q = lim
"!0

p
q"

d"
<1, then

V "

j =

Z
~G"

j

3X
i;k=1

gik"
@v"

j

@xi

@v"
j

@xk
d~x =

r
"
=2Z

d"

2�Z
0

�=2Z
��=2

�a1
r2

�2
r2 cos d d'dr

+

1Z
0

2�Z
0

�=2Z
��=2

A2

p
q"
j

(d"j)
2 cos d d'dz +

r"=2Z
d"

2�Z
0

�=2Z
��=2

�"
�1=2

�a2
r2

�2
r2 cos d d'dr

= 4�(a21 + �"
�1=2a22)

�
1

d"
� 2

r"

�
+ 4�

A2(d")2p
q"
j

= 4�d"
�
lj
p
g"

d"
+ 1

��1
(1 + �o(1)):

Since x"
j
are distributed periodically in 
 and d� = a(r�)3, it follows that

V (x) =
4a�

ql(x) + 1
�


(x) (�



(x) is a characteristic function of 
), and the averaged

equation has the form:

@2u

@t2
��u+

4a��



ql(x) + 1
u = 0:
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2. Case of the Delay of Proper Time

We consider the manifold M "
4 =M "

3 �R, where M "
3 is a particular case of the

manifold M " considered in Sect. 1.4 (without assumption that x"
j
are distributed

periodically in 
).

Introduce a metric on M "
3 similarly to 1.4 and de�ne a metric in M "

4 by the

following formula:

ds2 = [c"(~x)]
2 dt2 �

3X
i;k=1

g"ikdxidxk;

where

c"(~x) =

8><
>:
1; ~x 2 


0
"
1

N(")S
j=1

G
0
"
j
;

~c"; ~x 2 

0"
2 ;

~c" ! 0; "! 0;

and g"(~x) = fg"
ik
; i; k = 1; 2; 3g is a metric tensor on M "

3 :

We consider the Cauchy problem on M "
4

2
"u" � 1

c"(~x)2
@2u"

@t2
� 1

c"(~x)
p
G
"

3X
i;k=1

@

@xi

�
gik" c"(~x)

p
G
" @u"

@xk

�
= 0; (2.1)

u"(~x; 0) = f "; (2.2)

u"t (~x; 0) = g": (2.3)

(G" = det g"
ik
, gik" , i; k = 1; 2; 3 are the components of the tensor inverse to g"

ik
.)

Denote

V "

j =

Z
~G"

j

3X
i;k=1

c"(~x)g
ik

"

@v"
j

@xi

@v"
j

@xk
d~x; (2.4)

where v"
j
is the solution of the problem

3X
i;k=1

1p
G
"

@

@xi

�
gik"
p
G
"

c"(~x)
@v

@xk

�
= 0; ~x 2 ~G"

j; (2.5)

v = 1; ~x 2 S"1j; (2.6)

v = 0; ~x 2 S"2j: (2.7)

It follows from the form of metric in G
0
"
j
(1.45), that

V "

j = 4�(a21 + ~c"a
2
2)

 
1

d"
j

� 1

�"
j

!
+ 4�

A2(d"
j
)2

p
q"
j

;
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where �"
j
= d"

j
+ r"

j
=2;

a1 = �~c"d"j

 
~c"
p
q"
j

d"
j

+
�
~c" + 1

��
1�

d"
j

�"
j

�!�1
; A = a1

p
q"
j

(d"
j
)2
; a2 = �a1

1

~c"
:

Introduce the following generalized function

V "(x) =

N(")X
j=1

V "

j Æ(x � x"j) (2.8)

and let the following limit exist in D0(R3)

lim
"!0

V "(x) = V (x); (2.9)

where V (x) is a measurable bounded nonnegative function.

Theorem 4. Suppose the conditions (i),(iv) of Th. 1 hold and:

(ii0) for any domain G � R
3

lim
"!0

X
x"
j
2G

~c2"
(d"

j
)2

(r"
j
)3
� C1measG;

and r"
j
> C0d

"

j
(here 0 < C0; C1 <1);

(iii0) lim
"!0

max
j

(r"
j
)4

~c3"
= 0;

(vi0) the norms kf "k1" are uniformly bounded with respect to "; when " ! 0,

f "(~x) and g"(~x) converge in the sense of(1.8) to the functions f 2 H1(R3 ) and

g 2 L2(R3 ), respectively, andZ



0"

2

S

j

G
0"

j

jf "j2 + jg"j2
c"(~x)

d~x! 0; "! 0:

Then the solution of the problem (2.1)�(2.3) u"(~x; t) converges in the sense of

(1.9) to the solution u(x; t) of the problem (1.10)�(1.12), where V (x) is de�ned

by (2.8)�(2.9).

P r o o f. The theorem is proved in the same way as Th. 1. But here, for

the solution v"
j
of the problem (2.5)�(2.7), a stronger estimate than in Lem. 1 is

used. Namely, as it appears from an explicit form of the function v"
j
, the following

inequality holds:

jD�(v"j (~x)� 1)j � C
~c"d

"

j

jx� x"
j
j1+j�j ; ~x = (x; 1) 2 B"

1j ; (2.10)

where j�j = 0; 1, and C does not depend on ".
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As for the rest, the theorem is proved in the same way as Th. 1.

R e m a r k. This result is obtained for the discontinuous metric tensor g"(~x).

However, g"(~x) can be approximated by the smooth tensor g"
Æ
(~x) that coincides

with g"(~x) outside of the small neighborhood of @D"

kj
. We introduce the local

coordinates (x1; x2; x3) in the neighborhood of the point ~x 2 @D"

kj
, such that

r = d"
j
+ jx1j(x1 � 0), z = x1(x1 � 0), x2 = ', x3 =  and set

ds2 = q"jÆ(x1)dx
2
1 +

�
(d"j)

2(1� '"jÆ(x1)) + (d"j + jx1j)2'"jÆ(x1)
�
(cos2 x3dx

2
2 + dx23);

where q"
jÆ
(x1) is a smooth nonnegative function equal to 1 for x1 � 0 and q"

j
for

x1 � Æ > 0, '"
jÆ
(x1) = (q"

jÆ
(x1)� q"j)=(1� q"j ). Then g"(~x) = g"

Æ
(~x) for x1 62 (0; Æ).

In the same way we can approximate c"(~x) by the function c"Æ(~x). Similarly,

we introduce the local coordinates (x1; x2; x3) in the neighborhood of the point

~x 2 @D"
2j and set

c"Æ(~x) = 1� '"jÆ(x1) + ~c"'
"

jÆ
(x1):

We suppose Æ = �o(d"
j
). Then the function V (x), calculated by the formulae

(2.4),(2.8),(2.9), but with a tensor g"
Æ
(~x) and a function c"Æ(~x), will be equal to

the function V (x) calculated with a tensor g"(~x) and a function c"(~x):

The Author thanks deeply Prof. E.Ya. Khruslov for the statement of problem

and the attention he paid to this work.
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