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1. Introduction

Let X be a Banach space. A linear bounded operator T on X is called poly-

nomially bounded if there exists a constant M such that

kp(T )k �M sup
jzj�1

kp(z)k; (1)

for every polynomial p.

It is a well known theorem of Sz. Nagy and C. Foias [8] that if X is a Hilbert

space and T is a completely nonunitary contraction on X with spectrum �(T )
such that m(�(T )\�) = 0, where � denotes the unit circle and m is the Lebesgue

measure on �, then kT nxk ! 0 as n ! 1, for all x in X. According to von

Neumann's inequality (see e.g. [8]), every contraction operator T satis�es (1)

with M = 1, hence every contraction is a power bounded operator. However,

G. Pisier [9] has shown that not every polynomially bounded operator on a Hilbert

space is similar to a contraction. The proof of the above result of Sz. Nagy and

C. Foias uses the theory of unitary dilations of contractions and, therefore, cannot

be extended to polynomially bounded operators on a Hilbert space.

c
 G. Muraz and Q.Ph. Vu, 2007



On Stability of Polynomially Bounded Operators

In this note, we extend the Nagy�Foias theorem to polynomially bounded

operators on Banach spaces.

Throughout the paper, D is the open unit dist, � is the unit circle and A(D)
is the disk algebra of functions analytic in D and continuous in D.

2. The Limit Isometry

Let T be a power bounded operator on a Banach space X, i.e., T satis�es

the condition supn�0 kT
nk < 1. By introducing the equivalent norm kjxkj =

sup
n�0 kT

nxk, we can always assume, without loss of generality, that T is a con-

traction. This implies that limn!1 kT nxk exists for all x in X.

The following construction associates with T another Banach space E, a natu-

ral homomorphism Q from X to E and an isometry V on E such that QT = V Q

and �(V ) � �(T ). This construction has proved useful in many investigations on

the asymptotic behavior of semigroups of operators (see [2, 7, 10�13]).

Lemma 1. Let T be a power bounded on a Banach space X. There exists

a Banach space E, a bounded linear map Q of X into E with dense range, and

an isometric operator V on E, with the following properties:

1) Qx = 0 if and only if infn�0 kT
nxk = 0;

2) QT = V Q (s 2 S);
3) �(V ) � �(T ); P�(V �) � P�(T �).

The operator V in Lem. 1 is called the limit isometry of T . Recall the con-

struction of E, Q and V . First, a seminorm on X is de�ned by

l(x) = lim
n!1

kT nxk; x 2 X:

Let L = ker(l) = fx 2 X : l(x) = 0g. Consider the quotient space bX = X=L,

the canonical homomorphism Q : X ! bX; Qx = x̂, and de�ne a norm in bX by

l̂(x̂) = l(x); x 2 X:

The operators T generate the corresponding operator bT on bX in the natural way,

namely bT x̂ := cTx; x 2 X:

Clearly, bT is an isometric operator on the normed space bX , since

l̂( bT x̂) = lim
n!1

kT n(Tx)k = l̂(x̂); x 2 X:

We denote by E the completion of bX in the norm l̂, and by V the continuous

extension of bT from bX to E. All properties 1)�3) can be veri�ed directly.
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An operator T is called stable, if the discrete semigroup fT ngn�0 is stable,

i.e., limn!1 kT nxk = 0 for all x 2 X. Note that in the above construction

the subspace E is nonzero if and only if T is nonstable. On the other hand, if

infn�0 kT
nxk > 0 for all x 2 X; x 6= 0, then T is said to be of class C1. From

�(V ) � �(T ) it follows that if �(T ) does not contain the unit circle, then �(V )
also does not contain the unit circle, so that V is an invertible isometry.

3. Stability of fT ng

An important property of polynomially bounded invertible isometries is that

they possess a functional calculus for continuous functions on their spectra.

Lemma 2. Let V be a polynomially bounded invertible isometry on a Banach

space E. Then the algebra A(V ) is isomorphic to C(�(V )).

P r o o f. It was shown in [6] that there is a homomorphism ' : C(�)! L(E)
such that k'k � M , i.e., there is a functional calculus on C(�) which satis�es:

kf(T )k � Mkfk1. Moreover, f(T ) is completely determined by its values on

�(V ), and the spectral mapping theorem holds: �(f(V )) = f(�(V )). Therefore,

the functional calculus can be de�ned for C(�(V )), and we have

sup
�2�(V )

jf(�)j � kf(V )k �M sup
�2�(V )

jf(�)j;

i.e., the homomorphism is in fact an isomorphism.

Now let T be a polynomially bounded operator on a Banach space X. Assume

that T is not stable, i.e., there exists x 2 X such that kT nxk does not converge

to 0. Then the Banach space E, de�ned in Lemma 1, is nonzero, and we can

speak about the limit isometry V . Assume that V is invertible (which holds, e.g.,

if T has a dense range or �(T ) does not contain the whole unit circle).

Lemma 3. Let T be polynomially bounded, nonstable, and let E and V be as

in Lemma 1 such that V is an invertible isometry. Then there exists a family of

measures �z;z�, where z 2 E; z� 2 E�, such that

hf(V )z; z�i =

Z
�(V )

f(�)d�z;z�(�) (2)

for every function f in C(�(V )).

P r o o f. Since T also is polynomially bounded, it follows easily that V also

is polynomially bounded. In fact, we have

l̂(p( bT )x̂) = limn!1 kT np(T )xk � kp(T )k limn!1 kT nxk

= kp(T )kl̂(x̂) �M supjzj�1 jp(z)jl̂(x̂);
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which implies kp( bT )k � M supjzj�1 jp(z)j, hence kp(V )k � M supjzj�1 jp(z)j,
i.e., V is polynomially bounded. Lemma 2 implies that A(V ) is isomorphic to

C(�(V )). Therefore, for each z 2 E; z� 2 E�, the mapping f 7! hf(V )z; z�i is
a continuous linear functional on C(�(V )). Hence, by Riesz's theorem, for every

z 2 E; z 2 E�, there exists a measure �z;z� on �(V ) such that (2) holds.

Note that, in general, V does not have a spectral measure, i.e., it is not a spec-

tral operator in the sense of N. Dunford [4]. But formula (2), which resembles

the functional calculus for spectral operators of scalar type and holds in our case

only for continuous functions f on the spectrum of V , will be one of the main

ingredients in the proof of Lemma 5 below.

Lemma 4. Suppose that T is a polynomially bounded operator on a Banach

space X. Then for every function f 2 A(D) one can de�ne a bounded linear

operator f(T ) on X such that:

1) If f = 1, then f(T ) = I;

2) If f(�) = �, then f(T ) = T ;

3) The mapping f 7! f(T ) is an algebra homomorphism from A(D) into L(X)
satisfying kf(T )k �Mkfk1.

The proof of Lemma 4 is straightforward. In fact, we �rst de�ne f(T ) for

polynomials f in the standard way. Then, using von Neumann's inequality, we

can extend this de�nition to the functions of the class A(D) using approximations.

In the sequel, an invertible operator S on X is called doubly power bounded

provided that both S and S�1 are power bounded, i.e., if supn2Z kS
nk <1. It is

easy to see that if S is doubly power bounded, then S is an (invertible) isometry

in the equivalent norm kjxkj = supn2Z kS
nxk, x 2 X.

Lemma 5. Assume that:

1) T is polynomially bounded operator on a Banach space X.

2) There does not exist an invariant subspace K with respect to T � such that

T �jK is invertible and doubly power bounded.

Then the measures �z;z� are absolutely continuous with respect to the Lebesgue

measure.

P r o o f. Assuming the contrary, i.e., there exist z 2 E, z� 2 E� such that

�z;z� is not absolutely continuous with respect to the Lebesgue measure m. This

implies that there exists a compact set K with m(K) = 0 and �z;z�(K) 6= 0.

By Fatou's theorem (see e.g. [6, p. 80]), there exists a function h 2 A(D)
such that

h(�) = 1; if � 2 K and jh(�)j < 1 if � 2 D nK < 1: (3)
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Let ~h(�) := h(��). Then ~h 2 A(D); k~hk = 1. Since V � also is a polynomially

bounded invertible isometry, ~hn(V �) is de�ned and satis�es

sup
n�0

k~hn(V �)k �M <1: (4)

Fix a nonzero functional z� in E�. By (4) and the weak� compactness of the unit

ball in E�, there exists a subsequence nk such that ~hnk(V �)z� ! z�0 in the (E�; E)-
topology. De�ne two functionals x� and x�0 in E� by

x�(x) = z�(x̂); x�0(x) = z�0(x̂); x 2 X: (5)

Then, for every vector x in X, (5) implies that

(~hnk(T �)x�)(x) = x�(hnk(T )x) = z�( \(hnk(T )x))

= z�(hnk(V )x̂) = (~hnk(V �)z�)(x̂):

Therefore,

limk!1(hnk(T �)x�)(x) = limk!1(~hnk(V �)z�)(x̂)

= z�0(x̂) = x�0(x);

i.e., ~hnk(T �)x� converges to x�0 in the (X;X�)-topology. Now we have, by adopting

(4)�(6) and the Dominated Convergence Theorem,

x�0(y) = lim
k!1

(~hnk(T �)x�)(y)

= lim
k!1

x�0(h
nk(T )y) = lim

k!1
z�(hnk(V )ŷ)

= lim
k!1

�Z
��

hnk(ei�)d�ŷ;z�(�) = �ŷ;z�(K):

Since �z;z�(K) 6= 0, and bX is dense in E, there exists ŷ such that �ŷ;z�(K) 6= 0,
so that x�0 6= 0.

By Rudin�Carleson's theorem (see e.g. [6, p. 80]), there exists a function

� 2 A(D) such that

�(ei�) = e�i� for � 2 K and k�k1 = 1: (6)

We show that

T ��(T �)x�0 = x�0: (7)
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Indeed, we have, in view of (4)�(6),

([I � T ��(T �)]x�0)(y) = x�0([I � T�(T )]y)

= z�0([I � V �(V )]ŷ) = limk!1
~[hnk(V �)z�]([I � V �(V )]ŷ)

= limk!1 z�(hnk(V )[I � V �(V )]ŷ)

= limk!1

�R
��

hnk(ei�)(1� ei��(ei�))d�ŷ;z�(�)

=
R
K

(1� ei��(ei�))d�ŷ;z�(�) = 0; for all y 2 X;

which implies that (7) holds.

Now let W := �(T �). Then (6) and (7) imply that sup
n�0 kW

nk � M , and

(WT �)n(T �)kx�0 = (T �)kx�0, k = 0; 1; 2; : : : . Let K := spanf(T �)kx�0 : k � 0g.
ThenK is invariant subspace for T �, T �jK is invertible (with the inverse equalW )

and supn2Z k(T
�jK)nk �M , which is a contradiction.

R e m a r k. Lemma 5 has been proved in [10, Prop. 2.1], for contractions on

Hilbert space, and here we generalized this proof.

From Lemma 5 we obtain the following result which is a generalization of

the Nagy�Foias theorem.

Theorem 1. Let T be a polynomially bounded operator on a Banach space X

such that �(T ) \ � has measure 0. Then the following are equivalent:

(i) T nx! 0 for every x 2 X;

(ii) T � does not have an invariant subspace K 6= f0g on which T �jK is

invertible and doubly power bounded.

P r o o f. Since �(T ) \ � has measure zero, it follows that �(V ) \ � also has

measure zero, hence V is an invertible isometry.

Suppose that (ii) holds, we show that (i) holds. Assuming the contrary, we

have E 6= f0g. By Lemma 5, the measures mz;z�; z 2 E; z� 2 E�; are absolutely

continuous with respect to the Lebesgue measure. From m(�(V )) = 0 it follows

that mz;z�(�(V )) = 0, i.e., all the measures mz;z� are zero, which is an absurd.

Now suppose that (i) holds but (ii) does not hold. Thus, there is a nonzero

subspace K of X� which is invariant under T � and such that T �jK is invertible

and supn2Z k(T
�jK)nk < 1. Let S = T �jK. Fix an element x� in K; x� 6= 0.

Then fS�nx� : n � 0g are uniformly bounded, hence x�(x) = (Sn(S�n)x�)(x) =
[(T �)nS�nx�](x) = [S�nx�](T nx) ! 0; for all x 2 X, which is a contradiction.

Note that Theorem 1 can be regarded as an analogue of the stability results in

[1, 7, 10] (see also [11�13])where the condition that m(�(T ) \ �) = 0 is replaced
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by countability of �(T ) \ �, and condition

T � does not have an invariant subspace K 6= f0g
such that T �jK is invertible and doubly power bounded

is replaced by

T �does not have eigenvalues on the unit circle.
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