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We prove that if T is a polynomially bounded operator and the peripheral
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T™* has no nontrivial invariant subspace on which it is invertible and doubly
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1. Introduction

Let X be a Banach space. A linear bounded operator T on X is called poly-
nomially bounded if there exists a constant M such that

Ip(T)|| < M sup |]p(2)]l, (1)
|2|<1

for every polynomial p.

It is a well known theorem of Sz. Nagy and C. Foias [8] that if X is a Hilbert
space and T is a completely nonunitary contraction on X with spectrum o(T)
such that m(o(T)NT) = 0, where I denotes the unit circle and m is the Lebesgue
measure on I', then |[T"z| — 0 as n — oo, for all z in X. According to von
Neumann’s inequality (see e.g. [8]), every contraction operator T satisfies (1)
with M = 1, hence every contraction is a power bounded operator. However,
G. Pisier [9] has shown that not every polynomially bounded operator on a Hilbert
space is similar to a contraction. The proof of the above result of Sz. Nagy and
C. Foias uses the theory of unitary dilations of contractions and, therefore, cannot
be extended to polynomially bounded operators on a Hilbert space.
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In this note, we extend the Nagy—Foias theorem to polynomially bounded
operators on Banach spaces.

Throughout the paper, D is the open unit dist, I" is the unit circle and A(D)
is the disk algebra of functions analytic in D and continuous in D.

2. The Limit Isometry

Let T be a power bounded operator on a Banach space X, i.e., T satisfies
the condition sup,~q |[|T"|| < co. By introducing the equivalent norm |||z||| =
sup,so |T"z||, we can always assume, without loss of generality, that T is a con-
traction. This implies that lim, . ||T"x|| exists for all z in X.

The following construction associates with T" another Banach space F, a natu-
ral homomorphism @ from X to E and an isometry V on E such that QT =V @
and o(V') C o(T). This construction has proved useful in many investigations on
the asymptotic behavior of semigroups of operators (see [2, 7, 10-13]).

Lemma 1. Let T be a power bounded on a Banach space X. There exists
a Banach space E, a bounded linear map Q of X into E with dense range, and
an isometric operator V on E, with the following properties:

1) Qz =0 if and only if inf,> || T"z|| = 0;

2) QT =VQ (s€9);

3) o(V)Co(T),Po(V*) C Po(T*).

The operator V' in Lem. 1 is called the limit isometry of T'. Recall the con-
struction of F, @ and V. First, a seminorm on X is defined by

l(z) = lim |[T"z|, z € X.
n—o0

Let L = ker(l) = {z € X : I(z) = 0}. Consider the quotient space X = X/L,
the canonical homomorphism @ : X — X, Qz = Z, and define a norm in X by

(&) =1(z), z € X.

The operators T' generate the corresponding operator T on X in the natural way,

namely
T :=Tx, x € X.

Clearly, T' is an isometric operator on the normed space X, since

[(T#) = lim |T™(Tz)| = i(2), = € X.

n—oo

We denote b}/f\ FE the Acompletion of X in the norm [ , and by V the continuous
extension of T from X to E. All properties 1)-3) can be verified directly.
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An operator T is called stable, if the discrete semigroup {T"},>¢ is stable,
ie., lim, o0 [|[T"z| = 0 for all z € X. Note that in the above construction
the subspace F is nonzero if and only if T' is nonstable. On the other hand, if
inf,>o |[T"|| > 0 for all z € X, x # 0, then T is said to be of class C;. From
o(V) C o(T) it follows that if o(T) does not contain the unit circle, then o (V)
also does not contain the unit circle, so that V' is an invertible isometry.

3. Stability of {T"}

An important property of polynomially bounded invertible isometries is that
they possess a functional calculus for continuous functions on their spectra.

Lemma 2. Let V be a polynomially bounded invertible isometry on a Banach
space E. Then the algebra A(V') is isomorphic to C(o(V)).

Proof. It wasshown in [6] that there is a homomorphism ¢ : C(I') — L(F)
such that [|¢|| < M, i.e., there is a functional calculus on C(I') which satisfies:
If(T)]| < M||f|lo- Moreover, f(T) is completely determined by its values on
o(V), and the spectral mapping theorem holds: o(f(V)) = f(c(V')). Therefore,
the functional calculus can be defined for C(o(V)), and we have

sup [f) < If(VII <M sup [f(A)],
Aea(V) A€a(V)

i.e., the homomorphism is in fact an isomorphism.

Now let T' be a polynomially bounded operator on a Banach space X. Assume
that T is not stable, i.e., there exists x € X such that ||T"x|| does not converge
to 0. Then the Banach space E, defined in Lemma 1, is nonzero, and we can
speak about the limit isometry V. Assume that V' is invertible (which holds, e.g.,
if T has a dense range or o(7T) does not contain the whole unit circle).

Lemma 3. Let T be polynomially bounded, nonstable, and let E and V be as
i Lemma 1 such that V is an invertible isometry. Then there exists a family of
measures |i, .=, where z € B,z* € E*, such that

(f(V)z, 2y = / F\dps 2 () 2)
a(V)

for every function f in C(a(V)).

Proof. Since T also is polynomially bounded, it follows easily that V also
is polynomially bounded. In fact, we have

[(p(T)2) = limy o0 | T"p(T)]| < [Ip(T)] limy-so0 [T
= Ip(T)li(#) < M supy,<; [p(2)[I(2),
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which mplies [[p(T)| < Msupp,< [p(2)], hence [p(V)| < Msupp,ic, [p(2)],
i.e., V is polynomially bounded. Lemma 2 implies that A(V') is isomorphic to
C(o(V)). Therefore, for each z € E,z* € E*, the mapping f — (f(V)z,2*) is
a continuous linear functional on C'(o(V')). Hence, by Riesz’s theorem, for every
z € E,z € E*, there exists a measure p, .« on o(V') such that (2) holds.

Note that, in general, V does not have a spectral measure, i.e., it is not a spec-
tral operator in the sense of N. Dunford [4]. But formula (2), which resembles
the functional calculus for spectral operators of scalar type and holds in our case
only for continuous functions f on the spectrum of V', will be one of the main
ingredients in the proof of Lemma 5 below.

Lemma 4. Suppose that T is a polynomially bounded operator on a Banach
space X. Then for every function f € A(D) one can define a bounded linear
operator f(T) on X such that:

1) If f =1, then f(T) =1I;

2) If f(A\) = A, then f(T) =T;

3) The mapping f — f(T) is an algebra homomorphism from A(D) into L(X)
satisfying |f(T)]| < M|l

The proof of Lemma 4 is straightforward. In fact, we first define f(7) for
polynomials f in the standard way. Then, using von Neumann’s inequality, we
can extend this definition to the functions of the class A(D) using approximations.

In the sequel, an invertible operator S on X is called doubly power bounded
provided that both S and S~! are power bounded, i.e., if sup, ¢z [|S™|| < co. It is
easy to see that if S is doubly power bounded, then S is an (invertible) isometry
in the equivalent norm |||z||| = sup,¢z [|S" x|, z € X.

Lemma 5. Assume that:

1) T is polynomially bounded operator on a Banach space X .

2) There does not exist an invariant subspace K with respect to T* such that
T*|K is invertible and doubly power bounded.

Then the measures i, .« are absolutely continuous with respect to the Lebesgue
measure.

P roof. Assuming the contrary, i.e., there exist z € E, z* € E* such that
[tz -+ is not absolutely continuous with respect to the Lebesgue measure m. This
implies that there exists a compact set K with m(K) = 0 and p, . (K) # 0.

By Fatou’s theorem (see e.g. [6, p. 80]), there exists a function h € A(D)
such that

h(A\) =1, if \€ Kand |h(\)| <1lifX€e D\ K < 1. (3)

Journal of Mathematical Physics, Analysis, Geometry, 2007, vol. 3, No. 2 237



G. Muraz and Q.Ph. Vu

Let A(\) := h()). Then 7L~E A(D), ||h|| = 1. Since V* also is a polynomially
bounded invertible isometry, h™(V*) is defined and satisfies

sup A" (V¥)]| < M < oo. (4)
n>0

Fix a nonzero functional z* in E*. By (4) and the weak"* compactness of the unit
ball in E*, there exists a subsequence ny, such that h™ (V*)z* — 2§ in the (E*, E)-
topology. Define two functionals z* and zj in E* by

z*(z) = 2* (%), z5(z) = z5(2), = € X. (5)
Then, for every vector x in X, (5) implies that
(A" (T*)z*)(z) = o* (h™* (T)z) = 2*((h™ (T)x))
= (B (V)E) = (W (V*)2*) (3).
Therefore,
limg o0 (A7 (T*)2%) (&) = Ty o0 (B (V) 2°) (2)
= 73(#) = zj(),

i.e., K™ (T*)z* converges to z} in the (X, X*)-topology. Now we have, by adopting
(4)-(6) and the Dominated Convergence Theorem,

zg(y) = lim (A" (T*)z")(y)

k—o00
= lim z5(h"™ (T)y) = lim z*(h"*(V)g)
k—o0 k—o00

. n A
= klgrolo R (e")dpug, 2= (X) = pg, o= (K).

Since pu, .« (K) # 0, and X is dense in E, there exists ¢ such that tg,o (K) # 0,
so that zj # 0.

By Rudin-Carleson’s theorem (see e.g. [6, p. 80]), there exists a function
¢ € A(D) such that

(™) = e for A € K and ||§]|oo = 1. (6)
We show that

T* (T )y = - (7)
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Indeed, we have, in view of (4)—(6),
(I = T*(T*)]25)(y) = x5 ([T — TH(T)]y)
= 25 ([T = Vo(V)]i) = limg o0 [B™ (V*)2")([1 —
= limy 00 2" (A" (V) [T = V$(V)]9)
= limsoo | A7) = (e - (3
= [(1- e“\qﬁ e))dpg .-(A) =0, forall y € X,
K

Vo(V)1g)

which implies that (7) holds.

Now let W := ¢(T*). Then (6) and (7) imply that sup,~q [|[W"| < M, and
(WTH™(T**xy = (T*)kzs, k = 0,1,2,.... Let K := 3pan{(T*)*z} : k > 0}.
Then K is invariant subspace for 7%, T*| K is invertible (with the inverse equal W)
and sup,cz |(T*|K)"|| < M, which is a contradiction.

R em ark. Lemma 5 has been proved in [10, Prop. 2.1], for contractions on
Hilbert space, and here we generalized this proof.

From Lemma 5 we obtain the following result which is a generalization of
the Nagy-Foias theorem.

Theorem 1. Let T be a polynomially bounded operator on a Banach space X
such that o(T) N T has measure 0. Then the following are equivalent:

(i) T"z — 0 for every z € X;

(i) T* does not have an invariant subspace K # {0} on which T*|K is
wnvertible and doubly power bounded.

Proof. Since o(T) NI has measure zero, it follows that o(V') NI also has
measure zero, hence V' is an invertible isometry.

Suppose that (i7) holds, we show that (i) holds. Assuming the contrary, we
have E # {0}. By Lemma 5, the measures m, .-,z € E,z* € E*, are absolutely
continuous with respect to the Lebesgue measure. From m(o(V)) = 0 it follows
that m, ,«(o(V)) =0, i.e., all the measures m, .- are zero, which is an absurd.

Now suppose that (i) holds but (ii) does not hold. Thus, there is a nonzero
subspace K of X* which is invariant under 7% and such that T*|K is invertible
and sup,,cz ||(T*|K)"|| < oco. Let S = T*|K. Fix an element z* in K, z* # 0.
Then {S "z* : n > 0} are uniformly bounded, hence z*(z) = (S™(S™™)z*)(z) =
(T*)"S™"z*|(z) = [S™"z*|(T"x) — 0, for all z € X, which is a contradiction.

Note that Theorem 1 can be regarded as an analogue of the stability results in
[1, 7, 10] (see also [11-13])where the condition that m(o(7T) NI') = 0 is replaced
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by countability of o(T) N T, and condition

T* does not have an invariant subspace K # {0}
such that T*|K is invertible and doubly power bounded

is replaced by

[1]
2]
[3]
[4]
[5]
[6]

7]
18]
[9]

[10]

[11]

[12]

[13]

240

T*does not have eigenvalues on the unit circle.
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