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1. Introduction

Let (fi)p2, be an arbitrary sequence of complex numbers. For 0 < R < oo
by A(R) we denote the class of analytic functions

flz) =" fud¥, (1)
k=0

in the disk {z : |z| < R}. The denotement f € A(0) means further that either
f € A(R) for some R > 0 or the series (1) converges only at the point z =0, i.e.,
A(0) is a class of formal power series. Clearly, A(R2) C A(R;) for all 0 < R} <
Ry < oo. We say that f € AT(R) if f € A(R) and f > 0 for all k& > 0.

o0

For f € A(0) and I(2) = 3 I2F € A1(0) the formal power series
k=0

oo

Dif() = fynh (2)

[
k=0 k+n

is called [1-2| the Gelfond-Leont’ev derivative of the order n. If [(z) = €, that
is I = 1/K!, then DPf(2) = f(™(2) is a usual derivative of the order n. We can
assume that [ = 1.
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As in [2], let A be a class of all positive sequences A = (A\;) with A; > 1, and
let A* ={X € A: In); < ak for every k € N and some a € [0,+00)}. We say
that f € A\(0) if f € A(0) and |fx| < Ag|f1] for all & > 1. Finally, let N be
a class of increasing sequences (n,) of nonnegative integers, ng = 0.

Studying of conditions on the Gelfond-Leont’ev derivatives, under which series
(1) represents an entire function, was started in [2]. In particular, the following
theorems are proved.

Theorem A. Let (n,) € N. In order that for every A € A, f € A(0) and
I € A*(c0) the condition (VpiZJr){D?pf € Ax(0)} implies f € A(o0), it is
necessary and sufficient that Bﬂ_n (Np1 —np) < 00.
P 00

Theorem B. Let (n,) € N, | € AT(00) and the sequence (lg—1lg+1/13) be
nondecreasing. In order that for every X € A* and f € A(0) the condition (Vp €
Z1){D;" f € Ax(0)} implies f € A(co), it is necessary and sufficient that

1
lim In— » = 4o0. 3
p—+00 np + 1 np+1 Z n] nj_1+1 ( )

A problem on finding conditions on [ € AT(0), A € A and (ny) € N, un-
der which the condition (Vp € Z,){D,”f € A,(0)} implies f € A(R), R > 0,
is natural. In [3] the following analog of Th. A is proved.

Theorem C. Let (ny) € N and let R[f] and R[l] be the radii of developments
into power series of f and l. The condition lim (n,y1 —ny) < 400 is necessary
p—00

and sufficient in order that for every X € A, f € A(0) andl € AT (0) the condition
(Vp € Z4){D;” f € A\(0)} implies the inequality R[f] > PRl with some constant
P >0.

The main result of this paper is the following analog of Th. B.

Theorem 1. Let (n,) € N. In order that for every f € A(0), [ € AT(0) and
X € A such that the sequence (I —1lk41/1%) is nondecreasing and g1 M\p41/A3 > 1,
k > 2, the condition (Vp € Z.1){D,” f € A\(0)} implies f € A(R), it is necessary
and sufficient that

—plmll—Zlm%ﬁ1 >In R. (4)
j=1 nj—mn;— 1+1

. 1
lim In
p——too Np + 1 lnp—i—l

None of the conditions on A € A and [ € A*(0) in Th. 1 can be dropped in
general.
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2. Proof of Theorem 1

In [2] the following lemma is proved.
Lemma 1. If A € A, (ny) € N, f € A(0), I € A*(0) and D}'” f € A\(0) for
allp € Z 4 then

>‘k: — +1
| frp+rl < |1l lnp+lc H Anyng-itl (5)
j=1 n] nj_1+1

forallpeZy and kb =2,...,npy1 —np + 1.
First we prove the following theorem using Lem. 1.

Theorem 2. Let (ny) € N and the sequence X € A and the function | € AT (0)
be such that for allp € Zy and k = 2,...,npy1 —ny

I I
mpth—tboy kit ) leilen g Mo (6)

n n
2 2 2
lnp+k L Ak

In

If D" f € A\(0) for all p € Z then the estimate

In R[f] > lim In —plnl =Y In ”ﬂ ni—1t] 7
2 lim g phny Z (™
18 true and sharp.
Proof. From (5) for p — oo we have
In |fnp+k|
ny+k
P >\n-—n- 1+1
< Q0 by gk — I G + I Ap+pInly + In U B 4 o(1). (8)
’er + j=1 nj—mn;j_1+1
We put
Ao
Ap—plnll—i-Zln Znjnioitl
j=1 n;—mnj_1+1
and
Yo = Vkp = m{ln by —Inlp +In A+ Ap}, k=1,2,...,np41 —np+ 1.
iz
Then
O k=2 +1 (9)
— 1 = == ceea —n
Yk Yk—1 (?’Lp+k)(’l’bp+k — 1)7 ) y Tip4-1 D b
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where

O = (np +k— 1)(ln lnp-i-k —Inly+1n >\k:)
— (np + k)0 Ly ey — In lp—y +1n Ag_y) — A,

In view of (6)

2 2 \2

bk —tlny k41 In le—1lg+1 1 >\k1>\k+1> >0
np+k B

Opr1 — O = (np + k) (hl

k=2,...,npp1 — nyp,

ie, dg < -+ < 0pyyyny41. If all 6 > 0, then in view of (9) yx > y,—1 for all
k=2,...,np11 —ny+1and max{yy : 2 <k <npp1 —np + 1} = Yyt
If all 0 <0, then v, < y,_y forall k =2,...,np41 —np, + 1 and max{y, : 2 <
k< Np+1 — Np + 1} = ;. Finally, if §o <. < 519071 <0< 5190 <.. -6np+1—np+1
for some kg, 2 < kg < nppq —np + 1, then -1 < Ypg—2 < -+ < 71 and
Yoo—1 < Yho <+ < Vnppy—np+1- Lhus,

max{y; : 1 <k <npy1 —n,+ 1} = max{y, fynp+1_np+1}.

Since )
v = S l{ln lnp-i-l —Inli +In X\ + Ap},
P
and
1
Tnpi1-—np+l = m{ln lnp+1+1 —In lnp+1*np+1 + In >\’n‘p+17np+1 + A:ﬂ}
1
P

from (8) for 1 <k < np41 —ny + 1 we have

In | fr, 4kl < max { Inln,114+Ap Ily 41+ Apia
np+k np+1 npt1 + 1

}4—0(1), p — 00,
ie., for p = o0
1 | 1
n
np+k |fnp+k|

1 1 1 1
> min —A,), In —A +o(1).
- {’flp +1 (ln lnp+1 p> Np+1 +1 ( lnp+1+1 p+1> } ( )

Hence it follows

In RIf] > lim — ( 1 —Ap),

p—oo Np +1 In lnp+1
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that is in view of the definition of A, the estimate (7) is proved.

For the proof of its sharpness we consider a power series

o0
z) - Z fnk+1znk+1' (10)
k=0
Since for the series (10)
1
D" f(2) = Z n;;ﬂp“fnkﬂznrnpﬂ,
k=p ng+1

then D?pf € Ax(0) for all p € Z if and only if for all p € Z, and k > p

ln —n,+1 l
k7p|fnk+1| < >‘nk np+ll |fnp+1| (11)

lnk+1 np+1

It is easy to see that if f1 > 0 and

- +1
frpt1 = A | | Anyny it , k>1, (12)
j=1 n]—nj 141

then (11) holds if and only if forallp € Zy u k > p

k
>\nj —nj_1+1 < lp+1 k>\nk np-i-l (13)
j=p+1 lnj —nj—1+1 lnk np+1
We suppose that [ > 1, and A\, /I, = exp{(k — 1)p(k — 1)}, k > 2, where ¢ is

positive, continuous and nondecreasing function on [0, +00). Then

By k k
nj—nj—1tl I | e(ni—nj—1)p(nj—n;j_1) < H (i —nj—1)p(ni—np)
ln:—ms - -
g=pb1 ML g i=p+1

— emr—np)p(np—np) _ 7An’f nptl < lp+1 k;\”k mptl
lnk —np+1 lnk np—l—l

i.e., (13) holds and, thus, D;"” f € A,(0) for all p € Z. Since for the series (10)
with the coefficients (12) the equality

1 1 n —ni_1+1
In R[f] = lim In —plnil; — In —4/———2— 14
[f] p—+oo Nip + 1 lnp+1 P 1 gzl nj—nj_1+1 ( )
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is true, then we need to show that there exist sequences (I;) and (\g) such that
A/l = exp{(k — 1)p(k — 1)}, k > 2, and the condition (6) holds.
Since for Mg/l = exp{(k — 1)p(k — 1)} the condition (6) takes the form

lnp—l—k—llnp—l—k—i—l

2
lnp+k

In + (k—2)p(k —2) + ko(k) —2(k — 1)p(k — 1) > 0,

it is sufficient to choose a sequence (Ij) such that Il > l,%, k > 2, and a func-
tion ¢ such that the function zp(z) is convex. The proof of Th. 2 is complete.

Proof of Theorem 1. At first we remark that if A € A, I € A'(0),
the sequence (Ig—1lg41/1%) is nondecreasing and A\g—1Ag11/A; > 1, k > 2, then
the condition (6) of Th. 2 holds. Therefore, if (4) holds, then (7) implies the
inequality R[f] > R, i.e. f € A(R). The sufficiency of (4) is proved.

On the other hand, from the proof of Th. 2 it follows that there exist f € A(0),
A €A, I e A(0) (for example, I = 1 and Ay = exp{(k — 1)p(k — 1)}, k > 2)
such that the sequence (Ix—1lk11/17) is nondecreasing, A\g—1Ag11/A; > 1 for k > 2
and D;” f € A,(0) for all p € Z and the equality (14) holds. Therefore, if the
condition (4) does not hold, then for the series (10) with the coefficients (12) we
have

1
lim In
p—+oo Np + 1 lnp—l—l

p
PN
—plnl =Y In ZH S g R,

= nj—nj—1+1

ie., f & A(R). Theorem 1 is proved.

3. Essentiality of the Conditions in Theorems 1-2

We suppose that n, = 2P for p > 1 (thus, nyy; —n, = n, for p > 2) and
consider a power series

o0
1) =3 (Fa ™ + far 2™ 1), (15)
k=0
where f() = 0, f1 = ]-, fn1 - >‘n17
k—2 k-1
Jr = lngbong_, H Hrnj+1; k>2, frt1 =lne H Pnj+15 k=1, (16)
Jj=0 J=0

and (up) is an arbitrary sequence of positive numbers. Since for the series (15)

X . — lp, —
D) =% < e~ fnk+lznk—np+1> ,

k=p ng lnk+1
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then D;” f € A,(0) if and only if for all k > p+1

b

lny,— l ln,—

k—nptl 1 Nk —Np

fnk < Ankfnpl fnp+1-
np+1

Jrp+1 < Ank—npﬂﬁfnpﬂa ]
np+ n

lnk+1

If I; = 1 then hence it follows that D;” f € A5(0) for all p > 0 if and only if for
allp>1

k

Anp+1 —"p Anp

iy < ST (17)
lnp+1_np lnp
and for all p > 0
k—1 A\ O k—2 A\
Nne—n Nne—n
[T inyn < T2 k> p+ 1, g, [ pnyn < 752, k> p+ 2. (18)
i=p lnk.—np—l—l i=p lnk—np

Choosing properly the sequences (Ix), (Ax) and (pg), we can show that the
conditions in Ths. 1 and 2 are essential.

For example, if [, = A\ and pg = 1 for all & > 1, then the inequalities (17)
and (18) are obvious and D, f € A,(0) for all p € Z.

Besides, if lp; = e e, loji1 = e~ (2+1 and b > a, then the condition (6)
does not hold,

1 1 LD V.
lim In —pluly =Y I ST A —p

pIoo np + 1 lnp+1 ]:1 lnj—nj—1+1
and
. 1 1
In R[f]= lim —In — =a,
p——+oo Mp Np

i.e., the inequality (7) does not hold and, thus, the condition (6) in Th. 2 can not
be dropped in general.

Now we show that the condition >\k—1>\k+1/>\z >1,k>2,in Th. 1 can not be
dropped in general. For this purpose we put Iy = 1 and pur = Ag for £ > 1, and
we choose the sequence (A) such that Agjr1 =1, Ag(j41) > Agj for all j > 1 and
In\,, = ng, k> 1. Due to the choice [ € A1(0), the sequence (I 1lx41/13) is
nondecreasing and it is easy to verify the fulfillment of conditions (17) and (18),
i.e., D" f € A5(0) for all p € Z.. Besides,

1 1 4 >\n-77L4 1+1
lim In —plnll—Zm# =0,

pIOO np + 1 lnp—l—l = lnj_nj—1+1
and X , 1 1 1
p—+oo Tlp Ny p—+oo Np np_1 2

i.e., the condition (4) holds with R =1, but f ¢ A(R).
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Finally, we show that the condition of nondecreasing for the sequence
(lk—1lk+1/12) in Th. 1 can not be dropped in general. We choose A\, = ¥, lop =
e (R o = e 1220 and py = 1/l Then A 1 Apy1 /A2 > 1,k > 2, and the
sequence (Ig—1lg+1/13) is not nondecreasing. The inequality (17) is obvious and
fork>p+1

k—1
> I i1 = Z In by, p,_y 1 = 12 Z —nj_1)? <12(ng — ny)?
J=p Jj=p+1 j=p+1

Ank—np—i—l

=—Inly, n,+1 <In

l ?
ng—np+1

that is the first inequality in (18) holds. Further, for & > p + 2 we have

k—2
I fny_y + 30 fiq1 = —Inly, Zlnln]+1—nk 1+12Zn
Jj=p
k—2 . A\
=4 12) 4 =4 g < o(2h - 2)? = 9 — mp) = In T,
;i — NE—"Np
J=p

that is the second inequality in (18) holds and, thus, D?pf € Ax(0) forallp € Z.
Besides,

1 1 -
lim In —plnll—ZlnM

potoo Np + 1 lnp+1 =1 nj—nj_1+1
P
= lim — { 12n? —Z —nj_1 +1)? +12(n; —nj—1)?)
p—+oo Mp j=1

P
= lim 1 12n - 132 —nj1)? - QZ(nj —nj_1) — Z 1

n
p=oo 1p j=1 j=1 j=1

= lim i{m@_?( —1)—2p+1—p}:+oo

p——+00

and

1 1 1 1 1 P 1
O T S\

p——+oo Tip np p——+oo Tip np lnp_l 0 ln]-+1
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2
1 1 L
lim — n2—n2 —12) n23 = lim —<{4P —4P71 12 @I
p——+oo Tlp P Z p—+too 2P ]ZO

1
= lim (—4""" +4) = —oo,

p——+00

that is the condition (4) holds with R = 400, but f & A(00).

4. Supplements and Remarks

Here we consider the case when the sequence A € A satisfies a condition of
the form A € A*.

Proposition 1. Let (n,) € N, the functionl € AT (0) be such that the sequence
(lk—1lg+1/13) is nondecreasing and In N\ < a(k — 1) for all k > 1 and some
€ (0, +o00). If D;'* f € A\(0) for all p € Z, then the estimate

1 1
In R[f] > lim In —plnl; — ln —a 19
[f] p—+oo Np + 1 lnp-i-l ! Z n]—n] 1+1 ( )

15 true and sharp.

Indeed, from the conditions In A\, < a(k —1) for all kK > 1 and D;? f € A,(0)
for all p € Z it follows that Dln”f € Ax-(0) for all p € Z4, where In \} =
a(k —1). Tt is clear that A\;_ A;; = (A;)? and, since the sequence (Ix_1lg+1/17)
is nondecreasing, the condition (6) of Th. 2 holds. Therefore, from (7) we obtain

In R[f]
> lim ! n In Zl Zl P
im n —pln il — n—— n -
oo Tip + 1 Iy i1 pin i n]_n] ) nj—ng;_1+1
1 1 L
> lim In —plnl — ln —a = nio1) g,
p——+oo Mp +1 lnp+1 Z nJ —nj—1+1 Z 7~

whence the inequality (19) follows.

For the proof of sharpness of the inequality (19) it is sufficient to consider
the series (10) with the coefficients (12) and choose A\ = I, = ¥~ Then the
inequality (13) holds (thus, D, f € A,(0) for all p € Z,) and

1 1 ) 1 1

In R[f] = lim In = lim In
[f] p—too Np + 1 fnp+1 p—=+too Np + 1 lnp+1
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1 1
= lim In —plnl; — ln —a.
p—+oo Np + 1 lnp—i—l Z n] —nj_1+1

Proposition 1 is proved.

We remark that the condition In A\, < a(k — 1) in Prop. 1 can not be re-
placed in general by the condition In Ay < ak and moreover by the condition
klim (In A\p)/n = a. Indeed, let n, = p + [\/1_)] for all p > 0, \y = e*, and

—00

I, =€ forall k >2,b>a,and l; = 1. It is easy to verify that for such A, and
li; the inequality (13) holds. Therefore, for the function (10) with the coefficients
(12) we have D, f € A(0) for all p € Z . Besides,

1 1
In R[f] = lim In —plnll—X:lnannijlJrl

p—too Np + 1 lnp—i—l = nj—nj_1+1
1 1
— lim In —plnll—Zln ~ Jim A2 P)
p—+oo Np + 1 lnp—i—l n] —nj_1+1 p—=oo Ny + 1
Y S In [ Zl 2
= —pln i1 — n —- — Za,
npy+1 lnp—l—l n] —nj_1+1

that is the inequality (19) does not hold.

We remark that from the proof of Prop. 1 it follows that if the sequence
(lk—1lk11/13) is nondecreasing, Ay = 1 for all k > 1 and D;”f € A,(0) for all
p € Z4, then

1 1
In R[f] > lim In —plnl — Zln , (20)

potoo Np + 1 lnp—i—l nJ —nj_1+1

and moreover the condition Ay = 1 can not be replaced in general by the condition
In Ay = o(k), k — oo. However the following proposition is true.

Proposition 2. Let (n,) € N, In A, = o(k) as k — oo, | € AT(0) and the
sequence (pg—1pk+1/p2) is nondecreasing, where py, = l/Xg. If D" f € A5(0)
for all p € Z then the estimate (20) is true and sharp.

Indeed, from the inequality (5) we have

p
Hnp+k 1
| gt < F1I A — Il
Np 17'\np Lk et lunj—nj—1+1
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forall p € ZL w k = 2,...,np11 — np + 1, whence in view of the condition
In A\ = o(k), k — oo, we have
In |fnp+k|
ny +k
. 1
< In gy, vp —In pg +pln Iy + In — > 4+0(1), p— o0.
’er + k et ]ZI //Lnj 7nj,1+1 ( )

Since the sequence (pg—1pk+1/p2) is nondecreasing, hence as in the proof of Th. 2
we obtain for all p € Z and k = 2,...,npy1 —np + 1

1 1 1 1 P 1
In > min In —plnll—Zlni ,
np+k | frtkl np+1 Ponp+1 Pnj—n;_1+1

i=1

1 ptl 1

— | In —(p+1)Ini — In —— +o(1), p— oo,
np+1+1 Hrpy1+1 Z Bnj—nj_1+1

Jj=1
that is

1
In R[f] > lim In
p—+oo Np + 1 Hnp+1

u 1
oy =S ———
Z Mnj—nj_l-i—l

=
Since pg = lg/A, and In Ay = o(k),k — 0o, hence we obtain the inequality (20).
For the proof of its sharpness it is sufficient to consider the series (10) with the
coefficients (12), where Ay = 1, \y = k — 1 and I, = (k — 1)e*~! for k > 2.
Proposition 2 is proved.

From the proof of Prop. 2 one can see that in Th. A nondecreasing of sequence
(lk—1lg+1/13) can be replaced by the following condition: there exists a positive
sequence (vy) such that Invy = O(k), k — oo, and (ug_1pk+1/p;) does not
decrease, where py = lpvg.

Finally, the following proposition supplements Th. A.

Proposition 3. For all A\ € A and [l € AT (0) there exists f € A(0) such that
Dl'f € Ax(0) for alln > 0 and R[f] = +o0.

Indeed, there exists an increasing to 400 function ¢ such that

2 1 1. Mg
———In———1 <pk), kE>1.
max{ k—lnlk_l’ ;I L }_(p( ), >
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We put fr = lpexp{—(k+ 1)p(k +1)}, kK > 1. Then
+ ok +1) = 400, k— o0,

and for allmn >0 and k> 1

Jitn _ o (btntDp(k+n+1) o —kp(k) ,—(n+1)p(n+1) < I Ak fn+1,
lktn - = U lom
that is R[f] = 400 and D}'f € A5(0) for all n > 0. Proposition 3 is proved.

We remark that in view of Th. A one can not replace R[f] = +o00 by R[f] =
R € (0, 400) in the last proposition.
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