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1. Introduction

Finsler geometry is an important generalization of Riemannian geometry.
It was introduced by P. Finsler in 1918 from the point of view of regular problems
in the calculus of variations. In Finsler geometry the metric is not to be quadratic
on tangent spaces, thus the structure of Finsler spaces is much more complicated
than the structure of Riemannian spaces. But many notions and theorems were
generalized to Finsler geometry from Riemannian geometry.

In [1, 2] the following result was proved.

Theorem 1. Let M" ! be an (n + 1)-dimensional Hadamard manifold with
the sectional curvature K such that —k% <K K —k%, ki,ko > 0. Let Q be a com-
pact A-convex domain in M™*! (ie., the domain, whose boundary is a regular
hypersurface with all normal curvatures that are greater or equal \) with X\ < ks.
Then there exist the functions a(r) of the inradius and B(R) of the circumradius
such that a(r) — 1/(nk1) and B(R) — 1/(nk2), as well as r and R, go to infinity

and that
A Vol (Q)

a(r)k—2 < Vol(09) < B(R).
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As a consequence, for a family {Q(t)}er+ of compact A-convex domains with
A < ko expanding over the whole space we obtain
A .. . Vol(2(1))
— < 1 f——————— <1 .
nkd S e ™ Vol(00(t) S e P Vol (00(t) S nk
Our goal is to generalize this theorem for Finsler manifolds. We consider
metric balls as the family {Q(¢)};,cg+. We shall also need bounds for one of non-
Riemannian curvatures, namely S-curvature. As a result we prove the following
theorem.

vol(Q() _ 1

Theorem 2. Let (M™' F) be an (n + 1)-dimensional Finsler-Hadamard
manifold that satisfies the following conditions:

1. Flag curvature satisfies the inequalities —k3 < K < —k2, k1, ko > 0.

2. S-curvature satisfies the inequalities ndy < S < ndy such that §; < k;.

Let B (p) be the metric ball of radius v in M™ with the center at point p €
ML St (p) = OB (p) be the metric sphere. Let Vol = [ dVr be the measure
of Busemann—Hausdorff, Area = [dAp the induced measure on SP*(p). Then
there exist functions f(r) and F(r) such that f(r) — 1/(n(ke — d2)) and F(r) —
1/(n(ky — 61)) as r goes to infinity and that

Vol(Br(p))
r) < ———r L F (),
TS reatsp) <77
Here
f(’f') — 1 1 _ n (e—2k2r - e—m"(kz—ﬁg))
(1 — e—2k2r)n n(k‘2 — 52) ’I’L(kg — 52) — 2ko
1
— 1— —nr(ki1—41) ]
Fr) = (o )
As a consequence, for a family {BI(p)}, >0 we have
n+1 n+1
! < lim inf Vol(B;™_(p)) < lim sup Vol(Br™_(p)) < !

n(ky —03) oo Area(SP(p)) oo T Area(SP(p)) o n(ki — 1)
If (M"Y, F) is a space of constant flag curvature K = —k? and S-curvature
S =mnd, 0 <k, we have

L Vel(Brt(p) 1
3% Area(S(p))  nlk—0)

For a Riemannian space S = 0 and thus Th. 2 turns to be a special case of
Th. 1.
In Section 4 we give the estimates for the volume growth entropy of the balls.
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2. Preliminaries

In this section we recall some basic facts and theorems from Finsler geometry
that we need. See [3-5] for details.

2.1. Finsler Metrics. By definition, a Finsler metric on a manifold is
a family of Minkowski norms on tangent spaces. A Minkowski norm on a vector
space V" is a nonnegative function F' : V™ — [0, c0) with the following properties:

1. F is positively homogeneous of degree one, i.e., for any y € V" and any
A >0, F(Ay) = AF(y).

2. Fis C* on V"™\{0} and for any vector y € V™ the following bilinear sym-
metric form g, : V" x V" — R is positively definite,

82

9y(1,0) 3= 5 5 [F2y + s+ t0)lo=io.

Property 2 is also called a strong convezity property.

A Minkowski norm is said to be reversible if F(y) = F(—y), y € V™. In this
paper, Minkowski norms are not assumed to be reversible.

By 1. and 2., one can show that F(y) > 0 for y # 0 and F(u + v) <
F(u) + F(v). See |4] for a proof.

A vector space V" with the Minkowski norm is called a Minkowski space.
Notice that reversible Minkowski spaces are finite-dimensional Banach spaces.

Let (V™, F) be the Minkowski space. Then the set I = F~!(1) is called the
indicatriz in the Minkowski space. It is also called the unit sphere.

A set U C V"™ is said to be strongly convex if there exists a function F' satis-
fying 2. such that OU = F~!(1). Remark that a strong convexity is equivalent to
a positivity of all normal curvatures of QU for any Euclidean metric on V™.

Let M™ be an n-dimensional connected C'*°-manifold. Denote by TM" =
|l cam TeM™ the tangent bundle of M™, where T, M" is the tangent space at .
A Finsler metric on M™ is a function F' : TM™ — [0,00) with the following
properties:

1. Fis C* on TM™\{0}.

2. At each point z € M", the restriction F|p,pm is a Minkowski norm on
T, M"™.

The pair (M", F) is called a Finsler manifold.

Let (M™, F) be a Finsler manifold. Let (z*,4") be a standard local coordinate
system in TM™, ie., y* are determined by y = ¢ aii |z. For a non-zero vector
y =1 a?ai’ put g;;(z,y) := %[F2]yiyj (z,y). The induced inner product g, is given
by

gy (u,v) = gij(z, y)u'v?,
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a +
ox?

By the homogeneity of F, we have F(z,y) = \/g9y(y,y) = \/9ij (%, y)y'yi.
In the Riemannian case g;; are the functions of x € M"™ only, and in the
Minkowski case g;; are the functions of y € T, M™ = V" only.

|z, v = v 321 |-

where u = u’

2.2. Measuring of Area. The notions of length and area are also generalized
to Finsler geometry.
Given a Finsler metric ' on a manifold M".
Let {e;}"_, be an arbitrary basis for T, M™ and {"}"_, a dual basis for T M™.
The set
B ={(y") e R" : F(z,y'e;) < 1}

is an open strongly convex subset in R", bounded by the indicatrix in T,M".
Then define
dVi = op(x)0t A ... A O,
where
L VOlE(Bn)
op(z) = Volp(Br)’

Here Volg(A) denotes the Euclidean volume of A, and B” is the standard unit
ball in R™.

The volume form dVp determines a regular measure Volp = f dVr and is
called the Busemann—Hausdorff volume form.

For any Riemannian metric g;; (z)u'v? the Busemann-Hausdorff volume form
is the standard Riemannian volume form

dV, = y/det(gi;)0" A ... A O™

Let ¢ : N*~! — M™ be a hypersurface in (M", F).

The Finsler metric F' determines a local normal vector field as follows. A vector
ng is called the normal vector to N*~' at z € N" ' if n, € Tw(x)M" and
gn, (y,nz) = 0 for all y € T,N™ 1. Tt was proved in [4] that such vector exists.
Notice that in general nonsymmetric case the vector —n, is not a normal vector.

Define now an induced volume form on N™~!. Let n be a unit normal vector
field along N"~!. Let F = ¢*F be the induced Finsler metric on N*~! and dVi
be the Busemann-Hausdorff volume form of F. For z € N"~! we define

_ Volg(B") Volg(Bl " (ng))

(na) = G (BE) Volp(E-T)

Here B? = {(y’) € R" : F(y'¢;) < 1}. To define B? !(n;) we take a basis {e;}I",
for Tw(x)M" such that_el = n, and {e;}!" , is a basis for T,N"~!. Then B"~!(n,)
={(y’) e R*"!: F(y’e;) < 1}, where the index j passes from 2 to n.
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Note that if F' is a Riemannian metric, then { = 1.
Set
dAp = ((z,ng)d V5.

The form dAp is called the induced volume form of dV with respect to n [4].
The sense of defining such volume form is given by the co-area formula [4].
We shall need the co-area formula in one simple case for metric balls:

r

Vol(B(r,p)) = / Vol(S(t,p))dt. (1)
0

Here Vol(S(t,p)) is the induced volume on S(¢,p).

2.3. Geodesics, Connections and Curvature. Locally minimizing curves
in a Finsler space are determined by a system of second order differential equations
(geodesic equations).

Let (M™, F) be a Finsler space, and ¢ : [a,b] — M"™ be a constant speed
piecewise C™ curve F/(c,¢) = const. Denote the local functions G*(z,y) by

_ 1. 9. 9. _
G'(z,y) = Zg”(w,y) {2$(:v,y) — %(fﬂ,y)} Yy

We call G*(z,y) the geodesic coefficients [4]. Notice that in Riemannian case
Gi(xz,y) = 3T (2)y'y". . |

Consider the functions Nj(z,y) = g—f;(x,y). They are called the connection
coefficients. At each point z € M™, define a mapping

D : T, M" x C®(TM") — T,M"

by

DU = {dU*(y) + UIN} (2, )}
where y € T,M"™ and U € C*(TM™). We call D,U(x) the covariant derivative
of U at z in the direction y.

If ¢ is a solution of the system Dg¢ = 0, then it is called geodesic.

Next, we introduce a notion of curvature in Finsler geometry. At first, we
consider the generalization of Riemann curvature. In 1926, L. Berwald extended
the Riemann curvature to Finsler metrics.

Let (M™ F) be a Finsler space. For a vector y € T, M™\{0} consider the
functions

oG" PG - 0°GY 0G* 0GI
k
i (¥) ozt Ox oyk v Oyioyk Oyl Oyk
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For every vector y € T, M™\{0}, define a linear transformation

0
Ry = R} (y)

e ® dz*|,.

Then the family of transformations
R=A{R, :T,M" = T,M",y € T,M"\{0},z € M"}

is called the Riemann curvature [4].
Let P C T, M™ be a tangent plane. For a vector y € P\{0}, define

._ gy(Ry(u),u)
K(Py) = 9y (Y, 1) gy (u, u) — gy (y, u)?’

where u € P such that P = span{y,u}. K(P,y) is independent of u € P.
The number K (P,y) is called a flag curvature of the flag (P,y) in T, M™".

The flag curvature is a generalization of the sectional curvature in Riemannian
geometry. It can be defined in another way. For a vector y € T, M™\{0} consider
the Riemannian metric §(u,v) = gy (u,v). Here the vector field Y is an arbitrary
extension of the vector y. Then the flag curvature K (P, y) of the flag (P,y) in the
Finsler metric F' is equal to the sectional curvature of the plane P in the metric
G(u,v) . If we change y, then §(u,v) and K(P,y) will also change [3].

Define the Ricci curvature by

Ric(y) =) Ri(y).
=1

A simply-connected Finsler space with nonpositive flag curvature is called
a Finsler—Hadamard space. In these spaces the generalization of Cartan—Hada-
mard’s theorem holds [6].

The notions of exponential map, completeness, cut-locus, conjugate and focal
points in Finsler geometry are defined in the same way as in Riemannian geometry.
For details, see [4].

Finally, we introduce some more functions which are called non-Riemannian
curvatures. These curvatures all vanish for Riemannian spaces. We shall need
only one of these curvatures, which is closely connected with the volume form.

Let (M™,F) be a Finsler space. Consider the Busemann-Hausdorff volume
form dVp with the density or. We define

det(gij(2,))
O'F(.’L‘)

7(z,y) =In ,y €T, M™

7 is called the distortion of (M™, F). The condition 7 = const implies that F is
a Riemannian metric [4].
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To measure the rate of changes of distortion along geodesics, we define

d .
S(z,y) = o [T(c(t),¢(t))] =0, ¥y € TeM™,
where ¢(t) is a geodesic with ¢(0) = y. S is called the S-curvature. It is also
called the mean covariation and mean tangent curvature. A local formula for the

S-curvature is
y™ Oop

—(z).
or(x) 8xm( )
One can easily show that S = 0 for any Riemannian metric.
A Finsler metric F is said to be of constant S-curvature § if

S($7y) = Nrrrrzl(]:ay) -

S’(m,y) = (5F(,’L‘,y)

for all y € T, M™\{0} and = € M™. The upper and lower bounds of S-curvature
are defined in the same way.

2.4. Geometry of Hypersurfaces and Comparison Theorems. Let
(M™,F) be a Finsler manifold and ¢ : N*! — M™ be a hypersurface. Let
F = ¢*F denote the induced Finsler metric on N"~!. Let p be a C*-distance
function on an open subset U C M™ such that p~(s) = N" ! N U for some
s. Let dVg denote the Busemann-Hausdorff volume form of F, dA; denote the
induced volume form of N/*"! = p~!(#). Let c(t) be an integral curve of Vp
with ¢(0) € N1, We have p(c(t)) = t, hence c(e) € Nsn_i__g1 for small £ > 0.
By definition, the flow ¢. of Vp satisfies

de(c(s)) = c(s +e).
¢e : N"'nU =N — NI
The (n — 1)-form ¢fdAs;. is a multiply of dAs. Thus there is a function
O(z,e) on N1 such that
PrdA sl = O, )ALy, Vo € N1,

O(z,0) =1, Yz € N™ L.
Set

0
I, = e (InO(z,¢)) [e=0-

IT,,, is called the mean curvature of N* ! at z with respect to ng := Vo, [4].
We also need some estimates on the mean curvature of metric sphere. The fol-
lowing theorem gives these estimates. For a given real A, put
sin(v/At)

sx(t) = A A >0,
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SA(t) =t A=0,

inh(v/—At
sy(t) = SBRVEAY)
V=X
Theorem 3 [4]. Let (M™, F') be an n-dimensional positively complete Finsler
space. Let TI; denote the mean curvature of S(p,t) in the cut-domain of p with

respect to the outward-pointing normal vector.

1. Suppose that
K <A S<(n—1)o.
Then

T ON
0> (n =125 = (= )5 (2)

2. Suppose that
Ric>nX, S > —(n—1)d.

Then s
Ht < (n_ 1)8)\( )

+(n—1)0. (3)

Theorem 4 [4]. Let (M™, F') be an n-dimensional positively complete Finsler
space. Suppose that for constants X < 0 and § > 0 with /—X — 0 > 0, the flag
curvature and the S-curvature satisfy the inequalities

K <A S<(n—1)o.
Then for any regular domain @ C M™,

Vol(9)
(n—1)(V=A—10)

Vol(Q) <

Remark that the right-hand asymptotic estimate in Th. 2 is proved in Th. 4.

3. Relation between Area and Volume for the Balls
in Finsler-Hadamard Manifolds

In this section we prove Th. 2.

Proof of Theorem2. Let S;,,M”Jrl denote the unit sphere in
T,M"*!. Fix a vector y € S,M" L. Let {e;}7! be a basis for T, M ! such that

e1 =1y, gy(y,e;)) =0, i =2,...,n+1.
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Extend {e;}7_, to a global frame on T,M"*! in a natural way. Let {#"}"*/
denote the basis for T M™*! dual to {ei}?:ﬁl. Express dVr at p by

dVr(p) = op(p)0* A ... A O™,
B Volp(B™)
~ Volp({(y’) e R : F(yie;) <1})

Thus we obtain the volume form dV, on T,M""!. Denote by dA, the induced
volume form by dV,, on S, M"*1!.
Define the diffeomorfism ¢y : S, Mt — S7'(p) [4] by

or(p)

pily) = exp,(ty), y € S,M™, £ > 0.
Let dA; denote the induced volume form on Sj*(p) by dVr. Define

ne s SpyM™ ™ — [0, 00)

;A py(y) = M (y)dAply. (4)

Integrating (4) over S,M" ! we have

Area(Sy (p)) = / ne(y)dAp.
SpMnt1

Applying the co-area formula (1), we obtain

Vol(B;lJrl(p)) — / (/S o ns(y)dAp> ds.
0 P

Remark that in the Riemannian case 7; is the Jacobian of the exponential
map, and the explicit expression for the Jacobian gives us all the necessary
estimates. Unfortunately, the integration of these estimates only leads to the
"coarse" estimates for Finsler geometry.

Now, let us estimate 7;. For a small number ¢ > 0 define the flow

() = prie 0 9y ' (x), & € S (p). (5)

For a point z € S*(p), there is an open neighborhood U of x such that ¢. is
defined on U. The Cartan—Hadamard theorem guarantees the non-existence of
conjugate points in all M™! i.e., the existence of metric balls of arbitrary radii.

Define ©(z,¢) by

PrdAsicle = O(z,e)dAs],.
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Using (4), (5), we get

@(:E,&‘) _ 77t+8(y)

) i (y)- (6)

Let II; denote the mean curvature or Sj'(p) at = with respect to the outward-
pointing normal vector. From the definition of mean curvature and (6), we have

0 d
Iy = o= (In6(z,¢)) le=o = — (Inm(y)). (7)
Define x;(t) by
o ( —sesinh(kit)\"
Xl(t) - (6 k@ .
Then we have y
—(Inx;(¢)) = nk; coth(k;t) — no;. (8)

dt

Taking into account the restrictions on curvature we can apply Th. 3. Then
using (2), (3), we get

nky coth(k1t) — ndy < Iy < nks coth(kat) — nds.

d (n(y) d ((m(y)
at (xm) T (xlm) >0
Nt () x1 (t1) = myy (y)x1 (t2),

N, (Y)x2(t1) < ney (Y)x2(t2), 0 <t <to.

Integrating over S, M"*! with respect to dA,, we obtain

This implies

and

Area(St, (p))xi(t1) > Area (S]] (p))xa (t2),

Area(Sy, (p))x2(t1) < Area(Sy, (p))x2(t2), 0 < t1 < to.

Integrating from 0 to ¢y with respect to ¢;, we obtain

to
Area(S}. (p)) / X1 (B)dt > Vol (B (p))x (),
0

to

Area(SE (p)) / xa()dt < Vol(BIE () xa(t), 0 < .
0
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Hence, we get
xi(r) _ Area(SP(p)) _ _ xo(r)
Jo xa@®)dt = Vol(BF+(p) [y xa(t)dt’

or

5 (e7%*sinh(kst))" dt _ Vol(Bri(p) _ Jo (e=%tsinh(kqt))" dt
(e=%27 sinh(kor))" Area(SP(p)) ©  (e~%"sinh(kir))"

, r>0

Let us estimate these integrals.

(=it n ’ k kit
fO (6 1 s1nh(k1t)) dt 1 /(e—ﬁlte it _ o 1t> ”

(e=07 sinh(kyr))” (e oir)n okir _ g—kir

< 1 / (6*51t+k1(t*7‘)>n dt = enonr <6fn51r N efnk1r>
CEIDE (ks — o1)
0

_ 1
o n(k1 — 51)

We can estimate the following integral by using the fact that (1—a)” > 1—na
for0<a< 1.

(1 — efnr(k1751)> = F(r).

r

T —§ot . n ndsr n
fo (e 2 smh(kgt)) dt eno? X /e_mm (1 _e—2k2t> oken(t=r) gt

(e=%7 sinh(kor))" (1 — e=2kar
0

6n62r

(1 _ 6—2]927')”

endr 7 5ot 2ot kan(t
7 (1 — e~ 2kar)" /e_n 2 <1 —ne ) ehnltdt =
0

1 —ndar _ _—nkar\ _ n —ndar—2kar _ _—nkor
% [n(kg —5s) (6 ¢ ) (ks — 0) — 2ks (6 ¢ )

1 1
— _—n(ka—d2)r
(1= ¢ 2har)” [n(kQ — ) (1-¢ )

——(k2 — 52) ok (e_%?r — e_n(kz_‘b)r)] = f(r).

Thus, we have

Vol(B}+ (7))
TS realS7(0)

Using the inequalities §; < k;, we have

< F(r).
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. 1
T‘]ir{.lo f(lr) - n(kg _ 52) )
li F(r) = ————

As a consequence, we have

n+1
U o i g VOB ()
[ee]

Vol(Byti(p) _ 1
n(kg - 52) S5

p Area(S™(p)) ~ n(k1 —61) "

< i
Area(S?(p)) rroo o
In the case when K = —k%, k > 0, S = nd, § < k, by denoting k; = ky = k,
01 = 99 = 6§, we have
VolBrti(p) 1

rlggo Area (S (p)) - n(k—9)"

This completes the proof. [

Examplel Let U be an open bounded strongly convex domain in R".
Take a point z € U and a direction y € T,U\{0} ~ U\{0}. Then the Funk metric
F(z,y) is a Finsler metric that satisfies the following condition

m+L68U.

F(z,y)

The indicatrix at each point for the Funk metric is a domain that is a translate
of U.
The Hilbert metric is a symmetrized Funk metric:

1
F(z,y) = 5 (F(z,y) + F(z,~y)) -
Note that for the Funk metric Bl = U. Thus

_ Volp(B") _ Volp(B")

= = = t.
Volp(Br) ~ VolgU) "

O'F(.’L‘

Let F be the Funk metric and let F be the Hilbert metric on a strongly convex
domain U in R”.

Then the geodesics of Funk and Hilbert metrics are straight lines, the Funk
metric is of constant flag curvature —i, the Hilbert metric is of constant flag
curvature —1, and the Funk metric is of constant S-curvature nT‘H [4].

Let F be the Funk metric on a strongly convex domain U in R"*!. It is
known that the S-curvature is equal to S = ”T"'Q = nd, flag curvatures are equal
to —k? = —i. Then the condition § < k does not hold.
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It is known that for the Funk metric

Vol(B]}H(p)) B for (e_nz_ft sinh(%))ndt
Area(Sn(p)) (67%Tsinh(%)>n ;

and one can show that

n+1
VOB ()
r=oo Area(S7(p))
Indeed, using Mathematica program, one can compute that

rf _nt2y . n n n
fO (6 2n tSth(%)) dt (er _ 1) (e(zl)r(er _ 1))

n . n = (n+r)
(6_%2’" smh(%)) ntl e "ler—1)
It is clear that such function grows to infinity as r tends to infinity.
In an (n + 1)-dimensional Euclidean space such ratio also tends to infinity.
This shows that the restrictions §; < k; in the hypothesis of the theorem are
essential. ]

4. Estimates on the Volume Growth Entropy

Let (M™*!' F) be a Finsler manifold. Then the exponential speed of the
volume growth of a ball of radius ¢ > 0 is called the volume growth entropy of
(M™+1 F). The explicit expression for the volume growth entropy is given by

1
L (Vol(BI ()

t— 00 t

In this section we estimate the volume growth entropy of a Finsler—Hadamard
manifold with the pinched flag curvature and the S-curvature.

Theorem 5. Let (M"' F) be an (n + 1)-dimensional Finsler-Hadamard
manifold that satisfies the following conditions:

1. Flag curvature satisfies the inequalities —k% <K K —k%, ki,ks > 0.

2. S-curvature satisfies the inequalities nd; < S < ndo such that §; < k;.

Then we have

In(Vol(B*!
’I’L(kl — 51) S lim n( ° ( t (p)) S ’I’L(kg — (52)
t—o00 t
If (M™+1, F) is a space of constant flag curvature K = —k? and S-curvature
S =mnd, 0 <k, we have
1 Bn-l—l
t—o00 t
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Proof of Theoremb. Define x;(t) by
_5.psinh(k;t)\"

Zt: JZtSIH P

xi(t) (6 B —

It was proved in [3, 4] that under conditions 1 and 2 the volume of a metric
ball satisfies

S

Volg(S™) /Xl Vol(BfH(p)) < VOlE'(Sn)/XQ(S)dS. (9)
0

By direct computation, we have

Therefore, we get

. ln(Vol(B;H'l(p))
M t (ks = 02)
Next,
¢ h(k " t
/ ( Sln 13)> ds > kin/esn(?l(l o n672kls)eklsnd8
0 1o
— L ; etn(kl_(sl) _ 1) + n (etkl(n—2)—n61 _ 1)
k? ’I’L(kl —(51) kl(n—Z) —n(51
This implies
’ In(Vol (B2 (p))
lim r > n(ky — 01).
r—00 r
And Theorem 5 follows easily. ]

Example2 Let F bethe Funk metric on a strongly convex domain U in
R**1. Then the condition § < k does not hold.
Then, analogously as in Ex. 1, one can show that

n+1
iy (Vol(BE™ () _
t—00 t

In an (n+1)-dimensional Euclidean space such ratio also tends to infinity.
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This shows that the restrictions §; < k; in the hypothesis of the theorem are

essential.
In was shown in [7] that for the Hilbert metric F' on a strongly convex domain
U in R*H! O
1 B
o VOB ) _
t—00 t
Recall that n is precisely the volume growth entropy of H**t!. [
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