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theorem on exceptional values for our class.
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An almost periodic function with the bounded from below spectrum has some
specific properties. Namely, it extends to the upper half-plane as a holomorphic
almost periodic function f of exponential type (H. Bohr [2]), then log|f| and the
mean value of log | f| over a horizontal line (the so-called the Jessen function) are
of the same growth along the imaginary positive semi-axis (B. Jessen, H. Torne-
have [7] and B.Ja. Levin [9]). The last result (together with the discovered by
Ph. Hartman [6], and B. Jessen, H. Tornehave [7| connection between the Jessen
function, mean motions of argf(z), and a distribution of zeros for holomorphic
almost periodic functions on a strip) shows the regularity of functions of this
important class.

In the end of the last century, L.I. Ronkin created the theory of holomorphic
almost periodic functions and mappings defined on the tube domains of multidi-
mensional complex space [11, 12, 14]. The Jessen function of several variables,
introduced by him, plays the main role in the value distribution theory for almost
periodic holomorphic mappings.

Here we continue studying the class of almost periodic functions on a tube do-
main with the spectrum in a cone done in [4] and [5]. Namely, we find a connection
between the asymptotic behavior of the Jessen function and the polar indicator.
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Then we introduce a multidimensional analogue of the secular constant and study
its asymptotic behavior. Also, we obtain a multidimensional version of Picard’s
theorem on exceptional values for our class.

Let us give a more detailed description of the subject.

Suppose [ is a 2w-periodic function with the convergent Fourier series f(z) =

o ane™ ng <0, a,, #0. Then f(2) = Y a,e™, z = x + iy, is a natural

n>ng n>ng
extension of f(z) to the upper half-plane CT. Clearly, f(z2) is a holomorphic
function of exponential type |ng| without zeros in some half-plane y > yy and

™
1
iy 5 [ g7 e +in)lds = Ty log ()] = —no
-
In [2] and [7], these properties were generalized to almost periodic functions f

with bounded from below spectrum under the condition A? = infspf € spf. One
should only replace the mean value over the period by the Jessen function

S
Ty(w) = Jim (28) " [ tog 7w+ iy)lds 1)
s

the number ng by A°, and make use of the Phragmen-Lindeléf Principle (see
a footnote in the proof of Th. 1).

Note that the limit in (1) exists for every holomorphic almost periodic function
on a strip {z =z + 4y : a <y < b} and the function Jf(y) is convex on (a, b).
Then for all y € (a, b), maybe except some countable set E, we have

Ji(y) = —cr(y), (2)

where

¢(y) = lim argf(y +iy) — argf (B + iy)
Y—B—o0 ]
is the mean motion, or secular number, of the function f; here argf(z + iy) is
a continuous branch of the argument of f on the line y = const. By the way,
equality (2) and the Argument principle imply that the number N (=S, S, y1, y2)
of zeros of the function f in the rectangle {|z| < S, y1 <y < y2}* has a density

;LTQO(QS)AN(—& S, y1, y2) = Jp(y2) — J3(y1) (3)

for all y1, y2 € Ey. It can also be proved that f has no zeros on a substrip
{a <y < B} if and only if J¢(y) is a linear function on the interval (o, 8). In
this case,

F(z) = eier=+ote),

*Zeros should be counted with multiplicities.
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where g(z) is almost periodic on the strip {z =z +iy: z € R, a <y < S}
Thus, an almost periodic function f with the property —oo < A = infspf €
spf is extended to C* as a holomorphic almost periodic function. Then we get

A= g VO g Ty

/ .
y——+0o0 Yy y—+oo Y y%inoo Jf (y) - ykinoo °r (y) (4)
(see, for example, [7, 10]).

In the case A? & spf, the function is also extended to C* as a holomorphic
almost periodic function; the equalities (4) are also valid, but the proof of the
second equality is complicated, and this is the contents of Levin’s Secular Constant
Theorem [9, 10].

Note that there exists a natural connection between the distribution of ze-
ros of an almost periodic holomorphic function on the upper half-plane and the
configuration of its spectrum:

Theorem B ([1]). Suppose that the spectrum spf of an almost periodic func-
tion f on CT is bounded from below. Then:

1) if A = infspf > 0, then f(z) tends to a finite limit as y — oo on CT
uniformly in x € R;

2) if A° = infspf < 0 and A° € spf, then f(z) — oo as y — oo on Ct
uniformly in x € R;

2) if A = infspf < 0 and A & spf, then the function f(z) takes every
complex value on the half-plane y > q > 0 for each q < co.

To discuss the multidimensional case, we need the following definitions.

Let 2 = (21,...,2p) ECP,z=2x+1iy € P,z € R,y € RP. By (z, y) or
(z, w) denote the scalar product (or the Hermitian scalar product for z,w € CP).
By |.| denote the Euclidean norm on R or CP. Also, for z = (z1,22,...,2p) put
't = (z2,...,zp). Further, by Tk denote a tube set

Tk ={z=z+iye P : xR yec K},

where K C RP is the base of the tube set.
A vector 7 € RP is called an e-almost period of the function f(z) on Tk if

sup |f(z+71) = f(2)] <e.

2€TK
The function f is called almost periodic on Tk if for every ¢ > 0 there exists
L = L(e) such that every p-dimensional cube in RP with the side of length L
contains at least one e-almost period of f. In particular, when K = {0}, we get
the definition of an almost periodic function on RP.
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A function f(z), z € T, where Q is a domain in RP | is called almost periodic if
its restriction to Tk is an almost periodic function for every compact set K C §2.

The spectrum spf of an almost periodic function f(z) on Tk is the set of
vectors A € RP such that the Fourier coefficient

ax(y. f) = Jim

e | e an@ @

|zj|<S,j=1..p

does not vanish on K; here m,, is the Lebesgue measure on RP. The spectrum of
every almost periodic function f is at most countable, therefore we have

fla+iy) ~ Y an(y)e™,

where {A\"},en = spf and a,(y) = axn(y, f). Note that for any given countable
set {A"} the function ) n~2eH A"} is almost periodic on RP with the spectrum
{\"}.

In [11] L.I. Ronkin introduced the notion of the Jessen function of an almost
periodic holomorphic function f on T by the formula

T = Jim e [ togl e+ iy 0

[_575‘}17

Using the methods of the theory of distributions and peculiar properties of zero
sets for holomorphic functions, L.I. Ronkin confirmed that the limit exists and
defines a convex function in y € Q. He also established the multidimensional
analogue of equality (3)

. m2p72{z =T +'Ly S [_Sv S]p7 Yy € w, f(Z) = 0}
lim
S—o00 (25)]7

= KP:U‘J((’J)v

where py is the Riesz measure of J(y), w C w C Q, py(0w) = 0, and the area of
zero sets is taken counting the multiplicity.

Also, in [13] L.I. Ronkin proved that the products b,(y) = an(y)e*"? do
not depend on y for every holomorphic almost periodic function f(z) on Tg; in
particular, the coefficient by corresponding to the exponent A = 0 does not depend
on y. In the case, the Fourier series turns into the Dirichlet series

flz)~ > bpe®A by e (6)

A" ERP

In [12] L.I. Ronkin obtained the following results.
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Theorem R. Let f be a holomorphic almost periodic function on Tq. Then
the function J¢(y) is linear on the domain Q' C Q if and only if the function f
has no zeros in Tqr. Moreover, in this case

f(z) = expfifey, 2) +9(2)}, 2z € Ty, (7)

where cy € R and g(z) is an almost periodic function on Tqr.
In conditions of Th. R, we have

Jf(y) = —<Cf, y> + Re bOa Y € Qla

where by is the corresponding coefficient of the Dirichlet-series expansion of the
function g. Therefore, the following definition seems to be natural.

Definition. The function —gradJ;(y), y € , is the secular vector of the
almost periodic holomorphic function f on Tq.

In order to formulate our results, we need some definitions and notations.

A cone I' C RP is the set with the property y € I';t > 0 = ty € ['. We will
consider the convex cones with nonempty interior and such that T ((~T) = {0}.
By T denote the conjugate cone to T, i.e. F {z eRP : (z,y) >0 Vy € I'};note

that I‘ =TI'. Asusual, IntA is the interior of the set A, and Hg(z) = supycg(z, \)
is the support function of the set £ C RP.

Let f be a holomorphic almost periodic function on a tube Tt with an open
cone I' in the base. By definition, put

| .
hy(y) = sup T @)l o

TERP r—00 'S

The function hy is called the P-indicator of f (see |14, p. 245]).

Theorem A ([5]). Let T be a closed cone in R, and f(z) be an almost
periodic function on RP. Then f is extended holomorphically to T, ¢ with the
estimates

B<oo VI'=T'cIntlT U{0} 3IBI') VzeTr |f(z)| < BT, (8)

if and only if spf C A+ T for some A € RP. If this is the case, then f(z) is
almost periodic on Ty .+ and for all y € IntT’

hy(y) = Hepr(—y)- (9)
For almost periodic functions with bounded spectrum, equality (9) was proved

in [4].
The following theorem is the main result of our paper.
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Theorem 1. Let T be a closed cone in RP, and f(x) be an almost periodic
function on RP such that f is extended holomorphically to Ty .« with estimates

(8). Then for all y € IntT
lim 22U

R—00

= hy(y). (10)

Furthermore, the secular vector —gradJ¢(Ry) tends to gradHg,r(—y) as R — oo
in the sense of distributions.

R em ar k. Since J¢(y) is a convex function, we see that the secular vector
is a locally integrable function on IntI'.

Proof From the beginning assume that ¢ = (1,0,0,...,0) € Intf7 and
we will prove (10) for y = ¢°.

Put F(z) = f(2)ei=m ") (sup,cpo |f(2)]) 7", u(z) = log |F(2)|. Note that
F(z) is an almost periodic holomorphic function on 7 .& and [F(z)] < 1 on
RP. Applying the Phragmen—Lindel6f principle® on the complex one—dimensional

plane {z + wy : w € Ct}, we get

u(z +ity) < hp(y)t, Vz=z+iy €T s t>0. (11)
Then
he(y) = hy(y) = (v, hy@")y°),  hr(y’) =0. (12)
Take y = 3% in (11). We get
u(z, ) <0 V (21, ') €RP, 3 >0. (13)
Fix ¢ > 0. Since sup,egp limy—y00 7~ 1u(z + iry®) = 0, we see that for some

20 =20%e) eRP, r=1r(c) >0,
u(z? + iry?) > —er. (14)

Using the Poisson formula for the disc D(2) + iR, R) = {z1 : |z — 2} —
iR| < R} C C' with R > r, inequality (13), and Maximum principle for the
subharmonic function u(z;,’ z°), we obtain

u(2) +ir, 2°)

R?—(R—-r)?
R2 —2R(R —r)cos(m/2 + 1) + (R —1)?

2
1 .
2—/ (20 + iR + Re™ 20)
0

*Suppose g(z) is continuous on C+, holomorphic on C*, and bounded on R function, which
satisfies the condition log™ |g(2)] = O(|z|) as |z| — oo; then for 2 = z + iy € CT we have

G'+ . — .
19(2)] < sup, e lg(@)]e” ¥, where o = limsup,_, ,., y~"log |g(iy)| (see [8, p. 28]).
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3m/4
< r / w(z?+iR+ Re?, 2% dy < r(8R)™ '  sup  u(z?+iR+ Re) 10).
4R i Ye[r/4;37 /4]

Hence (14) implies that u(z9+iR+ Re™0,' 19) > —8eR for some vy € [r/4, 31 /4].
The function u(z;,’ #°) is subharmonic in z; € C*. Taking into account (13) and
the embeddings

D(z9 +2iR, R) C D(29 + iR+ Re™°, R+ R A/2) c C*,

we get
—8¢R < I / u(z1, %) dma(21)
TR2(3 + 2V/2)
D(29+iR+Re'¥0, R+RA/2)
1 0
< W / ’U,(Zl,lﬂj )dmg(zl) (15)

D(29+42iR, R)

Remind that this inequality is valid for all R > r.
Put ug(z) = R~'u(Rz). From (15) it follows that

/ w21, 2 R)dma (1) > —24re. (16)
D(29/R+2i,1)

Furthermore, Th. A implies that the function hy(y) is continuous. Since (12),
we get hr(y) < e for |y —y°| < pd with some 6 = () € (0, 1/(p + 2)). If we
replace in (11) y by y/|y|, z by Rz, and ¢ by R|y|, we obtain

un(2) = R 'u(Rz + iRy) < ely| (17)
for all z from the tube domain
T ={z=z+iy: z € RP, ‘y/|y| —yo‘ < pé}.
By definition, put
A(z") = D(z + 2i, 1) x D(2,0) x D(x3,0) X -+ x D(z,,).

It can easily be checked that for all ' = (z1,' 2') € R? we have A(z') C T?. Also,
we may assume that T9 C T, .U {0}. Then for all z; € D(z}/R+ 2i, 1) the
function ug(z) is subharmonic in z € D(x3,0), z3 € D(x3,0),...,2, € D(x,,6).
Hence (16) implies

/ wr(2)dmay(2) > —240% e (18)
AW /R)
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Suppose that for some 7 € RP we have
|F (2% 4+ 7 4 iry®) — F(2® +iry®)| < e " — e 2.

Then |F(z° + 7 +iry®)| > e 2" and u(z? + 7 + iry®) > —2er. Using the latter
inequality instead of (14), we obtain the relation

up(2)dmay(z) > —485% 2nPe. (19)
A(z°/R+7/R)

Put u}(2) = max{ug(z),0}, up(z) = max{—ug(z),0}. From (17) it follows
that for all z' € RP and all z € A(x!) we have

ur(z) <V10e. (20)
Therefore, by (19),

[ wdng = [ b))

A(z%/R+7/R) A(z°/R+7/R)

— / upr(2)dmap(z) < 5202P 2 pPe. (21)
A(z%/R+7/R)

In the sequel we need the following lemma.

Lemma 1. Let g(x) be an almost periodic function in z € RP. Then for any
n > 0 there exist a real L = L(n) and a set E = Ey x --- x By, E; € R, such that
E;jNa, a+ L] #0 for every a € R, j =1,...,p, and each T € E is an n-almost
period of g.

P roof. By Bochner’s criterium®, any sequence ¢, € R has a subsequence
tns such that the functions g(z + (¢,/,' 0)) converge uniformly in x € RP. In other
words, the functions g(z1 + t,7,' ) converge uniformly in z; € R and 'z € RP. By
Bochner’s criterium, the function g(z1,’ z) is almost periodic in z; € R uniformly
in’z € RP~!. Hence there exist F; € R and L = L(n) such that E1N[a, a+L] # 0
for all ¢ € R and

lg(z1 +t,x) — gz, z)| <n/p Vz, €R, VzeR™' ViecFE,

i.e., each 7 = (¢,'0) for ¢t € Fy is an n/p-almost period of g(z). In the same way,
we find FE»,...,E,. It is clear that every point of Ej X --- x E, is an n-almost
period of g. [

“For almost periodic functions on R see [10, Ch. VI, §1], or [3, p. 14-16]; the proof for the
multidimensional case is similar.
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Take S < oo, and let L = L(e, r) be real from Lem. 1. It is not difficult to
prove that if R > L+/2, then there exist 7/,... ,7'1N1 € By, N <2v28 +2, such
that N

1 0 m 2 0 m D)
U AT _i,m +\/__ 5 [-S, 9], (22)
R 2 R 2

and each point of [—S, S| is contained in at most two intervals. For the same
reasons, if R > L+/2/, then for j = 2,...,p there exist le,...,T;Vj € Ej,
N; < (228 +2)/6, such that

m=1

N; 0 m 0 m
T+ 7] _5\/§ z;+7; 5vV2 B
U( = st ) 255 (23)

Let F={r=(r{",...,%"): 1 <my < Ny,...,1 <m, < N,}. Note that
F contains at most (2v/25 + 2)P6' P elements. By definition, put

m=1

. 5
11(s, 5) = {z+y v €[5, 5Py n =21 < . sl < . 2,...,p}
Combining (22) and (23), we get
0
U A(”““ ;T> S TI(S, 6). (24)

TEF

er _ ,—2

Applying Lem. 1 to the function F(z +iry°?) with n = e *" —e 2" and using (21)

for every 7 € F', we obtain

/ up(2)dmop(z) < Z (2)dmap(2) < 52(2V/28 + 2)PoPrPe.
(5, §) Ter (224)

Therefore, we have

> —520/2m)PoP e, 2

S%OQS /uR 2)dmay(2) > —526/2m)75" e (25)
11(S, d)

It follows from the definition of the Jessen function that

/ wr(z + iy)dmy(z) = JF;Ry). (26)

[_57 S]

Jm 55

The functions ug(z) are uniformly bounded from above for z € Ty.
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Applying the Fatou lemma to inequality (25), we get
/ Jr(Ry)dy > —520/27)P6PeR, (27)
121 < Jyal < - lyp <

for all R > R(L, 4, r, €).
To finish the proof, we need the following simple lemma.

Lemma 2. Let g(t) be a conver negative function on [—«, . Then g(0) >
ot [ g(t)dt.

P roof. The assertion of Lem. 2 follows immediately from the inequality
g(t) < g(0)min{l —t/a, 1 +t/a}. [
Note that (20) and (26) imply
Jr(Ry) <v10¢R (28)

for all y = (y1,...,9p)s ly1 — 2| < 1, |y;| < 0,5 = 2,...,p. Further, the Jessen
function Jg(Ry) is convex in y ([11]). Therefore the function

o'y) = / Jr(Ry)dy, — 25 Re
|y1*2\<ﬁ

satisfies the conditions of Lem. 2 in each variable yo,...,y, with a = §/ V2.
Applying the lemma p — 1 times and using inequality (27), we obtain

/ Jr(Ry1,' 0)dy; > —40(27)P Re.
\y1—2|<ﬁ

Since (13), we see that the integrand is negative. Moreover, it is convex, therefore
Jr(Ry1, 0) is a monotonically decreasing function in y;. Then we have

Jr((2 —1AM2)Ry°) > —30(27)P Re.
The inequality is valid for all R > R(e) and € > 0. Thus we have

0
lim Jr(Ry")

P (29)

Since Jp(y) = J¢(y) — (y, hs(y°)y°), we obtain (10) for y = y°.
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For an arbitrary 3’ € IntT consider an orthogonal operator A : RP — RP such
that A(y°) = /. Put f1(2) = f(Az). Since hy, (y°) = he(y') and Jp, (y°) = J¢(y'),
we obtain (10) for y =3/

Further, from (11) and Th. A it follows that the function J(Ry)/R is bounded
from above on every compact subset of IntT. Then fix yl € IntT and take s > 0
such that {y: |y —y'| < s} C Intl'. Whenever ly — y'| < s, we have

2J¢(Ry') < Jp(R(2y' —y)) + J;(Ry)
and
Jr(Ry")

J¢(Ry) )
> 2 inf
R

R — R>1

J¢(Ry), 0
o e MR, 0
R>1|y—yl|<s R

This means that the functions J;(Ry)/R are uniformly bounded from below on
every compact subset of IntT. Using (10) and the Lebesgue theorem, we obtain

/Jf(;;y)tp —>/hf (y)dmy(y) as R — o0

for every test function ¢ on IntF, i.e., (10) is valid in the sense of distributions as
well. Therefore,
gradJs(Ry) — gradhs(y) as R — oo

in the sense of distributions and Th. A implies the last assertion of Th. 1. [

Corollary 1. Suppose that all conditions of Th. 1 are fulfilled. If Hgp¢(y) is

nonlinear on (—T)), then f(z) has zeros on the set IntT~

Frflyl>q} for each q¢ < o0.

Proof Theorem A yields that the function h(y) is nonlinear for y € IntT.

Now Th. 1 implies that Jf(y) is nonlinear on the set {IntT N {|y| > q}} for each

g < 0o. Then Th. R implies that f(z) has zeros on It o115y ]

Applications to distribution of values. Here we apply Th. 1 to prove the
multidimensional variant of Th. B:

Theorem 2. Let I' C RP be a closed convex cone and f(x) be an almost peri-
odic function on RP that has a holomorphic extension f(z) to Ty . with estimates

(8). Then:

1) if (spf \ {0}) C T, then f(z) tends to a finite limit as y — oo,y € T,
uniformly in z € RP for allT! =T ¢ IntT U {0};

2) if (spf \ {0}) C A+ T with some A € spf N (=TI')\ {0}, then the function
f(2) tends to 00 as y — oo, y € I, uniformly in x € R for all T' = T'c
IntI’ U {0};
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3) if (spf \ {0}) C A +T with some A € (spf \ spf) N (=T)\ {0}, then the
fuzction f(2) takes every complex value on the set IntTfﬁ{\y|>q} for each
q < 00;

4) if spf\{0}) C A4T with some A € spf\((—T) UT), then the function f(z)
takes every complex value, except for at most one, on the set IntTfﬂ{\y|>q}
for each q < oo;

5) if (spf \ {0}) ¢ A +T for all A € spf and spf ¢ T, then the function f(z)

takes every complex value on the set IntTfn{|y\>q} for each q < 0.

R em ar k. It is clear that we can replace spf \ {0} by spf in Cases 1-3.
Therefore Th. 2 gives, in a sense, a complete description of the value distributions
for our class of almost periodic functions.

Proof. Casel was proved in [4], Case 2 was proved in [5]. Reduce Case
3 to a one-dimensional one. Take y° € IntT" such that (y°, AF) # (30, A™) for all
k # m, and put ¢(w) = f(wy), w € C.

First, check that spp = {(y°, A} : A € spf}. This is evident for finite ex-
ponential sums. In the general case, take a sequence of Bochner—Feyer expo-
nential sums* P,(x), which approximates f(z) on RP. Since spP, C spf and
P, (uy®) — ¢(u) uniformly on R, we see that spp C {(y°, A} : A € spf}. On the
other hand, if A € spf, then

a0 (0, Po(y'u)) = ax(0, P) = ax(0, f) #0 as n — oo.

Therefore, ago (0, ) # 0 and (4%, \) € spp.

Note that (y°, A?) — (4%, A) as A" — A, A" € spf. Also, since y° € IntT and
A—A €T forall A € spf, we get (y°, A) > (y°, A). Therefore, infspp = (3°, A)
and (y°, A) & spp. From Th. B, i. 3 it follows that f(z) takes every complex
value on the set {z = wyp : Imw > ¢} for each ¢ < co.

Let us consider Case 4. Let by be the coefficient of series (6) corresponding
to the exponent A = 0. Then for any A € C\ {by} each function f(z) — A has
the spectrum spf U {0}. Suppose that the support function Hspfu{o}(y) is linear

on (—=TI'). Then it is not difficult to prove (for example, see [5, Lem. 2]) that
spf U{0} € A"+ T with some A" € (—=I') N (spf U{0}). But this is impossible
in our case. Hence, the function Hg,rq01(y) is nonlinear on (—=T). Now Cor. 1
yields that the function f(z) — A has zeros on IntTfn{|y\>q} for each ¢ < oo.

Let us consider Case 5. Let by be the same as in Case 4. The function

f(2) — b has the spectrum spf \ {0}. Note that the support function Hg,p (03 (v)

“For almost periodic functions on R see [10, Ch.VI, §1], or [3, p. 38—45]; consideration in the
multidimensional case is similar.
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is nonlinear on (—I'). Hence Cor. 1 implies that the function f(z) — by has zeros
on IntTx. o 4 for each ¢ < oo. Further, for any A € C\ {bo} the function

f(2) — A has the spectrum spfU{0}. If the support function Hgprq0y(y) is linear
on (=T'), then spf U {0} € A"+ T with some A" € (-=T') N (spf U{0}). The both
cases A’ = 0 and A’ # 0 contradict to the conditions of Case 5. Therefore the

function f(z) — A has zeros on Int TR 150y for each ¢ < oo. [ |
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