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A partition of a natural integer E [1] is a decomposition of E as a sum of

a nonincreasing sequence of positive integers fhjg, i.e., E =
P

j hj such that

hj � hj+1, for j = 1; 2 : : : . For example, 4 can be partitioned in 5 ways: 4, 3+ 1,

2+2, 2+1+1, and 1+1+1+1. Partitions can be graphically represented by Young

diagrams (also called Ferrers diagrams) where hj corresponds to the height of the

j-th column. The fhjg's are called the parts or the summands of the partition.

One can put several constraints on such partitions. For example, one can take

the number of columns N to be �xed or put restrictions on the heights. In this

paper we focus on a particular constrained partition problem called the minimal

di�erence p partitions (MDP�p). The MDP�p problem is de�ned by restricting

the height di�erence between two neighboring columns, hj � hj+1 � p. For

instance the only allowed partitions of 4 with p = 1 are 4 and 3 + 1. A typical

Young diagram for MDP�p problem is shown in Fig. 1. Consider now the set

of all possible partitions of E satisfying E =
P

j hj and hj � hj+1 � p. Since this

is a �nite set, one can put a uniform probability measure on it, which means that

c
 A. Comtet, S.N. Majumdar, and S. Sabhapandit, 2008



A Note on Limit Shapes of Minimal Di�erence Partitions

Fig. 1: A typical Young diagram for MDP�p problem. The thick solid border

shows the height pro�le or the outer perimeter. Wh is the width of the Young

diagram at a height h, i.e., Wh is the number of columns whose heights � h.

all partitions are equiprobable. Then, a natural question is: what is the typical

shape of a Young diagram when E !1?

In the physics literature this problem was �rst raised by Temperley, who was

interested in determining the equilibrium pro�le of a simple cubic crystal grown

from the corner of three walls at right angles. The two dimensional version of the

problem � where walls (two) are along the horizontal and the vertical axes and

E �bricks� (molecules) are packed into the �rst quadrant one by one such that

each brick, when it is added, makes two contacts along faces � corresponds to

the p = 0 partition problem. Temperley [2] computed the equilibrium pro�le of

this two dimensional crystal. In the mathematics literature the investigation of

the shape of random Young tableaux was started by Vershik and Kerov [3] and

independently by Logan and Shepp [4]. The case of uniform random partitions

was treated by Vershik and collaborators [5�7] who obtained the limit shapes for

the p = 0 and p = 1 cases and also the average deviations from the limit shapes [8].

Some of these results were extended by Romik [9] to the MDP�p for p = 2. These

problems belong to the general framework of asymptotic combinatorics, a subject

which displays unexpected links with random matrix theory. In this note we

compute the limit shapes of MDP�p for all p � 0 by a variational approach and

mention an interesting link with exclusion statistics.

We �rst recapitulate the arguments used in [10, 11] (see also [12] for a similar

approach) to compute the limit shapes of the Young diagrams of unrestricted
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partitions (p = 0). Let P = (i; hi) and Q = (j; hj) be two points belonging to

the outer perimeter of the Young diagram of a given partition. We evaluate the

total number of subdiagrams which connects these two points. These subdiagrams

are lattice staircases with the only restriction that each step either goes right or

downward. The total number of horizontal steps is j � i, the total number of

vertical steps is hi�hj, and the total number of steps is j� i+hi�hj. Therefore,

the total number of con�gurations is


0(P;Q) � 
0(i; hi; j; hj) =

�
j � i+ hi � hj

j � i

�
: (1)

If P and Q are far apart (i.e., a = j � i � 1; b = hi � hj � 1) we may use the

Stirling formula which gives

ln
0(P;Q) = �a ln a

a+ b
� b ln

b

a+ b
=
p
a2 + b2 �(�!n ); (2)

where �!n � (n1; n2) = (b; a)=
p
a2 + b2 is the unit vector orthogonal to

��!
PQ and

�(�!n ) = �n1 ln n1

n1 + n2
� n2 ln

n2

n1 + n2
: (3)

Heuristically one expects that in the limit E ! 1; h ! 1;Wh ! 1, the

pro�le of the Young diagram will be described by a smooth curve y = y(x) where

y = h=
p
E and x = Wh=

p
E are the scaling variables. The normal vector can be

parameterized as

�!n =

0
@� y0(x)q

1 + y02(x)

;
1q

1 + y02(x)

1
A :

Therefore

�(�!n ) =
y0(x)q

1 + y02(x)

ln

�
� y0(x)

1� y0(x)

�
� 1q

1 + y02(x)

ln

�
1

1� y0(x)

�
: (4)

In the lattice model, the points P and Q were taken to be far apart. However

in the new scale (x; y) one now assumes that they are close enough in order to

ensure that the interface is locally �at. The total number of Young diagrams 


with a given area E is obtained by adding all such local con�guration, i.e.


 = exp

0
@pE

1Z
0

dx

q
1 + y02(x)�(�!n )

1
A ; (5)
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with the area constraint
1Z
0

y(x)dx = 1: (6)

For large E, the most dominant contribution to 
 arises from the optimal

curve y = y(x) which maximizes the integral in (5) with the constraint (6). This

optimal curve describe the limit shape of the Young diagrams. Thus we are led

to the variational problem of extremizing

L0 =
1Z
0

dx

�
y0(x) ln

�y0(x)
1� y0(x)

� ln
1

1� y0(x)

�
� �

1Z
0

y(x) dx; (7)

where � is a Lagrange multiplier. This leads to the Euler-Lagrange equation,

which simpli�es to
d

dx
ln

�y0(x)
1� y0(x)

= ��: (8)

We solve this equation with the boundary conditions y(1) = 0 and y(x ! 0)

! 1. The later condition follows from the fact that y � h=
p
E � lnE when

x � Wh=
p
E ! 0 for large E [13]. Therefore y(0) diverges in the limit E ! 1.

The solution gives the equation of the limiting shape as

y(x) = � 1

�
ln
�
1� e��x

�
with � =

�p
6
; (9)

where � is obtained by using the constraint (6).

The goal of this paper is to extend this derivation to the MDP�p with p > 0.

This is a priori nontrivial since now one has to take into account the restric-

tion on the steps. In the following we will use an exact correspondence between

MDP�p with p > 0 and an unrestricted partition (p = 0).

Let fhjg denote the set of nonzero heights in a given unrestricted partition

(p = 0) E =
PN

j=1 hj , where hj � hj+1 for all j = 1; 2; : : : ; N � 1. Let us

now de�ne a new set of heights h0j = hj + p(N � j) for j = 1; 2; : : : ; N . Thus

h0j � h0j+1 = hj � hj+1 + p for all j = 1; 2; : : : ; N � 1 and h0N = hN > 0. Since

hj � hj+1 � 0, the new heights thus satisfy the constraint h0j � h0j+1 � p for all

j = 1; 2; : : : ; N � 1. Since the mapping is one to one, the total number of local

MDP�p con�guration satis�es


p(i; h
0
i; j; h

0
j) = 
0(i; hi; j; hj):

Moreover, hi � hj = h0i � h0j � p(j � i). Therefore using (1),


p =

�
(j � i)(1 � p) + h0i � h0j

j � i

�
:
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The fact that the mapping does not preserve the total area does not spoil the

argument since here we only deal with local MDP�p con�gurations. The area

constraint is a global one which is implemented at the end of the calculation

via a Lagrange multiplier. Following the same steps as before we arrive at the

variational problem of extremizing

Lp =
1Z
0

dx

��
p+ y0(x)

�
ln

�p� y0(x)

1� p� y0(x)
� ln

1

1� p� y0(x)

�
� �

1Z
0

y(x) dx: (10)

Using the same Euler�Lagrange formalism, �nally leads us to the equation of the

limit shape for p > 0,

y = � 1

�
ln(1� e��x)� px: (11)

The Lagrange multiplier � in (11) can be determined by using condition y � 0

and the normalization
R xm
0

y(x) dx = 1, where xm is the solution of the equation

y(xm) = 0. Writing exp(xm) = y�, it satis�es y� � y�1�p = 1, and in terms of y�

one �nds

�2 � �2(p) =
�2

6
� Li2(1=y

�)� p

2
(ln y�)2; (12)

where Li2(z) =
P1

k=1 z
kk�2 is the dilogarithm function. �(p) is a constant which

depends on the parameter p. For instance for p = 0; 1 and 2, one �nds �(0) =

�=
p
6, �(1) = �=

p
12 and �(2) = �=

p
15 in agreement with the earlier known

results [5, 9]. Figure 2 shows the limit shapes for the MDP�p with p = 0; 1; 2,

and 3.

Equation (11) implies that the inverse function x(y) = ��1 ln�(y) satis�es

�(y)� e��y�(y)1�p = 1: (13)

Amazingly this equation appears in several apparently unrelated contexts.

1. The generating function S(t) = 1 +
P1

k=1 sk(q)t
k for the number of con-

nected clusters sk(q) of size k in a q-ary tree satis�es [14]

S(t)� tSq(t) = 1: (14)

This establishes a formal link between two di�erent combinatorial objects, on one

hand the q-ary trees and on the other hand the MDP�p problem with p = 1� q.

In graph theory [15], sk(q) is known as the generalized Catalan number, which is

given by

sk(q) =
1

k

�
qk

k � 1

�
:

2. Consider the generating function of MDP�p problem

Z(x; z) =
X
E

X
N

�p(E;N)xEzN ;
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Fig. 2: Limit shapes for the minimal di�erence p partitions with p = 0; 1; 2, and 3,

where �(0) = �=
p
6, �(1) = �=

p
12, �(2) = �=

p
15, and �(3) = 0:752617 : : : .

where �p(E;N) is the total number of MDP�p of E in N parts. In the limit

E ! 1 the number of such partitions will be controlled by the singularities of

Z(x; z) near x = 1. By setting x = e��, one gets for � ! 0 [16]

lnZ(x; z)!
1Z
0

ln yp

�
ze���

�
d�; (15)

where the function yp(t) is given by the solution of the equation

yp(t)� t y1�pp (t) = 1: (16)

3. In the physics literature (13) also arises in the context of exclusion statistics.

Exclusion statistics [17�21] � a generalization of Bose and Fermi statistics�can

be de�ned in the following thermodynamical sense. Let Z(�; z) denote the grand

partition function of a quantum gas of particles at inverse temperature � and

fugacity z. Such a gas is said to obey exclusion statistics with parameter 0 � p �
1, if Z(�; z) can be expressed as an integral representation

lnZ(�; z) =

1Z
0

~�(�) ln yp

�
ze���

�
d�; (17)

where ~�(�) denotes a single particle density of states and the function yp(t), which

encodes fractional statistics, is given by the solution of (13). The well-known
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microscopic quantum mechanical realizations of exclusion statistics are the Lowest

Landau Level (LLL) anyone model [18] and the Calogero model [19], with ~�(�)

being, respectively, the LLL density of states and the free one dimensional density

of states.

The fact that the same equation appears in all three cases is obviously not

fortuitous. The link between 2 and 3 follows from the fact that exclusion statis-

tics have a combinatorial interpretation in terms of minimal di�erence partitions

which generalize the usual combinatorial interpretation of the Bose statistic (resp

Fermi) in terms of partitions without (with) restrictions. Let us brie�y recall this

correspondence. Let ni be the number of columns of height h = i in a Young di-

agram of a given partition of E, then E =
P

i ni�i can be interpreted as the total

energy of a noninteracting quantum gas of bosons where �i = i for i = 1; 2; : : : ;1
are equidistant single particle energy levels and ni = 0; 1; 2; : : : ;1 represents

the occupation number of the i-th level. If one now puts the restriction that

hj > hj+1 (e.g. allowed partitions of 4 are: 4 and 3+1), then the restricted parti-

tion problem corresponds to a noninteracting quantum gas of fermions, for which

ni = 0; 1. If, in addition, one restricts the number of summands to be N , then

clearly N =
P

i ni represents the total number of particles. For example, if E = 4

and N = 2, the allowed partitions are 3+1 and 2+2 in the unrestricted problem,

whereas the only allowed restricted partition is 3+1. The number �(E;N) of ways

of partitioning E into N parts is simply the micro-canonical partition function of

a gas of quantum particles with total energy E and total number of particles N :

�(E;N) =
X
fnig

Æ

 
E �

1X
i=1

ni�i

!
Æ

 
N �

1X
i=1

ni

!
: (18)

For both unrestricted and restricted partitions, one can readily check that the

grand partition function Z(e��; z) =
P

N

P
E zNe��E�(E;N), in the limit � ! 0,

is nothing but the one in (15), with p = 0 and p = 1 respectively.

For a quantum gas obeying exclusion statistics with parameter p it is a priori

not obvious how to provide a combinatorial interpretation since the underlying

physical models with exclusion statistics describe interacting models. However in

some speci�c cases , such as the Calogero model, one can show that the spectrum

can be parameterized as a free spectrum with some restrictions on the quantum

numbers which re�ect the fact that the Pauli principle is replaced by a stronger

exclusion principle [22, 23]. This exclusion is enforced at the level of the Young

diagrams by the constraint hj � hj+1 � p. The link between 1 and 3 expresses

this correspondence in terms of counting of states. Exclusion statistics can be

implemented by putting n particles in m sites on a one-dimensional lattice, under

the restriction that any two particles are at least p sites apart. For a periodic
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lattice, the number of ways of doing the above is [24]

Dm;n =
m�
�
m+ (1� p)n

�
�
�
n+ 1

�
�
�
m+ 1� pn

� :
One can check that D1;n = sn(1 � p) which allows to interpret the generalized

Catalan numbers as quantum degeneracy factors.
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