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1. Introduction

In this paper we consider direct and inverse scattering theory for Jacobi ope-

rators with step-like quasiperiodic �nite-gap background, using the Marchenko

[15] approach.

Scattering theory for Jacobi operators is a classical topic with a long tradition.

Originally developed on an informal level by Case in [5], the �rst rigorous results

for the case of a constant background were given by Guseinov [12] with further

extensions by Teschl [19, 20]. The case of periodic backgrounds was completely

solved in [24] (where in fact almost periodic operators with a homogenous Cantor

type spectrum were considered) and [8] using di�erent approaches. Moreover,

the case of a step-like situation, where the coe�cients are asymptotically close to

two di�erent quasiperiodic �nite-gap operators, was solved in [11] (see also [1, 7])

under the restriction that the two background operators are isospectral. It is the

purpose of the present paper to remove this restriction.

We should also mention that scattering theory for Jacobi operators is directly

applicable to the investigation of the Toda lattice with initial data in the above

mentioned classes. See for example [3, 6, 23] for step-like constant backgrounds,

and [9, 10, 13, 14], and [16] for periodic backgrounds. For further possible appli-

cations and additional references we refer to the discussion in [11].

Finally, let us give a brief overview of the remaining sections. After recalling

some necessary facts on algebro-geometric quasiperiodic �nite-gap operators in

Sect. 2, we construct the transformation operators and study the properties of the

scattering data in Sect. 3. In Section 4 we derive the Gel'fand�Levitan�Marchenko

equation and show that it uniquely determines the operator. In addition, we

formulate necessary conditions for the scattering data to uniquely determine our

Jacobi operator. Our �nal Sect. 5 shows that our necessary conditions for the

scattering data are also su�cient.

2. Step-Like Finite-Band Backgrounds

First we need to recall some facts on quasiperiodic �nite-band Jacobi operators

which contain all periodic operators as a special case. We refer to [20, Ch. 9] and

[8] for details.

Let H�
q be two quasiperiodic �nite-band Jacobi operators,�

H�
q f(n) = a�q (n)f(n+ 1) + a�q (n� 1)f(n� 1) + b�q (n)f(n); f 2 `2(Z); (2.1)

� Everywhere in this paper the sub or super index "+" (resp. "�") refers to the background

on the right (resp. left) half-axis.
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associated with the Riemann surface of the square root

P�(z) = �
2g�+1Y
j=0

q
z �E�

j
; E�0 < E�1 < � � � < E2g�+1; (2.2)

where g� 2 N, and
p
: is the standard root with branch cut along (�1; 0).

In fact, H�
q are uniquely determined by �xing a Dirichlet divisor

P
g
�

j=1(�
�
j
; ��

j
),

where ��
j
2 [E�2j�1; E

�
2j ] and �

�
j
2 f�1; 1g. The spectra of H�

q consist of g� + 1
bands

�� := �(H�
q ) =

g�[
j=0

[E�2j ; E
�
2j+1]: (2.3)

We will identify the set C n �(H�
q ) with the upper sheet of the Riemann surface.

The upper and lower sides of the cuts over the spectrum are denoted by �u and

�l and the symmetric points on these cuts by �u and �l, that is,

f(�u) = lim
�#0

f(�+ i�); f(�l) = lim
�#0

f(�� i�); � 2 ��:

We will develop the scattering theory for the operator

Hf(n) = a(n� 1)f(n� 1) + b(n)f(n) + a(n)f(n+ 1); n 2 Z; (2.4)

whose coe�cients are asymptotically close to the coe�cients of H�
q on the corre-

sponding half-axes:

�1X
n=0

jnj
�
ja(n)� a�q (n)j+ jb(n)� b�q (n)j

�
<1: (2.5)

The special case H�
q = H+

q was exhaustively studied in [8] (see also [24]) and the

case where H�
q and H+

q are in the same isospectral class �� = �+ was treated

in [11]. Several results are straightforward generalizations, in such situations we

will simply refer to [8], [11] and only point out possible di�erences.

Let  �q (z; n) be the Floquet solutions of the spectral equations

H�
q  (n) = z (n); z 2 C ; (2.6)

that decay for z 2 C n�� as n! �1. They are uniquely de�ned by the condition

 �q (z; 0) = 1,  �q (z; �) 2 `2(Z�). The solution  +
q (z; n) (resp.  

�
q (z; n)) coincides

with the upper (resp. lower) branch of the Baker�Akhiezer functions of H+
q (resp.

H�
q ), see [20]. The second solutions � �q (z; n) are given by the other branch of

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 1 35



I. Egorova, J. Michor, and G. Teschl

the Baker�Akhiezer functions and satisfy � �q (z; �) 2 `
2(Z�) as z 2 C n ��. Their

Wronskian is equal to

W�
q ( � �q (z);  

�
q (z)) = �

1

��(z)
; (2.7)

where

��(z) =

Qg�

j=1(z � ��
j
)

P�(z)
(2.8)

satis�es by our choice of the branch for the square root

Im(��(�u)) > 0; Im(��(�l)) < 0; � 2 ��: (2.9)

In (2.7) the following notation is used

W�
q;n(f; g) := a�q (n) (f(n)g(n+ 1)� f(n+ 1)g(n)) : (2.10)

Note that  �q (z; n), � �q (z; n) have continuous limits as z ! �u;l 2 �u;l� n @��,
where

@�� = fE�0 ; : : : ; E
�
2g�+1g;

and they satisfy the symmetry property

 �q (�
l; n) =  �q (�u; n) = � �q (�

u; n); � 2 ��: (2.11)

The points (��
j
; ��
j
), 1 � j � g�, form the divisors of poles of the Baker�

Akhiezer functions. Correspondingly, the sets of Dirichlet eigenvalues f��1 ; : : : ; �
�
g�
g

can be divided into three disjoint subsets

M� = f��
j
j��

j
2 Rn�� is a pole of  �q (z; 1)g;

�M� = f��
j
j��

j
2 Rn�� is a pole of  �q (z; 1)g;

M̂� = f��
j
j��

j
2 @��g:

(2.12)

In order to remove the singularities of  �q (z; n), � �q (z; n) we introduce

Æ�(z) :=
Y

�
�

j 2M�

(z � ��
j
);

Æ̂�(z) :=
Y

�
�

j 2M�

(z � ��
j
)
Y

�
�

j 2M̂�

q
z � ��

j
;

�Æ�(z) :=
Y

�
�

j 2 �M�

(z � ��
j
)
Y

�
�

j 2M̂�

q
z � ��

j
;

(2.13)

where
Q

= 1 if there are no multipliers, and set

~ �q (z; n) = Æ�(z) �q (z; n);  ̂�q (z; n) = Æ̂�(z) �q (z; n): (2.14)
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Lemma 2.1. The Floquet solutions  �q , � �q have the following properties:

i. The functions  �q (z; n) (resp. � �q (z; n)) are holomorphic as functions of z

in the domain C n (�� [M�) (resp. C n (�� [ �M�)), take real values on the

set R n ��, and have simple poles at the points of the set M� (resp. �M�).
They are continuous up to the boundary �u�[�

l
� except at the points in M̂�

and satisfy the symmetry property (2.11). For E 2 M̂�, they satisfy

 �q (z; n) = O

�
1

p
z �E

�
; � �q (z; n) = O

�
1

p
z �E

�
; z ! E 2 M̂�:

Moreover, the estimate

 ̂�q (z; n)�  ̂�q (E;n) = O(
p
z �E); E 2 @��; (2.15)

is valid.

ii. The following asymptotic expansions hold as z ! �1

 �q (z; n) = z�n
� n�1Y �

j=0

a�q (j)
��1�

1�
1

z

n�1X �

j=0

b�q (j + 1

0
) +O(

1

z2
)
�
; (2.16)

where

n�1Y �

j=n0

f(j) =

8>>>>><>>>>>:

n�1Q
j=n0

f(j); n > n0;

1; n = n0;
n0�1Q
j=n

f(j)�1; n < n0;

n�1X �

j=n0

f(j) =

8>>>>><>>>>>:

n�1P
j=n0

f(j); n > n0;

0; n = n0;

�
n0�1P
j=n

f(j); n < n0:

iii. The functions  �q (�; n) form a complete orthogonal system on the spectrum

with respect to the weight

d!�(�) =
1

2�i
��(�)d�; (2.17)

namely I
��

 �q (�;m) �q (�; n)d!�(�) = Æ(n;m); (2.18)

where I
��

f(�)d� :=

Z
�u
�

f(�u)d��
Z
�l
�

f(�l)d�: (2.19)

Here Æ(n;m) = 1 if n = m and Æ(n;m) = 0, i.e., is the Kronecker delta.
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3. Scattering Data

Now let H be a step-like operator with coe�cients a(n), b(n) satisfying (2.5).

The two solutions  �(z; n) of the spectral equation

H = z ; z 2 C ; (3.1)

which are asymptotically close to the Floquet solutions  �q (z; n) of the background
equations (2.6) as n ! �1, are called Jost solutions. They can be represented

as (see [8])

 �(z; n) =
�1X
m=n

K�(n;m) �q (z;m); (3.2)

where the functions K�(n; :) are real valued and satisfy the estimate

jK�(n;m)j � C�(n)
�1X

j=[m+n
2

]

�
ja(j) � a�q (j)j + jb(j) � b�q (j)j

�
; �m > �n > 0:

(3.3)

The functions C�(n) > 0 decrease monotonically as n! �1. Moreover, we have

a(n) = a+q (n)
K+(n+ 1; n+ 1)

K+(n; n)
;

a(n) = a�q (n)
K�(n; n)

K�(n+ 1; n+ 1)
;

b(n) = b+q (n) + a+q (n)
K+(n; n+ 1)

K+(n; n)
� a+q (n� 1)

K+(n� 1; n)

K+(n� 1; n� 1)
;

b(n) = b�q (n) + a�q (n� 1)
K�(n; n� 1)

K�(n; n)
� a�q (n)

K�(n+ 1; n)

K�(n+ 1; n+ 1)
;

(3.4)

which implies (cf. [8]) the following asymptotic behavior of the Jost solutions as

z ! �1 using (3.2), (2.16),

 �(z; n)

= z�nK�(n; n)
� n�1Y �

j=0

a�q (j)
��1�

1+
�
B�(n)�

nX �

j=1

b�q (j� 0
1
)
�1
z
+O(

1

z2
)
�
; (3.5)

where

B�(n) =
�1X

m=n�1
(b�q (m)� b(m)): (3.6)
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For � 2 �u� [ �
l
� a second pair of solutions of (3.1) is given by

� �(�; n) =
�1X
m=n

K�(n;m) � �q (�;m); � 2 �u� [ �
l
�; (3.7)

which cannot be continued to the complex plane. Note that � �(�; n) =  �(�; n),
� 2 ��, and from (2.5), (3.2) we conclude

W ( �(�);  �(�)) =W�
q ( � �q (�);  

�
q (�)) = ���(�)�1: (3.8)

The Jost solutions  � are holomorphic in the domains C n (�� [M�) and

inherit almost all properties of their background counterparts listed in Lem. 2.1.

As before, we set

~ �(z; n) = Æ�(z) �(z; n);  ̂�(z; n) = Æ̂�(z) �(z; n): (3.9)

The following Lemma is proven in [8].

Lemma 3.1. The Jost solutions have the following properties.

i. For all n, the functions  �(z; n) are holomorphic in the domain C n (�� [
M�) with respect to z and continuous up to the boundary (�u� [ �l�) n @��,
where

 �(�u; n) =  �(�l; n); � 2 (�u� [ �
l
�) n @��: (3.10)

The functions  �(z; n) are real valued for z 2 R n �� and have simple poles

at �j 2M�. Moreover,  ̂� are continuous up to the boundary �u� [ �l�.

ii. At the band edges we have for � 2 �u;l�

 �(�; n)�  �(�; n) = o(1); E 2 @�� n M̂�;

 �(�; n) +  �(�; n) = o
�

1p
��E

�
; E 2 M̂�:

(3.11)

Next, we introduce the sets

�(2) := �+ \ ��; �
(1)
� = clos (�� n �(2)); � := �+ [ ��; (3.12)

where � is the (absolutely) continuous spectrum of H and �
(1)
+ [ �(1)� resp. �(2)

are the parts which are of multiplicity one resp. two. We will denote the interior

of the spectrum by int(�), that is, int(�) := � n @�.
In addition to the continuous part, H has a �nite number of eigenvalues situ-

ated in the gaps, �d = f�1; : : : ; �pg � R n � (see, e.g., [18]). For every eigenvalue

we introduce the corresponding norming constants

�1�;k =
X
n2Z

j ~ �(�k; n)j2; 1 � k � p: (3.13)
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Moreover, ~ �(�k; n) = c�
k
~ �(�k; n) with c+k c

�
k
= 1.

Let

W (z) :=W ( �(z);  +(z)) (3.14)

be the Wronskian of two Jost solutions. This function is meromorphic in the

domain C n � with possible poles at the points M+ [M� [ (M̂+ \ M̂�) and with

possible square root singularities at the points M̂+ [ M̂� n (M̂+ \ M̂�). Set

~W (z) =W ( ~ �(z); ~ +(z)); Ŵ (z) =W ( ̂�(z);  ̂+(z)); (3.15)

then Ŵ (�) is holomorphic in the domain C nR and continuous up to the boundary.

But unlike to W (z) and ~W (z), the function Ŵ (�) may not take real values on

the set R n � and complex conjugated values on di�erent sides of the spectrum.

That is why it is more convenient to characterize the spectral properties of the

operator H by means of the function ~W , which can have singularities at the points

of the sets M̂+ [ M̂�. We will study the precise character of these singularities in

Lem. 3.2 below.

Note that outside the spectrum the function ~W (z) vanishes precisely at the

eigenvalues. However, it might also vanish inside the spectrum at points in @��[
@�+. We will call such points virtual levels of the operator H,

�v := fE 2 � : Ŵ (E) = 0g; (3.16)

and we will show that �v � @� [ (@�
(1)
+ \ @�(1)� ) in Lem. 3.2. All other points E

of the set @�+ [ @�� correspond to the generic case Ŵ (E) 6= 0.
Our next aim is to derive the properties of the scattering matrix. Introduce

the scattering relations

T�(�) �(�; n) =  �(�; n) +R�(�) �(�; x); � 2 �u;l� ; (3.17)

where the transmission and re�ection coe�cients are de�ned as usual,

T�(�) :=
W ( �(�);  �(�))
W ( �(�);  �(�))

; R�(�) := �
W ( �(�);  �(�))
W ( �(�);  �(�))

; � 2 �u;l� :

(3.18)

The equalities in (3.18) imply the identity

1

T+(�)�+(�)
=

1

T�(�)��(�)
=W (�); � 2 �(2);

where W (�) is the Wronskian of two Jost solutions (3.14). This Wronskian plays

an important role in the characterization of the properties of the scattering matrix.

Namely, the following result is valid.
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Lemma 3.2. The entries of the scattering matrix have the following properties:

I.
(a) T�(�u) = T�(�l); � 2 ��;

R�(�u) = R�(�l); � 2 ��;

(b)
T�(�)

T�(�)
= R�(�); � 2 �(1)� ;

(c) 1� jR�(�)j2 =
��(�)
��(�)

jT�(�)j2; � 2 �(2);

(d) R�(�)T�(�) +R�(�)T�(�) = 0; � 2 �(2):

II. The functions T�(�) can be extended analytically to the domain C n (� [
M� [ �M�) and satisfy

1

T+(z)�+(z)
=

1

T�(z)��(z)
=W (z): (3.19)

The function W (z) has the following properties:

(a) The function ~W (z) = Æ+(z)Æ�(z)W (z) is holomorphic on C n� with simple

zeros at the eigenvalues �k, where�
d ~W

dz
(�k)

�2

=
1

+;k�;k
: (3.20)

Moreover,

~W (�u) = ~W (�l); � 2 �; ~W (z) 2 R; z 2 R n �: (3.21)

(b) The function Ŵ (z) = Æ̂+(z)Æ̂�(z)W (z) is continuous on the set C n �
up to the boundary �u [ �l. It can have zeros on the set @� [ (@�

(1)
+ \ @�(1)� )

and it does not vanish at the other points of the spectrum �. If Ŵ (E) = 0 as

E 2 @� [ (@�
(1)
+ \ @�(1)� ), then

1

Ŵ (�)
= O

�
1

p
��E

�
; for � 2 � close to E: (3.22)

Moreover,
1

Ŵ (z)
= O

�
(z �E)�1=2�"

�
; for z close to E: (3.23)

(c) In addition,

T+(1) = T�(1) > 0: (3.24)

III. (a) The re�ection coe�cients R�(�) are continuous functions on int(�u;l� ).
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(b) If E 2 @�+ \ @�� and Ŵ (E) 6= 0, then the functions R�(�) are also

continuous at E. Moreover,

R�(E) =

�
�1 for E =2 M̂�;
1 for E 2 M̂�:

(3.25)

P r o o f. I. The symmetry property (a) follows from formulas (3.18) and

(3.10). For (b), use (3.18) and observe that  �(�) are real valued for � 2 int(�
(1)
� ).

Let � 2 int(�(2)). By (3.17),

jT�j2W ( �;  �) = (jR�j2 � 1)W ( �;  �);

and property (c) follows from (3.8). The consistency condition (d) can be derived

directly from de�nition (3.18).

II. The identity (3.19) follows from (3.18). (a) The Wronskian inherits the

properties of  �(z), so it remains to show (3.20). If Ŵ (z0) = 0 for z0 2 C n �,
then

~ �(z0; n) = c� ~ �(z0; n) (3.26)

for some constants c� (depending on z0), which satisfy c�c+ = 1. In particular,

each zero of ~W (or Ŵ ) outside the continuous spectrum is a point of the discrete

spectrum of H and vice versa.

Let �;j be the norming constants de�ned in (3.13) for some point of the

discrete spectrum �j . By virtue of [20], Lem. 2.4,

d

dz
W ( ~ �(z); ~ +(z))

���
�j

=Wn( ~ �(�j); ddz
~ +(�j)) +Wn(

d

dz
~ �(�j); ~ +(�j))

= �
X
k2Z

~ �(�j ; k) ~ +(�j; k) = �
1

c�
j
�;j

: (3.27)

Since c�
j
c+
j
= 1, we obtain (3.20).

(b) Continuity of Ŵ up to the boundary follows from the corresponding pro-

perty of  ̂�(z; n). We begin with the investigation of the possible zeros of this

function on the spectrum.

First let �0 2 int(�(2)) := �(2) n @�(2), that is, Æ̂� 6= 0 and Æ̂+ 6= 0. Sup-

pose W (�0) = 0, then  +(�0; n) = c  �(�0; n) and  +(�0; n) = �c  �(�0; n), i.e.
W ( +;  +) = jcj2W ( �;  �). But this implies opposite signs for �+; �� by (3.8),

sign �+(�0) = � sign ��(�0), which contradicts (2.9).

Let �0 2 int(�
(1)
� ) and ~W (�0) = 0. The point �0 can coincide with a pole

� 2 M�. But  �(�0; n) and  �(�0; n) are linearly independent and bounded,

and ~ �(�0; n) 2 R. If W (�0) = 0, then ~ � = c�1  � = c�2  � which implies

W ( �;  �)(�0) = 0, a contradiction.
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In the general mutual location of the background spectra the case �0 = E 2
(@�(2) \ int(��)) � int(�) can occur. If Ŵ (E) = 0, then W ( �;  ̂�)(E) = 0,
where  ̂� are de�ned by (3.9). The values of  ̂�(E; �) are either purely real or

purely imaginary, therefore W ( �;  ̂�)(E) = 0, that is,  �(E;n) and  �(E;n)
are linearly dependent, which is impossible at inner points of the set ��.

Thus, the virtual level �v of H de�ned in (3.16) can only be located on the

set @�� \ @�+, that is,

�v � @� [
�
@�

(1)
� \ @�(1)+

�
: (3.28)

To prove (3.22), take E 2 �v and assume for example E 2 �+. By (3.17) and

(3.19),

Æ̂+(�) ̂�(�; n)

Æ̂�(�)�+(�)W (�)
= Æ̂+(�) +(�; n) +R+(�) ̂+(�; n):

Choose n0 such that  ̂�(E;n0) 6= 0. By continuity we also have  ̂�(�; n0) 6= 0 in

a small vicinity of E. Then

Æ̂+(�) +(�; n0) +R+(�) ̂+(�; n0)

 ̂�(�; n0)
= O(1); �! E:

Accordingly,

1

Ŵ (�)
= O

�Qg+

j=1(�� �+
j
)

Æ̂2+(�)
p
��E

�
= O

�
1

p
��E

�
; � 2 �+;

which proves (3.22). To see (3.23) note that

g(z; n) =
 +(z; n) �(z; n)

W (z)

is a Herglotz function. Moreover, we can assume that �j 6= E and choose n

such that  �(E;n0) 6= 0. Hence it remains to show the corresponding estimate

for g(z) = g(z; n0). Since the continuous spectrum of H is purely absolutely

continuous, we deduce from the Stieltjes inversion formula that

g(z) =
1

�

Z
E+Æ

E�Æ

Im(g(�))

�� z
d�+ ~g(z); Æ > 0;

where ~g(z) is holomorphic near E. By (3.22) we infer (� � E)1=2+"Im(g(�)) is

H�older continuous and the result follows from [17, Eq. (29.8)].

(c) Equation (3.24) follows from (3.5).
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III. (a) follows from the corresponding properties of  �(z) and from II, (b).

To show III, (b) we use that by (3.18) the re�ection coe�cients have the repre-

sentation

R�(�) = �
W ( �(�);  �(�))
W ( �(�);  �(�))

= �
W ( �(�);  �(�))

W (�)
(3.29)

and are continuous on both sides of the set int(��) n (M� [ M̂�). Moreover,

jR�(�)j =
����W ( ̂�(�);  ̂�(�))

Ŵ (�)

����;
where the denominator does not vanish on the set �� n �v. Hence R�(�) are

continuous on this set since both numerator and denominator are.

Next, let E 2 @�� n �v (in particular Ŵ (E) 6= 0). Then, if E =2 M̂�, we use

(3.29) in the form

R�(�) = �1�
Æ̂�(�)W ( �(�)�  �(�);  ̂�(�))

Ŵ (�)
; (3.30)

which shows R�(�)! �1 since  �(�)� �(�)! 0 by Lem. 3.1, (2). This settles

the �rst case in (3.25). Similarly, if E 2 M̂�, we use (3.29) in the form

R�(�) = 1�
Æ̂�(�)W ( �(�)�  �(�);  ̂�(�))

Ŵ (�)
; (3.31)

which shows R�(�)! 1 since Æ̂�(�) = O(
p
��E) and  �(�)+ �(�) = o

�
1p
��E

�
by Lem. 3.1, (2). This settles the second case in (3.25) as well.

4. The Gel'fand-Levitan-Marchenko Equation

The aim of this section is to derive the inverse scattering problem equation (the

Gel'fand�Levitan�Marchenko equation) and to discuss some additional properties

of the scattering data which are consequences of this equation.

Theorem 4.1. The inverse scattering problem (the GLM) equation has the

form

K�(n;m) +
�1X
l=n

K�(n; l)F�(l;m) =
Æ(n;m)

K�(n; n)
; �m � �n; (4.1)
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where

F�(m;n) =
I
��

R�(�) �q (�;m) �q (�; n)d!�

+

Z
�
(1);u

�

jT�(�)j2 �q (�;m) �q (�; n)d!� +

pX
k=1

�;k ~ �q (�k; n) ~ 
�
q (�k;m):

(4.2)

P r o o f. Consider a closed contour �� consisting of a large circular arc and

some contours inside this arc, which envelope the spectrum � at a small distance

" from the spectrum. Let �m � �n. The residue theorem, (2.17), (3.5), (3.20),

and equality ~ �(�k; n) = c�
j
~ �(�k; n) imply

1

2�i

I
��

 �(�; n) �q (�;m)

W (�)
d� =

Æ(n;m)

K�(n; n)
+

pX
k=1

Res�k

� ~ �(�; n) ~ �q (�;m)

~W (�)

�

=
Æ(n;m)

K�(n; n)
�

pX
k=1

�;k ~ �(�k; n) ~ �q (�k;m); (4.3)

since the integrand is meromorphic on C n� with simple poles at the eigenvalues

�k and at 1 if m = n. It is continuous till the boundary except at the points

E 2 @�+ [ @�� where

 �(�; n) �q (�;m)

W (�)
= O

�
1

p
��E

�
; E 2 @�+ [ @��; (4.4)

by (3.22). On the other hand, as �! 0,

1

2�i

I
�

 �(�; n) �q (�;m)

W (�)
d�

=
1

2�i

I
��

�
 �(�; n) +R�(�) �(�; n)

�
 �q (�;m)

T�(�)W (�)
d�

+
1

2�i

I
�
(1)
�

 �(�; n) �q (�;m)

W (�)
d�

=

I
��

 �(�; n) �q (�;m)d!� +

I
��

R�(�) �(�; n) �q (�;m)d!�

+
1

2�i

Z
�
(1);u
�

 �q (�;m)

�
 �(�; n)
W (�)

�
 �(�; n)

W (�)

�
d�: (4.5)

It remains to treat the last integrand. By (3.17) and Lem. 3.2, I,

 �(�; n) = T�(�) �(�; n)�R�(�) �(�; n) = T�(�) �(�; n)�
T�(�)

T�(�)
 �(�; n);

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 1 45



I. Egorova, J. Michor, and G. Teschl

and therefore

 �(n)
W

�
 �(n)
W

=
WT� +WT�
jW j2T�

 �(n)�
T�
W
 �(n) = �

T�
W
 �(n);

since WT� +WT� = 2Re(WT�) = 0 on ��. In summary, (4.3) and (4.5) yield

Æ(n;m)

K�(n; n)
= K�(n;m) +

I
��

R�(�) �(�; n) �q (�;m)d!�

+

Z
�
(1);u

�

jT�(�)j2 �(�; n) �q (�;m)d!� +

pX
j=1

�;j ~ �(�j ; n) ~ �q (�j ;m);

and applying (3.2) �nishes the proof.

As it is shown in [8], the estimate (3.3) for K�(n;m) implies the following

estimates for F�(n;m).

Lemma 4.2. The kernel of the GLM equation satis�es the following properties.

IV. There exist functions C�(n) > 0 and q�(n) � 0, n 2 Z�, such that C�(n)
decay as n! �1, jnjq(n) 2 `1(Z�), and

jF�(n;m)j � C�(n)
�1X

j=n+m

q(j);

�1X
n=n0

jnj
��F�(n; n)� F�(n� 1; n� 1)

�� <1;

�1X
n=n0

jnj
��a�q (n)F�(n; n+ 1)� a�q (n� 1)F�(n� 1; n)

�� <1:

(4.6)

In summary, we have obtained the following necessary conditions for the scat-

tering data:

Theorem 4.3. The scattering data

S =
n
R+(�); T+(�); � 2 �

u;l
+ ; R�(�); T�(�); � 2 �

u;l
� ;

�1; : : : ; �p 2 R n (�+ [ ��); �;1; : : : ; �;p 2 R+

o
(4.7)

satisfy the properties I-III listed in Lem. 3.2. The functions F�(n;m), de�ned in

(4.2), satisfy property IV in Lem. 4.2.

In fact, the conditions on the scattering data given in Th. 4.3 are

both necessary and su�cient for the solution of the scattering problem in the

class (2.5). The su�ciency of these conditions as well as the algorithm for the

solution of the inverse problem will be discussed in the next section.
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5. The Inverse Scattering Problem

Let H�
q be two arbitrary quasiperiodic Jacobi operators associated with se-

quences a�q (n); b
�
q (n) as introduced in Sect. 2. Let S be given scattering data with

corresponding kernels F�(n;m) satisfying the necessary conditions of Th. 4.3.

First we show that the GLM equations (4.1) can be solved for K�(n;m) if

F�(n;m) are given.

Lemma 5.1. Under condition IV, the GLM equations (4.1) have unique real-

valued solutions K�(n; �) 2 `1(n;�1) satisfying the estimates

jK�(n;m)j � C�(n)
�1X

j=[n+m2 ]

q(j); �m > �n: (5.1)

Here the functions q�(n) and C�(n) are of the same type as in (4.6).

Moreover, the following estimates are valid

�1X
n=n0

jnj
��K�(n; n)�K�(n� 1; n� 1)

�� <1;

�1X
n=n0

jnj
��a�q (n)K�(n; n+ 1)� a�q (n� 1)K�(n� 1; n)

�� <1:

(5.2)

P r o o f. The solvability of (4.1) under condition (4.6) and the estimates

(5.1), (5.2) follow analogously to the corresponding result in [8, Th. 7.5].

To prove uniqueness, �rst note that the GLM equations are generated by compact

operators. Thus, it is su�cient to prove that the equation

f(m) +

�1X
`=n

F�(`;m)f(`) = 0 (5.3)

has only the trivial solution in the space `1(n;�1). The proof is similar for the

"+" and "�" cases, hence we give it only for the "+" case. Let f(`), ` > n,

be a nontrivial solution of (5.3) and set f(`) = 0 for ` � n. Since F+(`; n) is

real-valued, we can assume that f(`) is real-valued. Abbreviate by

bf(�) = X
m2Z

 +
q (�;m)f(m) (5.4)

the generalized Fourier transform, generated by the spectral decomposition (2.18)

(cf. [22]). Recall that bf(�) 2 L1
loc

(�u+ [ �l+).
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Multiplying (5.3) by f(m), summing over m 2 Z, and applying (2.18), (4.2),

(5.4), and condition I, (a), we have

2

Z
�u+

j bf(�)j2d!+(�) + 2Re

Z
�u+

R+(�) bf(�)2d!+(�)
+

Z
�
(1);u
�

bf(�)2jT�(�)j2d!�(�) + pX
k=1

+;k

�X
n2Z

~ +
q (�k; n)f(n)

�2

= 0:

(5.5)

The last two summands in (5.5) are nonnegative since bf(�) 2 R for � 2 �(1)� and
~ +
q (�k) 2 R. We estimate the �rst two integrands by

j bf(�)j2 +ReR+(�) bf(�)2 � j bf(�)j2 � jR+(�) bf(�)2j � �1� jR+(�)j
�
j bf(�)j2

and drop the last summand in (5.5), thus obtaining

2

Z
�(2);u

(1� jR+(�)j)j bf (�)j2d!+(�) + Z
�
(1);u
�

bf(�)2jT�(�)j2d!�(�) � 0: (5.6)

Here we also used thatZ
�
(1);u
+

(1� jR+(�)j)j bf (�)j2d!+(�) = 0;

which follows from condition I, (b). Since jR+(�)j < 1 for � 2 int(�(2)) and

!�(�) > 0 for � 2 int(�
(1)
� ) we conclude thatbf(�) = 0 for � 2 �(2) [ �(1)� = ��:

The function bf(z) can be de�ned by formula (5.4) as a meromorphic function on

C n �+. By our analysis it is even meromorphic on C n �(1)+ and vanishes on ��.
Thus bf(z) and hence also f(m) are equal to zero.

Next, de�ne the sequences a�; b� by

a+(n) = a+q (n)
K+(n+ 1; n+ 1)

K+(n; n)
;

a�(n) = a�q (n)
K�(n; n)

K�(n+ 1; n+ 1)
;

b+(n) = b+q (n) + a+q (n)
K+(n; n+ 1)

K+(n; n)
� a+q (n� 1)

K+(n� 1; n)

K+(n� 1; n� 1)
;

b�(n) = b�q (n) + a�q (n� 1)
K�(n; n� 1)

K�(n; n)
� a�q (n)

K�(n+ 1; n)

K�(n+ 1; n+ 1)
;

(5.7)

and note that estimate (5.2) implies

n
�
ja�(n)� a�q (n)j+ jb� � b�q (n)j

	
2 `1(Z�): (5.8)
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Lemma 5.2. The functions  �(z; n), de�ned by

 �(z; n) =
�1X
m=n

K�(n;m) �q (z;m); (5.9)

solve the equations

a�(n� 1) �(z; n� 1) + b�(n) �(z; n) + a�(n) �(z; n+ 1) = z �(z; n); (5.10)

where a�(n); b�(n) are de�ned by (5.7).

P r o o f. Consider the two operators�

(H�y)(n) = a�(n� 1)y�(n� 1) + b�(n)y�(n) + a�(n)y�(n+ 1); n 2 Z:

De�ne two discrete integral operators

(K�f) (n) =
�1X
m=n

K�(n;m)f(m):

Then (cf. [8]) the following identity is valid

H�K� = K�H�
q ;

which implies (5.10).

The remaining problem is to show that a+(n) � a�(n), b+(n) � b�(n) under
conditions II and III on the scattering data S.

Theorem 5.3. Let the scattering data S, de�ned as in (4.7), satisfy conditions

I, (a)�(c), II, III, (a), and IV. Then each of the GLM equations (4.1) has unique

solutions K�(n;m), satisfying the estimate (5.2). The functions a�(n); b�(n),
de�ned by (5.7), satisfy (5.8).

Under the additional conditions III, (b) and I, (d), these functions coincide,

a+(n) � a�(n) = a(n), b+(n) � b�(n) = b(n), and the data S are the scattering

data for the Jacobi operator associated with the sequences a(n); b(n).

The proof of Th. 5.3 takes up the remaining section and is split into several

lemmas for the convenience of the reader.

To prove the uniqueness of the reconstructed potential we follow the method

proposed in [15]. Recall that, by Lem. 2.1 (iii), the functions  �q (�; n) form an

orthonormal basis with corresponding generalized Fourier transform. Split the

� We do not know that H� is a limit point at �1 yet, but this will not be used.
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kernel of the GLM equation (4.2) into three summands F�(m;n) = Fr;�(m;n) +
Fh;�(m;n) + Fd;�(m;n) and set

G�(n;m) :=
�1X
l=n

K�(n; l)Fr;�(l; n): (5.11)

Then one obtains as in [8, Th. 8.2] that the functions h�(�; n), de�ned by

h�(�; n) =
1

T�(�)

 
� �q (�; n)
K�(n; n)

+

�1X
m=n�1

G�(n;m) � �q (�;m)

�
Z
�
(1);u
�

jT�(�)j2 �(�; n)
W�
q;n�1( 

�
q (�);

� �q (�))

� � �
d!�(�)

�
pX

k=1

�;k ~ �(�k; n)
W�
q;n�1( ~ 

�
q (�k);

� �q (�))

�� �k

!
;

(5.12)

satisfy

T�(�)h�(�; n) =  �(�; n) +R�(�) �(�; n); � 2 �u;l� : (5.13)

Despite the fact that h�(�; n) are de�ned via the background solutions cor-

responding to the opposite half-axis Z�, they share a series of properties with

 �(�; n). Namely, we prove

Lemma 5.4. Let h�(z; n) be de�ned by formula (5.12) on the set �
u;l
� .

i. The functions ~h�(z; n) = Æ�(z)h�(z; n) admit analytic extensions to the

domain C n �.

ii. The functions ~h�(z; n) are continuous up to the boundary �u;l except possibly
at the points @�+ [ @��. Furthermore,

~h�(�u; n) = ~h�(�l; n) 2 R; � 2 R n ��;

~h�(�u; n) = ~h�(�l; n); � 2 int(��):
(5.14)

iii. For large z the functions h�(z; n) have the following asymptotic behavior:

h�(z; n) =
z�n

K�(n; n)T�(1)

� n�1Y �

j=0

a�q (j)
��1�

1+O(
1

z
)
�
; z !1: (5.15)

50 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 1



Scattering Theory for Step-Like Quasi-Periodic Background

iv. We have

W�(h�(z);  �(z)) :=a�(n)
�
h�(z; n) �(z; n+ 1)� h�(z; n+ 1) �(z; n)

�
��W (z);

where W (z) is de�ned by (3.19).

Remark 5.5. Note that we did not establish the connection between the func-

tion W (z) and the functions W�( +(z; n);  �(z; n)), which can depend on n,

because  + and  � are the solutions of Jacobi equations corresponding to possibly

di�erent operators H+ and H�.

P r o o f. (i). To show that ~h�(z; n) have analytic extensions to C n �, we
study each term in (5.12) separately.

First of all, note that due to the representation

T�(z) =
1

��(z)W (z)
=
Æ̂�(z)
�Æ�(z)

qQ2g�+1
j=0 (z �E�

j
)

Ŵ (z)
; (5.16)

the functions ~��(z; n) = Æ�(z)��(z; n), where

��(z; n) :=
� �q (z; n)
T�(z)

; (5.17)

can be continued analytically to C n �. This also holds for the second term since

G�(n; �) 2 `1(Z) are real-valued.
Next we discuss the properties of the Cauchy-type integral in the represen-

tation (5.12). We represent the third summand in (5.12) multiplied by T�1� (z)
as

��(z; n) := �
1

2�i

Z
�
(1);u
�

��(z; �; n)
d�

� � z
; (5.18)

where

��(z; �; n) = �
Æ�(�)2

��(�)j ~W (�)j2
~ �(�; n)W�

q;n�1( ~ 
�
q (�; �); ��(z; �))

= �
jÆ̂�(�)j2

��(�)jŴ (�)j2
jÆ̂�(�)j2

Æ̂�(�)2
 ̂�(�; n)W�

q;n�1( ̂
�
q (�; �); ��(z; �)): (5.19)

By property II, (a) the function Ŵ (�) has no zeros in the interior of �
(1);u
� . Thus,

for z =2 �(1)� , the functions ��(z; : : : ; n) are bounded in the interior of �
(1)
� and the

only possible singularities can arise at the boundary. We claim

��(z; �; n) =

(
O(
p
� �E) for E =2 �v;

O
�

1p
��E

�
for E 2 �v;

E 2 @�(1)� ; z 6= E: (5.20)
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This follows from
jÆ̂�(�)j2
��(�)

= O(
p
� �E) together with Ŵ (�) = O(1) if E =2 �v and

1=Ŵ (�) = O(1=
p
� �E) by II, (b) if E 2 �v. Therefore, �� are integrable and

the third summand of (5.12) also inherits the properties of ��(z; n).
Finally, the last summand in (5.12) again inherits the properties of ~��(z; n)

except for possible additional poles at the eigenvalues �k. However, those cancel

with the zeros of ~W (z) at z = �k.

(ii). We consider the boundary values next. The only nontrivial term is of

course the Cauchy-type integral (5.18) as z ! � 2 int(�
(1)
� ). First of all, observe

that by (2.7) and (3.19),

W�
q;n�1( ~ 

�
q (�);

� �q (z))
T�(z)

! (Æ�W )(�);

where the functions Æ�W are bounded and nonzero for � 2 int(�
(1)
� ) by II, (a).

Hence the Plemelj formula applied to (5.18) gives

��(�; n) = �
~ �(�; n)

2Æ�(�)��(�)W (�)
��
Z
�
(1);u
�

��(�; �; n)
� � �

d�; � 2 int(�
(1);u
� );

where both terms are �nite. Here �
R
denotes the principle value integral. There-

fore, the boundary values away from @�+ [ @�� exist and we have

h�(�u; n) = h�(�l; n); � 2 �+ [ ��: (5.21)

By property I, (b),

h� = T�1�
�
R� � +  �

�
=
 �
T�

+
 �
T�

2 R; � 2 �(1)� ; (5.22)

from which

h�(�u; n) = h�(�l; n); � 2 �(1)� ; (5.23)

follows. Combining (5.21) and (5.23) yields (5.14).

(iii). Since the last two terms in (5.12) are O(z�1), the asymptotic behavior

follows from (3.5) and II, (c).

(iv). From (5.13), (3.8), and (3.19) we obtain

W�(h�(�);  �(�)) =
W�( �(�);  �(�))

T�(�)
=

1

T�(�)��(�)
= �W (�); � 2 ��:

Hence equality holds for all z 2 C by analytic continuation.

Corollary 5.6. The functions ~h�(z; n) admit analytic extensions to C n ��.
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P r o o f. Property (i) of Lem. 5.4 holds for z 2 C n�. Relation (5.14) implies

that ~h� have no jumps across z 2 int(�
(1)
� ). To �nish the proof we need to show

that the possible remaining singularities at E 2 @�
(1)
� \ @� are removable. This

follows from (cf. (5.16))

�̂�(z; n) =
Ŵ (z)qQ2g�+1

j=0 (z �E�
j
)

�Æ�(z) � �q (z; n); (5.24)

which shows ~��(z; n) = O((z �E)�1=2) and hence ~h�(z; n) = O((z �E)�1=2) for
E 2 �(1)� \ @�.

However, let us emphasize at this point that the behavior of h�(z; n) at the
remaining edges is a more subtle question to be discussed later.

Eliminating  � from(
R�(�) �(�; n) +  �(�; n) = h�(�; n) T�(�)

R�(�) �(�; n) +  �(�; n) = h�(�; n)T�(�)

yields

 �(�; n)
�
1� jR�(�)j2

�
= h�(�; n)T�(�)�R�(�) h�(�; n)T�(�):

We apply I, (c), II, and the consistency condition I, (d) to obtain

T�(�) �(�; n) = h�(�; n)�
R�(�)T�(�)

T�(�)
h�(�; n)

= h�(�; n) +R�(�)h�(�; n); � 2 �(2): (5.25)

This equation together with (5.13) gives us a system from which we can eliminate

the re�ection coe�cients R�. We obtain

T�(�)
�
 �(�) �(�)� h�(�)h�(�)

�
=  �(�)h�(�)�  �(�)h�(�); � 2 �(2);u;l:

(5.26)

Now introduce the function

G(z) := G(z; n) =
 +(z; n) �(z; n) � h+(z; n)h�(z; n)

W (z)
; (5.27)

which is well de�ned in the domain z 2 C n (� [ �d [M+ [M�). By (5.26) and

(3.19),

G(�) =
�
 �(�)h�(�)�  �(�)h�(�)

�
��(�); � 2 �(2);u;l; (5.28)

so we need to study the properties of G(z; n) as a function of z. Our aim is to

prove that G(z; n) = 0, which will follow from the next lemma.
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Lemma 5.7. The function G(z; n), de�ned by (5.27), has the following pro-

perties.

i. G(�u; n) = G(�l; n) 2 R for � 2 R n (@�� [ @�+ [ �d).

ii. It has removable singularities at the points @�� [ @�+ [ �d, where �d :=
f�1; : : : ; �pg.

P r o o f. (i). We can rewrite G(z; n) as

G(z; n) =
~ +(z; n) ~ �(z; n)� ~h+(z; n)~h�(z; n)

~W (z)
; (5.29)

where ~h�(z; n) = Æ�(z)h�(z; n) as usual. The numerator is bounded near the

points under consideration and the denominator does not vanish there. Thus

G(z; n) has no singularities at the points (M+ [M�) n �d.
Furthermore, by Lem. 5.4, II, (a), and Lem. 3.1 we know that G(z; n) has

continuous limiting values on the sets �� and �+, except possibly at the edges,

and satis�es

G(�u; n) = G(�l; n); � 2 �+ [ ��:

Hence, if we can show that these limits are real, they will be equal and G(z; n)
will extend to a meromorphic function on C , that is, (i) holds. To this aim we

�rst observe that (5.14), (5.28), and Lem. 3.1 imply

G(�u; n) = G(�l; n) 2 R; � 2 int(�(2)): (5.30)

Thus, it remains to prove

G(�u; n) = G(�l; n) 2 R for � 2 int(�
(1)
� ) [ int(�

(1)
+ ): (5.31)

Let us show that G(�; n) has no jump on the set int(�
(1)
� ) [ int(�

(1)
+ ). We abbre-

viate

[G] := G(�)�G(�) =

�
 + �
W

�
�
�
h+h�
W

�
; � 2 �(1);u� ; (5.32)

and drop some dependencies until the end of this lemma for notational simplicity.

Let � 2 int(�
(1);u
� ), then  �; h� 2 R and T� = �(W ��)�1. By (3.19), (I),

(b), and (5.13) we obtain for � 2 int(�
(1)
� )�

 + �
W

�
=  �

�
 �
W

�
= �� �

�
 �T� +  �T�

�
= ��h� �jT�j2: (5.33)

Since �� 2 R for � 2 int(�
(1);u
� ), (3.19) implies�

h�
W

�
= �� [h�T�] :
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The only nonreal summand in (5.12) is the Cauchy-type integral. The Plemelj

formula applied to this integral gives

[h�T�] = ��� �jT�j2W ( �q ; � 
�
q ) = �� �jT�j2

1

��
;

and by (5.33) we get�
h+h�
W

�
=

�
 + �
W

�
= �� �h�jT�j2; � 2 int(�

(1)
� ): (5.34)

Since ~W 6= 0 for � 2 int(�
(1)
� ), the function

�� �h�jT�j2 = �
Æ2�
��

~ �~h�
j ~W j2

is bounded on the set under consideration. Finally, (5.34) and (5.32) imply (5.31).

(ii). Now we prove that the function G(z; n) has removable singularities at

the points @�� [ @�+ [ �d. We divide this set into four subsets


�1 = @�(2)\ int(��); 
2 = @�(2)\@�; 
�3 = @�
(1)
� \@��; 
4 = �d: (5.35)

Since all singularities of G are at most isolated poles, it is su�cient to show

that

G(z) = o
�
(z �E)�1

�
(5.36)

from some direction in the complex plane.


1: Consider E 2 
+
1 (the case E 2 
�1 is completely analogous). We will

study lim�!E G(�; n) as � 2 int(�(2)) using (5.28) with the ��� sign. Note that
 � = O(1), �� = O(1), and Ŵ (E) 6= 0. Moreover, we obtain from Lem. 3.1

respectively II that

 +(�) =

(
O(1); E =2 M̂+;

O
�

1p
��E

�
; E 2 M̂+;

1

T+(�)
=

(
O
�

1p
��E

�
; E =2 M̂+;

O(1); E 2 M̂+;

which shows

h�(�) =
 +(�) +R+(�) +(�)

T+(�)
= O

�
1

p
��E

�
for � 2 �(2). Inserting this into (5.28) shows G(�; n) = O

�
1p
��E

�
and �nishes the

case E 2 
1.
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2: For E 2 @�(2) \ @�, we use (5.28) and take the limit � ! E from �(2).

First of all, observe that

�Æ�
�
R� � +  �

�
=

�
O(1) E 2 �v;
o(1) E =2 �v:

The case E 2 �v is evident. If E =2 �v, then (3.11) and (3.25) yield

�Æ�
�
R� � +  �

�
=

�
�Æ�
�
( � �  �) + (R� + 1) �

�
; E =2 M̂��

�Æ�( � +  �) + (R� � 1)�Æ� �
�
; E 2 M̂�

= o(1):

Therefore, both for virtual and non-virtual levels the estimate

�Æ�
�
R� � +  �

�
Ŵ = o(1); E 2 @��; (5.37)

is valid. Inserting (5.13) into the summand  +h+�+ of (5.28) (for the second

summand we use an analogous approach) we obtain (recall (2.2))

 +h+�+ =  +�+��( � +R� �)W =
 +

�Æ+
P+P�

Æ̂+Æ̂��Æ�( � +R� �)W

=
 +

�Æ+
P+P�

�Æ�
�
R� � +  �

�
Ŵ : (5.38)

Combining the estimate

 +
�Æ+

P+P�
= O

�
1

��E

�
with (5.37) we have G(z) = o

�
(z �E)�1

�
as desired.


3: Suppose that E 2 @�
(1)
� \ @�� (the case E 2 @�

(1)
+ \ @�+ is again anal-

ogous). Now we cannot use (5.28), so we proceed directly from formula (5.27)

estimating the summands
 + �

W
and

h+h�

W
separately. We investigate the limit as

�! E from the set int(�
(1)
� ). By Lemma 3.1 and (3.22) we have

 + �
W

=
 ̂+ ̂�
Ŵ

= O

�
1

p
��E

�
; (5.39)

hence the �rst summand has the desired behavior. To estimate the second sum-

mand, we split the function h�(�; n) according to

h�(�; n) = h1(�; n) + h2(�; n);

where

h1(�; n) =W+
q;n�1(��(�; �); d�(�; n; �)); h2(�; n) = h�(�; n)� h1(�; n);
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d�(�; n; :) :=
Z
�
(1);u
�

jT�(�)j2 +(�; n) 
+
q (�; �)

� � �
d!�(�): (5.40)

It follows from the proof of Lem. 5.4 that h2(�) = O(��(�)) for �! E. Recall that

at the point under consideration singularities E 2 f�+1 ; : : : ; �
+
g+
g[M̂� might occur

(in the case @�
(1)
� \ @� one can have E 2M+ [ �M+ and in the case @�

(1)
� \ @�(1)+

one can have E 2 M̂+). Introduce

�+q (z; n) :=
�Æ+(z) � 

+
q (z; n) (5.41)

and recall that (2.15) implies

�+q (z; n)� �+q (E;n) = O(
p
z �E): (5.42)

Then (see (2.2) and (2.13)) we have

h+��
W

= O

�
h+ � +

q

WT+

�
= O

�
h+Æ̂+�Æ+ � +

q

P+

�
= O

�
h+Æ̂+

P+

�
�+q : (5.43)

Now we distinguish two cases: (a) E 2 @�(1)� \ @�(1)+ and (b) E 2 @�(1)� \ @�.
Case (a). By (5.13) and (5.37) we have

Æ̂+h+ =
(R� � +  �)Æ̂+

T�
=
Ŵ �Æ�(R� � +  �)

P�
= o

�
1

p
��E

�
; (5.44)

therefore
h+(�)��(�)
W (�)

= o

�
1

p
��E

�
�+q (�)

P+(�)
: (5.45)

As a consequence of
�
+
q

P+
= O

�
1p
��E

�
we obtain

h+h2

W
= o

�
1

��E

�
; E 2 @��: (5.46)

Next, we have to estimate

h+h1

W
=W+

q;n�1
�h+��

W
;d�

�
: (5.47)

By (5.42) we can represent (5.45) as

h+(�)��(�)
W (�)

= o

�
1

p
��E

�� � +
q (E)

p
��E

+O(1)

�
: (5.48)
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Then (5.47) implies

h+(�; n)h1(�; n)

W (�)
= o

�
1

p
��E

��
O(d�(�; n)) +O(d�(�; n� 1))

+
O
�
W+
q;n�1

�
�+q (E); d�(�)

��
p
��E

�
:

(5.49)

To estimate d� in the �rst two summands we distinguish between the resonance

case, E 2 �v, and the nonresonance one, E =2 �v. First, let E =2 �v, that is,

Ŵ (E) 6= 0. From (5.19) and (5.20) we see that the integrand is bounded as

�! E =2 �v, then d�(�) = O(1) by [17].

If E 2 �v, then (3.22) (see also (5.19)) yields

jT�(�)j2��(�) +(�; �) +
q (�; �) = O

�
1

p
� �E

�
and [17, Eq. (29.8)] implies

d�(�) = o

�
1

p
��E

�
: (5.50)

For the estimate of the last summand in (5.49) we use (5.19) and (5.40) to repre-

sent the integrand in W+
q;n�1

�
� +
q (E); d�(�)

�
as

jT�(�)j2��(�) +(�; n)W
+
q;n�1

�
 +
q (�); �

+
q (E)

�
= O

�p
� �E

jŴ (�)j2
W+
q;n�1

�
 ̂+
q (�); �

+
q (E)

��
:

It follows from (2.15) and (5.41) that

W+
q;n�1( ̂

+
q (�); �

+
q (E)) = O

�p
� �E

�
;

which implies together with (3.22) the boundedness of the integrand near E.

Thus,

W+
q;n�1

�
�+q (E); d�(�)

�
= O(1); (5.51)

and combining (5.46), (5.49), (5.51), and (5.50) �nishes case (a).

Case (b). Now we do not have estimate (5.37) (cf. III, (b)) at our disposal,

but we can proceed as in (5.43), (5.44) since P+(E) 6= 0 and arrive at

h+��
W

= O(h+Æ̂+) = O

�
Ŵ �Æ�(R� � +  �)

P�

�
= O

�
Ŵ

p
��E

�
: (5.52)
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This estimate is su�cient to conclude that (5.46) is valid in case (b) as well. For

h1, we use the following estimate (cf. (5.50) and (5.52)) instead of (5.47):

h+h1

W
= O

�
h+��
W

�
O (d�) = O

 
Ŵ

p
��E

!
o

�
1

p
��E

�
:

Combining this with (5.46) �nishes case (b).


4: Finally we have to show that the singularities of G(z; n) at the points of
the discrete spectrum are removable. Since ~W (z) has simple zeros at z = �k, it

su�ces by (5.29) to show that

~h+(�k; n)~h�(�k; n) = ~ �(�k; n) ~ +(�k; n): (5.53)

By Lemma 5.4, the functions ~h� = Æ�h� given in (5.12) are continuous at the

points �M�. Since (Æ�T�1� )(�k) = 0 and (Æ�T�1� � �q )(�k) = 0, only the last sum-

mand in (5.12) is nonzero. We compute the limit of this summand as � ! �k
using (3.19),

~h�(�k) = ��;k ~ �(�k)
d ~W (�k)

d�
; (5.54)

and apply (3.20) to obtain (5.53).

The identity G(z; n) � 0 implies

 +(z; n) �(z; n)� h+(z; n)h�(z; n) � 0; 8n 2 Z: (5.55)

For z !1 we obtain by (2.16) and (5.9)

 +(z; n) �(z; n) = K+(n; n)K�(n; n)
n�1Y �

j=0

a+q (j)

a�q (j)
(1 + o(1)):

Formulas (5.15) and (3.24) imply

h+(z; n)h�(z; n) =
1

T+(1)2K+(n; n)K�(n; n)

n�1Y �

j=0

a�q (j)

a+q (j)
(1 + o(1))

and by (5.55),

K+(n; n)K�(n; n)
n�1Y �

j=0

a+q (j)

a�q (j)
=

1

T+(1)
:
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The value on the left-hand side does not depend on n, so using (5.7), we conclude

a+(n) = a�(n) � a(n); 8n 2 Z: (5.56)

It remains to prove b+(n) = b�(n). If we eliminate the re�ection coe�cient R�
from (5.13) at n and (5.25) at n+ 1, we obtain

G1(�; n) :=
 +(�; n) �(�; n+ 1)� h+(�; n+ 1)h�(�; n)

W (�)

= �+(�)
�
h�(�; n+ 1) �(�; n)�  �(�; n)h�(�; n+ 1)

�
; � 2 �(2);u;l:

(5.57)

Proceeding as for G(�; n) in Lem. 5.7 we can show that the function G1(z; n)
is holomorphic in C . From (5.15), (5.9), (3.24), (2.16), (5.56), and the Liouville

theorem we conclude that

 +(z; n) �(z; n+ 1)� h+(z; n+ 1)h�(z; n)
W (z)

= �1=a(n):

We compute the asymptotics of

�W (z; n) := a(n) ( +(z; n) �(z; n+ 1)� h+(z; n+ 1)h�(z; n)) = �W (z)

as z !1 and obtain (compare (3.5))

0 = �W (z; n)� �W (z; n� 1) = (b+(n)� b�(n))K+(0; 0)K�(0; 0): (5.58)

This implies in particular b+(n) = b�(n) � b(n), hence the proof of Th. 5.3 is

�nished.
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