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We study the spectral structure of Schr�odinger operators H = �+V for

random potentials supported on sparse sets. In the past years examples of

such operators whose spectra almost surely satisfy the following properties

have been exhibited: Anderson localization holds outside spec(�), while the

wave operators
�(H;�) exist inside this last set. We continue this program

by presenting sparseness conditions under which 
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(�; H) also exist.
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1. Introduction

Since its introduction in 1958, there has been considerable interest in the

Anderson model [4], which describes potentials that are not completely known,

but are a�ected by a probability distribution. By focusing on almost sure results

(and hence by discarding pathological constructions), research on this model has

given a new insight into quantum physics. A random potential, V , lies on a lattice

Z
d. It is described by the following operator on l2(Zd):

V =
X
N2Zd

V (N)hÆN j �iÆN ;

where ÆN (M) is the Kronecker delta and fV (N)g
N2Zd

is a family of i.i.d. random

variables of law �.� The spectral structure of the random Hamiltonian

H = �+ �V

�Explicitly, the probability space is given by 
 = R
(Zd) equipped with its Borel �-algebra

and the probability measure P =
Q
Zd
�. The random variable V (N) then maps an element of


 to its N -th coordinate.
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has been investigated�where � is a positive number (the so-called disorder) and

� is the centered discrete Laplacian. It was proven by L. Pastur that the abso-

lutely continuous, essential, singular continuous and point spectra ofH are almost

surely constant [20]. Indeed, from the �rst days Anderson has conjectured that

H has the following spectral structure (almost surely): if � is small, spec(H)
is purely absolutely continuous (delocalization) except near its edges, where it is

pure point with exponentially decaying eigenfunctions (Anderson localization); on

the other hand, if � is large, Anderson localization occurs on the whole spec(H).
While the structure of the a.c. spectrum of H is still not completely understood,

the localization part of the above conjecture was proven by M. Aizenman and

S. Molchanov [3, 1]. In their works these authors developed a method for esti-

mating the sth-moment of the resolvent's matrix elements

R(M;N; z) = hÆM j (H � z)�1ÆN i

(in absolute value) for suitable �, s and z approaching the real line. This method,

which is used in the present paper, is based on the following decoupling lemmas �

which apply to a large class of probability measures including Gaussian, Cauchy,

and uniform distributions [1�3, 5, 11, 15]:�

Proposition 1. Suppose there exists an s 2 (0; 1) such that

ks = inf
�;�2C

R
R
jx� �jsjx� �j�s d�(x)R
R
jx� �j�s d�(x)

> 0:

Then, for any deterministic function F (M;N; z),

E jV (M)� F (M;N; z)jsjR(M;N; z)js > ksE jR(M;N; z)js :

Suppose instead there exists an s 2 (0; 1) such that

Ks = sup
�2C

R
R
jxjsjx� �j�s d�(x)R
R
jx� �j�s d�(x)

<1:

Then, E jV (M)jsjR(M;N; z)js 6 KsE jR(M;N; z)js :

In addition to the Anderson model, several researchers (M. Krishna et al.

[13, 14], W. Kirsch et al. [6, 12], S. Molchanov et al. [15�19]) have investigated

various sparse models, which describe random potentials lying on a set � subject

to various geometric constraints, having in common that the distance between

�In the sequel we use parentheses with E in the same way as with
P

. For instance, E Xs =

E (Xs), not (E X)s.
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N 2 � and its closest neighbor in � tends to in�nity when jN j ! 1. In the

discrete case the following Hamiltonian on l2(Zd) has been investigated,

H = �+ V; V =
X
n2�

V (n)hÆn j �iÆn;

where fV (n)gn2� is a family of i.i.d. random variables.

Since such a model is not ergodic, Pastur's theorem fails for the singular

continuous and point spectra of H, but still holds for the essential and continuous

spectra. Indeed, the essential spectrum ofH has been completely characterized by

S. Molchanov and B. Vainberg under appropriate sparseness conditions [17, 19].

In addition, the spectral structure of H (for the above model or its continuous

analog) has been clari�ed in di�erent cases. Families of random Hamiltonians

with the following, almost sure properties have been exhibited: the spectrum of

H is (possibly dense) pure point outside spec(�), while the wave operators


�
E(H;�) = lim

t!�1
eitHe�it�1E(�) (strongly)

exist on the whole E = spec(�)�yielding that specac(H) = spec(�).
In order to complete this program we show that under suitable sparseness

conditions the above wave operators are almost surely complete, i.e., 
�
E(�;H)

also exist. We conclude this work by exhibiting a family of random operators

H = �+V with sparse potentials satisfying almost surely the following properties:

1o the spectrum of H is purely absolutely continuous on spec(�), 2o the wave

operators exist and are complete on spec(�), 3o the spectrum of H is (possibly

dense) pure point outside spec(�).
This work, based on a private communication with V. Jak�si�c, is an applica-

tion of a completeness criterion found in [9] � a paper of V. Jak�si�c and Y. Last

dedicated to L. Pastur.

Acknowledgements The author is grateful to Vojkan Jak�si�c for his sub-

stantial collaboration, his generous teaching (covering many results used in the

present paper), and for having made this invitation possible. The present article

is based on the second part of the doctoral dissertation of the author, who wants

to acknowledge his thesis' referees for instructive comments.

2. Abstract Results

2.1. The Model

At a higher level of generality the lattice Zd is replaced with a countable set

X endowed with a graph structure. We assume that this graph consists of �nitely

many connected components and that the degrees of the vertices are bounded. Let
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d(M;N) be the distance between M;N 2 X, that is, the length of the shortest

path connecting them in X (1 if M and N lie on two di�erent components).

The usual centered Laplacian is then replaced with the adjacency operator of X:

for ' 2 l2(X),

�'(N) =
X

d(M;N)=1

'(M):

Notice that � is a bounded selfadjoint operator on l2(X). The Euclidean distance

is replaced with a weight on the set X, that is, a function 
 : X �X ! [0;1)
satisfying all axioms of metric distance, except that 
(M;N) = 0 does not neces-
sarily imply M = N .

For a �xed � � X, a family fV (n)gn2� of i.i.d. random variables is given.

Their law, �, is assumed to be absolutely continuous and to satisfy both hypothe-

ses of Prop. 1 for a �xed s 2 (0; 1). We study the following random Hamiltonian

on l2(X):

H = �+ V; V =
X
n2�

V (n)hÆn j �iÆn:

N o t a t i o n. In the sequel the connected components of the graph are

denoted by Xj . For 0 6 R 61, the R-fattening of � is de�ned as

�R = fN 2 X ; d(N;�) 6 Rg;

while the projection on l2(�R) is denoted by 1R. For the sake of clarity, we shall

use the following fonts: n varies in a certain subset of �, n varies in �, N varies

in a certain fattening of � and N in the whole X.

The abbreviation a.e. & a.s. stands for almost everywhere and almost surely,

where the former refers to the Lebesgue measure and the latter to the given

probability measure P. Here, the underlying probability space is given by 
 =
R
(Zd) equipped with its Borel �-algebra and the probability measure P =

Q
Zd
�.

2.2. Preliminaries

Our work is based on the following Jak�si�c�Last criterion of completeness [9],

whose conclusion trivially persists for disconnected graphs:�

Proposition 2. Suppose that the spectrum of H is purely a.c. on a given Borel

set E � R. Suppose also that 11 is �-smooth on E, that is,��

sup
0<"<1
e2E

k11(�� e� i")�111k <1:

�This last observation is deduced from elementary properties of the projections, Pj , onto

l
2(Xj), namely: PjPk = 0 if j 6= k;

P
Pj is the identity; Pj1R = 1RPj for any j and R;

f(T )Pj = f(TPj) = Pjf(T )Pj for any bounded Borel function f and T 2 f�; V; Hg.
�� See [25].
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If for all n 2 � and almost all e 2 EX
M2�1

jIm hÆM j (H � e� i0)�1Ænij
2 <1;

then the wave operators 
�
E(�;H) exist.

Since in this context the usual wave operators are 
�
E(H;�), this last criterion

asserts their completeness, but without assuming their existence.

In order to prove localization we shall use the following Simon�Wol� theorem

[27]. It is easily seen that its conclusion is valid for disconnected graphs with

�nitely many components, except regarding simplicity of the eigenvalues � which

follows from a recent theorem of V. Jak�si�c and Y. Last [10].

Proposition 3. Let E � R be a Borel set. If with probability one

k(H � e� i0)�1Ænk <1

for all n 2 � and almost all e 2 E, then the spectrum of H on E is almost surely

pure point with simple eigenvalues.�

Suppose in addition that for almost all V 2 
, almost all e 2 E, and all n 2 �
there exist constants K; k > 0 independent of M 2 X such that

jhÆn j (H � e� i0)�1ÆM ij 6 Ke�k
(n;M):

Then, the eigenfunctions are exponentially bounded in the following sense: for

such an eigenfunction  (N) and an arbitrarily �xed site N0, there exists a coe�-

cient Const (depending on V , N0 and the associated eigenvalue) and a universal

exponent k > 0 such that

j (N)j 6 Const e�k
(N;N0)

for all N 2 X.

Given a selfadjoint operator T on l2(X), let Tj be its restriction to l2(Xj).
The essential support of the a.c. spectrum of Tj is given by

�(Tj) = fe 2 R ;
X
N2Xj

jIm hÆN j (Tj � e� i0)�1ÆN ij > 0g a.e.

Notice that �(Tj) is de�ned up to a set of Lebesgue measure zero; however, its

equivalence class is almost surely constant (by a variant of Pastur's theorem). We

de�ne

�(T ) = \j�(Tj):

The Jak�si�c�Last theorem [8] asserts:

�Recall that the spectrum of H on E is de�ned as spec(H�E(H)), where �E is the charac-

teristic function of E; it is not equal to spec(H)\E in general. Moreover, the above conclusion

includes the trivial case where H has no spectrum on E.
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Proposition 4. Let E � R be a Borel set. If with probability one E � �(H)
(in the sense that E n �(H) has Lebesgue measure zero), then the spectrum of H

on E is purely a.c., almost surely.

2.3. Main Results

As mentioned in the previous section we shall determine the spectral structure

of H on a given interval [a; b] by using the Jak�si�c�Last and the Simon�Wol�

criteria (depending on the location of [a; b]). In both cases the matrix elements

of the resolvent of H have to be estimated. This will be done in one step, using

the Aizenman�Molchanov method.�

Consider the following quantity,

�(M;N) = sup
z2S

jhÆM j (�� z)�1ÆN ij;

where M; N 2 X and S = fa 6 Re z 6 b; 0 < Im z < 1g. In concrete models

�(M;N) decays whenM and N become distant. This motivates our choice in the

present abstract setting to make sparseness assumptions on �(M;N):

A s s u m p t i o n A. For all " > 0 there exists a �nite set F � � such thatP
n2�nfmg �(n;m)s < " for all m 2 � n F .

Given an R 2 [0;1],

A s s u m p t i o n B. supn2�
P

M2�R
�(n;M)s <1.

Let I = infn2�;z2S jhÆn j (�� z)�1Ænij. We also assume

A s s u m p t i o n C. I > 0.

Our chief lemma is:

Lemma 1. Suppose 0 6 R 6 1. Under Assumptions A, B and C, for all

n 2 �,
k1R(H � e� i0)�1Ænk <1 a.e. & a.s.

on [a; b]�
.

�Compared with the original Aizenman�Molchanov argument complications from two sources

arise: since we play with sparseness instead of the disorder, in order to control the norm of a

certain operator we remove a �nite number of sites and then put them back using the resolvent

identity repeatedly; moreover, deletion of these sites never prevents a remaining site to be close

to itself, so the diagonal elements have to be treated di�erently.
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We deduce the following result inside spec(�):

Theorem 1. Suppose A, C, and supN2�1

P
M2�1

�(N;M )s < 1 for an in-

terval [a; b] � �(�). If 
�

[a;b]
(H;�) exist a.s., then the spectrum of H on [a; b] is

purely a.c. and the wave operators are complete there, almost surely.

In order to derive Anderson localization outside spec(�) we make the following

assumptions on the weight:

A s s u m p t i o n D. For any k > 0, supN2X

P
M2X e�k
(N;M) <1:

A s s u m p t i o n E. For each L > 0 there exists a �nite set E � � such

that for all m 2 � n E, infn2�nfmg 
(n;m) > L:

Given an R 2 [0;1],

A s s u m p t i o n F. There exist D; � such that �(n;M)s 6 De��
(n;M)

for all n 2 � and M 2 �R.

Our main lemma is:

Lemma 2. Suppose 0 6 R 6 1. Under Assumptions C, D, E, and F, there

exists a universal constant k > 0 such that the following holds a.e. & a.s. on

[a; b]� 
: for all n 2 � there exists a K > 0 such that

jhÆn j (H � e� i0)�1ÆM ij 6 Ke�k
(n;M)

for all M 2 �R.

From Lemmas 1 and 2 we deduce:

Theorem 2. Suppose C, D, and E. Suppose in addition F holds with

R =1. Then, the spectrum of H on [a; b] is almost surely pure point with simple

eigenvalues and exponentially bounded eigenfunctions (in the sense of Prop. 3).

2.4. Proof of the First Lemma

In this section Assumption A is used in the following form: there exists a �nite

set F � � such that

sup
m2�nF

X
n2�nfmg

�(n;m)s <
I
sks

2Ks

: (1)

We also assume B for an arbitrary R 2 [0;1], and C.
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Let bH = �+
P

n2�nF V (n)hÆn j �iÆn. We use the abbreviations

R0(N;M; z) = hÆN j (�� z)�1ÆM i;

R(N;M; z) = hÆN j (H � z)�1ÆM i;bR(N;M; z) = hÆN j ( bH � z)�1ÆM i;

where M , N 2 X and z 2 S. Since the spectral measure of ÆM and ÆN with

respect to H is real-valued [9], R(N;M; z) = R(M;N; z) for any z 2 S; similar

relations hold for R0 and bR.
In the sequel we use the Aizenman�Molchanov decoupling lemmas (Prop. 1)

in conjunction with the resolvent identity; this latter implies

bR(N;M; z) = R0(N;M; z) �
X

p2�nF

R0(N; p; z)V (p) bR(p;M; z) (2)

for all M;N 2 X. As a �rst instance, with the convention that p varies in � n F ,

Lemma 3. For all n; m 2 � n F and z 2 S,

E j bR(n;m; z)js 6
1

ksIs
�(n;m)s +

Ks

ksIs

X
p6=n

�(n; p)sE j bR(p;m; z)js:

P r o o f. By the equation (2),

bR(n;m; z)(1 +R0(n; n; z)V (n)) = R0(n;m; z)�
X
p6=n

R0(n; p; z)V (p) bR(p;m; z):
Using the triangle inequality for j�js, taking the expectation, and then apply-

ing the decoupling lemmas give ksjR0(n; n; z)j
s
E j bR(n;m; z)js 6 jR0(n;m; z)j

s +
Ks

P
p6=n jR0(n; p; z)j

s
E j bR(p;m; z)js; from which the result follows.

Let us �x m 2 � n F and z 2 S, n 2 � n F being thought as the only variable.

We de�ne the following vectors on l1(� n F):

X(n) = E j bR(n;m; z)js;

B(n) =
1

ksIs
�(n;m)s:

They are well de�ned, since kXk1 6 jIm zj�s and kBk1 < 1, the latter by

Assumption B (which also ensures kBk1 <1). Let us de�ne the operator

(A )(n) =
Ks

ksIs

X
p6=n

�(n; p)s (p);
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which acts on both l1(� n F) and l1(� n F). By the equation (1),

kAk1 = kAk1 =
Ks

ksIs
sup
n

X
p6=n

�(n; p)s <
1

2
: (3)

In addition, the previous lemma gives (1�A)X 6 B (pointwise).

Lemma 4. supz2S supm2�nF
P

n2�nF E j
bR(n;m; z)js <1:

P r o o f. The relation (3) implies that (1�A)�1 =
P1

j=0A
j is well-de�ned

and satis�es k(1�A)�1k1 6 2: Observe that, since all matrix elements of A are

positive, those of (1�A)�1 are also positive, i.e., (1�A)�1 preserves pointwise

positivity. Therefore, by the previous lemma

X 6 (1�A)�1B (pointwise), (4)

so kXk1 6 2kBk1: In other words,
P

n E j
bR(n;m; z)js 6 2

ksIs

P
n �(n;m)s: Since

m and z are arbitrary, Assumption B yields the result.

Lemma 5. For all M; N 2 X and z 2 S,

E j bR(N;M; z)js 6 �(N;M)s +Ks

X
p2�nF

�(N; p)sE j bR(p;M; z)js:

P r o o f. The result is obtained by applying the triangle inequality for j�js

to (2), taking the expectation, and then using the decoupling lemma.

Lemma 6. supz2S supn2�
P

M2�R
E j bR(n;M; z)js <1:

P r o o f. Assumption B and Lemma 4 imply that C = supn2�
P

M2�R
�(n;M )s

and D = supz2S supm2�nF
P

n2�nF E j
bR(n;m; z)js are �nite. By the previous

lemma, for all N 2 �R, m 2 � n F and z 2 S,

E j bR(N;m; z)js 6 �(N;m)s +Ks

X
p2�nF

�(N; p)sE j bR(p;m; z)js;

and hence supz2S supm2�nF
P

N2�R
E j( bR(N;m; z)js 6 C +KsCD: By the same

lemma, for all n 2 �, M 2 �R and z 2 S

E j bR(n;M; z)js 6 �(n;M )s +Ks

X
p2�nF

�(n; p)sE j bR(p;M; z)js;

and hence
P

M2�R
E j bR(n;M; z)js 6 C + KsC(C +KsCD) uniformly in n 2 �

and z 2 S, as desired.
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We want to deduce information about bR(n;M; e+ i0) for n 2 �, M 2 �R and

e 2 [a; b]; this last limit exists a.e. & a.s. on [a; b] � 
 (by classical Analysis and

Fubini's theorem).

Lemma 7. For all n 2 �,
X

M2�R

j bR(n;M; e+ i0)j2 < 1 a.e. & a.s. on

[a; b]� 
.

P r o o f. For a �xed n 2 �,

bZ
a

E

X
M2�R

j bR(n;M; e+ i0)js de 6 (b� a) ess sup
a<e<b

X
M2�R

E j bR(n;M; e+ i0)js;

where ess sup denotes the essential supremum w.r.t. the Lebesgue measure. Hence,

by Fatou's lemma

bZ
a

E

X
M2�R

j bR(n;M; e+ i0)js de 6 (b� a) sup
z2S

X
M2�R

E j bR(n;M; z)js:

The result follows from the previous lemma and the triangle inequality for j�j
s
2 .

We are now ready to prove Lemma 1. Let n 2 �. By the resolvent identity,

for all M 2 �R

R(n;M; e+ i0) = bR(n;M; e+ i0)�
X
p2F

V (p) bR(p;M; e+ i0)R(n; p; e+ i0)

a.e. & a.s. on [a; b] � 
. Consequently,
P

M2�R
jR(n;M; e+ i0)j2 is less than

or equal to A (
P

M2�R
j bR(n;M; e+ i0)j2 +M(e)

P
p2F jV (p)j

2jR(n; p; e+ i0)j2)

a.e. & a.s., whereM(e) = maxp2F
P

M2�R
j bR(p;M; e+ i0)j2 and A is the number

of elements of F plus one. Then the �niteness of F and the previous lemma

complete the proof.

2.5. Proof of the Second Lemma

Now we assume C, D, E, and F. Assumption D extends by induction:

Lemma 8. For any k and � such that 0 < � < k there exists a Ck;� > 0
satisfying X

P1;:::;Pl2X

e�k(
(N;P1)+
(P1;P2)+���+
(Pl;M))
6 C l

k;�e
��
(N;M) (5)

for every N;M 2 X and l 2 N.
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P r o o f. There exists an s 2 (0; 1) such that � = sk. By Assumption D,

Bk0 = supN2X

P
M2X e�k

0
(N;M) < 1 for any k0 > 0. Let us show that Ck;� =
Btk then satis�es the desired property, where t = 1� s.

The triangle inequality for 
 implies that the left-hand side in (5) is bounded

above by
P

P1;:::;Pl
e�tk(
(N;P1)+���+
(Pl;M))e��
(N;M) for any �xed l > 0. It is thus

su�cient to show
P

P1;:::;Pl
e�tk(
(N;P1)+���+
(Pl;M)) 6 Bl

tk for any l > 0.
The result is trivial if l = 0. Suppose it holds for l � 1. Then,X

P1;:::;Pl

e�tk(
(N;P1)+���+
(Pl;M)) =
X
P1

e�tk
(N;P1)
X

P2;:::;Pl

e�tk(
(P1;P2)+���+
(Pl;M))

6 BtkB
l�1
tk = Bl

tk;

as desired.

As a �nal preliminary remark,

Lemma 9. All assumptions of the previous section are satis�ed.

P r o o f. Assumption B follows from Assumptions D and F. Assumption A

is satis�ed, since for any �nite E � � and n 2 � n E ,X
m2�nfng

�(m;n)s 6 (D sup
p2�

X
q2�nfpg

e�
�
2

(p;q)) sup

m2�nfng

e�
�
2

(n;m);

where the right-hand side goes to zero as E " X (by Assumptions D and E).

Finally, Assumption C is satis�ed by �at.

We are thus free to use the results and computations of the previous section.

Recall that F � � is a �nite set chosen in such a way that the relation (1) holds.

From now, by enlarging F if necessary, we also require�

e�
�
2
bd <

I
sks

KsC�
2
;
�
3
D
; (6)

where bd = infm2�nF infn2(�nF)nfmg 
(n;m); this may be done by Assumption E.

Letm 2 �nF and z 2 S be �xed, n 2 �nF being thought as the only variable.

Then, with the notation of the previous section the inequation (4) applies, namely

X 6 (1�A)�1B (pointwise). Consequently,

Lemma 10. X 6 Const (1�A)�1Æm (pointwise).

�Here, �, D, and C �
2
;
�
3

refer to Assumption F and Lem. 8.
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P r o o f. Observe that (AÆm)(n) = KsB(n)�
Ks

ksIs
�(m;m)sÆm(n); and hence

B = 1
Ks
AÆm + 1

ksIs
�(m;m)sÆm: By the inequation (4),

X 6

�
1

Ks

+
�(m;m)s

ksIs

�
(1�A)�1Æm (pointwise):

The result follows, with Const = 1
Ks

+ 1
ksIs

supp2�nF �(p; p)
s (which is �nite by

Assumption B).

Lemma 11. There exist universal constants Const and k such that

E j bR(n;m; z)js 6 Const e�k
(n;m)

for all n;m 2 � n F and z 2 S.

P r o o f. By the previous lemma,

E j bR(n;m; z)js 6 Const

1X
j=0

hÆn jA
jÆmi: (7)

Moreover,

Aj(n;m) =

�
Ks

ksIs

�j X
p
1
;��� ;p

j�1
2�nF

1n 6=p
1
�(n; p

1
)s : : : 1p

j�1
6=m�(p j�1;m)s;

where 1p6=q = 1 � Æp(q). By Assumption F, 1p6=q�(p; q)
s 6 De�

� bd
2 e�

�
2

(p;q) for

p; q 2 � n F . Hence, Lem. 8 implies

Aj(n;m) 6

0
@KsDe�

� bd
2

ksIs

1
Aj X

p
1
;��� ;p

j�1

e�
�
2

(n;p

1
) : : : e

�
�
2

(p

j�1
;m)

6
1

C�
2
;
�
3

0
B@KsC�

2
;�
3
De�

� bd
2

ksIs

1
CA
j

e�
�
3

(n;m):

By choice of F the equation (6) holds, so there exist constants Const and k

such that
P1

j=0A
j(n;m) 6 Const e�k
(n;m): The equation (7) then completes the

proof.

Lemma 12. There exist constants Const and k such that for each n 2 �,
M 2 �R and z 2 S,

E j bR(n;M; z)js 6 Const e�k
(n;M):
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P r o o f. For N 2 �R and m 2 � n F , Lem. 5, Assumption F, and the

previous lemma yield

E j bR(N;m; z)js 6 �(N;m)s +Ks

X
p2�nF

�(N; p)sE j bR(p;m; z)js

6 Const e�k
(N;m) +Ks

X
p2�nF

Const e�k
(N;p)e�k
(p;m);

where Const and k denote generic constants. It follows from Lem. 8 that

E j bR(N;m; z)js 6 Const e�k
(N;m). Using this last inequation and Lem. 5 again,

a similar computation then gives the result.

Lemma 13. For all n 2 � and almost all (e; V ) 2 [a; b] � 
 there exist

constants, Const and k, the latter being universal, satisfying

j bR(n;M; e+ i0)j 6 Const e�k
(n;M)

for all M 2 �R.

P r o o f. Let n 2 � be �xed and M 2 �R. Recall that bR(n;M; e+ i0) exists
for almost all (e; V ) 2 [a; b] � 
. Thus, the previous result and Fatou's lemma

yield

E

bZ
a

j bR(n;M; e+ i0)js de 6 Const e�k
(n;M):

Let AM = f(e; V ) 2 [a; b]� 
 ; j bR(n;M; e+ i0)j > e�
k
2s

(n;M)g; where k refers to

the previous inequality. Then, denoting by d the Lebesgue measure,

X
M2�R

( d� dP)(AM ) 6
X

M2�R

E

bZ
a

e
k
2

(n;M)j bR(n;M; e+ i0)js de

6 Const

X
M2�R

e�
k
2

(n;M);

which is �nite by Assumption D. Hence, by Cantelli's lemma there exists a �nite

E � �R such that for all M 2 �R n E

j bR(n;M; e+ i0)j 6 e�
k
2s

(n;M) a.e. & a.s.;

where n 2 � is arbitrarily �xed. Since E is �nite, the result follows.
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Lemma 14. Let E � � be �nite. For a given n 2 � and almost all (e; V ) 2
[a; b]� 
 there exist constants, K and k, the latter being universal, satisfying

j bR(q;M; e+ i0)j 6 Ke�k
(n;M)

for all M 2 �R and q 2 E.

P r o o f. Since E is �nite, the last lemma ensures for almost all (e; V )
the existence of constants satisfying j bR(q;M; e+ i0)j 6 Const e�k
(q;M) for all

M 2 �R and q 2 E . Since e�k
(q;M) 6 ek
(n;q)e�k
(n;M); the result follows, with

K = Const supq2E e
k
(n;q).

We are now ready to prove Lem. 2. By the resolvent identity, for all n 2 �,
M 2 �R, and almost all (e; V ) 2 [a; b]� 


R(n;M; e+ i0) = bR(n;M; e+ i0)�
X
p2F

R(n; p; e+ i0)V (p) bR(p;M; e+ i0):

In particular, there exists a constant, namely, L = supp2F jR(n; p; e+ i0)V (p)j,
which depends on n, e, and V , but not on M , satisfying

jR(n;M; e+ i0)j 6 j bR(n;M; e+ i0)j+ L
X
p2F

j bR(p;M; e+ i0)j:

The result follows from the previous lemma applied to E = F [ fng.

2.6. Proofs of the Theorems

Lemma 15. Let 0 6 R 61. If

sup
N2�R

X
M2�R

�(N;M )s <1;

then 1R is �-smooth on [a; b].

P r o o f. The triangle inequality for j�js and the hypothesis yield

sup
N2�R

X
M2�R

jhÆN j (�� z)�1ÆM ij 6 Const

uniformly in z 2 S. Interpreting 1R(�� z)�11R as an operator on l2(�R), its l
1

and l1 norms are given by the above expression. Therefore, Schur's interpolation

theorem implies supz2S k1R(�� z)�11Rk <1; as desired.
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P r o o f o f t h e f i r s t t h e o r e m. Since [a; b] � �(�), we also have

[a; b] � �(H) for all V such that 
�

[a;b]
(H;�) exist, i.e., almost surely. Hence, by

Prop. 4 the spectrum of H is purely a.c. on [a; b]. Moreover, the previous lemma

(with R = 1) and the assumption of the theorem imply that 11 is �-smooth.

Lemma 1 (with R = 1) and Prop. 2 thus complete the proof.

P r o o f o f t h e s e c o n d t h e o r e m. Lemma 9 and the assumption

of the theorem imply Lems. 1 and 2 (both with R =1). The result then follows

from Prop. 3.

3. Models on Z
d

We now turn our attention to the case where X = Z
d (d > 2), and the

graph distance, d(M;N), is translational invariant. The graph (Zd;d) is then

determined by V = fN 2 Z
d ; d(N; 0) = 1g. We set 
(M;N) = jN �M j.

Recall that the Fourier transform of  2 l2(Zd) is de�ned as

b (x) = (F )(x) = (2�)�
d
2

X
N2Zd

eiN �x (N);

where x 2 T
d. The symbol of� is b� = F�F�1: Thus, given a V � Z

d, the symbol

of the Laplacian associated with V is the multiplication by

�(x) =
X
V 2V

eiV �x =
X
V 2V

cos (V � x):

It follows from a change of variables that the spectrum of � is purely a.c. and

equal to [min�;#V], where #V denotes the cardinality of V.
The Green function of � is de�ned as G(M;N; z) = hÆM j (�� z)�1ÆN i for

M;N 2 Z
d and z 2 C + . Since (Zd;d) is translational invariant, G(M;N; z) =

G(0; N �M; z); this last is abbreviated by G(N �M; z). Hence, for any N 2 Z
d

and z 2 C + ,

G(N; z) = hbÆ0(x) j (b�� z)�1cÆN (x)i2
= (2�)�d

Z
Td

eiN �x

�(x)� z
dx: (8)

Recall that our sparseness assumptions are formulated in terms of

�(M;N) = sup
z2S

jG(N �M; z)j;

where [a; b] is a given interval and S = fa 6 Re z 6 b; 0 < Im z < 1g. Hence the
decay of G(N; z) when N !1 has to be a priori known. It is clear that G(N; z)
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decays exponentially when [a; b] is outside the spectrum of �. Moreover, the case

where [a; b] � spec(�) has been studied in [24, 23] using material from [26, 28, 29]:

Proposition 5. Given a real-valued, analytic and periodic function �(x) on
T
d, let �(e) = fx 2 T

d ; �(x) = eg and let G(N; z) be de�ned by (8). Assume,

for (a0; b0) � Ran� and S 0 =
S
e2(a0;b0) �(e):

� r�(x) 6= 0 for all x 2 S 0;

� for all e 2 (a0; b0), �(e) admits at least � nonvanishing principal curvatures

at any point, where � > 1 is a �xed integer.

Then, for N = jN j! and [a; b] � (a0; b0), limz!e; z2C+ G(N; z) exists� and is

O(jN j�
�
2 ) uniformly in (e; !) 2 [a; b]� Sd�1. More generally,

G(N; z) = O(jN j�
�
2 log jN j)

uniformly in (z; !) 2 S � Sd�1, where S = fe+ iy ; a 6 e 6 b; 0 < y < 1g.

For example, in the case of the centered Laplacian, which is speci�ed by

V = f(�1; 0; : : : ; 0); (0;�1; : : : ; 0); : : : ; (0; 0; : : : ;�1)g

and whose spectrum is equal to [�2d; 2d], �(e) de�nes a regular surface for

e =2 f�2d;�2d + 4; : : : ; 2d � 4; 2dg, exempt of planarity if in addition e 6= 0.

Hence, letting E = f�2d;�2d + 4; : : : ; 2d � 4; 2dg[f0g, G(N; e+i0) = O(jN j�
1
2 )

uniformly on compact subsets of [�2d; 2d]nE. As an alternative, in order to avoid

convexity problems, S. Molchanov and B. Vainberg [17] have suggested to base

the discretization of the Laplacian on the diagonal neighbors

V = f(v(1); : : : ; v(d)) ; v(j) 2 f1;�1g for j = 1; : : : ; dg:

The resulting graph consists of 2d�1 connected components, and the spectrum of

its Laplacian is equal to
�
�2d; 2d

�
. Remarkably, �(e) de�nes a regular, strictly

convex surface for e =2 f�2d; 0; 2dg, as shown in [22]; hence, with E = f�2d; 0; 2dg,

G(N; e+ i0) = O(jN j�
d�1
2 ) uniformly on compact subsets of [�2d; 2d] n E.

Let us translate our abstract results to the present concrete models using the

previous proposition. Assumption A and the strengthened version of B assumed

in Th. 1 easily reduce to the following sparseness assumption:

A s s u m p t i o n G. There exists an � > 0 such that
P

m2�nfng jn �

mj�
�s
2
+� <1 for all n 2 �, and

lim
jnj!1

n2�

X
m2�nfng

jn�mj�
�s
2
+� = 0:

�Without constraints on the approach.
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First consider the case where [a; b] � (a0; b0) � spec(�) for a given (a0; b0)
satisfying the hypotheses of the previous proposition. Since (Zd;d) is translational
invariant,

I = inf
z2S

jhÆ0 j (�� z)�1Æ0ij = inf
z2S

jG(0; z)j:

Moreover, by Th. 6.1 in [24]

lim
z!e
z2C+

ImG(0; z) = �

Z
�(e)

krx�(x)k
�1ds(x) > 0: (9)

Since in addition ImG(0; z) > 0 on S, the above implies C.

Let �j = Pj�Pj, where Pj denotes the projection onto l2(Xj). Observe that
for any z =2 R

hÆN j (�j � z)�1ÆN i =

�
G(0; z) if N 2 Xj

0 otherwise.

Hence, the equation (9) implies [a; b] � �(�).
Consider now the case where [a; b] is at a positive distance of spec(�). Then, I

is clearly positive, i.e., C holds. Assumption D is satis�ed for 
(M;N) = jM�N j.
Moreover, Assumption F holds, since supz2S jG(N; z)j is exponentially decaying.

Finally, Assumption E yields our sparseness condition in this case, namely

A s s u m p t i o n H. lim
jnj!1

n2�

inf
m2�nfng

jn�mj =1:

Let � be a reunion of intervals (a0; b0) like above. We have proven:

Theorem 3. Suppose � satis�es G. If the wave operators 
�
�(H;�) exist a.e.,

then they are complete (and the spectrum of H is purely a.c.) on �, almost

surely. Suppose instead � satis�es the weaker assumption H. Then, the spectrum

of H outside spec(�) is almost surely pure point with simple eigenvalues and

exponentially decaying eigenfunctions.

R e m a r k s.

1. In particular, the previous theorem holds for the standard Laplacian (with

� = 1) and the Molchanov�Vainberg Laplacian (with � = d � 1) on � =
spec(�) n E, where in both cases E is a �nite, deterministic set (described

after Prop. 5). By Proposition 4 (for instance), such an E does not contain

eigenvalues of H, almost surely. In both cases completeness (a.s.) of the

wave operators on the whole spec(�) follows.
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2. Additional conditions may be imposed on the geometry of � in order to

assure the existence of the wave operators, including additional sparseness

conditions [19].

3. As mentioned in the introduction, by Pastur's theorem the essential spec-

trum of H is almost surely equal to a deterministic set, which was cha-

racterized by S. Molchanov and B. Vainberg [17, 19].� Using their result,

one may construct examples in which specess(H) = R. This is the case for

instance when the random potential at each site has a Cauchy or a normal

distribution. Then, the spectrum of H is dense pure point in R n spec(�).

4. Our study includes another approach, based on Fredholm analytic theory

and valid for bounded, deterministic potentials [23]. Under suitable sparse-

ness conditions both existence and completeness of the wave operators are

derived on spec(�) minus a set of Lebesgue measure zero � which disap-

pears in the random frame.

Example. Consider H = �+V , where � is the standard (or the Molchanov�

Vainberg) Laplacian. Suppose fV (n)gn2� is a family of i.i.d. random variables

lying on � = f(j4; 0; : : : ; 0) 2 Z
d ; j 2 Zg, whose common distribution is Cauchy

(alternatively, normal). Then, � is sparse in the sense of Th. 3 (with s su�-

ciently close to 1). Moreover, since � is included in the hyperplane Zd�1 � Z
d,

the existence of 
�(H;�) follows from a deterministic result of V. Jak�si�c and

Y. Last [7].�� Hence, by Th. 3 (and the �rst remark following it), spec(H) is
purely a.c. on spec(�) and the wave operators are complete there (almost surely).

Moreover, by the same theorem (and the third remark following it), the spectrum

of H on Rnspec(�) is dense pure point with simple eigenvalues and exponentially

decaying eigenfunctions, almost surely.
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