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1. Introduction. Notations

Let V be a d-dimensional Euclidean vector space, i:e, V = R
d with its natural

scalar product. Let G = GL(V ) be the linear group of V and gk(k 2 Z) a sequence

of elements of G. We consider the recurrence relation in V

vn+1 = gn+1vn ; n 2 Z.

Then, given v0 2 V , we can express vn, n 2 N, by vn = Snv0, where Sn =

gn : : : g1 2 G is the product of the elements gk, 1 � k � n. In analogy with the

constant case gk = g, A. Lyapunov was able to describe the asymptotic behaviour

of Snv, v 2 V , n 2 N, in terms of a �nite number of exponents �1; �2; : : : ; �p;

p � d, under a mild growth condition on the sequence gk (Lyapunov regularity).

The numbers �i, 1 � i � p, are called the Lyapunov exponents and the set

f�1; : : : ; �pg is called the Lyapunov spectrum of the sequence (gk)k2Z.
Let (
; �; �) be a measured dynamic system where � is a �nite �-invariant

and ergodic probability measure, and gk(!) a �-stationary sequence, i:e, gk(!) =

g0(�
k!), k 2 Z, such that Logkgk(!)k and Logkg�1k (!)k are �-integrable. Using

the methods of ergodic theory, V.I. Oseledets showed ([33]) the Lyapunov regu-

larity of the sequence (gk(!))k2Z, ��a:e. In particular the product Sn(!) can be
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reduced to a block-diagonal form where each block has a de�nite growth exponent

�i, 1 � i � p. In this setting Sn(!) is a G-valued Z-cocycle of (
; �; �), i:e, for

m;n 2 Z:

Sm+n(!) = Sm (�n!) Sn(!);

with S0(!) = Id.

We denote by P (V ) the projective space of V and by x! g:x the projective

action of g 2 G on x 2 P (V ). A basic role in this ergodic context is played by

the skew product (
 � P (V ), e�) and its e�-invariant measures with projection �.

Here e� is the extension of �:

e�(!; x) = (�!; g1(!):x):

On the other hand, a special situation, where � = �
Z is a product measure

and the random variables gk(!) are i:i:d, has already been deeply studied by

H. Furstenberg and H. Kesten. There, the basic object is the random walk Sn(!)

on G de�ned by �, and in particular the Markov chain on P (V ) with transition

kernel Q� de�ned by

Q�(x;A) =

Z
1A(g:x)d�(g):

The map e� considered above can be identi�ed with the shift transformation on

the path space of this Markov chain.

If supp� � G generates a large subgroup denoted by < supp� >, it was

observed by H. Furstenberg that the above Markov chain has nice properties of

contraction analogous to those of the iterates of a single positive matrix. For

example, if supp� is bounded and < supp� > is a dense subgroup of the unimo-

dular group SL(d;R), then kSn(!)k has exponential growth. This fact was used

as a key tool (for d = 2) by I. Goldsheid, S.A. Molcanov, L.A. Pastur in order to

prove the pure point spectrum property for the Schr�odinger operator with random

potential on the line. Motivated by this kind of consequence, and going a step

further, the author and A. Raugi, and then I. Goldsheid and G.AMargulis, showed

simplicity of the Lyapunov spectrum, (i:e; p = d), for the cocycle Sn(!), under

mild algebraic conditions on< supp� >. A basic fact, which can be used in a more

�exible way, is that the top Lyapunov exponent has multiplicity one. This is the

starting point for various nontrivial properties of the cocycle Sn(!). Then it is

clear that, under mild conditions on < supp� >, the asymptotic properties of

Sn(!) can be developed much further and applied to various probabilistic, ana-

lytic or geometrical questions. Furthermore, even in the i:i:d case, since "large"

subgroups play an important role, this topic cannot be considered as a simple

extension of Classical Probability Theory, from R
� to GL(d;R). Here we sketch

these developments and we restrict our survey to the case of Markov dependence

of the increments gk(k 2 Z). The emphasis is put more on the basic ideas than
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on the detailed results. We give a detailed exposition of the ideas in the i:i:d case

(Sects. 2�4), and we describe brie�y the required modi�cations for the Markovian

case (Sect. 5). We observe that this Markovian setting includes the case where

� is a Gibbs measure on 
 = AZ and g0(!) depends only on a �nite number of

coordinates. A few applications are described in Sect. 6 and references for other

topics are given. We describe now some notations used below.

For a Polish space E, the space of complex continuous functions on E will

be denoted C(E), and the space of continuous maps of E into itself by C(E;E).

The action of a map u on E will be denoted x ! u:x (x 2 E) if E is compact.

The space of probability measures on a Polish space F will be denoted M1(F ).

If � 2 M1(C(E;E)) and � 2 M1(E), we write � � � for the measure on E given

by ' !
R
'(g:x)d�(g)d�(x). A measure � 2 M1(E) is said to be �-stationary if

��� = �. In this context, we will consider the Markov chain on E with transition

kernel Q� de�ned by

Q�'(x) =

Z
'(g:x)d�(g);

where ' is a bounded Borel function on E.

The adjoint of u 2 End E, with respect to the given scalar product, will be

denoted u�. For g 2 GL(V ), we will also denote by g the corresponding projective

map on P (V ). The elements of P (V ) will be represented by vectors of unit length,

taken up to sign. In particular, for x 2 P (V ) and g 2 GL(V ), kgxk 2 R+ is well

de�ned. The wedge products over V will be denoted by ^kV (1 � k � d).

The Euclidean scalar product extends naturally to ^kV . The submanifold of

P (^2V ) corresponding to decomposable 2-vectors will be denoted by P2(V ). For

x 2 P (V ), x ^ y 2 P2(V ), g 2 G, we will consider the following cocycles:

�1(g; x) = Logkgxk; �2(g; x ^ y) = Logkg(x ^ y)k:

Also we will consider the submanifold P1;2(V ) � P (V )�P2(V ) of elements

� = (x; x ^ y) and the cocycle � de�ned by

�(g; �) = Log
kgx ^ gyk

kgxk2
:

For x; y 2 P (V ); we set Æ(x; y) = kx ^ yk: The unique probability measure on

P (V ), invariant under orthogonal maps will be denoted m, and the orthogonal

group of V by O(d). In addition to projective maps, we need also to consider

quasiprojective maps corresponding to nonzero endomorphisms of V . If u 2

EndV and x 2 P (V ), then u:x is well de�ned if x does not belong to the projective

subspace de�ned by Ker u, again denoted by Ker u. Then the quasiprojective

map u is de�ned and continuous outside Ker u. If � 2 M1(P (V )) satis�es

�(Ker u) = 0, then the push forward measure u:� is well de�ned. If F � G,
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we will denote by < F > (resp[F ]) the subgroup (resp subsemigroup) generated

by F . Their closures will be written < F >� and [F ]�, respectively. We will say

that a measure � on G has exponential moment and write � 2 M1:e(G) if there

exists c > 0 such thatZ
kgkcd�(g) +

Z
kg�1kcd�(g) < +1:

The unimodular group SL(V ) = SL(d;R) � G will be written G1. Occasionally

the projection of x 2 V on P (V ) will be denoted x, but in general we will take the

same notation for vectors and elements of the projective space. The same abuse

of notations will be made for subspaces.

2. Growth of Column Vectors

Let � be a probability measure on G1 = SL(d;R) and L2(V ) the Hilbert space

of square integrable functions with respect to Lebesgue measure on V . We say

that a subset S � GL(V ) is strongly irreducible if no nontrivial union of subspaces

of V is S-invariant. In particular strong irreducibility implies irreducibility.

Theorem 2.1. Let � 2M1(G1) and assume the closed subgroup < supp� >�

is strongly irreducible and unbounded. Let r(�) be the spectral radius of the con-

volution operator on L
2(V ) de�ned by �. Then r(�) < 1.

Corollary 2.2. Assume furthermore
R
Logkgkd�(g) < +1. Then there exists

a positive number �(�) such that

lim
n!+1

1

n

Z
Logkgkd�n(g) = �(�) �

2

d
Log

1

r(�)
> 0:

Furthermore: � � a:e, lim
n!+1

1

n
LogkSn(!)k = �(�) > 0, where Sn(!) = gn : : : g1.

Theorem 2.3. Assume that � satis�es the hypothesis of Th. 1, and further-

more
R
Logkgkd�(g) < +1. Then for every �xed v 2 V n f0g:

� � a:e; lim
n!+1

1

n
LogkSn(!)vk = �(�) > 0:

Also, 1
n

R
Logkgxkd�n(g) converges to �(�) uniformly on P (V ).

The proof of Th. 2.1 depends on the following lemmas.

Lemma 2.4. Assume that the subgroup � of G1 is strongly irreducible and

unbounded. Then no probability measure on P (V ) is �-invariant.
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P r o f. Assume � 2M1(P (V )) is �-invariant. Let gn 2 G1 with lim
n!+1

kgnk =

+1 and write un = gn
kgnk . Then det un = 1

kgnkd converges to zero. Since kunk = 1,

we can extract from un a convergent subsequence and assume lim
n!+1

un = u,

kuk = 1, det u = 0. Let W � P (V ) (resp W 0) be the projective subspace

associated with Ker u (resp Im u). We denote by �1 and �2 the restrictions

of � to W and P (V ) n W and write � = �1 + �2. We observe that u de�nes

a quasiprojective map, again denoted by u, of P (V ) n W into P (V ). Then we

have � = lim
n!+1

gn:� = u:�2+ lim
n!+1

gn:�1. Since P (V ) is compact, we can assume

that gn:�1 converges to � 01 concentrated on the subspace W1 = lim
n!+1

gn:W . It

follows that � = lim
n!+1

gn:� is concentrated on the union of W1 and W 0.

Let � be the set of subsets X of P (V ) which are �nite unions of projective

subspaces and which satisfy �(X) = 1. Since any decreasing sequence of elements

of � is asymptotically constant, � has a least element, which is X0 = \
X2�

X.

Since g:� = �, one has g:X0 = X0. This contradicts strong irreducibility of �.

P r o f of Theorem 2.1. We denote by �(�) the convolution operator on L2(V )

de�ned by �(�)(f)(v) =
R
f(g�1v)d�(g). Since every g 2 G1 preserves Lebesgue

measure, k�(�)fk2 � 1. Assume r(�) = 1 and let z 2 C be a spectral value of

�(�) with jzj = 1. Then, either lim
n!+1

k�(�)fn � fnk2 = 0 for some sequence

fn 2 L
2 (V ) with kfnk2 = 1, or Im (�(�) � zI) is not dense in L

2(V ). In the

second case, duality gives Ker(�(��) � zI) = f0g. Since �� satis�es also the

hypothesis we can only consider the �rst case.

Since j�(�)jfnj � jfnjj � j�(�)fn � fnj, we have also

lim
n!+1

k�(�)jfnj � jfnjk2 = 0; lim
n!+1

k�(�)jfnjk2 = 1:

Hence lim
n!+1

< �(�)jfnj; jfnj >= 1 = lim
n!+1

Z
< �(g)jfnj; jfnj > d�(g).

It follows that there exists a Borel subset S0 of supp� with �(S0) = 1, and

a subsequence nk such that < �(g)jfnk j; jfnk j > converges to 1, for every g 2 S0.
For the sake of brevity we write nk = n. The inequality

k�(g)jfnj
2
� jfnj

2
k1 � k�(g)jfnj � jfnjk2k�(g)jfnj+ jfnjk2 � 2k�(g)jfnj � jfnjk2

gives lim
n!+1

k�(g)jfnj
2
� jfnj

2
k1 = 0 for every g 2 S0.

We consider the probability measure �n = jfnj
2(v)dv on V and its projection

�n on P (V ). Then the above relation says that lim
n!+1

g:�n � �n = 0 in variation

norm, hence lim
n!+1

g:�n��n = 0 also in variation. Since P (V ) is compact, we can
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assume lim
n!1

�n = � in weak topology. In particular, for every g 2 S0 : g:� = �.

Since �(S0) = 1, S0 generates < supp� >�, hence g:� = � for any g 2< supp� >�.
Lemma 2.4 says that this is impossible.

P r o f of Corollary 2.2. We denote un =
R
Logkgkd�n(g). Since kgk � 1,

un � 0. The subadditivity of Logkgk implies um+n � um + un, hence 0 � un �

nu1 < +1.

It follows lim
n!+1

un

n
= Inf

n

un

n
= 
 � 0.

We consider the L2 -functions on V , f and 1C de�ned by

f(v) = Inf(1; kvk�Æ); C = fv 2 V ; 1 � kvk � 2g

with 2Æ > d and we normalize the Lebesgue measure dv on V such that vol C = 1.

The theorem gives lim sup
n!+1

j < �(�n)f; 1C > j1=n � r(�). On the other hand:

< �(�n)f; 1C > �
R
1C(v)

1

kg�1vkÆ d�
n(g) dv � 2�Æ

R
1

kg�1kÆ d�
n(g),

Log < �(�n)f; 1C >� �ÆLog2 � Æ
R
Logkg�1kd�n(g),

Æ lim inf
n!+1

1
n

R
Log kg�1kd�n(g) � �Logr(�),

lim inf
n!+1

1
n

R
Logkg�1kd�n(g) � 1

ÆLog
1

r(�)
.

Since Æ is arbitrary with Æ > d
2
, and r(�) = r(��), we get 
 � 2

dLog
1

r(�)
> 0.

The subadditivity of Logkgk implies that

LogkSm+n(!)k � LogkSm(!)k+ LogkSn Æ �
m(!)k;

hence we can apply the subadditive ergodic theorem to the sequence LogkSn(!)k:
1
n
LogkSn(!)k converges � � a:e and in L

1(
) to a constant �(�). It follows:

�(�) = lim
n!+1

1

n

Z
LogkSn(!)kd�(!) = lim

n!+1
1

n

Z
Logkgkd�n(g) = 
 > 0:

For the proof of Th. 2.3, we need the following lemmas.

Lemma 2.5. For any �xed c 2 R, the set W of elements v in V such that

� � a:e; lim sup
n!+1

1

n
LogkSn(!)vk � c

is a supp�-invariant subspace.

P r o f. We observe that if a; b > 0, then Log(a+ b) � 1 + Sup(Loga; Logb).

If v; v0 2 V , it follows

LogkSn(!)(v + v0)k � 1 + Sup(LogkSn(!)vk; LogkSn(!)v
0
k):
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Hence, the condition v; v0 2 W implies v + v0 2 W . Also the condition v 2 W

implies �v 2W for any � 2 R. It follows that W is a subspace of V .

We observe that Sn(!) = Sn�1(�!)g1(!). Hence, the condition v 2W implies

� � a:e, g1(!)v 2W .

The supp�-invariance of W follows

Lemma 2.6. Let m be the uniform measure on P (V ). For any u 2 EndV we

have Z
Logkuxkdm(x) � Logkuk � Log2:

P r o f. We use the polar decomposition of u: u = kak0 with k; k0 2 O(d),

a = diag(a1; : : : ; ad) with a1 � a2 � � � � � ad > 0 and kuk = a1. We write dk for

the normalized Haar measure on O(d). Then, since m is O(d)-invariant:Z
Logkuxkdm(x) =

Z
Logkake1kdk �

Z
Logja1 < ke1; e1 > jdk:

Z
Logkuxkdm(x) � Log a1 +

1

2�

Z 2�

0

Logjcos�j d� = Logkuk � Log2:

Lemma 2.7. Let � 2M1(P (V )) be �-stationary i:e
R
g:�d�(g) = �. Then:Z

Logkgxk d�(g)d�(x) = �(�):

P r o f. Let 
� =
R
Logkgxkd�(g)d�(x). The �niteness of 
� follows from

�-integrability of Logkgk. Since � is �-stationary, for any n 2 N:

n
� =

Z
Logkgxkd�n(g)d�(x) =

Z
LogkSn(!)xkd�(!)d�(x):

We observe that if f(!; x) is given by f(!; x) = Logkg1(!)xk, then

LogkSn(!)xk =

nX
1

f Æ ~�k(!; x):

Since jf(!; x)j � Logkg1(!)k, f is � 
 �-integrable and we can use the ergodic

theorem

� 
 � � a:e; lim
n!+1

1

n
LogkSn(!)xk =

Z
f(!; x)d�(!)d�(x) = 
� :
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Then Lemma 2.5 and strong irreducibility of supp� imply that for every x 2 P (V ):

� � a:e; lim sup
n!+1

1

n
LogkSn(!)xk � 
� :

In particular, the dominated convergence gives, for every x 2 P (V ):

lim
n!+1

Sup
x

1

n

Z
Logkgxkd�n(g) � 
� ;

hence: limsup
n!+1

1

n

Z
Logkgxkdm(x)d�n(g) � 
� . Using Lemma 2.6, we have

Z
Logkgkd�n(g) �

Z
Logkgxkdm(x)d�n(g) + Log2;

hence: 
� � lim
n!+1

1

n

Z
Logkgkd�n(g) = �(�). Since 
� � �(�), we conclude


� = �(�).

The following is a well known fact of Markov chain theory (see [9, 16]).

Lemma 2.8. Let G be a locally compact group, E be a compact metric G-space,

� 2M1(G); I �M1(E) the set of �-stationary measures on E, f a continuous

function on E such that �1(f) = �2(f), for every �1; �2 2 I. Then, with � 2 I:

� � a:e; lim
n!+1

1

n

nX
1

f(Sk(!):x) = �(f):

The convergence of 1
n

nX
1

Z
f(g:x)d�k(g) to �(f) is uniform on E.

We will use this lemma if E = P (V ) and f(x) =
R
Logkgxkd�(g). In the proof

of Th. 3 below we assume
R
Log2kgkd�(g) < +1.

P r o f of Theorem 3. We consider the Markov chain on P (V ) with transition

kernel Q�(x; :) = � � Æx, its space of trajectories 
� P (V ), and the random vari-

ables Xk(!; x) = Logkgk(Sk�1:x)k, k � 1. Clearly, LogkSn(!)xk =

nX
1

Xk(!; x).

We �x x 2 P (V ) and we denote by Fn the �-�eld on 
 generated by the

random variables Sk(!):x, 0 � k � n. Then we have E (Xk )jFk�1j = f(Sk�1:x),
hence the sequence Yk = Xk � f(Sk�1:x) is the sequence of increments of the

martingale Zn =

nX
1

Yk.
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If we assume
R
Log2kgkd�(g) < +1, then Sup

k�1
E (jYk j

2) �

Z
Log2kgkd�(g)

< +1.

Hence the law of large numbers for martingales gives ��a:e; lim 1
n

nX
1

Yk = 0.

Using Lemma 2.7, we conclude that for any �-stationary measure �, �(f) =R
Logkgxkd�(g)d�(x) = �(�).

Then Lemma 2.8 implies

� � a:e; lim
n!+1

1

n

nX
1

f(Sk:x) = �(�).

From the convergence of 1
n

nX
1

Yk to zero, we get

� � a:e; lim
n!1

1

n
LogkSn(!)xk = �(�).

The last assertion is a direct consequence of Lemma 2.8.

Remarks.

a) We have used the condition
R
Log2kgkd�(g) < +1 instead of

R
Logkgkd�(g)

< +1. A re�nement of the above argument gives the complete result (see [9]).

It can also be obtained as a consequence of Oseledets' multiplicative ergodic theo-

rem (see [22]).

b) Strong irreducibility of < supp� > have been used only in order to get

lim
n!+1

1

n
LogkSn(!)vk > 0. The proof above shows that under irreducibility of

< supp� > one gets, for every v 2 V n f0g,

� � a:e lim
n!+1

1

n
LogkSn(!)vk = lim

n!+1
1

n
LogkSn(!)k = �(�) � 0:

c) A typical example with < supp� > irreducible but not strongly irreducible

is G = SL(2;R); � = 1
2
(Æa + Æb) with a = diag(�; 1�); � > 1, b =

�
0 �1

1 0

�
.

Then �(�) = 0.

d) Theorem 2.3 was obtained in [9] by a di�erent argument. Here it is a con-

sequence of Th. 2.1 which can be considered as a special case of the main result

of [7].

e) For a corresponding result where independence of increments is replaced by

markovian dependence with spectral gap, see [39].

3. Uniqueness of Stationary Measures and Contraction

Properties

Here we consider the group G = GL(V ), its action on P (V ), and a probability

measure � 2M1(G). In order to state the results we give some de�nitions.
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De�nition 3.1. An element g 2 GL(V ) is said to be proximal if one can write

V = Rvg � V <
g ; gvg = �(g)vg ; j�(g)j = lim

n!+1
kgnk1=n; gV <

g = V <
g ;

and the spectral radius of g on V <
g is strictly less than j�(g)j.

De�nition 3.2. A subsemigroup S � GL(V ) is said to satisfy condition i:p if

S is strongly irreducible and S contains a proximal element.

De�nition 3.3. A probability measure � 2 M1(P (V )) is said to be proper if

for every proper projective subspace H � P (V ) one has �(H) = 0.

De�nition 3.4. A sequence gn 2 G is said to satisfy the contracting property

towards z 2 P (V ) if one has lim
n!+1

gn:m = Æz. (Where m is the uniform measure

on P (V )).

Theorem 3.5. Assume that the closed subsemigroup of G generated by supp�

satis�es condition i:p. Then, there exists a measurable map z from 
 to P (V ),

de�ned � � a:e such that

g1:(zo�) = z:

The map z is unique mod � and

� � a:e; Æz(!) = lim
n!+1

g1 � � � gn:m:

The Markov operator de�ned by x! � � Æx has a unique stationary measure � on

P (V ) and � is the law of z(!). The measure � is proper.

Corollary 3.6. Let z�(!) be de�ned by Æz�(!) = lim
n!+1

g�1 � � � g
�
n:m and assume

x =2 Kerz�(!). Then, if Sn(!) = gn � � � g1:

� � a:e; lim
n!+1

kSn(!)xk

kSn(!)k
= j < z�(!); x > j; lim

n!+1
kSn(!)x ^ Sn(!)yk

kSn(!)xk2
= 0:

If furthermore y =2 Kerz�(!):

� � a:e; lim
n!+1

Æ(Sn(!):x; Sn(!):y)

Æ(x; y)
= 0:

For �xed !, the above convergences are uniform if x; y vary in a compact subset

of P (V ) nKerz�(!).

The proof of Th. 3.5 depends of the following lemmas.
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Lemma 3.7. Assume � 2M1(P (V )) is proper and gn 2 G is a sequence such

that lim
n!+1

gn:� = Æz Then gn has the contraction property towards z.

P r o f. We can assume that gn converges to a quasiprojective map u, i:e, for

H � P (V ) a projective subspace and x =2 H : lim
n!+1

gn:x = u:x.

Using dominated convergence, we get that for any ' 2 C(P (V )):

lim
n!+1

Z
'(gn:x)d�(x) = (u:�)(') = '(z):

It follows u:x = z if x =2 Keru. Using again dominated convergence, we get:

u:m = Æz , hence lim
n!+1

gn:m = Æz .

Lemma 3.8. Assume that [supp�]� is strongly irreducible. Then every

�-stationary measure on P (V ) is proper.

P r o f. Let � be a �-stationary measure on P (V ).

We consider the set H of projective subspaces H � P (V ) such that �(H) > 0

and H has minimal dimension with respect to this condition. We observe that,

if H;H 0 2 H and H 6= H 0, then �(H \ H 0) = 0. It follows that for every

" > 0: H" = fH 2 H; �(H) � "g is �nite. Hence, there exists H0 2 H with

�(H0) = Supf�(H);H 2 Hg and the set H0 of such subspaces H0 is �nite.

On the other hand, the equation �(H) =
R
(g:�)(H)d�(g) implies g�1H0 2 H0,

�� a:e for any H0 2 H0, hence (supp�) (H0) = H0. This contradicts the strong

irreducibility assumption. Hence H = �, i:e; � is proper.

Lemma 3.9. Let ' 2 C(P (V )) and denote for (!; �) 2 
� 
, ! = (gk)k2N,
� = (
k)k2N : fn(!) = (g1 � � � gn:�)('), f rn(!; �) = (g1 � � � gn:
0 � � � 
r:�)(').

Then, if r is �xed, � 
 � � a:e lim
n!+1

f rn(!; �)� fn(!) = 0.

P r o f. We denote by Fn the �-�eld on 
 generated by g1(!) � � � gn(!).

Since � is �-stationary: E(fn+1 jFn) = fn, i:e, fn is a martingale. It follows

that fn and fn+r � fn are orthogonal, i:e, E ((fn+r � fn)
2) = E(f2n+r )� E (f2n ).

Then, for any m > 0

mX
n=1

E(fn+r � fn)
2
� 2rj'j21:

The convergence of the series

1X
n=1

E((fn+r � fn)
2) follows. Since

E((fn+r � fn)
2) =

Z
jf rn(!; �)� fn(!)j

2d�(!)d�(�);
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we get the convergence �
��a:e of the series

1X
n=1

jf rn(!; �)�fn(!)j
2. In particular,

the assertion of the lemma follows.

P r o f of Theorem 3.5. We have observed above that for any

' 2 C(P (V )); fn(!) is a martingale. Taking ' in a countable dense subset of

C(P (V )), we get that there exists �! 2M1(P (V )) de�ned � � a:e such that

� � a:e; lim
n!+1

g1 � � � gn:� = �!:

In the same way we get, using Lem. 3.5,

� 
 � � a:e; lim
n!+1

g1 � � � gn
0 � � � 
r:� = lim
n!+1

g1 � � � gn:� = �!:

Hence

� � a:e; lim
n!+1

g1 � � � gn
:� = �!

for every 
 2 [supp�]�. Let nk(!) be a subsequence such that g1 � � � gnk converges

to a quasiprojective map �!. Since � and 
:� are proper

�!:(
:�) = �!:� = �!:

LetH! be the kernel of �!, 
1 a proximal element of [supp�]�, with attractive �xed
point x. Using the strong irreducibility of [supp�]�, we can �nd 
0 2 [supp�]�

such that 
0:x =2 H!. Then, taking 
 = 
0

n
1 (n 2 N), we get: lim

n!+1

0


n
1 :� = Æ
:x.

The continuity of �! outside H! gives �nally

�!:� = �! = �!:(
:Æx) = Æ�!
:x:

This shows that �! is � � a:e a Dirac measure Æz(!), and, furthermore

�!(P (V ) nH!) = z(!). In particular,

� � a:e; lim
n!+1

g1 � � � g1:� = �!:� = Æz(!):

This convergence implies

� � a:e; z(!) = g1:z(�!);

and furthermore � is the law of z(!). Also we have E (Æz(!) jFnj = g1 � � � gn:�.

Using Lemma 3.8, we know that � is proper. Then Lemma 3.7 gives that

g1 � � � gn has the convergence property towards z(!), hence

� � a:e; lim
n!+1

g1 � � � gn:m = Æz(!):
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This relation de�nes z(!) independently of �. Since � is the law of z(!), � is

unique as a �-stationary measure.

If z0(!) is a solution � � a:e of the equation z0 = g1:(z
0 Æ �) and � 0 is the law

of z0, we have, using the independence of g1 and z0 Æ �: � 0 = � � � 0.
From above, we have � 0 = �. Also E (Æz0 (!)jFn) = g1 � � � gn:�

0 and from the

martingale convergence theorem

� � a:e; Æz0(!) = lim
n!+1

g1 � � � gn:�
0:

Since � 0 = �, we get z0 = z � � a:e.

For the proof of Cor. 3.6 we need the following.

Lemma 3.10. Assume gn 2 G is such that g�n has the contraction property

towards z� 2 P (V ). Then, for any x; y 2 P (V ), with x =2 Kerz�:

lim
n!+1

kgnxk

kgnk
= j < z�; x > j; lim

n!+1
kgnx ^ gnyk

kgnxk2
= 0:

Furthermore, the sequence
Æ(gn:x;gn:y)

Æ(x;y)
converges uniformly to zero if x; y vary in

a compact subset of P (V ) nKerz�.

P r o f. We use the polar decomposition G = KA+K : gn = knank
0
n with

kn; k
0
n 2 K = O(d), an 2 A+. Then the convergence of g�n:m to z� implies

a
(2)
n = o(a1n); lim

n!+1
k
0�1
n :e1 = z�.

If x =

dX
i=1

xiei, we get

kgnxk
2 =

dX
i=1

jain < k0nx; ei > j
2
� ja1n < k0nx; e1 > j

2.

Since kgnk = a1n

lim
n!+1

kgnxk
2

kgnk2
= lim

n!1
j < k

0�1
n e1; x > j

2 + lim
n!+1

X
i>1

�
ain
a1n

�2

< k0nx; ei >
2

= j < z�; x > j
2:

Also kgnx ^ gnyk
2 =

X
i<j

(aina
j
n)

2
j < k0n(x ^ y); ei ^ ej > j

2.

It follows

kgnx ^ gnyk � da(1)n a(2)n kx ^ yk; kgnxk � a(1)n j < k0nx; e1 > j;
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jgnyk � a(1)n j < k0ny; e1 > j;

kgnx ^ gnyk

kx ^ yk kgnxk2
� d

a
(2)
n

a
(1)
n

1

j < k0nx; e1 > j2
:

Since lim
n!+1

j < k0nx; e1 > j = j < z�; x > j 6= 0 and a
(2)
n = 0(a

(1)
n ), we get

lim
n!+1

kgnx ^ gnyk

kgnxk2
= 0:

Also
kgnx^gnyk

kgnxk kgnyk kx^yk � d a
(2)
n

a
(1)
n

1
j<k0nx;e1><k0ny;e1>j .

Since x; y =2 Kerz�:

lim
n!+1

Æ(gn:x; gn:y)

Æ(x; y)
= 0:

Since lim
n!+1

j < k0nx; e1 >< k0ny; e1 > j = j < z�; x > j j < z�; y > j is bounded

from below on a compact C of P (V ) n Kerz�, the convergence to j < z�; x >

< z�; y > j is uniform on C.

P r o f of Corollary 3.6. We observe that if a semigroup S satis�es i:p, then

the semigroup S� satis�es also i:p. Then the theorem implies the convergence

� � a:e; lim
n!+1

g�1 � � � g
�
n:m = Æz�(!):

If Sn(! = gn � � � g1, we have S
�
n(!) = g�1 � � � g

�
n. The theorem implies that S�n(!)

has the contracting property towards z�(!), hence the corollary follows from

Lemma 3.10.

R e m a r k. The weak convergence of measures to a Dirac measure, stated

in Th. 2.5, plays an important role in various questions, in particular in the

superrigidity of lattices in semisimple groups (see [10, 32]), as well as in com-

pacti�cations of symmetric spaces (see [24]). The proof given here is borrowed

from [21].

4. Angles of Column Vectors: Exponential Decrease

Here we consider the wedge product ^2V generated by the decomposable

2-vectors x ^ y (x; y 2 V ). A natural scalar product on ^2V is given

by < x ^ y; x0 ^ y0 >= det

�
< x; x0 > < x; y0 >
< y0; y0 > < y; y0 >

�
. The angle �(x; y) between

x and y is given by sin�(x; y) =
kx^yk
kxk kyk . Here we are interested by the angle

�(Sn(!)x; Sn(!)y). We denote by P2(V ) the projection on P (^2V ) of the cone
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of decomposable 2-vectors. We note that Æ(x; y) = sin�(x; y) de�nes a distance Æ

on P (V ). We represent an element of P2(V ) by a 2-vector x^ y with kx^ yk = 1.

Then we will write �2(g; x ^ y) = Logkgx ^ gyk.

Also we consider the compact space P1;2(V ) of contact elements � = (x; x^y),

where kxk = kx ^ yk = 1, and the cocycle on P1;2(V ) �(g; �) = Log
kgx^gyk
kgxk2 .

This cocycle can be interpreted as an in�nitesimal coe�cient of expansion of the

projective map g, at x in the direction of (x ^ y).

Here we will assume that Logkgk and Logkg�1k are �-integrable. Also we

assume that the semigroup supp�� satis�es condition i:p.

Theorem 4.1. Assume � 2 M1(G) is such that Logkgk and Logkg�1k are

�-integrable, and [supp�]� satis�es condition i:p. We denote


1 = lim
n!+1

1

n

Z
Logkgkd�n(g) ; 
2 = lim

n!+1
1

n

Z
Logkg ^ gkd�n(g):

Then 
2 < 2
1.

Corollary 4.2. lim
n!+1

Sup
kxk=kyk=1

1

n

Z
Log

kgx ^ gyk

kgxk2
d�n(g) = 
2 � 2
1 < 0:

Corollary 4.3. Assume � 2 M1(G) has an exponential moment, i:e,R
kgkcd�(g) < +1,

R
kg�1kcd�(g) < +1 for some c > 0. Then, for " su�ciently

small, there exists �(") < 1 such that

lim
n!+1

Sup
x;y2P (V )

�Z
Æ"(g:x; g:y)

Æ"(x; y)
d�n(g)

�1=n

= �(") < 1:

For a continuous function ' on P (V ), we write

j'j = Supj'(x)j
x2P (V )

; [']" = Sup
x6=y

j'(x) � '(y)j

kx ^ yk"
:

We denote by H"(P (V )) the space of "-Hoelder functions on P (V ), i:e,

H"(P (V )) = f' 2 C(P (V )); [']" < +1g ;

and we observe that H"(P (V )) is a Banach space for the norm

k'k = j'j+ [']":

If t 2 R, we consider the operator P it on C(P (V )) de�ned by (P it')(x) =R
kgxkit'(g:x)d�(g). Then P it de�nes a bounded operator on H"(P (V )).

Then we have
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Corollary 4.4. With the notations of Cor. 4.3, there exists C � 0 such that

for any ' 2 H"(P (V )) and t 2 R:

[P it']" � �(")[']" + jtjCj'j:

In particular 1 is an isolated spectral value of P and if t 6= 0 the spectral radius

of P it is strictly less than one.

For the proof of Th. 4.1 we will need the following lemmas.

Lemma 4.5. There exists C > 0 such that for any u 2 EndV ,

Logku ^ uk �

Z
Logkux ^ uykdm2(x ^ y) + C;

where m2 is the uniform measure on P2(V ).

P r o f. We proceed as in Lemma 2.6, i:e, we write u = kak0 with k, k0 2 O(d),

a = diag(a1; : : : ; ad). Then we getZ
Logkux^uykdm2(x^y) � Logku^uk+

Z
Logj < x^y; e1^ e2 > jdm2(x^y):

Hence it su�ces to show that the integral I in the right-hand side

is �nite. We consider the unit sphere of ^2V , its algebraic submanifold V2 =

f(x ^ y) 2 ^2V ; kx ^ yk = 1g, and we denote by em2 its normalized Riemannian

measure. Clearly,

I =

Z
Log j < x ^ y; e1 ^ e2 > jdem2(x ^ y):

Since the map x ^ y ! j < x ^ y; e1 ^ e2 > j2 is a polynomial map, there exists

an integer r > 0 and c > 0 such that

fm2fx ^ y 2 V2; j < x ^ y; e1 ^ e2 > j
2
� tg � ctr:

Then the push forward of fm2 on [0; 1] by this map has a density f which satis�es

tf(t) � ctr=2. Then

Z
Logj < x^y; e1^ e2 > jdm2(x^y) =

1Z
0

(Logt)f(t)dt �

1Z
0

tr=2(Logt)
dt

t
> �1;

since r > 0.
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Lemma 4.6. For any �-stationary measure � on P2(V )Z
Logkgx ^ gykd�(g)d�(x ^ y) � 
2:

The sequence 1
n

R
Logkgx^gykd�n(g)dm2(x^y) converges to 
2. For any cluster

value � of the sequence

 
1
n

n�1X
0

�k

!
�m2, one has


2 =

Z
Logkgx ^ gykd�(g)d�(x ^ y):

P r o f. Let �n = 1
n

n�1X
0

�k, � 2M1(P2(V )) and

In(�) =

Z
�2(g; x ^ y)d�

n(g)d�(x ^ y):

Using the cocycle identity for �2:

In(�) = In�1(�) +
Z

f(x ^ y)d(�n�1 � �)(x ^ y);

with f(x ^ y) =
R
�2(g; x ^ y)d�(g). Hence, 1

nIn(�) = (�n � �)(f). If � = � is

�-stationary,

1

n
In(�) = �(f) =

Z
�2(g; x ^ y)d�(g)d�(x ^ y):

Since In(�) �
R
Logkg ^ gkd�n(g), the �rst assertion follows.

If � = m2, Lemma 4.5 gives

�
C

n
+

1

n

Z
Logkg ^ gkd�n(g) �

In(m2)

n
�

1

n

Z
Logkg ^ gkd�n(g);

hence lim
n!+1

In(m2)

n
= 
2.

Also, from above 1
n In(m2) = (�n �m2)(f). Since f is continuous,

lim
n!+1

�n �m2 = �(f) =

Z
Logkgx ^ gykd�(g)d�(x ^ y):

Hence 
2 =
R
Logkgx ^ gykd�(g)d�(x ^ y).
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Lemma 4.7. Let (X;T; �) be a measured dynamical system with �

�nite T -invariant, f an integrable function. Then, if

�� a:e; lim
n!+1

n�1X
0

f Æ T k = �1;

then
R
f(x)d�(x) < 0.

For the proof of this statement see [15].

P r o f of Theorem 4.1. Using Lemma 2.7, we know that for any �-stationary

measure � on P (V ) Z
Logkgxkd�(g)d�(x) = 
1:

On the other hand, Lemma 4.6 gives
R
Logkgx ^ gykd�(g)d�(x ^ y) = 
2,

where � is a cluster value of the sequence �n �m2.

We consider the compact space P1;2(V ). Clearly, G acts on P1;2(V )

and the maps � ! x and � ! x ^ y and are G-equivariant. It follows from

Markov�Kakutani theorem that there exists on P1;2(V ) a �-stationary measuree� which has projection � on P2(V ). Its projection � on P (V ) satis�es as above:R
Logkgxkd�(g)d�(x) = 
1. HenceZ

Log
kgx ^ gyk

kgxk2
d�(g)de�(�)

=

Z
�2(g; x ^ y)d�(g)d�(x ^ y)� 2

Z
�1(g; x)d�(g)d�(x) = 
2 � 2
1:

In particular, there exists a �-stationary measure � on P1;2(V ) such thatZ
�(g; �)d�(g)d�(�) = 
2 � 2
1:

On the other hand, every �-stationary measure �0 on P1;2(V ) satis�esR
�(g; �)d�(g)d�0(�) � 
2 � 2
1. This follows from the fact that the projections

�01; �
0
2, on P1(V ) and P2(V ) respectively, satisfyZ

�(g; x)d�(g)d�01(x) = 
1;

Z
�2(g; x ^ y)d�(g)d�

0
2(x ^ y) � 
2

in view of Lemmas 2.7 and 4.6. Using this property we see that we can assume �

to be extremal �-stationary in the formula
R
�(g; �)d�(g)d�(�) = 
2 � 2
1.

We consider the transformation b� on 
� P1;2(V ) de�ned by

b�(!; �) = (�!; g1(!):�);
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the function f(!; �) = �(g1(!); �) and the measure �
 � on 
�P1;2(V ). We ob-

serve that 
�P1;2(V ) is the space of trajectories of the Markov chain on P1;2(V )

with transition kernel R�(�; :) = � � Æ� . Since � is �-stationary extremal, �
 � isb�-invariant and ergodic. Since jf(!; �)j � 2Logkg1k + 2Logkg�11 k, it follows that

f is �
 � integrable.

On the other hand, the cocycle property for �(g; �) implies

nX
1

f Æ b�k(!; �) = �(Sn(!); �) = Log
kSn(!)x ^ Sn(!)yk

kSn(!)xk2
:

We are going to use Cor. 3.6 with Æz�(!) = lim
n!+1

g�1 ; : : : ; g
�
n:m.

Using Theorem 3.5 and Lemma 3.8, we see that the law of z�(!) 2 P (V ) gives

measure 0 to any projective subspace. In particular, if x 2 P (V ) is �xed, the

condition < z�(!), x >= 0 is sati�ed � � a:e. In other words, using Cor. 3.6

� 
 �� a:e; lim
n!+1

�(Sn(!); �) = �1:

From above, this implies

� 
 �� a:e; lim
n!+1

nX
1

(f Æ b�k)(!; �) = �1:

Then, using Lemma 4.7Z
f(!; �)d� 
 �(�) =

Z
�(g; �)d�(g)d�(�) < 0; i:e 
2 < 2
1:

P r o f of Corollary 4.2. We denote un = Sup
x^y2P2(V )

Z
�2(g; x ^ y)d�

n(g) and

we observe that using the cocycle identity for �2: um+n � um + un:

Also, un �
R
Logkg ^ gkd�n(g), hence lim sup

n!+1

un

n
� 
2. Furthermore, by

subadditivity of un, the sequence
un
n converges. It follows

lim
n!+1

Sup
x^y2P2(V )

1

n

Z
�2(g; x ^ y)d�

n(g) � 
2:

Furthermore Lemma 4.6 implies that there exists x ^ y 2 P2(V ) such that

lim
n!+1

1

n

Z
Log�2(g; x ^ y)d�

n(g) = 
2:

Hence lim
n!+1

1

n
Sup

kx^yk=1

Z
Log�2(g; x ^ y)d�

n(g) = 
2.
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Using Th. 2.3 and the uniform convergence of 1
n

R
Logkgxkd�n(g) to 
1,

the statement follows

P r o f of Corollary 4.3. We denote

un(") = Sup
x;y

Z
Æ"(g:x; g:y)

Æ"(x; y)
d�n(g):

Using Schwarz inequality:

un(") � Sup
kxk=kyk=1

Z �
kgx ^ gyk

kgxk2kx ^ yk

�"

d�n(g) = Sup
kxk=kx^yk=1

Z
e"�(g;�)d�n(g):

We observe that

e"� � 1 + "�+ "2�2e"�; j�(g; �)j � 2Log(kgk kg�1k):

Using u2eu � e3juj, we get for 0 � " � "0:

(�2e"�)(g; �) �
1

"20
(kgk kg�1k)6"0 ; un(") � 1 + "

Z
�(g; �)d�n(g) + "2In

with In = 1

"20

R
(kgk kg�1k)6"0d�n(g) < +1. Now we observe that um+n(") �

um(")un(") for m, n 2 N.

It follows: lim
n!+1

(un("))
1=n = Inf

k

(uk("))
1=k . Hence, in order to show

lim
n!+1

(un("))
1=n

� �(") < 1, it su�ces to �nd k 2 N with uk(") < 1.

Using Cor. 4.2, we have

lim
n!+1

1

n
Sup
�

Z
�(g; �)d�n(g) = 
2 � 2
1 < 0;

hence we can �x k 2 N such that Sup
�

Z
�(g; �)d�k(g) = ck < 0.

Then uk(") � 1 + ck"+ "2Ik < 0, if " is su�ciently small.

The statement follows.

P r o f of Corollary 4.4. The inequality follows from Cor. 4.3 and a simple

computation. The spectral gap property is a consequence of the spectral theorem

of [26]. The fact that r(P it) < 1 if t 6= 0 follows also from this theorem and

Prop. 6.7 (see [20, 25]).

R e m a r k. The fact that, under condition i:p, the "ergodic Lemma" 4.7

allows to deduce quantitative information from weak convergence of measures on

projective spaces, as in Th. 3.5, was observed in [15]. Under stronger conditions,

Th. 4.1 implies simplicity of Lyapunov spectrum for Sn(!) in the i:i:d case (see
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Sect. 6). This property has played an important role in the study of pure point

spectrum for Schr�odinger operators on the line if d = 2 [13] and more generally in

the strip [5], as well as for the study of propagation in inhomogeneous waveguides

([38]). The observation in [15] has been developed in [21] and [12]. In [12], it was

observed that condition i:p can be checked from the Zariski density of [supp�]

in G1. The relations between condition i:p and Zariski density of [supp�] in the

context of semi-simple real algebraic groups were studied in [34]. For another

approach to proximality properties see [1].

5. Contraction Properties for Transitive Markov Systems

1) De�nitions.

Let (X; d) be a compact metric space, bX = C(X;X) the semigroup of con-

tinuous maps of X into itself. We endow bX with the Borel structure de�ned by

uniform convergence, and we write a:x for the action of a 2 bX on x 2 X. We con-

sider a class of Markov operators on X de�ned as follows. Let � be a positive

Radon measure on bX, q(x; a) a nonnegative continuous function on X � bX such

that for every x in X,
R
q(x; a)d�(a) = 1.

For a 2 bX , we denote

q(a) = Sup
x2X

q(x; a).

Then we consider the Markov transition kernel Q on X:

Q'(x) =

Z
q(x; a)'(a:x)d�(a);

where ' 2 C(X). Clearly, Q preserves C(X). We denote 
 = bXN and for

! = (ak)k2N and n 2 N, we write qn(x; !) =
n

�
k=1

q(sk�1(!):x; ak), where sk(!) =

ak � � � a1, s0(!) = Id. Then, for x 2 X, we de�ne a probability measure Qx on


 by

Qx(A1 � � � � �An) =

Z
A1�����An

qn(x; !)d�

n(!);

where Ai, 1 � i � n, is a Borel subset of bX . Also, if � 2M1(X), we write Q� =R
Qxd�(x). The shift transformation on 
 is denoted �, i:e, �(!) = (a2; a3; : : :),

where ! = (a1; a2; : : :) 2 
. If � isQ-invariant, then Q� is �-invariant. We observe

that X � 
 can be identi�ed with the space of trajectories of the Markov chain

de�ned by Q. If (x; !) 2 X � 
, a trajectory can be written as the sequence

(sk:x)k2N , hence the shift e� on X � 
 is given by e�(x; !) = (s1:x; �!). We will

summarize the data (X; q; �) by (X; q 
 �).
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De�nition 5.1. We say that (X; q
�) is a transitive Markov system (t:M:s)

on X if:

a) For every a 2 supp�, Inf
x2X

q(x; a) > 0.

b) In the variation norm on M1(
), Qx depends continuously on x 2 X.

c) The equation Qh = h, with h 2 C(X) implies h = cte.

Condition b seems to be very restrictive. However it is satis�ed in various

situations (see below). If � is Q-stationary, the above conditions imply that Q� is

independent of � and �-ergodic, hence the main role below will be played by Q�,

not by � itself. It is easy to see that, if every [supp�]-orbit is dense, conditions

a,b imply condition c.

2) Some examples.

a) Product measures.

If q(x; a) = q(a), then Qx is the product measure Qx = (q�)
N , hence condi-
tion b is satis�ed

b) Doeblin condition.

If supp� is equal to the set bX of constant maps, then q(x; a) = q(x; y) with

fyg = a:X. If q(x; y) > 0, conditions a,b,c are satis�ed

c) Quantum measurements (see [29]).

We consider the vector space W = C
d , with the usual scalar product and the

vector space H of Hermitian operators on W , H+ � H the cone of nonnegative

operators and we denote q(x; g) = Trg�xg if x 2 H+ n f0g and g 2 G = GL(W ).

Let X = fx 2 H+;Trx = 1g and ~g be the transformation of X de�ned by

~g:x = g�xg
Tr(g�xg)

. If � = fa1; a2; � � � ; apg is a �nite subset of G with

pX
i=1

a�i ai = Id,

we have

pX
i=1

q(x; ai) = 1, hence we can consider the following Markov operator Q

on X:

Q'(x) =

pX
i=1

q(x; ai)'(eai:x):
If � =

pX
i=1

Æai , and [supp�] = [�] satis�es the complex version of condition i:p

(see [17]), then (X; q 
 �) is a t:M:s. This example can also be considered in the

framework of [23], and of example d below, with s = 1. We can de�ne a norm k:k1
on H as follows. Since x 2 H is conjugate to diag (�1; : : : ; �d) with �i 2 R, we can

write kxk1 =

dX
i=1

j�ij. Then we consider the representation � of G in H de�ned

by �(g)(x) = g�xg and write q(x; g) = k�(g)xk1. Then X can be considered as
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a part of the complex projective space P (H) and eg as the restriction to X of the

projective map de�ned by �(g).

The corresponding algebraic framework was developed in ([29]).

d) Mellin transforms on GL(V ).

Let G = GL(V ), � 2M1(G) be as in Sects. 3, 4 and assume [supp�] satis�es

condition i:p. We �x a norm v ! kvk on V , and we consider the function (g; v)!

kgvks (s � 0) onG�V . We assume � 2M1;e(G) i:e
R
(kgkc+kg�1kc)d�(g) < +1,

for some c > 0. Then the following function

k(s) = lim
n!+1

�Z
kgksd�n(g)

�1=n

is well de�ned, strictly convex and analytic on ([0, c[) (see [23]). We consider also

the positive operator P s on C(P (V )) de�ned by

P s'(x) =

Z
kgxks'(g:x)d�(g):

Then, there exists a unique positive continuous function es on P (V ) such that

P ses = k(s)es. If we de�ne qs(x; g) =
kgxks
k(s)

es(g:x)
es(x)

we observe that
R
qs(x; g)d�(g))

= 1. As shown in [23], conditions a, b, c are satis�ed by (X; qs
�), i:e (X; qs
�)

is a t:M:s. The function k(s) can be considered as a kind of Mellin transform of

� and is useful in the study of various limit theorems of Probability Theory for

products of random matrices. This is the case for large deviations (see [31]) and

for Cramer estimates of �uctuation theory (see [23, 14]) and below. We observe

that the expression of the operator P s de�ned above is reminiscent of the transfer

operators of thermodynamic formalism (see below). If there exists a closed convex

cone sent into its interior by supp�, then this analogy can be made precisely.

However, in general, it is not possible to distinguish a region of attractivity for

all the maps g 2 supp�, hence a deeper analysis is needed (see [23]).

e) Gibbs measures (see [37]).

Let A be �nite set, 
 = AN
�

, 
� = A�N ; f(!) a Holder function on AZ, �

the shift on AZ. If x 2 
�, a 2 A, we de�ne x:a by juxtaposition, and we have

an action of A on 
� by continuous maps. We can write f uniquely as

f = f� + 'o� � '+ c;

where c 2 R, '; f� are Holder, f� depends only on the component of ! in 
�
and

X
a2A

q(x; a) = 1, where q(x; a) = exp f�(x:a). The transfer operator Q on 
�

de�ned by

Q'(x) =
X
a2A

q(x; a)'(x:a)
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has a unique stationary measure � and the Gibbs measure on AZ, de�ned by the

potential f , is the unique �-invariant measure on AZ with projection � on 
�.
If � is a counting measure on A and X = 
�, (X; q 
 �) is a t:M:s. Then the

probability Qx on 
 is the conditional law of ! 2 
, given x 2 
� .

3) Harmonic kernels and contraction properties ([23]).

Here we consider a t:M:s (X; q 
 �), and a Borel map � from supp� � bX
to GL(V ). If ! = (ak)k2N 2 bXN , we denote gk = �(ak); Sn(!) = gn � � � g1,

sn(!) = an � � � a1 2 bX . We want to construct an analogue of the martingale of

Sect. 3.

De�nition 5.2. Assume (X; q
�) is a t:M:s, and x! �x is a Markov kernel

from X to P (V ). We say that �x is an �-harmonic kernel if:

a) x! �x is continuous in variation;

b) x! �x satis�es the equation �x =
R
q(x; a)�(a):�a:xd�(a).

It follows from this de�nition that the sequence of measures �n(!; x) =

�(a1) � � ��(an):�sn(!):x is a Qx-martingale for any x 2 X.

Theorem 5.3. Let (X; q 
 �) be a t:M:s and � a Borel map from supp� to

GL(V ) such that [�(supp�)] satis�es condition i:p.

Then there exists z(!) 2 P (V ) de�ned Qx� a:e such that lim
n!+1

g1 � � � gn:m =

Æz(!).

Furthermore, the Qx-law of z(!) is the unique �-harmonic kernel and

! ! z(!) is the unique Borel map which satis�es

Qx � a:e; g1(!):z(�(!)) = z(!):

This theorem can be applied to the � dual� function of �(a); i:e(�(a))�

since the semigroup [��(supp�)] satis�es also condition i:p. It gives, in turn,

information on the product Sn(!), using Lem. 3.10.

Corollary 5.4. For every x 2 P (V ) and v; v0 =2 Ker z�(!), one has the

Qx � a:e convergences

lim
n!+1

g�1 � � � g
�
n:m = Æz�(!);

lim
n!+1

kSn(!)vk

kSn(!)k
= j < z�(!); v > j;

lim
n!+1

Æ(Sn(!):v; Sn(!):v
0)

Æ(v; v0)
= 0:

For �xed !, the last convergences are uniform on every compact subset

of P (V ) n Ker z�(!). Furthermore, if f 2 C(P (V )), the sequence fn(x; v) =R
f(Sn(!):v)dQx(!) is equicontinuous on X � P (V ).
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We consider now the situation of example d. We �x s � 0, we assume

that � 2 M1(G) satis�es
R
kgkcd�(g) < +1, we denote if s 2 [0; c[, k(s) =

lim
n!+1

(

Z
kgksd�n(g))1=n and we consider the positive operator P s on C(P (V ))

de�ned by

P s'(x) =

Z
kgxks'(g:x)d�(g):

We assume that [supp�] � G = GL(V ) satis�es the condition i:p; hence there

exists a unique normalized positive and continuous function es on P (V ) such that

P ses = k(s)es.

Then we write qs(x; g) =
kgxks
k(s)

es(g:x)
es(x)

and we consider the t:M:s (P (V ); q
�).

We denote by Qs
x the Markov measure on 
 = GN de�ned by qs and �. Here we

consider the function ��(g) = g� 2 GL(V ) and apply the above corollary to this

situation. In particular, we denote z�s(!) the point of P (V ) de�ned by

Qs
x � a:e; Æz�s (!) = lim

n!+1
g�1 � � � g

�
n:m:

Then we can compare Qs
x and Qs

y in terms of z�s(!), as follows.

Corollary 5.5. For every x; y 2 P (V ) the Markov measures Qs
x and Qs

y on

GN are equivalent and

dQs
x

dQs
y

(!) =

����< z�s (!); x >
< z�s (!); y >

����s es(y)

es(x)
:

In particular, for the laws �sx and �sy of z�s (!) we have
d�s

x

d�s
y

(z) =
���<z;x><z;y>

���s es(y)
es(x)

.

4) Angles of column vectors: exponential decrease.

Here we give a quantitative version of the contraction property studied in

Sect. 4 and in the above paragraph. We consider the t:M:s (X; q 
 �), a Borel

map � from supp� � bX into GL(V ) and we assume the �niteness of the integralsR
Logk�(a)kq(a)d�(a) and

R
Logk�(a)�1kq(a)d�(a).

We denote by � a stationary measure on X and by Q� the corresponding

Markov measure on GN . With the above notations we de�ne



q
1 = lim

n!+1
1

n

Z
LogkSn(!)kdQ�(!);



q
2 = lim

n!+1
1

n

Z
LogkSn(!) ^ Sn(!)kdQ�(!):
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Theorem 5.6. Let (X; q
�) be a t:M:s, � a Borel map of bX into GL(V ) such

that [supp�(�)] satis�es condition i:p. We assume the �niteness of the integralsR
Logk�(a)kq(a)d�(a) and

R
Logk�(a)�1kq(a)d�(a).

Then the sequence

Sup
(x;v;v0)2X�P (V )�P (V )

Z
Log

Æ(Sn(!):v; Sn(!):v
0)

Æ(v; v0)
dQx(!)

converges to 

q
2 � 2


q
1 < 0.

In the special case of a t:M:s associated with a Gibbs measure we have

Corollary 5.7. Assume A is a �nite set, � is a Gibbs measure on 
 = AN

de�ned by a Holder potential, � a Borel map from A to GL(V ) such that the semi-

group [�(A)] satis�es condition i:p. Then one has the inequality 

q
2 < 2


q
1 , where



q
1 = lim

n!+1
1

n

Z
LogkSn(!)kd�(!), 


q
2 = lim

n!+1
1

n

Z
LogkSn(!) ^ Sn(!)kd�(!).

In the situation of example d above, under exponential moment and i:p con-

ditions (see Subsects. 3 and 4 above), we can develop, following [23], a spectral

analysis of the operators P s(s � 0) on the space H"(P (V )) of "-Holder functions.

For a subset S � G we write 
1(S) = lim
n!+1

1

n
Log Sup fkgk; g 2 Sng. This gives

in particular

Corollary 5.8. With the above hypothesis and notation above, the operator

P s on H"(P (V )), de�ned by

P s'(v) =

Z
kgvks'(g:v)d�(g);

has spectral radius k(s). It has the unique normalized eigenfunction es and eigen-

measure �s:

P ses = k(s)es; P s�s = k(s)�s; jesj1 = 1; �s(es) = 1;

where es > 0.

For " small, one has the direct sum decomposition P s = k(s)(�s 
 es + Rs),

where Rs commutes with P s and has spectral radius rs(") < 1. The function k(s)

is analytic on [0; c[ and k0(0) = 
1. If c =1, then lim
s!+1

Logk(s)

s
= 
1(supp�).

Let Qs be the Markov operator de�ned by Qs' = 1
k(s)es

P s(es') and �n;s(") =

Sup
v;v0

R Æ"(Sn(!):v;Sn(!):v
0)

Æ"(v;v0)
dQs

v(!).

Then, for " small, we have lim
n!+1

(�n;s("))
1=n = �s(") < 1.

In particular, if s is �xed, the resolvent (�I�Qs)�1 has a simple pole at � = 1

and is holomorphic in the domain f� 2 C ; j�j > rs("); � 6= 1g.
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6. On Some Consequences

1) Lyapunov spectrum.

Let (
; �; �) be a measured dynamical system where � is a �-invariant and er-

godic probability measure, � a Borel function from 
 to G = GL(V ). We assume

that the functions Logk�(!)k and Logk��1(!)k are �-integrable. We write for

i 2 N, �(�i!) = gi(!) and we consider the product Sn(!) = gn(!) � � � g1(!) 2 G.

In general, if v 2 V , the asymptotic behaviour of Sn(!)v is described by the

multiplicative ergodic theorem of V.I. Oseledets ([33]). For a recent detailed proof

of this result see ([36]). A more elementary approach is to consider the quantities

(1 � i � d):


1 = lim
n!+1

1

n

Z
LogkSn(!)kd�(!);


2 = lim
n!+1

1

n

Z
LogkSn(!) ^ Sn(!)kd�(!);


i = lim
n!+1

1

n

Z
Logk ^i Sn(!)kd�(!);

where the limits of the quantities under the integrals exist a:e by the subadditive

ergodic theorem. The following result (see [35]) allows to de�ne the so-called

Lyapunov spectrum of Sn(!).

Theorem 6.1. Assume (
; �; �) and �(!) are as above. Then we have the con-

vergence

� � a:e; lim
n!+1

1

2n
Log(S�nSn) = ^(!);

where ^(!) is a symmetric endomorphism of V .

The spectrum of ^(!) is constant � � a:e, and of the form (�1; �2; : : : ; �p),

where �1 > �2 > � � � > �p, and �j , 1 � j � p, has multiplicity mj > 0. Each �j is

called a Lyapunov exponent of Sn(!), and �1 is called the top Lyapunov exponent.

Clearly, �1 = 
1. If m1 = 1, then �2 = 
1 + 
2, hence �2 � �1 = 
2 � 2
1 < 0

controls the exponential decay of � ((Sn(!)v, Sn(!)v
0), where v; v0 are "typical"

vectors. Conversely, if 
2 � 2
1 < 0, then m1 = 1.

These facts allow to translate Th. 5.6 into

Theorem 6.2. [15]. Assume (X; q
�) is a t:M:s and the Borel map � from bX
to G is such that the integrals

R
Logk�(a)kq(a)d�(a) and

R
Logk��1(a)kq(a)d�(a)

are �nite, and [�(supp�)] satis�es condition i:p. Then the top Lyapunov expo-

nent of

Sn(!) = gn(!) � � � g1(!)

has multiplicity 1.
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In order to deal more generally with the irreducibility and proximality ques-

tions, it is convenient to recall the

De�nition 6.3. Let U be a subset of G, I(U) the set of real polynomials in

the coe�cients of g and (detg)�1 which vanishes on U . Then

U�Z = fg 2 G;8P 2 I(U); P (g) = 0g

is called the Zariski closure of U .

The Zariski topology on G is de�ned by its closed sets, i:e sets U with U =

U�Z . If U is a semigroup, then U�Z is a closed Lie subgroup of G with a �nite

number of connected components. An important fact observed in [12] and [34]

is that, if S � G is a subsemigroup, a proximal element exists in S i� such

an element exists in S�Z . Taking this into account, Th. 5.2 gives the following

extension of an important result of [12].

Corollary 6.4. Assume (X; q 
 �) is a t:M:s and [�(supp�)]�Z contains

SL(V ). Then the Lyapunov spectrum of Sn(!) is simple, i:e each Lyapunov

exponent has multiplicity one.

For some applications of geometrical character (see, for example, [17, 18, 8])

it is convenient to have "intrinsic" forms of the above. Then we consider a semi-

simple algebraic group G, de�ned over R. We denote by GR the group of its real

points and we use as a tool the Zariski topology on GR. We assume G to the

Zariski connected. For a Lie subgroup L of GR we denote its Lie algebra by the

calligraphic letter L. We consider a maximal connected subgroup A � G such that

Ad A is diagonal, a maximal compact subgroup K and the polar decomposition

G = KA
+
K, where A+ is an open Weyl chamber of A and A+ is its closure.

If d 2 A, write Log d for the unique element of A such that expLogd = d.

We write, if g 2 G; g = kd(g)k0, with d(g) 2 A
+
, k; k0 2 K, and we �x a norm on

A � G.

Let (X; q
�) be a t:M:s, � a Borel function from bX to G such that the integralR
kLogd(�(u))kq(u)d�(u) is �nite and write Sn(!) as Sn(!) = kndn(!)k

0
n with

kn; k
0
n 2 K, dn(!) 2 A

+
. Then, using the subadditive ergodic theorem, we can

de�ne the "Lyapunov vector" L(�) 2 A
+
by

� � a:e; lim
n!+1

1

n
Logdn(!) = L(�):

In particular, in the i:i:d case we write L(�) for L(�).
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Theorem 6.5. [12]. Assume (X; q 
 �) is a t:M:s, � a Borel function frombX to GR. Assume [�(supp�)]�Z = GR.

Then L(�) 2 A+.

We observe that the condition L(�) 2 A+ can be satis�ed under much weaker

conditions than [�(supp�)]�Z = GR, in particular, if G has a complex structure.

For a detailed study see [17], and for an extension to local �elds see [22].

2) Some limit theorems.

Assume here that � 2 M1(G) and Sn(!) is the product of random matrices

Sn(!) = gn � � � g1. We are interested by re�nements of the results in the above

paragraphs, i:e, by re�nements of the law of large numbers for Sn(!). Hence we

have to consider a possible degeneracy of limiting laws. It turns out that if dim

V > 1, such degeneracies can be avoided if we assume geometric conditions like

Zariski density of [supp�] or condition i:p for [supp�]. We recall that if d = 1, these

degeneracies depend on arithmetic conditions on supp�. We begin by developing

some results of this type and we formulate them for a general semigroup � instead

of a semigroup of the form [supp�].

De�nition 6.6. For a proximal element g 2 GL(V ) = G we denote �(g) =

Logr(g), where r(g) is its spectral radius. For a semi-group � � G, we denote by

�(�) the set of its proximal elements.

Then we have the

Proposition 6.7 ([25]). Assume � � G satis�es condition i:p. Then �(�(�))

generates a dense subgroup of R.

If GR is as in the above paragraph, and g 2 GR, we need to consider other

notions of proximality related to the actions on the �ag spaces of G.

De�nition 6.8. Assume g 2 GR and write L(g) = lim
n!+1

1

n
Logd(gn) 2 A

+
.

We say that g is �ag proximal if L(g) 2 A+. For a semigroup � � GR, we denote

by �prox the set of its �ag proximal elements.

Then we have [17].

Theorem 6.9. Assume � is a Zariski-dense subsemigroup of GR. Then

L(�prox) generates a dense subgroup of A.

The following is an analogue of the classical renewal theorem, where
:

V is the

factor space of V by �Id.
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Theorem 6.10. Assume dim V > 1 and � 2 M1(G) is such thatR
Logkgkd�(g) and

R
Logkg�1kd�(g) are �nite, [supp�] satis�es condition i:p

and

�(�) = lim
n!+1

1

n

Z
Logkgkd�n(g) > 0:

Then, for every v 2
:

V nf0g, the potential

1X
0

�k � Æv is �nite and

lim
v!0

1X
0

�k � Æv =
1

�(�)
� 
 `;

where � is the unique �-stationary measure on P (V ) and ` = dr
r is the radial

Lebesgue measure on R
�
+ .

The multidimensional analogues of this result can be applied to dynamical

problems like density of orbits for the groups of automorphism action on tori

([19, 25]).

In the case �(�) < 0 and 
1(supp�) > 0, there exists � > o such that

k(�) = 1, as explained in Sect. 5. In particular, we have the so-called Cramer

estimate as the consequence of Cor. 5.8.

Theorem 6.11. With the above notation, assume [supp�] satis�es condition

i:p, 
1 < 0, 
1 (supp�) > 0 and
R
kgkcd�(g) +

R
kg�1kcd�(g) < +1 for some

c > 0. Let � 2]0; c[ be de�ned by k(�) = 1. Then, for every v 2 V n f0g,

the sequence of functions t��f! 2 
; sup
n2N

kSn(!)vk > tg converges to a positive

function on P (V ) proportional to e�(v).

This result allows to study the tail of stationary solutions of a�ne recursions

on R
d of the form Xn+1 = An+1Xn +Bn+1, where (An; Bn) 2 Aff(Rd) are i:i:d

([28, 14]).

Furthermore, the existence of such tails allows to obtain fractional expansions

of Lyapunov exponents near critical points for some classes of products of random

matrices (see [6] for d = 2). Near a point � 2 M1(G) such that [supp�] satis�es

condition i:p, the top Lyapunov exponent is in general nondi�erentiable, but only

Hoelder (see [30]).

For the Gaussian behaviour of LogkSn(!)vk we refer to [3, 16, 20, 27, 38].

The convergence to the Gaussian law can also be studied in the context of i:i:d

random variables taking values in a semi-simple group of the form GR, as in

Subsect. 1. In the notations of Th. 5 we have

Theorem 6.12. Assume � 2M1(GR) satis�es
R
exp ckLogd(g)kd�(g)< +1,

for some c > 0, and [supp�]�Z = GR. Then
1p
n
(Logd(Sn)� nL(�)) converges in

law to a Gaussian law on A with full dimension.
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R e m a r k s. This theorem extends the result of [11], which was stated

for GR = SL(d;R). The proof is based on the spectral properties of �ag space

analogs of the Fourier operators P it(t 2 R) from Sect. 4. The fullness of the

Gaussian law is a consequence of Th. 6.9 (see [17]).

A special case of interest for Mathematical Physics is GR = Sp(2n;R).

We observe that the exponential moment condition is not necessary for the

validity of Th. 6.12. One can expect that a 2-moment condition is su�cient.

The method used for the proof of Th. 6.5, i.e the construction of a suitable

martingale as in Th. 5.3, remains valid in more general settings. For examples of

such results see [4, 2].
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