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The purpose of this article is to construct KdV flow on a space of gene-
ralized reflectionless potentials by applying Sato’s Grassmannian approach.
The point is that the base space contains not only rapidly decreasing poten-
tials but also oscillating ones such as periodic ones, which makes it possible
for us to discuss the shift invariant probability measures on it.
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1. Introduction

The KdV equation is

o__Pu o
ot 0x3 uax’

and this describes the dynamics of shallow waters. As is well known, n-soliton
solutions for the KAV equation are given by

2

u(t,x) = —2% log det(I + A(t, x)),

where
Alt,z) = (— e e—<m+m>w+4("?+"?>t>
i 7 1j 1<i,j<n

with m;,n; > 0. For each fixed ¢ € R, u(t,-) is a reflectionless potential which ap-
pears in 1-D scattering theory. V.A. Marchenko [13, 14] considered the compact
uniform closure of reflectionless potentials, which we call the space of genera-
lized reflectionless potentials, and made an attempt to solve the KdV equation
starting from an element of this closure. However, he had to impose the solvabil-
ity condition on an integral equation, which made it impossible to solve the KdV
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equation in its full generality. On the other hand, M. Sato and Y. Sato established
a unified approach for a large class of completely integrable systems. They con-
structed solutions based on dynamics (flows) on infinite dimensional Grassmann
manifold, and it was rewritten from an analytic point of view by G. Segal and
G. Wilson [16]. R.A. Johnson [9] mentioned the applicability of their approach
to this space of generalized reflectionless potentials, which admits a certain class
of oscillating functions. However, to apply this method we have to prove the
transversality, which is equivalent to the solvability of the integral equation con-
sidered by Marchenko. The first purpose of this paper is to construct a KdV flow
on this space by showing the transversality. In the case when the base space is
a set of rapidly decreasing smooth functions, H.P. McKean [15] applied Sato’s
theory to construct the KdV flow on it.

For Ap <0 let ), be the compact uniform closure of all reflectionless
potentials whose associated Schrodinger operators have their spectrum in [Ag, 00).
Set

r_d o g(z) is holomorphic on D, ¢(0) =1, g(z) # 0 for Vz € D,
N takes real values on R and g(—z) = g(z)~! for V2 € D ’

where D is the closed unit disc. We construct a homomorphism K between the
group I' and the group of all homeomorphisms on 2),. This K induces the shift
operation if we choose

9u(2) =e " €T

and solutions for the KdV equation if we choose

gz t(2) = e At
Any other higher order KdV equation can be solved in this way on €,,. We also
discuss the isospectral property under K.

The motivation of this paper is to construct a nice solution for the KdV equa-
tion starting from a certain random initial data. This problem was raised by
V.E. Zakharov and the author was taught it by S.A. Molchanov. We would like
to construct a solution as a typical random field {u(t,z)}, ,cg which is shift in-
variant with respect to ¢ and . In this respect, there are already solutions which
are quasiperiodic in time and space, which is a special case of shift invariant ran-
dom fields. However our aim is to give a very random solution. The construction
of the KdV flow is a starting point in solving this problem. Since ), is compact
and the KdV flow {K(g)} ger 1s commutative, the space of all probability mea-
sures on (2, invariant with respect to {K(g)} < is a non-empty compact convex
set. Therefore we have many ergodic K (g)—invariant probability measures on
), It is interesting to study the spectral property for the associated Schrédinger
operators under these probability measures. The problem of V.E. Zakharov is just
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the problem on finding such a probability measure under which K(g)q behaves as
random as possible, especially the spectrum of the Schrédinger operators should
have a dense point spectrum on [\g, 0], whereas the spectrum in (0, c0) is always
purely absolutely continuous for any potential from €2),. Since a KdV-flow invari-
ant probability measure is automatically shift invariant, hence we can define the
Floquet exponent. We discuss the relationship between the KdV-flow and the
Floquet exponent, although it is still unsatisfactory.

We try to give a self-contained explanation of this subject as far as possible,
since it may be difficult to obtain a complete view only by citing necessary facts.

2. Spectral Theory of 1-D Schrédinger Operators
and Dyson Formula

Let us consider a one-dimensional Schrodinger operator
d2

A
dxz?

+q()

with potential ¢, which is a real valued function of L}OC(R). In this section we
introduce the Gelfand-Levitan inverse spectral theory and the Dyson formula
which solves the inverse spectral problem by the Fredholm determinants of the
integral operators associated with the spectral measures.
Suppose g(z) satisfies
q(z) > —cz?
for every sufficiently large |z| with a constant c¢. Then it is known that L has
a unique selfadjoint extension on L?(R). Under this condition, for A € C\R there

exist unique solutions fi(z,\) of
Lf =Xf, f(0)=1and f € L*(Ry),
where Ry = [0,00), R_ = (—00,0]. Set
my(A) = me(X, q) = £f1(0,X).

These functions become the Herglotz ones which are holomorphic on the upper
half-plane with positive imaginary parts. We call these functions as H-functions,
see Appendix for the properties of H-functions. Let g)(x,y) be the Green function
for L — X, that is

(L=N""(z,9) = gr(z, ).

It is well known that

forz >y (1)

aa(z,y) = gA(y,z) = _7J;+($a N f-(y, )

+(A) +m-(A)
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is valid. The Gelfand-Levitan inverse spectral theory says that the potential
g on R (resp.R_) can be recovered from m (resp.m_) by solving the integral
equation(2) of Fredholm type. Let

dy(z,y) = / (1= cos vEo) 2(1 —cos V&y) o (d€) —xz Ny
R 3
with a measure o, representing m,. Define
82
F+($7y) = 3$8y¢+($’y)
and consider
K(z,y) + Fi(z,y) + /Ox Fy(y,t)K (z,t)dt = 0. (2)

Then F is continuous and the integral equation (2) is uniquely solvable in the
space of continuous functions on [0, z] for each fixed z > 0. Then the potential ¢
is given by

q(z) = Q%K(m,m) for z > 0. (3)

For details see V.A. Marchenko [12].

For later purpose we give another representation of ¢ by a determinant.
This kind of representation was remarked first by F. Dyson [3] in the scattering
case (in which the potential ¢ is decaying sufficiently fast at +oo, see Th. 4 below)
and by K. Iwasaki [8] in the case of boundary value problems on finite intervals.
For the sake of completeness we give a proof of this formula here. Let F{ be the
integral operator on C([0,x]) with kernel F. .

Theorem 1. (Dyson formula)
d2
q(z) = —2w log det(I + FY). (4)
Prof. Set
F,(t,s) = ¢ Fy (zt, xs)

and consider the integral operator F, with kernel F,(,s) on L?([0,1]). Then it is
easy to see that det(I 4+ FY) = det(I + F;) holds. Therefore

d d
I logdet(I + FY) = . log det(I + Fy)

Fy
=tr {(I+ Ffv)_laax }

LoF
= xt,tdt—i—// T.(t, s
|| Genas [ ras

OF,
o (s, t)dtds,
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where Ty = (I + F;) ! — I and T'(t, s) is the kernel for T';. Observing

_OF; OF, OF,
22 (b 8) = Faltys) + 5 5 (1) + 575 2 (1,5),

we have

x% log det(I + F) = tr (F, + [, F,)
IRICET
+/Jt< e [
[ /1
- o

= _Fl‘(]‘7 1)7

(s,t)ds >dt

t)ds) dt
t t)dt —/ as

where we have used the identity F, + ', + F,I'y, = F, + 'y + ', F,. On the other
hand, from (2) we see

1
zK(z,zt) = —xFy(x,xt) — w/ Ly(t, s)Fy(z, xs)ds
0

= —F,(t,1) — /1 Ty(t, s)Fy(s,1)ds
=T.(t,1), :
which implies
% logdet(I + F}) = —K(z,x).
Consequently, the proposition can be proved from (3).
The formula (4) may be called Dyson formula. |
3. Inverse Scattering Problem and Reflectionless Potentials
If the potential satisfies
la(2)| (1 +|2]) € L'(R),

one can define two linearly independent solutions e*(z, k) for k € C (= {k € C;
Imk > 0}) of Le = k2e satisfying the following asymptotic behaviour

et (z, k) ~ e as x — +o0,
e (z,—k) ~e ™ as x = —00 .
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Since the pairs {e*(z,k),e" (z,—k)},{e (z,k),e (z,—k)} form a fundamental
system of solutions of Le = k%e for nonzero real k, we can introduce a(k), b(k) as

{ et (z,k) = a(k)e (z,k) +b(k)e (z,—k),
e (z,—k) = a(k)et (z,—k) — b(—k)et (z, k).

The real valuedness of the potential V' implies

for nonzero real k. Set

__b(=K)
’ri(k) = ]C-I,(—I{I)’

r(k)(resp. r~(k)) is called the right reflection coefficient(resp. the left
reflection coefficient) and t(k) is called the transmission coefficient (see
V.A. Marchenko [12]). From (5) we see that

0<[t(k)] <1and |[rT(k)|=|r (k)] <1

for every k € R\ {0}. It is known that the single rT(k)(equivalently r~(k)) de-

termines the other {r~(k),t(k)}. It is also known that a(k) is holomorphic on

C. and has only finitely many simple poles {in; }?:lon the pure imaginary axis.

At k = in;j, e* (z,in;) and e~ (z, —in;) are linearly dependent and belong to L?(R).
n

Therefore {—7732-} are eigenvalues of L. Set

j=
-2
(m]i) :/R‘ei(x,inj)Fdw.

Then it is not difficult to see that
—2 2
— . 2
(mj ) =— (mj) a' (in;)

holds. The triple {r+(k),inj,m;',1 <5< n} is called the right scattering
data. The inverse scattering problem is to obtain the potential V' from the

right (or left) scattering data, and the basic part of the problem was solved by
V.A. Marchenko. His procedure is as follows. Since rt (k) = O(|k| ') as |k| — oo,
1 )
Rt(z) == / rT(k)e¥* dk;
R

™
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is well-defined. Tt is known that R*(z) is locally absolutely continuous and

/OO‘R+($)‘d$+/OO(1+|$|)‘R+'(x)‘dx<oo. (6)
0 0

Define .
Ff(z) =R"(z) +2 Z eiZ"fmm;“.
j=1

Then (5) makes it possible to consider an integral equation on L?([0,c0)) for each
fixed z € R

K(t)+F+(x+t)+/OOF+(x+t+s)K(s)ds =0.
0

It is also known that this equation is uniquely solvable and we denote its solution
by K*(x,t). Then the following theorem is valid.
Theorem 2. It holds that

q(z) = —%KJF(L 0).

F. Dyson [3] discovered a compact expression of V. Let
o
EFf(t) :/ Ft(x+t+s)f(s)ds.
0

The property (6) implies the operator F,” defines a trace class operator
on L%([0,00)) for each fixed z € R.

Theorem 3. (Dyson formula) It holds that

2 .
q(z) = —2@ log det(I + F,"). (7)

A similar expression is possible by using the left scattering data {r~(k),in;,
m;,1<j< n}. A potential ¢ is called reflectionless if

rT(k) =0 (and hence r~ (k) = 0).

Now it is easy to see from Th. 3 that ¢ is reflectionless if and only if

d2
V(z) = —2@ logdet(I + At (x)) (8)
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with
1<i,j<n
In this case the potential ¢ is decaying exponentially fast and analytic on R.

This reflectionless property can be interpreted by m4 () as follows. Since the
definition of m4 implies

_ 6,4»(0’ \/X) _ _e,— (05 _\/X) -~
my(A) = 7@_’_(0, N’ m_(A\) = 7@_(0,_\/X) for A e Cy,

and for £ > 0, e4 (0, £/ 4 10) exist finitely , we see
2iV/Eb(VE) |
e+(0,VEF0)e_(0, —/E + i0)

Hence we see that q is reflectionless if and only if

my (£ +10) +m_(§ +10) =

my (€ +1i0) = —m_ (£ +140) forall £ >0 9)
holds.

4. Generalized Reflectionless Potentials

In this section we give the closure of the class of all reflectionless potentials.
To this end we characterize H-functions m4 satisfying the property (9). We pre-
pare a lemma.

Lemma 4. An H-function m satisfies
Rem(£4+10) =0 a.e. on (0,00) (10)

if and only if there exists a measure v on (—o0, 0] satisfying

0 u(df)
/_001 e =

0 14
m(A):—i\/Xv—i\/X/_ g(ili). (11)

and v < 0 such that

Moreover, setting

0 14
o=+ [ 290
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for some real o we have

) =a+ [ ’ (L - %52) =Ew(de)

—00

(5 i) Ve (12)
7)y \E—x 1) VLW

Prof. Suppose the characteristics of m are {«, 3,0} . Set 0(¢) = arg (m(& + i0)) .
The identity (10) implies 6(¢) = g a.e. on (0,00). Therefore Appendix implies

m(\) = exp <c + %/R (5—% - %) 9(§)d§>

(o B
=S (” w/<_oo,0] (5 1mo) 9(5)d5> |

Hence —iv/Am()) is again an H-function which takes real values on (0, 00) and is
analytic there. Therefore

—ix/Xm(A):a1+61A+/0 <£_%— : )x/—_&f(dﬁ),

—o0 1+¢2

which implies

/ €172 o(de) < . (13)
(_OO’_H

On the other hand, an H-function —m ™! also satisfies (10), hence m())/ (—zx/X)
is an H-function such that

m(\) ! § \oald) ¢
—iﬁ_a2+ﬁ2>\+/m<£—>\_1+£2>\/—_£+—_>\

with some ¢ > 0, which implies

.

Moreover, we see 33 = 0. Now, from (13) it follows

mQA) _ O v(dg)
_Z\/X _7+[w£_A’

e olde)
“"‘“/m (1+52> N
V(dE) = Te.0)(€) i}%? T ey (d)

€77 o (d€) < oo.
0)

)

with
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Conversely assume m is given by (11). Then all we have to show is that m is
an H-function. To see this, we note m(\) = —iv/Ap(}), and p is an H-function
taking real values on (0, 00), from which the conclusion follows. ]

Proposition 5. Herglotz functions my satisfy the property (9) if and only if
there exist measures vy on (—o0,0] satisfying

/0 vy (d§) + v—(d§)
o L]
and a € R, v <0 such that

< 00, (14)

0
me) = 2oty [ (A5 -1 ) VR —v@) 09

CiVhy iV /°+ vy (d€) + v_(d€)
2 2/ o £E— X\ '

P rof. Let the characteristics of m4 be {ax, 81,04} . First note m(\) +
m—_(A) is an H-function satisfying

Re (m (€ +1i0) + m_(£ +i0)) =0 a.e. on (0,00),
since we have the condition (9). Hence we immediately see

71 (d6) = o (d) = P& /Eae om (0,00)

. _ o (df) + o_(d€) c
with p() =7+ /(oo,m €NV T

Introduce
o4 (d§)

vV=¢

v (86) = T oy () T2 4 2y ().

Then m4 can be represented as

m(A) :ai+,6i>\+/0 ( ! S >\/__§Vi(df)

o \E=x 1+ g2

(1 £\ —r&)
— d€.
+/0 (§—>\ 1+§2> o V0
On the other hand, we know from Lem. 4 that

0 1% V_
mo(A) +m_(\) = —ivV Ay — i\/X/ +(d§§) ix (df), (16)

hence S+ = 0, which concludes (15). ]
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Now, for A\p < 0 we introduce ), a class of potentials ¢ as all compact uni-
form limit on R of some reflectionless potentials whose associated Schrédinger
operators have their spectrum in [A\g, 00). An element of ), is called a general-
ized reflectionless potential. A potential of the form (8) is called the classical
reflectionless potential and the set of all these potentials is denoted by Qﬁfo.
We try to parametrize the set by measures on [—v/—Xg, v/—\g] defined by

o;a measure on [—y/—M\g, v/ —Ag| satisfying
old)

Yy, = /
[—\/—/\0,\/ —)\0] _>‘0 - CZ -

0

V.A. Marchenko [14] showed the following result, which we prove again here.

Theorem 6. Then two spaces 2y, and Xy, are homeomorphic and my are

given by
o (d¢)
ma(-2%) =~z - [ , (17)
[~V Xo/ o) £C — 2

or the characteristic measures o4 of m+ are

\/_a(dC) on (—o0,0] with { = +/—£
o1 (dg) = {

——\fp( )dg on (0,00) ’

where
o(dq)

p(N) = —2+2 / ACY
[—\/—)\0,\/—/\0] _C2 - A

Prof Choose agq € Qf\lo whose associated Schrodinger operator has its
spectrum in [Ag,00). Since ¢ is rapidly decreasing, o4 have finitely many points
in their supports in [Ag,0). It is easy to see that

ma(N) = ivVa + 0 (%

hence v = —2. We introduce a measure o on [—v/—Ag, vV —Ao| by

>, as A — 00, (18)

v=Xo 1 [0
| r0e o =3 [ 5/ ) + / F(-V=Ep ().
—V=Xo Ao

Since they satisfy the property (9), we can apply Prop. 5 and the formula (17)
follows. On the other hand, the condition that the spectrum of the operator is
contained in [Ag, 00) implies

gx(0,0) = — (mo(A\) +m_(A)) ' >0 for A < Ao.
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Hence (16) shows

2(E= N <1, for A < Ao,
which implies the condition in the definition of ¥),. Now the expression (17) is
easily deduced from (15). Then it is routine that for a compact uniform limit of
some reflectionless potentials the associated m4 also have the representation (17)
by choosing a suitable o from 3),. In the next section we will prove that any
element o from X, with at most finitely many points as its support gives a clas-
sical reflectionless potential. This together with the theorem below completes the
proof. [

/ vy (d€) +v—(d§)
[A0,0]

For ¢, define a shift by
Trq(-) =q(- +z) for z € R.

Introducing another pair of linearly independent solutions {py, 1y} for

Cp e [ FO) =1 £(0) = 0= ()
Lf = \f satisfying { F(0)=0, f/(0)=1= d)i(m). (19)
Then the uniqueness of f, implies
[+, A Toq) = iz A g)
hence
f’+(x X :q)
© felz Xig)
(p;(x q) +m+(A q)%( ). (20)

m_(A; q) also has a similar expression, therefore it is easy to check that an identity

my (€ +1i0;Tq) + m_(§ +10;T,q) =0 a.e. on [0,00)

holds if so is the case z = 0, which implies ), is a shift-invariant space.
Moreover, an asymptotic expansion of the Green function shows that

1 q(x) _3
g,\(l',l',Q) = . - +o |>‘| 2,
, . —2@\/X. 4iAV\ ( ) (21)
0 g)\(xayaQ) _ IL\/X N Q(x)

1
oy = A7) as A
dzdy A N 0(' | ) as A= 00
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On the other hand, we have another expression for the Green function by
using {¢x, P} . Let

I B E Yo R P R b
M) = w1 m )
) Fm () 2 me()+m ()

which is a matrix valued Herglotz function. Set ¢y(z) = (pa(z), 1 (z))".
Then (1) shows

ga(z,y) = (M(X)pa(z), Paly)) - (22)
Here the inner product on C? is defined without taking the complex conjugate.
For a potential ¢ € 2, it is easy to see that for z € C? an H-function (M ()\)z,2)
satisfies the identity (9) a.e. on [0,00). Therefore, applying Lem. 4, we have
ivA ( 0 0 ) A 01

0

My = A0 0 ) AL e,

XA
where X(d¢) is a real matrix valued non-negative definite measure on
[Ao,0]. Here we have used the asymptotics (21). Now it follows from (22) that

D@ _ oy ayay) + /

0

(X(d€)pa (), da(y))

i A
Y
0
= ) + [ 7 (2 (9r(0) — (o)) 62(0) — bl
01
[ e gl dew).

Since first two terms are holomorphic on C as a function of A, the asymptotics of
the Green function shows that the above right-hand side behaves like O(A71) as
A — 00, which implies the sum of first two terms becomes zero. Hence we have

o) =2 [ L (e ). (23)
Ao

This combined with (21) shows

(/0
A(ﬂ@wwm@wnzl

0

0 4
Y /. §E)Ee(@), delx) = == (24)

| /\0 (E(df)%(w),%(m)) -2

0
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This, in particular, implies

2X0 < V(z) <0
for any g € (2),. If we observe the identity

—¢¢ (@) + q(z)de () = Ee (),

the repeating use of (24) shows that ¢ is infinitely differentiable and their deriva-
tives have bounds depending only on \g, which was proved by D.S. Lundina [11]
through a different argument. We state the above argument as a theorem together
with the refinements by V.A. Marchenko [14].

Theorem 7. The followings hold:
(i) The shift acts on Qy,.
(13) Any element of Qy, is infinitely differentiable and all its derivatives have

bounds o
n
(@) <2 (V)" (4 1)
forn =0,1,2,.... In particular, ), becomes compact in the compact uniform
metric.

(i13)  Any element of Qy, is holomorphic on the strip { |Im z| < \/—)\0_1}

and satisfies
-2
l4(2)] < 2% (1= /o[ 2])

Among potentials in ), the potentials having finite band structure are of
particular interest. We say a potential has a finite band structure if there exists
a finite number of nonoverlapping intervals [A;, p;], ¢ = 1,2,...,n, in [Ag,0] on
which

my (€ +1i0) = —m_(€ +140) for all £ € [N\, ui] (1 =1,2,...,n)
holds. To compute o4 in this case, first we consider

g(A) = = (ms(A) +m_(X) " (= 9(0,0)).

Taking log, we see

1 1 .
g(A) =exp <’Y + ;/R (ﬁ #) arg g(¢ + 20)d£>

Z/ i+larg g §+Zo)d§>
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where we set Ap+1 = 0. The constant factor is determined from the behaviour
(18) of g(A). Let &; be a unique zero of g(A) in [p;, Ait1] for i =1,2,...,n. Then

A+t arg g(€ +10) §1 —&;
d¢ = dé¢ =l
/i S log 3

hence

o=z (sEpei e

1 T (=)’
B Zi\/XJ ZHl(>\— Ai) (N — i)

—¢&; is a pole of my(\) + m_()), hence oy ({&}) + o ({&}) > 0. However if
ot ({&}) > 0, then the Schrodinger operator L has two non-trivial solutions fi
satisfying

Lfs=¢&fx, f£(0)=0and fi € L*(Rz),

which means fy are linearly dependent, hence &; is an eigenvalue of L on L?(R).
This contradicts the fact that L has no spectrum outside the set

S= Ulgignp\iaﬂi] U [0, 00).

Therefore o ({&}) o— ({&}) = 0. Let

_[1if o (&) >0 _
6;_ o { 0 othe;rwise & =1 Cf'
Noting 04 = o_ on S, we have
o+ (d€) = A(E)Ts(€)dé + Y e oid((e,) (dE), (25)
i=1
with
NG o i “oer
I I e R (T
~ if € >0,
MJH T
and

(& —Aj) (& —w))
0 = 2\/ gz £z) H ! .
\J]];,gz (gt - £j)2
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A measure o on [—v/—M\g, vV —\o] is defined by
L

sy =4 Vit

Ve

In this case we can determine ¢ by using the Theta function on the compact
Riemann surface for a hyperelliptic curve

(d€), if (=v=E£>0
(df), Zf C:_\/__€<0

w? = A[TO =) (A — i) . (26)
i1

We choose a homology basis {a, B}, j<n ON the surface and a basis of diffe-
rential forms of the first kind {w;},;,, satisfying

1
— ¢ w; = 3.

Bij = 7{ wj.
B

i

Set

This matrix is called a period matrix for the surface, and it is known that B is
symmetric and its real part is negative definite. If all the points {—X;, —pu;} lie on
the real line, the matrix B becomes real. Hence in this case B is a real symmetric
negative definite matrix. Define the Theta function

0(n, 20 zn) = 3 exp{%(Bm,m)—l—(z,m)}.

meZn

Then it is known (see A.R. Its—V.B. Matveev [7]) that

Proposition 8. There exist c € R, a,b € R" such that

2

d
q(z) =c— 2@ logf (za+b). (27)

5. Characterization of Classical Reflectionless Potentials

In this section we characterize classical reflectionless potentials in terms of o
and give a concrete description of the measure

m(dn) = m 61,1 (dn)
=1
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associated with the scattering data.
For o from X, first we compute F; of Sect. 2. Set

bilon) = =5 [ (1= cos ﬁxgﬁl — SV e (¢ de
(1 — cos vE&z)(1 — cos /Ey)
oy (dé¢) —x Ny.
. ” L (d) ~ 7 Ay
Define
a2¢+($7y).

F+(,’L‘,y) = 81‘83}

Here we remark the positive-definiteness of F',, which will be useful when applying
Sato theory.

Lemma 9. Fy is positive definite.

Prof A routine calculation shows

—1 [*sin/£Ezsin/y
F N 2)d
o) = 5 R (o 0) 4 2y
0 . .
sinh y/—&x sinh /—&y

e V=l (de).

Ao _5
which implies the positive-definiteness of F. . [

Further calculation shows

) / oV E@y) _ o/ —Ea—y]
[)‘070}

Fi(w,y) = r: oy (dE)

1 67 \% 7§|Ify‘ — ef \ 7§(I+y)
+ _/
[Ao0,0] =

1 o_ (d§).

Replacing {o4,0_} with o, we have
Clz+yl _ oClz—yl
e e

vV o/l ¢

Now we compute the Fredholm determinant of the integral operator Fl in
L?([0,a],dz) with kernel F, (z,y). For later purpose we decompose F, into two
parts:

o (dg). (28)

F, =-V + B,
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with

V=20 ginh ((z — y)
V(z,y) = / ———0(d() for z >y

Vo ¢ )
0 for z <y
*\/E .
Blow) = [ S ig)
—V A0

To compute the inverse (I — V)~ ! we set

. V=3 ginh VR od
m(\) :/0 GJ—_Axdx/_HSInCCZUU(dC) = /_ﬁ% (29)

We note that m is a function of Herglotz type. Further, in this case m takes
negative values on (0, 00). Therefore
~ m(A) 1
AN =——=-14+—-—"—
N =TT Ly
is an H-function as well and takes negative values on (0,00). Here we use the
condition y

[V R/ ] ~A0 €
which implies m(A) has no singularity on (—o0, \g), hence there exists a unique
measure o on R such that

~ o(d
) = [ Ra LY (30)
[0,v/~%o] —&
Defining
sinhé(z —y)
~ —————=0(df) for z > y
V(J?, y) = /[0,\/—/\0] 5 ( ) )
0 forz <y
we see

(I-V)'=T+V.
Now we employ the method used by Ikeda—Kusuoka—Manabe [6]
[+F, =1-V+B
=I-V)U+I-V)'B)
=(I-V)I+(I+V)B),
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which leads us to

(‘73) (z,y) = /()m‘N/(x,z)B(z,y)dz

B /m /\/—To 1 (sinhgx_sinhgx
- Jov=Jo £2 —¢? £ ¢

) Ve (de) o(dC).

Now set

g(z,¢) =

. v . .
sinh (z /0 . 1 - <Slnl§§$ B Slnlg@:) 5 (de)
sinh (x 1  sinhéx .
- ST e,
om0

We assume o has its support only on a finite set {(;},;<,, of [V —X0, V—X0]
and -

= (1+m(—¢?)

G#Gifije{l,2,...,n},i#j. (31)

We try to compute the determinant keeping its generalization to ¢ with infinite
support in mind. (30) shows that o has a finite support {n;}, -, in (0,v/—=Xo].
(30) implies also o

¢ or —( €suppec = m(—¢?)+1=0. (32)
Therefore, for { or —( Esuppo

1 inh&z
g(fE,C):/[O )Wya(df)a

and we have

B(z,y) = B(z,y) + (173) (z,y)

V=20
- / 9z, €)eSVa (dC)

—V=Xo
B d 5 eo(dC).
»/[0,\/_7,\0] g U( g)_/_m£2 _CQe U( C) (33)

To compute the determinant further we remark here a duality relation for
determinants. Let (X, F,u), (X, M,0) be the measure spaces and

K(x,8), L(z,£) € L*(X X %, 4 X 0).
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Define
Flz,y) = / K (,€)L(y, €)o(de)

F(¢,m) = XK(x,f)L(x,n),u(dx)

Lemma 10. F and F' define trace class operators on L*(X,u) and L%(2,0)

respectively and it holds that
det(I + F) = det(I + F).
P r o f. This is an infinite dimensional version of the identity
det(I + AB) = det(I + BA)
for any n x m matrix A and m x n matrix B. We omit the proof.

Setting

inh
Ko, = Ly, = /R = L eV (d0),

we have

B(z,y) = o )K($,§2)L(y,§2)5(d§)-

Hence the corresponding B becomes
a
B ) = [ Ko )Lwn)ds,
0

we see from Lem. 10 B R
det(I + B) = det(I + B).

Now we compute §(§2, n?).

S0 oy 1 “sinh{z .,
BE) = [ gotio) | s

1 1 [elta 1 elC-8a_q
= | 5—50(d0) 5> _
/RUQ—CQU( C)%( Y - )

I Y B o(d¢)
‘/R%(n?—@) (d<)<c+£ c—£>+/R(n2—c2)(c2—£2)'
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However
/ o (d¢) _ m(_772) - WQL(_£2) —0 if 9? £ 2
22 ((2 _ 22 n? —¢ , (36)
R (7" —¢%) (¢? = &%) —5({nH! if n?=¢2
hence setting oy, = o({(x}), 7, = 6({n;}) and
a 1
ik = — 20
b m; ) k _on, (37)
i+ G +77j—C1c’
we have

det(I + B) = det ((Z e(nit¢la bjk>>
2,
k

=exp | a) (1 + () H %3] det ((ai)) det((bij)) . (38)
7=1

J

To compute det ((b;;)) we set

+ 1 , C. = 1
Yoomit G Y =G (39)
Aij(a) = e 0
Then
bij = (C++A(G)C_)Z]
Introduce
n
A—n; ~ H()) A+
HMN=1- adHAzi -1+
) Zl;[lwrgi nd HO) =15 HA i

Then we can show that there exist real numbers {p;}, ;. {Vi};<;<, such that

n n
Hi 7 v
)= 2y md AN =) 5T

LemmT? 11. We have tTiLLe identities:

. 122} V;
(i) =1, =1 for Vj=1,2,...,n;
im1 i +Gi an + G
-1
n
. v ni + G
@ = (St ) k) e
=1 \"7 T 5i g M
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Prof. We omit the proof, since the computation is elementary. [
_ 17 _ (11— H(—n;
Lemma 12. (C*) 1 - ( Hil’j > and C~ (C™) 1_ <VJ( ( 77z))> ‘
nj + Gi n; + 1
Prof. Set
Hi Vi
Pi=——, Q;j=—— and S = (v;9;;) .
YU G Y i+ (i)
Then Lem. 11 shows
PQ - 7 k
(P =k + Gk + G
n
i Vi Vi ey
— =0 ifi#£y
B Ci_Cj]; (nk =G —Cj>
- n
Vg e
iy ————= =1 ifi=j
,;(mc +G)?
= 51]
Therefore
(ct) '=q@'s=rPs,
which implies
1 S| 7
c(Ch). = LS
( )” ;ni_CkW"‘Ck !
_ Y - < M HE )
= +
M+ 0=\ =Gk 1j + G
_ v (1= H(=m))
i +nj
|
1— H(—n;))? -
Lemma 13. v; (1 — H(—n;)) = (2&% >0 fori=1,2,...,n.
i

Prof Observe —1 — m(—\) has zeroes {Ci2}1<i<n and poles {7712}1<i<n’

hence
n ~ n 2
0 A=

(=) = —1— .
(=) ;n?—k ! gk—n?
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On the other hand, similarly as we obtained v; in Lemma 11, we have

juil
T (0= &) (0 + ¢))
=(ni—G) i+ G
( a )jl;[éi(ni —n3) (i + ;)
=v; (ni — G) H%
i T
_ 2
1 — H(—m)’
hence 9
1—H(—n;))" -
i (1= i) = =,
7
n
Setting
m; =v; (1 = H(—n;)) >0,
we see

Proposition 14. V € Qilo if and only if the associated o has a finite support.
Moreover, the Fredholm determinant is given by

/T
det(I + F) = const. x det (5ij + #6_“(’”""”)) ,
ni + nj
with

const. = exp az (nj +¢5) H <52]—7;7]]> det (C+) det ((aij)) ,

J J
and the measure m(dn) = Zmi(s{m}(dn) can be represented as
=1

(L — H(=n))*

m(dn) = 2 o (dn).

012 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4



KdV Flow on Generalized Reflectionless Potentials

Prof. Summing up the above argument, we have

det(I + F,) = exp GZ (nj + &) H (%
i i~
x det (CT + A(a)C™)
= const. det (I + A(a)C™ (C+)_1>
v; (1 - H(—m)))
i+ Nj
vi (1 - H(—m)))

n; + Ny

) det (@)

= const.det | d;; + ¢—2am

= const. det <6Z] + ¢—2am ¥

mim;
= const.det | §;; + ) —a(m-l-nj)) )
772 + n]

Remark 15. If we replace o with & constructed by reflection from o,
that is, 6(d€) = o(—d€). Then & remains unchanged and C (resp.C~) turns to
C~(resp.C™), hence

det(I + F,)(a) = det(I + F,)(—a).

Remark 16. The condition (31) can be removed if we approzrimate o
by a sequence of measures satisfying (31).

6. Construction of KdV-Flow

In this section we construct the KdV-flow on €2, by applying the theory of
M. Sato-Y. Sato. They gave a very transparent view for a class of integrable
systems including the KdV equation and later it was developed by Date-Jimbo-
Kashiwara—Miwa [1]. However, their original argument is quite algebraic. So we
imply here a more analytic version by S. Segal-G. Wilson [15] and give a complete
proof by calculating the 7-functions for classical reflectionless potentials.

Let S' be the unit circle in C, and H = L?(S'). Introduce two orthogonal
subspaces Hy of H

H, = {f € H; f(z) = anof”zn with ano |fn|2 < oo}
= {f € H; f(z) = an—rf”zn with Zn§—1 |fn|2 < oo}

Then it is easy to see that
H = H, ® H_ (orthogonal sum). (40)
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Let Pp, be the orthogonal projections to Hy, respectively. Let W be a closed
subspace of H satisfying:

(i) Pp, : W — H, is a Fredholm operator (i.e., has finite dimensional
kernel and cokernel) with index 0, that is dim Ker = dim CoKer.

(i) Py_: W — H_ is a trace class operator;

(i) feWw — 22f e W;

(iv) H_nNW = {0}(transversality).

We denote by Gr®) (H) the set of all closed subspaces W satisfying the condi-
tions (i), (ii), (iii) and (iv). The properties (i) and (iv) assure the unique existence
of a bounded operator A from H, to H_ such that

W={f+Af; feH}.

This is because (iv) implies dim Ker = 0, and hence (i) implies Py, (W) = H,.
Conversely, if such an operator A exists, then (iv) holds. Introduce

r_{ 9 g(z) is holomorphic on D, g(0) =1, g(z) # 0 for Vz € D,
N takes real values on R and g(—z) = g(z)~! for Vz € D ’

where D = {z € C;|z| < 1}. Apparently I' is a commutative group acting on
Gr(®(H) by multiplication but for the condition (iv). For g € T, we represent it

as
-1 _ a b
~=( )

corresponding to the decomposition (40). Now, for ¢ € T and W € Gr(®(H)

we define
mw(g) = det(I 4+ a 'bA). (41)

Although the following lemma was proved in [16], we give a proof for the sake of
completeness.

Lemma 17. 1y (g) # 0 if and only if g~'W is transverse to H .
Prof. Supposefor f € Hy, f+a 'bAf =0. Set
fi=g 'Af —bAf € H_.

Then
gfi=Af —a "DAf = Af + f e W,

which completes the proof. [
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Throughout this section we assume —1 < Ag < 0, which is not essential.
For o € ¥),, define m (—22) by (17). Set

W, = {A(z*) + m4(—2*)B(*); A,B€ H,}. (42)

Here it should be noted that the condition

/”0 o(d0) _ /”0 o) _
Ve ve Sl G Ve e VR G
assures ‘m+(—z2)‘ < 3 if |z| = 1, hence W, becomes a closed subspace of H.

This space was considered by R. Johnson [9] as an application of Sato theory.
We compute the operator a~'bA for this space and identify its Fredholm deter-
minant with a Fredholm determinant of an F’,, which makes it possible to show
the transversality of gW,.

Lemma 18. For f € H,, the equation

VS B,
s =6 - [ PO B (43)

v 22— (2

s uniquely solvable in Hy, and the solution is given by

Vo 22) — 2
56 = 1) + [ = ), (44)
P rof. Suppose the support o is finite. Note first
V=20 B(52) — 2 V=20 2)o
B(22) _/\/_A%g(dg) = B(2%)(1 — m(—22)) +/\/_AB(Z/%E‘§O
Vo 22) — (2 V=Xo p(e2
s+ [T a0 — pena e me - [T 2

where m was introduced in (29). Then, substituting (44) into (43), we see

V7 B(z?) — B((?)
2y — ——————0
B(z?) /\/TO 2 (dC)
vV=Xo 2
= 1) =m0+ ) - 1 -m(-2) [ Do
VIR @)U+ m(=a(d) [V aldg) [V f ()5 (dn)
+/\/_)\0 22 — (2 /m22—42/o (2 —n?
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V=20 2
— 6 - (= m(=2) [ ) S

22 — (2

VAN B V=X o(d¢)
/0 Fer) (dn)/_\/—To(C2 —n?) (22 = ¢?)
= f(%).

In this calculation we have used the fact

1+ m(—¢?) =0 if ¢ € suppo and 1 —m(—¢?) =0 if ¢ € suppo.

Now the rest of the proof is easy if we approximate a general o € £, by a sequence
of ¢’s with finite supports. [

For f € Hy, we define

P = 1T

V=Xo £(,2) _ 2
ki@ =1+ [ = s,

Lemma 19. For the space of (42) we have

V71— g(2)9(¢)

~1
(a~'b4) f(2) = / KPf((2)o(dC).

—v=Xo C —Z
Prof Let f € Hy. Then the definition of the operator A implies

f(2) + Af(2) = A(z®) +my (=2") B(2%),

with A, B € H,. However

V=X B 22— B CZ V=X B C2 o(d¢
m+(—z2)B(z2):—zB(z2)—/ ( ) ( )U(dC)—/ ( ) ( )

T R T
and first two terms are contained in H, and the last term is contained in H_
since A\g > —1. Hence we have

V=X B(,2) — 2
£ = 42 —2m) - [ BELE I ) gy

—v=Xo —Z

V=20 2
ar) == [ Z o),

516 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4



KdV Flow on Generalized Reflectionless Potentials

which implies

[ =12 _ gy, /“T B(z") — B()

2z ey vs 22 — (2 o(dC).

Then Lemma 18 shows

vV=Xo 2
Af(2) = _/ KPf(¢%

v C—n )

On the other hand, for f € H
1 /
Pr () =5 f  Ear,

T 2w

|2/ |=1 z'—z
hence
1 _9(2) g(z) "t [V KPf(C?)
o 'bAf(2) = 2—m,}[z,:1 ). /_mic—z' o (d0)
v=Xo 1 (Z/)—l
— 2 _ g !
—o() [ KPII0W) e
V=X _ -1
= [ k) R,
V=0 ¢
which concludes the lemma. [ |

Now we compute the Fredholm determinant when the support of o consists
of a finite set {(;},<;<,. First note

det(I + a 'bA) = det(I + B),
with B defined by
Bf(zQ) — / —ho Kf(c2) <1 _g(z)g(C)il - 1— g(—z)g(C)1> U(dC)
I v, (—z C+z 2z '
for f € H,. Since o has a finite support, the following calculation is possible:
VIR L(CP) — f(?)
(2 —n2

- VAN 2
= (1eaee) s - [T A

KF((?) = £(¢) + /0 5(dn)
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for 14 m(—¢?) = 0 if ¢ €suppo as we saw in (32). Hence

Bf(2*)
_ /“T ( 290" _ 9(=)9(0) )0_ VO f ()5 (d)
V= 22 (C+ 2) 2z (¢ — 2 n? —Cz
_ m V= g(—z)g(crl 9290 1\ o(dg)
‘/0 )/m< 22((+2)  22(C— ) = >n 2_¢?
Vo fg(=2)9(0) "t g(2)g(0) o(d¢)
/ )/m< 2:(C+2) | 22(C— >>n 72

vV=Xo
2\~ o(d()
+/0 f(?? )U(dn)/_\/_To(n2 —¢?)(¢2—22)

Note here
det(I + B) = det(I + @B)

if we denote the restriction of f € Hy to L?(5) by Q. Then (36) shows

(I+QB) f(&?)

vV=Xo o _ 1 . .
[ somatan [ (800 _ 001y ota)
0

e\ 26+ 26(¢-9 ) 2=

which is the same as (35) if we replace e ¢* with g. Now the computation is quite
analogous to that of Sect. 5, and we have

Lemma 20. Suppose the support of o is finite {(;}1<i<n. Then

N B
w, (g) = const. x det ((5@' + 719(—772') 19(77]')> ,
N +1j

with

const. = ]1_[1 ( 9(=ns)9 2(57?) UJU]) det (C) det ((as)) -

Now we define the KAV flow. For g € I' and z € R, introduce ¢* € I" by

9°(2) = e "g(2).

Lemma 21. For o € £y, define W, by (42). Then for any g € T, there exists
a o4 € Xy, such that
™w, (9%) = det(I + FY ;). (45)
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P r o f. First suppose the support of o is finite. Then Lemma 20 implies

mw, (g") = exp az nj + ;) H H < J J) det(C) det(a;;)
J

j=1

<.

mgmg;
i+ Nj

x det(d;; + S g (i) g (n)),

with some constants ¢;(g),c2(g). Hence, regarding m;g(n;)? as a new weight,
we can construct a classical reflectionless potential g, with the scattering data
{r*(k) =0,in;,m;g(n;)?} . Let o4 € ¥, be its spectral measure. Then from
Prop. 14 the identity (45) follows. For a general ¢ € X,,, approximate it by
a sequence of measures {o,} from X, , with finite supports. Then it is easy
to see that Ty, (¢%) and det(l + F}f’[,g) converge as n — oo to Ty, (¢”) and

det(I + ijﬁg), respectively, if we choose a subsequence of {a;’} converging to a
o4 € ¥, if necessary. Hence we have (45) for a general o. ]

This lemma combined with Lem. 9 has the following conclusion.
Theorem 22. Foro € %), and g € T, 1y, (g9) > 0, hence g~ W, is transverse
to H_.

For g € I' and ¢ € Q),, we define

d2
(K(9)a) () = —2—— log 7w, (") (46)

as an element of Q2,. Then we can prove the following

Theorem 23. K(g) is a homeomorphism on Qy,satisfying
K(g192) = K(91)K(g2) and K(1) = id
and K(g5)q(-) = q(-+x), K(gs)q satisfies the KdV equation, where g,(z) = e~ **

and gm,t(z) — e—xz+4tz3.

P rof. Since everything is valid if K(g) is restricted to the classical reflec-
tionless potentials, all we have to do is to approximate o € ¥, by a sequence of
measures {0y} from ¥, with finite supports. The multiplicativity of K comes
from the cocycle property of Ty

w(9192)

(92) wig)

We call this K as KdV-flow on Q). It is well known also that K (g)q satisfies
the higher order KdV equations if we choose suitable one-parameter groups on I'.
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7. Characterization of W,

We have introduced a space W,. It is natural to ask when W coincides with
a W,. We combine the two properties (i), (iv) of W and summarize them again.
A closed subspace W of H is in Gr(?)(H) if and only if:

(i) Py, :W — H, is one-to-one and onto.

(i) Py :W — H_ is a trace class operator.

(i) feW = 22f e W.

We set new conditions. For f € H, define f(z) = f(2).

(iv) fEW = fe W.

Let
Trz

gu(2) = €~

(v) For any z € R, g;'W satisfies (i).
Suppose the conditions (i)~(v). Then, for any z € R, there exists a unique
fw(z,-) € W such that

R (PR NN -

Since

and the property (iv) implies fiy(z,-) € W, the uniqueness shows fy (z,2) =
fw(z, z), hence a;(z) € R.

Lemma 23 (Segal-Wilson). fy satisfies
d2
da?

and {a;(z)} ;<o satisty

fw(z, 2) — 2d (z) fw (x, 2) = —foW(w,z),

2a}(x) = a_y(z) + 2d) (z)a;_1 (z) for i = 2,3,... . (48)
P rof. Differentiating both sides of (47), we have

d2
wfw(xaz)

= Z2fW(£U,Z) — 22" T2 (@ + % + .. > 4% (a’lll(x) + 0/2,(2:E) 4+ >
= 2% fw(z, 2) — 2d! (z) fw (2, 2) + e*""’ziag(gg) = 20, (@) + 20; (@)ai(w)

=1
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The linearity of the space W and (iii) imply

d2

WfW(xaz) - Zwa(.’L‘,Z) + 2@’1(ZE)fw(£E,Z) €W

Therefore from (vi) it follows that

2
%fw(x, z) — 22 fw (z, 2) + 2a)(z) fw (z,2) = 0,
2a)(z) = a_|(z) + 2d) (z)a;—1(z) for i = 2,3,....
]

Suppose V(z) is a real valued infinitely differentiable function on R. Consider

a Schrodinger operator
2

on L?(R). If the boundaries +oco are of the limit circle type, then we have to
impose suitable boundary conditions at +co. For A € C such that Im (\) # 0 let
f+(z,A) be the solution for

Lfy =M+, f+(00,0) =1
and

f+ € L>(R,) if 4 oo is a limit point ,
f+ satisfies the boundary condition at + oo if 4 oo is a limit circle.

Set
m+(>\) = fg»(oa >‘)7
which is called the Weyl function.

Lemma 25. There exist real valued smooth functions {b;(z)}, ;. such that
for each fized n >0 B

Filz, —22) = e (1 + blig”) I 1CO RO ( ! )) (49)

22 on zn+1

holds as |z| — oo in a region —g +e <argz < —e for any € > 0. Moreover, they

satisfy

b;(:)v) = b (x) + 20\ (z)bi—1(z) fori=2,3,..., (50)

2
{ b;(0) =0 fori=1,23,....
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Prof. Let ¢, be the solutions for Lf = —2z2f satisfying ¢(0) = 4'(0) = 1,
¢'(0) = 4(0) = 0. Then

f+($7 —22) = (,0(113, z) + m+(_z2)d)($7 Z)
F. Gesztesy—B. Simon [5] proved for each a > 0 there exists a unique function
A(a) on [0, a] such that
a
my(—2%) = —z — / Ala)e ***da + O (672(“75)Z>
0
s

holds as |z| — oo in a region 5 +e < argz < —e for any € > 0. The function

A is determined from m on [0, a] and smooth if so is m. On the other hand, ¢,
can be represented as

o(x, z) = cosh zx +/ Ki(z,y) cosh zydy,
0

sinh zz sinh zy

Q,b(ZE, Z) =

T
+/ KQ(xay) Y,
0

z

with smooth functions K1, Ko. With these identities we see that fy (z,—2z?) has

an asymptotic expansion (49) together with its derivatives fg_k) of any order.
Substituting this expansion to the equation Lf, = —z2f,, we have

0= e (= f(z,~2") + a(@) f1(w,—2°) + 2 f4 (2, —2%))

9 () + q() + 204 (z) — bl (z) + bi(z)q(z) N 205 (z) — bg(x; + be(z)q(x)

z z
26,41 (%) — b (2) + bn(2)q(w) 1
+ on +0 antl |7
hence ,
{ 2, () + g(x) = 0
26,11 (z) — b (2) + bn(z)g(z) =0
holds for any n > 1, which implies (50). ]

We introduce one more condition:
(vi) 1€ W.
Now we can state

Theorem 26. Suppose a subspace W of H satisfies the conditions (1) ~ (v1).
Then there exists a unique o € X1 such that W = W,.
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P rof. If asubspace W of H satisfies the conditions (i)~(vi), then we can
define fy in (50). The condition (vi) shows fu-(0,2z) = 1, and hence

a;(0) =0 for any i = 1,2,....

Then, setting q(x) = —2a/ (z), from Lems. 24 and 25 we see fy(z, 2) = fy(z, —2?)
identically. On the other hand, for this ¢ we introduce f_(z, —22) satisfying the
boundary condition at —oo, and we can show fy(z,—2) = f_(x, —22) identically.

Therefore we have

my(=2%) = fiy(0,2), m—(=2%) = —fiy(0,~2). (51)

Now we consider the analytic continuation of fy . fw(z,z) is holomorphic on
{|z| > 1} and fw(z,z) = fw(x,Z). Therefore m. are holomorphic on C\[—1,00)

and take real values on (—oo, —1). Therefore the representing measure o4 has no
mass on (—oo, —1). This combined with (51) shows that fy(z,2) is analytically
continuable to C\ ([ — 1,1] U [—i,i]) keeping the property fw(z,z) = fw(z,Z).
Then it is immediate that

my (€ +140) = fiy (0,i/€ +0) = fl,(0, —i\/E +0) = —m_ (€ +10) for a.e. &> 0.

Then Proposition 6 shows that

)= ! o(d¢)
ma (=) = /1iC—z

with a measure o on [ — 1,1]. We have to prove

1
/_1 f(_di_l <1 (52)

Suppose (52) is not valid. Then there exists Ay < —1 such that

1 g

Set
1 2 o
flz) = ‘/_lw with B(2?) = -

22—)\0'

Then f € H_ since m(—2?) € W. On the other hand, (53) implies

1 B(42) — 2
B(z2):/ wg(do'

G
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Let
1 22 _ 2
A(?) = _/I—B( - g“ ) ¢o(d).

Then
f(z) = A(z%) + my (=2*)B(2*)

holds. However the Taylor expansions for A, B around the origin converge uni-
formly on {|z| < 1}, and we know m (—22) € W. Hence the property (iii) implies
f € W, hence W N H_ # {0}, which contradicts (i). Therefore (52) holds, thus
we have ¢ € Q1. It is easy to see that W, C W since 1,m,(—2z?) € W, which
shows W, = W in view of the property (i). The uniqueness of ¢ is trivial since o
is determined from fy, which completes the proof. [

Remark 27. It is interesting to remove the condition (vi). Without (vi) one
can proceed in parallel with the above argument up to a certain point. In this case
we have to consider a meromorphic function on 1 < |z| < oo

ff.\V;’(ajvz) =

instead of fw(x,z) itself. Since fiw(0,00) = 1, there exists R > 1 such that

fw(0,2) # 0 for all z such that |z| > R. fw satisfies Lfw = —2%fw and has
an erpansion
ai(z) | as(z)

fw(z,z) = e~ <1+7+Z—2+...>

on |z| > R. Since {a;(z)}, ;.o satisfy the same equations (50), we see a;(x) =
bi(z) for alli=1,2,.... Hence

fﬂl;V(va) :f+(:17,—z2) (54)
identically, which implies
/ 0,
P — i (-2), (55)

Then we can show as above that the left-hand side of (55) is analytically continu-
able to C\ ([ — R,R] U [—iR,iR)]), which shows

m4 (& +10) = —m_(& +i0) for a.e. £ > 0.

Hence hy has an expression
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Let Ao < —R? be any number such that
R
[f o
“r—A0—¢

then 2\ < q(x) < 0, which implies the boundaries 00 are of limit point type.
It is not clear if we can avoid the possibility that there exists a zero of fu (0, z)
in 1< |z| <R.

8. Isospectral Property of KdV-Flow
We introduce a subgroup I'g of I by

'y ={g €T; logg is a polynomial of odd degree with real coefficients} .

Let

Theorem 28. For g € Qy, and g € [y, there exists a unitary operator U(g, q)
on L?(R,dz) satisfying

LE9 = U(g,q) ' LIU(g, q).

—xz —xz+4tz3

Prof. We prove this theorem only for g,(z) = e™"* and g, +(z) = e
For a general g € Ty the proof is analogous. For g,(z) = e *#, the proof is trivial,
since K(gz)q(-) = q(- + z) and we have only to set U(gy,q) = T, independently
of V. For g, (%) = e*““tzs, we employ the Lax representation. Set

u(t,z) = (K(g:0)q) (z) = (K(ge.2)q) (0),

and define an antisymmetric operator

A% =4D3 —6gD — 3Dq

d
with D = e Then it is easy to see
b

[Lq, Aq] = L1AT - AL = 699 — Graxs

where the left-hand side is a multiplication operator. Since wu(t,z) satisfies the

KdV equation, we see

d
) — (e, guio)
dt b )
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where u(t)(-) = wu(¢,-). This formula is called the Lax representation of the KdV
equation. Define a one-parameter family of unitary operators by solving an equa-
tion

dU(t
dau(t) =U@)A*D, U©) =1.
dt
Then it is obvious that L*®) = U(t)~'LIU(t), which concludes the proof. ]

Remark 29. One can expect Theorem 28 holds for any g € I, however to show
this we have to construct a pseudodifferential operator for which the commutator
with L7 reduces to a multiplication operator.

9. Floquet Exponent

Let 2 = Q,, be the space of generalized reflectionless potentials and {K(g) } ;¢
be the KAV flow. We consider the set of all probability measures Px (€2) on
which are invariant under {K(g)},cr and denote by Pgpip: (2) the set of all shift
invariant probability measures on (2. Since the set of all probability measures
P (€2) on € is compact and the flow {K(g)} e is commutative, we easily see that
Pr (€2) is a non-empty compact convex set. For pn € Pyp;re (£2), set

w(N) = wu(N) = /Q me (A g)ulda), (56)

which is called Floquet exponent for ji € Pgp;fy (€2). This was first introduced
by Johson—Moser. Then it is well known that

w() = [ m-(au(da) = =3 [ 02(0.0.0) o) 57)

and
W () = /Q 93(0,0, ¢)u(dg) (58)

hold (see S. Kotani [10]). Then the commutativity and the isospectral property
under K imply easily the following

Theorem 30. If i € Pypif (), then for all g € T' it holds K(g)pn € Pspipe ()
and we have Wi gy, = Wy-

Let Wi be the set of all functions w satisfying
(i) w,—iw, w' are Herglotz functions,
(ii) w(A) <0 on (—o0,—Ao],
(iii) Rew(& +¢0) =0 on [0, 00),
(iv) w(A)/V-X—= —1as A = —oo.
Then from the compactness of 2 we have
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Theorem 31. For any p € Pk (), w, € Wik is valid. Conversely, for any
w € Wy there exists a p € Pg () such that w = w,,.

It is natural to ask
To what extent does w determine p € P () ? (59)

If w comes from a finite bands spectrum, then the characterization of all potentials
with finite bands spectrum (see |7]) shows that w determines uniquely p.

Appendix. In this Appendix we collect several fundamental facts of
H-functions (Herglotz functions). For the proofs see P.L. Duren [2]. As we defined
in Sect. 2, a holomorphic function defined on C is called a Herglotz function if
it maps C, into C,. It is well known that an H-function m has an expression

m(\) = o+ BA + /R <§_% - %) o (de)

with «, 8 € R, 8 > 0 and a nonnegative measure o on R satisfying

/ (1+ &%)~ 1o (de) < 0.
R

The triple {a, 3,0} is called the characteristics for m. The measure o can be
recovered from m by

1 b
o([a,b)) = —lim [ Imm(¢ + ie)d¢

™ el0 J,
if 0 ({a}) = o ({b}) = 0. It is also known that for a.e. £ € R
1
lim — Imm(§ + i¢) = o’ (£)
el0 T
holds, where o’ (£) denotes the density of absolutely continuous part of o. m itself
has a finite limit

liﬁr]lm(f +ie) =m(£+10) #0 aef eR

unless m = 0. It is of some use to note that if m is an H-function, so is —m ! and
log m. Especially logm is useful when we have to factorize m in an appropriate
way. Since

Imlogm(\) = argm(\) € [0, ],

applying the above representation for m, we easily see that

logm(A) =~ + %/R <£_% — 1_E£2> argm(& +140)d¢

with v € R.
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