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The purpose of this article is to construct KdV �ow on a space of gene-

ralized re�ectionless potentials by applying Sato's Grassmannian approach.

The point is that the base space contains not only rapidly decreasing poten-

tials but also oscillating ones such as periodic ones, which makes it possible

for us to discuss the shift invariant probability measures on it.
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1. Introduction

The KdV equation is
@u

@t
= �

@3u

@x3
+ 6u

@u

@x
;

and this describes the dynamics of shallow waters. As is well known, n-soliton

solutions for the KdV equation are given by

u(t; x) = �2
@2

@x2
log det(I +A(t; x));

where

A(t; x) =

�p
mimj

�i + �j
e�(�i+�j)x+4(�3i+�

3
j )t
�
1�i;j�n

with mi; �i > 0: For each �xed t 2 R; u(t; �) is a re�ectionless potential which ap-

pears in 1-D scattering theory. V.A. Marchenko [13, 14] considered the compact

uniform closure of re�ectionless potentials, which we call the space of genera-

lized re�ectionless potentials, and made an attempt to solve the KdV equation

starting from an element of this closure. However, he had to impose the solvabil-

ity condition on an integral equation, which made it impossible to solve the KdV
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equation in its full generality. On the other hand, M. Sato and Y. Sato established

a uni�ed approach for a large class of completely integrable systems. They con-

structed solutions based on dynamics (�ows) on in�nite dimensional Grassmann

manifold, and it was rewritten from an analytic point of view by G. Segal and

G. Wilson [16]. R.A. Johnson [9] mentioned the applicability of their approach

to this space of generalized re�ectionless potentials, which admits a certain class

of oscillating functions. However, to apply this method we have to prove the

transversality, which is equivalent to the solvability of the integral equation con-

sidered by Marchenko. The �rst purpose of this paper is to construct a KdV �ow

on this space by showing the transversality. In the case when the base space is

a set of rapidly decreasing smooth functions, H.P. McKean [15] applied Sato's

theory to construct the KdV �ow on it.

For �0 < 0 let 
�0 be the compact uniform closure of all re�ectionless

potentials whose associated Schr�odinger operators have their spectrum in [�0;1).

Set

� =

�
g; g(z) is holomorphic on D; g(0) = 1, g(z) 6= 0 for 8z 2 D;

takes real values on R and g(�z) = g(z)�1 for 8z 2 D

�
;

where D is the closed unit disc. We construct a homomorphism K between the

group � and the group of all homeomorphisms on 
�0 : This K induces the shift

operation if we choose

gx(z) = e�xz 2 �

and solutions for the KdV equation if we choose

gx;t(z) = e�xz+4tz3 2 �:

Any other higher order KdV equation can be solved in this way on 
�0 : We also

discuss the isospectral property under K:

The motivation of this paper is to construct a nice solution for the KdV equa-

tion starting from a certain random initial data. This problem was raised by

V.E. Zakharov and the author was taught it by S.A. Molchanov. We would like

to construct a solution as a typical random �eld fu(t; x)gt;x2R which is shift in-

variant with respect to t and x: In this respect, there are already solutions which

are quasiperiodic in time and space, which is a special case of shift invariant ran-

dom �elds. However our aim is to give a very random solution. The construction

of the KdV �ow is a starting point in solving this problem. Since 
�0 is compact

and the KdV �ow fK(g)gg2� is commutative, the space of all probability mea-

sures on 
�0 invariant with respect to fK(g)gg2� is a non-empty compact convex

set. Therefore we have many ergodic K(g)�invariant probability measures on


�0 : It is interesting to study the spectral property for the associated Schr�odinger

operators under these probability measures. The problem of V.E. Zakharov is just
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the problem on �nding such a probability measure under which K(g)q behaves as

random as possible, especially the spectrum of the Schr�odinger operators should

have a dense point spectrum on [�0; 0], whereas the spectrum in (0;1) is always

purely absolutely continuous for any potential from 
�0 : Since a KdV-�ow invari-

ant probability measure is automatically shift invariant, hence we can de�ne the

Floquet exponent. We discuss the relationship between the KdV-�ow and the

Floquet exponent, although it is still unsatisfactory.

We try to give a self-contained explanation of this subject as far as possible,

since it may be di�cult to obtain a complete view only by citing necessary facts.

2. Spectral Theory of 1-D Schr�odinger Operators

and Dyson Formula

Let us consider a one-dimensional Schr�odinger operator

L = �
d2

dx2
+ q(x)

with potential q; which is a real valued function of L1
loc(R): In this section we

introduce the Gelfand�Levitan inverse spectral theory and the Dyson formula

which solves the inverse spectral problem by the Fredholm determinants of the

integral operators associated with the spectral measures.

Suppose q(x) satis�es

q(x) � �cx2

for every su�ciently large jxj with a constant c. Then it is known that L has

a unique selfadjoint extension on L2(R): Under this condition, for � 2 CnR there

exist unique solutions f�(x; �) of

Lf = �f; f(0) = 1 and f 2 L2(R�);

where R+ = [0;1); R� = (�1; 0]. Set

m�(�) = m�(�; q) = �f 0�(0; �):

These functions become the Herglotz ones which are holomorphic on the upper

half-plane with positive imaginary parts. We call these functions as H-functions,

see Appendix for the properties of H-functions. Let g�(x; y) be the Green function

for L� �, that is
(L� �)�1 (x; y) = g�(x; y):

It is well known that

g�(x; y) = g�(y; x) = �
f+(x; �)f�(y; �)

m+(�) +m�(�)
for x � y (1)
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is valid. The Gelfand�Levitan inverse spectral theory says that the potential

q on R+(resp.R�) can be recovered from m+(resp.m�) by solving the integral

equation(2) of Fredholm type. Let

�+(x; y) =

Z
R

�
1� cos

p
�x
� �

1� cos
p
�y
�

�2
�+(d�)� x ^ y

with a measure �+ representing m+. De�ne

F+(x; y) =
@2

@x@y
�+(x; y)

and consider

K(x; y) + F+(x; y) +

Z x

0

F+(y; t)K(x; t)dt = 0: (2)

Then F+ is continuous and the integral equation (2) is uniquely solvable in the

space of continuous functions on [0; x] for each �xed x > 0. Then the potential q

is given by

q(x) = 2
d

dx
K(x; x) for x > 0: (3)

For details see V.A. Marchenko [12].

For later purpose we give another representation of q by a determinant.

This kind of representation was remarked �rst by F. Dyson [3] in the scattering

case (in which the potential q is decaying su�ciently fast at �1; see Th. 4 below)

and by K. Iwasaki [8] in the case of boundary value problems on �nite intervals.

For the sake of completeness we give a proof of this formula here. Let F x
+ be the

integral operator on C([0; x]) with kernel F+.

Theorem 1. (Dyson formula)

q(x) = �2
d2

dx2
log det(I + F x

+): (4)

P r o f. Set

Fx(t; s) = xF+(xt; xs)

and consider the integral operator Fx with kernel Fx(t; s) on L
2([0; 1]): Then it is

easy to see that det(I + F x
+) = det(I + Fx) holds. Therefore

d

dx
log det(I + F x

+) =
d

dx
log det(I + Fx)

= tr

�
(I + Fx)

�1 @Fx

@x

�
=

Z 1

0

@Fx

@x
(t; t)dt+

ZZ
[0;1]2

�x(t; s)
@Fx

@x
(s; t)dtds;

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 493



S. Kotani

where �x = (I + Fx)
�1 � I and �x(t; s) is the kernel for �x: Observing

x
@Fx
@x

(t; s) = Fx(t; s) + t
@Fx
@t

(t; s) + s
@Fx
@s

(t; s);

we have

x
d

dx
log det(I + Fx) = tr (Fx + �xFx)

+

Z 1

0

t

�
@Fx

@t
(t; t) +

Z 1

0

@Fx

@t
(t; s)�x(s; t)ds

�
dt

+

Z 1

0

t

�
@Fx
@s

(t; t) +

Z 1

0

�x(t; s)
@Fx
@s

(s; t)ds

�
dt

= �
Z 1

0

�x(t; t)dt�
Z 1

0

t
@�x

@t
(t; t)dt�

Z 1

0

t
@�x

@s
(t; t)dt

= �
Z 1

0

�x(t; t)dt�
Z 1

0

t
d

dt
(�x(t; t)) dt

= ��x(1; 1);

where we have used the identity Fx+�x+Fx�x = Fx+�x+�xFx. On the other

hand, from (2) we see

xK(x; xt) = �xF+(x; xt)� x

Z 1

0

�x(t; s)F+(x; xs)ds

= �Fx(t; 1) �
Z 1

0

�x(t; s)Fx(s; 1)ds

= �x(t; 1);

which implies
d

dx
log det(I + F x

+) = �K(x; x):

Consequently, the proposition can be proved from (3).

The formula (4) may be called Dyson formula.

3. Inverse Scattering Problem and Re�ectionless Potentials

If the potential satis�es

jq(x)j (1 + jxj) 2 L1(R);

one can de�ne two linearly independent solutions e�(x; k) for k 2 C+(= fk 2 C;

Im k � 0g) of Le = k2e satisfying the following asymptotic behaviour�
e+(x; k) ' eikx as x! +1;

e�(x;�k) ' e�ikx as x! �1 .

494 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4



KdV Flow on Generalized Re�ectionless Potentials

Since the pairs fe+(x; k); e+(x;�k)g ; fe�(x; k); e�(x;�k)g form a fundamental

system of solutions of Le = k2e for nonzero real k, we can introduce a(k); b(k) as�
e+(x; k) = a(k)e�(x; k) + b(k)e�(x;�k);
e�(x;�k) = a(k)e+(x;�k)� b(�k)e+(x; k):

The real valuedness of the potential V implies8<:
a(k) = a(�k);
b(k) = b(�k);
ja(k)j2 = 1 + jb(k)j2 ;

(5)

for nonzero real k: Set 8>>>>><>>>>>:
r+(k) = �

b(�k)
a(k)

;

r�(k) =
b(k)

a(k)
;

t(k) =
1

a(k)
:

r+(k)(resp. r�(k)) is called the right re�ection coe�cient(resp. the left

re�ection coe�cient) and t(k) is called the transmission coe�cient (see

V.A. Marchenko [12]). From (5) we see that

0 < jt(k)j � 1 and
��r+(k)�� = ��r�(k)�� � 1

for every k 2 Rn f0g : It is known that the single r+(k)(equivalently r�(k)) de-

termines the other fr�(k); t(k)g. It is also known that a(k) is holomorphic on

C+ and has only �nitely many simple poles fi�jgnj=1
on the pure imaginary axis.

At k = i�j , e
+(x; i�j) and e

�(x;�i�j) are linearly dependent and belong to L2(R):

Therefore
n
��2j

on
j=1

are eigenvalues of L: Set

�
m�

j

��2
=

Z
R

��e�(x; i�j)��2 dx:
Then it is not di�cult to see that�

m�
j

��2
= �

�
m+

j

�2
a0(i�j)

2

holds. The triple
n
r+(k); i�j ;m

+
j ; 1 � j � n

o
is called the right scattering

data. The inverse scattering problem is to obtain the potential V from the

right (or left) scattering data, and the basic part of the problem was solved by

V.A. Marchenko. His procedure is as follows. Since r+(k) = O(jkj�1) as jkj ! 1;

R+(x) =
1

�

Z
R

r+(k)e2ikxdk
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is well-de�ned. It is known that R+(x) is locally absolutely continuous andZ 1

0

��R+(x)
�� dx+

Z 1

0

(1 + jxj)
��R+0(x)

�� dx <1: (6)

De�ne

F+(x) = R+(x) + 2

nX
j=1

e�2�jxm+
j :

Then (5) makes it possible to consider an integral equation on L2([0;1)) for each

�xed x 2 R

K(t) + F+(x+ t) +

Z 1

0

F+(x+ t+ s)K(s)ds = 0:

It is also known that this equation is uniquely solvable and we denote its solution

by K+(x; t): Then the following theorem is valid.

Theorem 2. It holds that

q(x) = �
@

@x
K+(x; 0):

F. Dyson [3] discovered a compact expression of V: Let

F+
x f(t) =

Z 1

0

F+(x+ t+ s)f(s)ds:

The property (6) implies the operator F+
x de�nes a trace class operator

on L2([0;1)) for each �xed x 2 R:

Theorem 3. (Dyson formula) It holds that

q(x) = �2
d2

dx2
log det(I + F+

x ): (7)

A similar expression is possible by using the left scattering data fr�(k); i�j ;
m�

j ; 1 � j � ng. A potential q is called re�ectionless if

r+(k) � 0 (and hence r�(k) � 0):

Now it is easy to see from Th. 3 that q is re�ectionless if and only if

V (x) = �2
d2

dx2
log det(I +A+(x)) (8)
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with

A+(x) =

0@
q
m+

i m
+
j

�i + �j
e�(�i+�j)x

1A
1�i;j�n

:

In this case the potential q is decaying exponentially fast and analytic on R:

This re�ectionless property can be interpreted by m�(�) as follows. Since the

de�nition of m� implies

m+(�) =
e0+(0;

p
�)

e+(0;
p
�)
; m�(�) = �

e0�(0;�
p
�)

e�(0;�
p
�)

for � 2 C+;

and for � > 0; e�(0;�
p
� + i0) exist �nitely , we see

m+(� + i0) +m�(� + i0) =
2i
p
�b(
p
�)

e+(0;
p
� + i0)e�(0;�

p
� + i0)

:

Hence we see that q is re�ectionless if and only if

m+(� + i0) = �m�(� + i0) for all � > 0 (9)

holds.

4. Generalized Re�ectionless Potentials

In this section we give the closure of the class of all re�ectionless potentials.

To this end we characterize H-functions m� satisfying the property (9). We pre-

pare a lemma.

Lemma 4. An H-function m satis�es

Rem(� + i0) = 0 a:e: on (0;1) (10)

if and only if there exists a measure � on (�1; 0] satisfyingZ 0

�1

�(d�)

1 + j�j
<1;

and 
 � 0 such that

m(�) = �i
p
�
 � i

p
�

Z 0

�1

�(d�)

� � �
: (11)

Moreover, setting

�(�) = 
 +

Z 0

�1

�(d�)

� � �
;

Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4 497



S. Kotani

for some real � we have

m(�) = �+

Z 0

�1

�
1

� � �
�

�

1 + �2

�p
���(d�)

�
1

�

Z 1

0

�
1

� � �
�

�

1 + �2

�p
��(�)d�: (12)

P r o f. Suppose the characteristics ofm are f�; �; �g : Set �(�) = arg (m(� + i0)) :

The identity (10) implies �(�) =
�

2
a.e. on (0;1): Therefore Appendix implies

m(�) = exp

�
c+

1

�

Z
R

�
1

� � �
�

�

1 + �2

�
�(�)d�

�
=

1

�i
p
�
exp

 
c+

1

�

Z
(�1;0]

�
1

� � �
�

�

1 + �2

�
�(�)d�

!
:

Hence �i
p
�m(�) is again an H-function which takes real values on (0;1) and is

analytic there. Therefore

�i
p
�m(�) = �1 + �1�+

Z 0

�1

�
1

� � �
�

�

1 + �2

�p
���(d�);

which implies Z
(�1;�1]

j�j�
3

2 �(d�) <1: (13)

On the other hand, an H-function �m�1 also satis�es (10), hence m(�)=
�
�i
p
�
�

is an H-function such that

m(�)

�i
p
�
= �2 + �2�+

Z 0�

�1

�
1

� � �
�

�

1 + �2

�
�(d�)
p
��

+
c

��

with some c � 0; which impliesZ
[�1;0)

j�j�
1

2 �(d�) <1:

Moreover, we see �2 = 0: Now, from (13) it follows

m(�)

�i
p
�
= 
 +

Z 0+

�1

�(d�)

� � �
;

with 8>><>>:

 = �2 +

Z 0�

�1

�
��

1 + �2

�
�(d�)
p
��

�(d�) = I(�1;0)(�)
�(d�)
p
��

+ cÆf0g(d�)

:
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Conversely assume m is given by (11). Then all we have to show is that m is

an H-function. To see this, we note m(�) = �i
p
��(�), and � is an H-function

taking real values on (0;1); from which the conclusion follows.

Proposition 5. Herglotz functions m� satisfy the property (9) if and only if

there exist measures �� on (�1; 0] satisfyingZ 0

�1

�+(d�) + ��(d�)

1 + j�j
<1; (14)

and � 2 R; 
 � 0 such that

m�(�) = ���
1

2

Z 0

�1

�
1

� � �
�

�

1 + �2

�p
�� (�+(d�) � ��(d�)) (15)

�
i
p
�


2
�
i
p
�

2

Z 0+

�1

�+(d�) + ��(d�)

� � �
:

P r o f. Let the characteristics of m� be f��; ��; ��g : First note m+(�) +

m�(�) is an H-function satisfying

Re (m+(� + i0) +m�(� + i0)) = 0 a:e: on (0;1);

since we have the condition (9). Hence we immediately see8><>:
�+(d�) = ��(d�) =

��(�)
2�

p
�d� on (0,1)

with �(�) = 
 +

Z
(�1;0)

�+(d�) + ��(d�)

(� � �)
p
��

+
c

��
:

Introduce

��(d�) = I(�1;0)(�)
��(d�)p
��

+
1

2
cÆf0g(d�):

Then m� can be represented as

m�(�) = �� + ���+

Z 0

�1

�
1

� � �
�

�

1 + �2

�p
����(d�)

+

Z 1

0

�
1

� � �
�

�

1 + �2

�
��(�)
2�

p
�d�:

On the other hand, we know from Lem. 4 that

m+(�) +m�(�) = �i
p
�
 � i

p
�

Z 0

�1

�+(d�) + ��(d�)

� � �
; (16)

hence �� = 0; which concludes (15).
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Now, for �0 < 0 we introduce 
�0 a class of potentials q as all compact uni-

form limit on R of some re�ectionless potentials whose associated Schr�odinger

operators have their spectrum in [�0;1): An element of 
�0 is called a general-

ized re�ectionless potential. A potential of the form (8) is called the classical

re�ectionless potential and the set of all these potentials is denoted by 
cl
�0
.

We try to parametrize the set by measures on [�
p
��0;

p
��0] de�ned by

��0 =

8<:
�; a measure on [�

p
��0;

p
��0] satisfyingZ

[�
p
��0;

p
��0]

�(d�)

��0 � �2
� 1

9=; :

V.A. Marchenko [14] showed the following result, which we prove again here.

Theorem 6. Then two spaces 
�0 and ��0 are homeomorphic and m� are

given by

m�(�z2) = �z �
Z
[�
p
��0;

p
��0]

�(d�)

�� � z
; (17)

or the characteristic measures �� of m� are

��(d�) =

( p
���(d�) on (�1; 0] with � = �

p
��

�
1

2�

p
��(�)d� on (0,1)

;

where

�(�) = �2 + 2

Z
[�
p
��0;

p
��0]

�(d�)

��2 � �
:

P r o f. Choose a q 2 
cl
�0

whose associated Schr�odinger operator has its

spectrum in [�0;1): Since q is rapidly decreasing, �� have �nitely many points

in their supports in [�0; 0): It is easy to see that

m�(�) = i
p
�+O

�
1
p
�

�
; as �!1; (18)

hence 
 = �2: We introduce a measure � on [�
p
��0;

p
��0] byZ p

��0

�
p
��0

f(�)� (d�) =
1

2

Z 0

�0

f(
p
��)�+ (d�) +

1

2

Z 0

�0

f(�
p
��)�� (d�) :

Since they satisfy the property (9), we can apply Prop. 5 and the formula (17)

follows. On the other hand, the condition that the spectrum of the operator is

contained in [�0;1) implies

g�(0; 0) = � (m+(�) +m�(�))
�1 > 0 for � < �0:

500 Journal of Mathematical Physics, Analysis, Geometry, 2008, vol. 4, No. 4



KdV Flow on Generalized Re�ectionless Potentials

Hence (16) shows Z
[�0;0]

�+(d�) + ��(d�)

2 (� � �)
< 1; for � < �0;

which implies the condition in the de�nition of ��0 : Now the expression (17) is

easily deduced from (15). Then it is routine that for a compact uniform limit of

some re�ectionless potentials the associated m� also have the representation (17)

by choosing a suitable � from ��0 : In the next section we will prove that any

element � from ��0 with at most �nitely many points as its support gives a clas-

sical re�ectionless potential. This together with the theorem below completes the

proof.

For q; de�ne a shift by

Txq(�) = q(�+ x) for x 2 R:

Introducing another pair of linearly independent solutions f'�;  �g for

Lf = �f satisfying

�
f(0) = 1; f 0(0) = 0 =) '�(x)

f(0) = 0; f 0(0) = 1 =)  �(x):
(19)

Then the uniqueness of f+ implies

f+(y; �;Txq) =
f+(y + x; �; q)

f+(x; �; q)
;

hence

m+ (�;Txq) = f 0+(0; �;Txq)

=
f 0+(x; �; q)

f+(x; �; q)

=
'0�(x; q) +m+(�; q) 

0
�(x)

'�(x; q) +m+(�; q) �(x)
: (20)

m�(�; q) also has a similar expression, therefore it is easy to check that an identity

m+ (� + i0;Txq) +m�(� + i0;Txq) = 0 a.e. on [0;1)

holds if so is the case x = 0; which implies 
�0 is a shift-invariant space.

Moreover, an asymptotic expansion of the Green function shows that8>>><>>>:
g�(x; x; q) =

1

�2i
p
�
�

q(x)

4i�
p
�
+ o

�
j�j�

3

2

�
,

@2g�(x; y; q)

@x@y

�����x=y = i
p
�

2
�

q(x)

4i
p
�
+ o

�
j�j�

1

2

�
as �!1

: (21)
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On the other hand, we have another expression for the Green function by

using f'�;  �g : Let

M(�) =

0BB@ �
1

m+(�) +m�(�)
�

m+(�)

m+(�) +m�(�)
+

1

2

�
m+(�)

m+(�) +m�(�)
+

1

2

m+(�)m�(�)

m+(�) +m�(�)

1CCA ;

which is a matrix valued Herglotz function. Set ��(x) = ('�(x);  �(x))
T .

Then (1) shows

g�(x; y) = (M(�)��(x); ��(y)) : (22)

Here the inner product on C2 is de�ned without taking the complex conjugate.

For a potential q 2 
�0 ; it is easy to see that for z 2 C
2 an H-function (M(�)z; z)

satis�es the identity (9) a.e. on [0;1): Therefore, applying Lem. 4, we have

M(�) = �
i
p
�

2

�
0 0

0 �1

�
�
i
p
�

2

Z 0

�0

1

� � �
�(d�);

where �(d�) is a real matrix valued non-negative de�nite measure on

[�0; 0]. Here we have used the asymptotics (21). Now it follows from (22) that

g�(x; y)

�
i
p
�

2

= � �(x) �(y) +
Z 0

�0

1

� � �
(�(d�)��(x); ��(y))

= � �(x) �(y) +
Z 0

�0

1

� � �
(�(d�) (��(x)� ��(x)) ; ��(y)� ��(y))

+

Z 0

�0

1

� � �
(�(d�)��(x); ��(y)) :

Since �rst two terms are holomorphic on C as a function of �; the asymptotics of

the Green function shows that the above right-hand side behaves like O(��1) as

�!1; which implies the sum of �rst two terms becomes zero. Hence we have

g�(x; y) = �
i
p
�

2

Z 0

�0

1

� � �
(�(d�)��(x); ��(y)) : (23)

This combined with (21) shows8>>>>>>>><>>>>>>>>:

Z 0

�0

(�(d�)��(x); ��(x)) = 1Z 0

�0

� (�(d�)��(x); ��(x)) =
V (x)

2Z 0

�0

�
�(d�)�0�(x); �

0
�(x)

�
= �

V (x)

2

: (24)
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This, in particular, implies

2�0 � V (x) � 0

for any q 2 
�0 : If we observe the identity

��00� (x) + q(x)��(x) = ���(x);

the repeating use of (24) shows that q is in�nitely di�erentiable and their deriva-

tives have bounds depending only on �0; which was proved by D.S. Lundina [11]

through a di�erent argument. We state the above argument as a theorem together

with the re�nements by V.A. Marchenko [14].

Theorem 7. The followings hold:

(i) The shift acts on 
�0 :

(ii) Any element of 
�0 is in�nitely di�erentiable and all its derivatives have

bounds ���q(n)(x)��� � 2
�p

��0
�n+2

(n+ 1)!

for n = 0; 1; 2; : : : : In particular, 
�0 becomes compact in the compact uniform

metric.

(iii) Any element of 
�0 is holomorphic on the strip
n
jIm zj <

p
��0

�1
o

and satis�es

jq(z)j � �2�0
�
1�

p
��0 jIm zj

��2
:

Among potentials in 
�0 ; the potentials having �nite band structure are of

particular interest. We say a potential has a �nite band structure if there exists

a �nite number of nonoverlapping intervals [�i; �i], i = 1; 2; : : : ; n, in [�0; 0] on

which

m+(� + i0) = �m�(� + i0) for all � 2 [�i; �i] (i = 1; 2; : : : ; n)

holds. To compute �� in this case, �rst we consider

g(�) = � (m+(�) +m�(�))
�1 (= g�(0; 0)):

Taking log; we see

g(�) = exp

�

 +

1

�

Z
R

�
1

� � �
�

�

1 + �2

�
arg g(� + i0)d�

�
=

1

�2i
p
�
exp

 
1

�

nX
i=1

Z �i

�i

�
2

� � �
d� +

1

�

nX
i=1

Z �i+1

�i

arg g(� + i0)

� � �
d�

!
;
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where we set �n+1 = 0: The constant factor is determined from the behaviour

(18) of g(�): Let �i be a unique zero of g(�) in [�i; �i+1] for i = 1; 2; : : : ; n: ThenZ �i+1

�i

arg g(� + i0)

� � �
d� = �

Z �i

�i

1

� � �
d� = � log

�� �i
�� �i

;

hence

g(�) =
1

�2i
p
�
exp

 
1

2

nX
i=1

log
�� �i
�� �i

+

nX
i=1

log
�� �i
�� �i

!

=
1

�2i
p
�

vuut nY
i=1

(�� �i)
2

(�� �i) (�� �i)
:

��i is a pole of m+(�) + m�(�); hence �+ (f�ig) + �� (f�ig) > 0: However if

�� (f�ig) > 0; then the Schr�odinger operator L has two non-trivial solutions f�
satisfying

Lf� = �if�; f�(0) = 0 and f� 2 L2(R�);

which means f� are linearly dependent, hence �i is an eigenvalue of L on L2(R):

This contradicts the fact that L has no spectrum outside the set

S =
[

1�i�n
[�i; �i] [ [0;1):

Therefore �+ (f�ig)�� (f�ig) = 0: Let

"+i =

�
1 if �+ (f�ig) > 0

0 otherwise
; "�i = 1� "+i :

Noting �+ = �� on S; we have

��(d�) = �(�)IS(�)d� +

nX
i=1

"�i �iÆ(f�ig)(d�); (25)

with

�(�) =

8>>>>><>>>>>:

1

�

p
��

p
j(� � �i) (� � �i)j

j� � �ij

sY
j:j 6=i

(� � �j) (� � �j)
(� � �j)

2
if � 2 [�i; �i]

1

�

p
�

vuut nY
i=1

(� � �i) (� � �i)

(� � �i)
2

if � � 0;

and

�i = 2
p
��i (�i � �i) (�i � �i)

vuutY
j:j 6=i

(�i � �j) (�i � �j)

(�i � �j)
2

:
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A measure � on [�
p
��0;

p
��0] is de�ned by

�(d�) =

8><>:
1

p
��

�+(d�); if � =
p
�� > 0

1
p
��

��(d�); if � = �
p
�� < 0

:

In this case we can determine q by using the Theta function on the compact

Riemann surface for a hyperelliptic curve

w2 = �

nY
i=1

(�� �i) (�� �i) : (26)

We choose a homology basis f�i; �jg1�i;j�n on the surface and a basis of diffe-

rential forms of the �rst kind f!ig1�i�n satisfying

1

2�i

I
�i

!j = Æij :

Set

Bij =

I
�i

!j:

This matrix is called a period matrix for the surface, and it is known that B is

symmetric and its real part is negative de�nite. If all the points f��i;��jg lie on
the real line, the matrix B becomes real. Hence in this case B is a real symmetric

negative de�nite matrix. De�ne the Theta function

� (z1; z2; : : : ; zn) =
X
m2Zn

exp

�
1

2
(Bm;m) + (z;m)

�
:

Then it is known (see A.R. Its�V.B. Matveev [7]) that

Proposition 8. There exist c 2 R; a;b 2 Rn such that

q(x) = c� 2
d2

dx2
log � (xa+ b) : (27)

5. Characterization of Classical Re�ectionless Potentials

In this section we characterize classical re�ectionless potentials in terms of �

and give a concrete description of the measure

m(d�) =

nX
i=1

m+
i Æf�ig(d�)
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associated with the scattering data.

For � from ��0 , �rst we compute F+ of Sect. 2. Set

�+(x; y) = �
1

2�

Z 1

0

(1� cos
p
�x)(1� cos

p
�y)

�2

p
�� (�) d�

+

Z
[�0;0]

(1� cos
p
�x)(1� cos

p
�y)

�2
�+ (d�)� x ^ y:

De�ne

F+(x; y) =
@2�+(x; y)

@x@y
:

Here we remark the positive-de�niteness of F+; which will be useful when applying

Sato theory.

Lemma 9. F+ is positive de�nite.

P r o f. A routine calculation shows

F+(x; y) =
�1
2�

Z 1

0

sin
p
�x sin

p
�y

p
�

(� (�) + 2) d�

+

Z 0

�0

sinh
p
��x sinh

p
��y

��
�+ (d�) ;

which implies the positive-de�niteness of F+:

Further calculation shows

F+(x; y) =
1

4

Z
[�0;0]

e
p
��(x+y) � e

p
��jx�yj

��
�+ (d�)

+
1

4

Z
[�0;0]

e�
p
��jx�yj � e�

p
��(x+y)

��
�� (d�) :

Replacing f�+; ��g with �; we have

F+(x; y) =

Z
[�
p
��0;

p
��0]

e�jx+yj � e�jx�yj

2�
�(d�): (28)

Now we compute the Fredholm determinant of the integral operator F+ in

L2([0; a]; dx) with kernel F+(x; y): For later purpose we decompose F+ into two

parts:

F+ = �V +B;
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with

V (x; y) =

8<:
Z p

��0

�
p
��0

sinh �(x� y)

�
�(d�) for x � y

0 for x < y

;

B(x; y) =

Z �
p
�0

�
p
��0

sinh �x

�
e�y�(d�):

To compute the inverse (I � V )�1 we set

m(�) =

Z 1

0

e
p
��xdx

Z p
��0

�
p
��0

sinh �x

�
�(d�) =

Z p
��0

�
p
��0

�(d�)

��2 � �
: (29)

We note that m is a function of Herglotz type. Further, in this case m takes

negative values on (0;1). Therefore

em(�) �
m(�)

1�m(�)
= �1 +

1

1�m(�)

is an H-function as well and takes negative values on (0;1): Here we use the

condition Z
[�
p
��0;

p
��0]

�(d�)

��0 � �2
� 1;

which implies em(�) has no singularity on (�1; �0); hence there exists a unique

measure e� on R such that

em(�) =

Z
[0;
p
��0]

e�(d�)
��2 � �

: (30)

De�ning

eV (x; y) =

8<:
Z
[0;
p
��0]

sinh �(x� y)

�
e�(d�) for x � y

0 for x < y

;

we see

(I � V )�1 = I + eV :
Now we employ the method used by Ikeda�Kusuoka�Manabe [6]

I + F+ = I � V +B

= (I � V )(I + (I � V )�1B)

= (I � V )(I + (I + eV )B);
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which leads us to�eV B� (x; y) = Z x

0

eV (x; z)B(z; y)dz

=

Z p
��0

�
p
��0

Z p
��0

0

1

�2 � �2

�
sinh �x

�
�

sinh �x

�

�
e�ye� (d�) �(d�):

Now set

g(x; �) �
sinh �x

�
+

Z p
��0

0

1

�2 � �2

�
sinh �x

�
�

sinh �x

�

�e�(d�)
=
�
1 + em(��2)

� sinh �x
�

+

Z
[0;1)

1

�2 � �2
sinh �x

�
e�(d�):

We assume � has its support only on a �nite set f�ig1�i�n of [�
p
��0;

p
��0]

and

�2i 6= �2j if i; j 2 f1; 2; : : : ; ng , i 6= j: (31)

We try to compute the determinant keeping its generalization to � with in�nite

support in mind. (30) shows that e� has a �nite support f�ig1�i�n in (0;
p
��0]:

(30) implies also

� or � � 2 supp� =) em(��2) + 1 = 0: (32)

Therefore, for � or �� 2supp�

g(x; �) =

Z
[0;1)

1

�2 � �2
sinh �x

�
e�(d�);

and we have

eB(x; y) � B(x; y) +
�eV B� (x; y)

=

Z p
��0

�
p
��0

g(x; �)e�y� (d�)

=

Z
[0;
p
��0]

sinh �x

�
e�(d�)Z p

��0

�
p
��0

1

�2 � �2
e�y�(d�): (33)

To compute the determinant further we remark here a duality relation for

determinants. Let (X;F ; �); (�;M; �) be the measure spaces and

K(x; �); L(x; �) 2 L2(X � �; �� �):
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De�ne 8><>:
F (x; y) =

Z
�

K(x; �)L(y; �)�(d�)

bF (�; �) =

Z
X

K(x; �)L(x; �)�(dx)
:

Lemma 10. F and F̂ de�ne trace class operators on L2(X;�) and L2(�; �)

respectively and it holds that

det(I + F ) = det(I + bF ):
P r o f. This is an in�nite dimensional version of the identity

det(I +AB) = det(I +BA)

for any n�m matrix A and m� n matrix B: We omit the proof.

Setting

K(x; �2) =
sinh �x

�
; L(y; �2) =

Z
R

1

�2 � �2
e�y�(d�);

we have eB(x; y) =

Z
[0;1)

K(x; �2)L(y; �2)e�(d�):
Hence the corresponding bB becomes

bB(�2; �2) =

Z a

0

K(x; �2)L(x; �2)dx;

we see from Lem. 10

det(I + eB) = det(I + bB): (34)

Now we compute bB(�2; �2):

bB(�2; �2) =

Z
R

1

�2 � �2
�(d�)

Z a

0

sinh �x

�
e�xdx

=

Z
R

1

�2 � �2
�(d�)

1

2�

 
e(�+�)a � 1

� + �
�
e(���)a � 1

� � �

!

=

Z
R

e�a

2� (�2 � �2)
�(d�)

�
e�a

� + �
�
e��a

� � �

�
+

Z
R

�(d�)

(�2 � �2) (�2 � �2)
:

(35)
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HoweverZ
R

�(d�)

(�2 � �2) (�2 � �2)
=

8<:
m(��2)�m(��2)

�2 � �2
= 0 if �2 6= �2

�~�(f�g)�1 if �2 = �2
; (36)

hence setting �k = �(f�kg); ~�j = ~�(f�jg) and8>><>>:
aik =

1

�2i � �2k
;

bjk =
1

�j + �k
+

e�2�ja

�j � �k
;

(37)

we have

det(I + bB) = det

  X
k

aike
(�j+�j)a

e�j
2�j

bjk

!!

= exp

0@a nX
j=1

(�j + �j)

1A0@Y
j

e�j�j
2�j

1Adet ((aij)) det((bij)) : (38)

To compute det ((bij)) we set8<: C+
ij =

1

�i + �j
; C�

ij =
1

�i � �j
�ij(a) = e�2�iaÆij

: (39)

Then

bij =
�
C+ +�(a)C��

ij
:

Introduce

H(�) = 1�
nY
i=1

�� �i

�+ �i
and eH(�) =

H(�)

1�H(�)
= �1 +

nY
i=1

�+ �i

�� �i
:

Then we can show that there exist real numbers f�ig1�i�n ; f�ig1�i�n such that

H(�) =

nX
i=1

�i
�+ �i

and eH(�) =

nX
i=1

�i
�� �i

:

Lemma 11. We have the identities:

(i)

nX
i=1

�i
�j + �i

= 1;

nX
i=1

�i
�i + �j

= 1 for 8j = 1; 2; : : : ; n;

(ii) �i =

0@ nX
j=1

�j

(�j + �i)
2

1A�1

; �i = (�i + �i)

nY
j:j 6=i

�i + �j

�i � �j
:
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P r o f. We omit the proof, since the computation is elementary.

Lemma 12. (C+)
�1

=

�
�i�j

�j + �i

�
and C� (C+)

�1
=

�
�j (1�H(��i))

�i + �j

�
:

P r o f. Set

Pij =
�i

�j + �i
; Qij =

�i

�i + �j
and S = (�iÆij) :

Then Lem. 11 shows

(PQ)ij =

nX
k=1

�i

�k + �i

�k
�k + �j

=

8>>>><>>>>:
�i

�i � �j

nX
k=1

�
�k

�k � �i
�

�k
�k � �j

�
= 0 if i 6= j

�i

nX
k=1

�k

(�k + �i)
2
= 1 if i = j

= Æij :

Therefore �
C+
��1

= Q�1S = PS;

which implies

C� �C+
��1
ij

=

nX
k=1

1

�i � �k

�k
�j + �k

�j

=
�j

�i + �j

nX
k=1

�
�k

�i � �k
+

�k
�j + �k

�
=
�j (1�H(��i))

�i + �j
:

Lemma 13. �i (1�H(��i)) =
(1�H(��i))2

2�i
e�i > 0 for i = 1; 2; : : : ; n:

P r o f. Observe �1 � em(��) has zeroes
�
�2i
	
1�i�n and poles

�
�2i
	
1�i�n ;

hence

�em(��) =
nX
i=1

e�i
�2i � �

= 1�
nY
i=1

�� �2i
�� �2i

:
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On the other hand, similarly as we obtained �i in Lemma 11, we have

e�i = ��2i � �2i
� nY
j:j 6=i

�2j � �2i

�2j � �2i

= (�i � �i) (�i + �i)

nY
j:j 6=i

(�i � �j) (�i + �j)

(�i � �j) (�i + �j)

= �i (�i � �i)

nY
j:j 6=i

�i � �j
�j + �i

=
2�i�i

1�H(��i)
;

hence

�i (1�H(��i)) =
(1�H(��i))2

2�i
e�i > 0:

Setting

mi = �i (1�H(��i)) > 0;

we see

Proposition 14. V 2 
cl
�0

if and only if the associated � has a �nite support.

Moreover, the Fredholm determinant is given by

det(I + F+) = const:� det

�
Æij +

p
mimj

�i + �j
e�a(�i+�j)

�
;

with

const: = exp

0@aX
j

(�j + �j)

1A0@Y
j

�e�j�j
2�j

�1Adet
�
C+
�
det ((aij)) ;

and the measure m(d�) =

nX
i=1

miÆf�ig(d�) can be represented as

m(d�) =
(1�H(��))2

2�
e�(d�):
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P r o f. Summing up the above argument, we have

det(I + F+) = exp

0@aX
j

(�j + �j)

1AY
j

�e�j�j
2�j

�
det ((aij))

� det
�
C+ +�(a)C��

= const:det
�
I +�(a)C� �C+

��1�
= const:det

�
Æij + e�2a�i

�j (1�H(��i))
�i + �j

�
= const:det

�
Æij + e�2a�i

�i (1�H(��i))
�i + �j

�
= const:det

�
Æij +

p
mimj

�i + �j
e�a(�i+�j)

�
:

Remark 15. If we replace � with b� constructed by re�ection from �,

that is, b�(d�) = �(�d�): Then e� remains unchanged and C+(resp.C�) turns to

C�(resp.C+); hence

det(I + bF+)(a) = det(I + F+)(�a):

Remark 16. The condition (31) can be removed if we approximate �

by a sequence of measures satisfying (31).

6. Construction of KdV-Flow

In this section we construct the KdV-�ow on 
�0 by applying the theory of

M. Sato�Y. Sato. They gave a very transparent view for a class of integrable

systems including the KdV equation and later it was developed by Date�Jimbo�

Kashiwara�Miwa [1]. However, their original argument is quite algebraic. So we

imply here a more analytic version by S. Segal�G. Wilson [15] and give a complete

proof by calculating the � -functions for classical re�ectionless potentials.

Let S1 be the unit circle in C; and H = L2(S1): Introduce two orthogonal

subspaces H� of H8<: H+ =
n
f 2 H; f(z) =

X
n�0

fnz
n with

X
n�0

jfnj2 <1
o

H� =
n
f 2 H; f(z) =

X
n��1

fnz
n with

X
n��1

jfnj2 <1
o
:

Then it is easy to see that

H = H+ �H� (orthogonal sum). (40)
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Let PH�
be the orthogonal projections to H�, respectively. Let W be a closed

subspace of H satisfying:

(i) PH+
: W �! H+ is a Fredholm operator (i.e., has �nite dimensional

kernel and cokernel) with index 0; that is dimKer = dimCoKer:

(ii) PH�
: W �! H� is a trace class operator;

(iii) f 2W �! z2f 2W ;

(iv) H� \W = f0g(transversality).
We denote by Gr(2)(H) the set of all closed subspaces W satisfying the condi-

tions (i), (ii), (iii) and (iv). The properties (i) and (iv) assure the unique existence

of a bounded operator A from H+ to H� such that

W = ff +Af ; f 2 H+g :

This is because (iv) implies dimKer = 0, and hence (i) implies PH+
(W ) = H+:

Conversely, if such an operator A exists, then (iv) holds. Introduce

� =

�
g; g(z) is holomorphic on D; g(0) = 1 , g(z) 6= 0 for 8z 2 D;

takes real values on R and g(�z) = g(z)�1 for 8z 2 D

�
;

where D = fz 2 C; jzj � 1g : Apparently � is a commutative group acting on

Gr(2)(H) by multiplication but for the condition (iv): For g 2 �; we represent it

as

g�1 =

�
a b

0 d

�
corresponding to the decomposition (40). Now, for g 2 � and W 2 Gr(2)(H)

we de�ne

�W (g) = det(I + a�1bA): (41)

Although the following lemma was proved in [16], we give a proof for the sake of

completeness.

Lemma 17. �W (g) 6= 0 if and only if g�1W is transverse to H�:

P r o f. Suppose for f 2 H+; f + a�1bAf = 0. Set

f1 = g�1Af � bAf 2 H�:

Then

gf1 = Af � a�1bAf = Af + f 2W;

which completes the proof.
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Throughout this section we assume �1 < �0 < 0; which is not essential.

For � 2 ��0 ; de�ne m+(�z2) by (17). Set

W� =
�
A(z2) +m+(�z2)B(z2); A;B 2 H+

	
: (42)

Here it should be noted that the conditionZ p
��0

�
p
��0

�(d�)

1� �2
�
Z p

��0

�
p
��0

�(d�)

��0 � �2
� 1

assures
��m+(�z2)

�� � 3 if jzj = 1; hence W� becomes a closed subspace of H:

This space was considered by R. Johnson [9] as an application of Sato theory.

We compute the operator a�1bA for this space and identify its Fredholm deter-

minant with a Fredholm determinant of an F+, which makes it possible to show

the transversality of gW� .

Lemma 18. For f 2 H+; the equation

f(z2) = B(z2)�
Z p

�0

�
p
�0

B(z2)�B(�2)

z2 � �2
�(d�) (43)

is uniquely solvable in H+, and the solution is given by

B(z2) = f(z2) +

Z p
�0

0

f(z2)� f(�2)

z2 � �2
e�(d�): (44)

P r o f. Suppose the support � is �nite. Note �rst

B(z2)�
Z p

��0

�
p
��0

B(z2)�B(�2)

z2 � �2
�(d�) = B(z2)(1 �m(�z2)) +

Z p
��0

�
p
��0

B(�2)�(d�)

z2 � �2

f(z2) +

Z p
��0

0

f(z2)� f(�2)

z2 � �2
e�(d�) = f(z2)(1 + em(�z2))�

Z p
��0

0

f(�2)

z2 � �2
e�(d�);

where m was introduced in (29). Then, substituting (44) into (43), we see

B(z2)�
Z p

��0

�
p
��0

B(z2)�B(�2)

z2 � �2
�(d�)

= f(z2)(1�m(�z2))(1 + em(�z2))� (1�m(�z2))
Z p

��0

0

f(�2)

z2 � �2
e�(d�)

+

Z p
��0

�
p
��0

f(�2)(1 + em(��2))�(d�)
z2 � �2

�
Z p

��0

�
p
��0

�(d�)

z2 � �2

Z p
��0

0

f(�2)e�(d�)
�2 � �2
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= f(z2)� (1�m(�z2))
Z p

��0

0

f(�2)

z2 � �2
e�(d�)

�
Z p

��0

0

f(�2)e�(d�)Z p
��0

�
p
��0

�(d�)

(�2 � �2) (z2 � �2)

= f(z2):

In this calculation we have used the fact

1 + em(��2) = 0 if � 2 supp� and 1�m(��2) = 0 if � 2 suppe�:
Now the rest of the proof is easy if we approximate a general � 2 ��0 by a sequence

of �'s with �nite supports.

For f 2 H+; we de�ne8>><>>:
Pf(z) =

f(z)� f(�z)
2z

;

Kf(z2) = f(z2) +

Z p
��0

0

f(z2)� f(�2)

z2 � �2
e�(d�):

Lemma 19. For the space of (42) we have

�
a�1bA

�
f(z) =

Z p
��0

�
p
��0

1� g(z)g(�)�1

� � z
KPf(�2)�(d�):

P r o f. Let f 2 H+: Then the de�nition of the operator A implies

f(z) +Af(z) = A(z2) +m+(�z2)B(z2);

with A;B 2 H+: However

m+(�z2)B(z2) = �zB(z2)�
Z p

��0

�
p
��0

B(z2)�B(�2)

� � z
�(d�)�

Z p
��0

�
p
��0

B(�2)�(d�)

� � z
;

and �rst two terms are contained in H+ and the last term is contained in H�
since �0 > �1: Hence we have

f(z) = A(z2)� zB(z2)�
Z p

��0

�
p
��0

B(z2)�B(�2)

� � z
�(d�)

Af(z) = �
Z p

��0

�
p
��0

B(�2)

� � z
�(d�);
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which implies

f(z)� f(�z)
2z

= �B(z2) +

Z p
��0

�
p
��0

B(z2)�B(�2)

z2 � �2
�(d�):

Then Lemma 18 shows

Af(z) = �
Z p

��0

�
p
��0

KPf(�2)

� � z
�(d�):

On the other hand, for f 2 H

PH+
f(z) =

1

2�i

I
jz0j=1

f(z0)

z0 � z
dz0;

hence

a�1bAf(z) =
g(z)

2�i

I
jz0j=1

g(z0)�1

z0 � z
dz0
Z p

��0

�
p
��0

KPf(�2)

� � z0
�(d�)

= g(z)

Z p
��0

�
p
��0

KPf(�2)�(d�)
1

2�i

I
jz0j=1

g(z0)�1

(z0 � z) (� � z0)
dz0

=

Z p
��0

�
p
��0

KPf(�2)
1� g(z)g(�)�1

� � z
�(d�);

which concludes the lemma.

Now we compute the Fredholm determinant when the support of � consists

of a �nite set f�ig1�i�n. First note

det(I + a�1bA) = det(I +B);

with B de�ned by

Bf(z2) �
Z p

��0

�
p
��0

Kf(�2)

�
1� g(z)g(�)�1

� � z
�

1� g(�z)g(�)�1

� + z

�
�(d�)

2z
;

for f 2 H+: Since � has a �nite support, the following calculation is possible:

Kf(�2) = f(�2) +

Z p
��0

0

f(�2)� f(�2)
�2 � �2

e�(d�)
=
�
1 + eh(��2)� f(�2)� Z p

��0

0

f(�2)

�2 � �2
e�(d�)

=

Z p
��0

0

f(�2)

�2 � �2
e�(d�);
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for 1 + em(��2) = 0 if � 2supp� as we saw in (32). Hence

Bf(z2)

=

Z p
��0

�
p
��0

�
g(�z)g(�)�1

2z (� + z)
�
g(z)g(�)�1

2z (� � z)
+

1

�2 � z2

�
�(d�)

Z p
��0

0

f(�2)e�(d�)
�2 � �2

=

Z p
��0

0

f(�2)e�(d�)Z p
��0

�
p
��0

�
g(�z)g(�)�1

2z (� + z)
�
g(z)g(�)�1

2z (� � z)
+

1

�2 � z2

�
�(d�)

�2 � �2

=

Z p
��0

0

f(�2)e�(d�)Z p
��0

�
p
��0

�
g(�z)g(�)�1

2z (� + z)
�
g(z)g(�)�1

2z (� � z)

�
�(d�)

�2 � �2

+

Z p
��0

0

f(�2)e�(d�)Z p
��0

�
p
��0

�(d�)

(�2 � �2) (�2 � z2)
:

Note here

det(I +B) = det(I +QB)

if we denote the restriction of f 2 H+ to L2(e�) by Q: Then (36) shows

(I +QB) f(�2)

=

Z p
��0

0

f(�2)e�(d�)Z p
��0

�
p
��0

�
g(��)g(�)�1

2� (� + �)
�
g(�)g(�)�1

2� (� � �)

�
�(d�)

�2 � �2
;

which is the same as (35) if we replace e��a with g. Now the computation is quite

analogous to that of Sect. 5, and we have

Lemma 20. Suppose the support of � is �nite f�ig1�i�n: Then

�W�(g) = const:� det

�
Æij +

p
mimj

�i + �j
g(��i)�1g(�j)

�
;

with

const: =

nY
j=1

�
g(��j)g(�j)�1�je�j

2�j

�
det
�
C+
�
det ((aij)) :

Now we de�ne the KdV �ow. For g 2 � and x 2 R, introduce gx 2 � by

gx(z) = e�xzg(z):

Lemma 21. For � 2 ��0 de�ne W� by (42). Then for any g 2 �; there exists

a �g 2 ��0 such that

�W�(g
x) = det(I + F x

+;�g
): (45)
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P r o f. First suppose the support of � is �nite. Then Lemma 20 implies

�W�(g
x) = exp

0@aX
j

(�j + �j)

1A nY
j=1

(g(�j)g(�j))
�1

nY
j=1

�
�je�j
2�j

�
det(C+) det(aij)

�det(Æij +

p
mimj

�i + �j
e�x(�i+�j)g(�i)g(�j));

with some constants ec1(g);ec2(g): Hence, regarding mig(�i)
2 as a new weight,

we can construct a classical re�ectionless potential qg with the scattering data�
r+(k) = 0; i�j ;mjg(�j)

2
	
: Let �g 2 ��0 be its spectral measure. Then from

Prop. 14 the identity (45) follows. For a general � 2 ��0 ; approximate it by

a sequence of measures f�ng from ��0 with �nite supports. Then it is easy

to see that �W�n
(gx) and det(I + F x

+;�ng
) converge as n ! 1 to �W�(g

x) and

det(I + F x
+;�g

), respectively, if we choose a subsequence of
�
�ng
	
converging to a

�g 2 ��0 if necessary. Hence we have (45) for a general �.

This lemma combined with Lem. 9 has the following conclusion.

Theorem 22. For � 2 ��0 and g 2 �; �W�(g) > 0; hence g�1W� is transverse

to H�:

For g 2 � and q 2 
�0 ; we de�ne

(K(g)q) (x) = �2
d2

dx2
log �W�(g

x) (46)

as an element of 
�0 . Then we can prove the following

Theorem 23. K(g) is a homeomorphism on 
�0satisfying

K(g1g2) = K(g1)K(g2) and K(1) = id

and K(gx)q(�) = q(�+x); K(gx;t)q satis�es the KdV equation, where gx(z) = e�xz

and gx;t(z) = e�xz+4tz3 :

P r o f. Since everything is valid if K(g) is restricted to the classical re�ec-

tionless potentials, all we have to do is to approximate � 2 ��0 by a sequence of

measures f�ng from ��0 with �nite supports. The multiplicativity of K comes

from the cocycle property of �W

�
g
�1

1
W
(g2) =

�W (g1g2)

�W (g1)
:

We call this K as KdV-�ow on 
�0 : It is well known also that K(g)q satis�es

the higher order KdV equations if we choose suitable one-parameter groups on �.
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7. Characterization of W�

We have introduced a space W�. It is natural to ask when W coincides with

a W�: We combine the two properties (i), (iv) of W and summarize them again.

A closed subspace W of H is in Gr(2)(H) if and only if:

(i) PH+
:W �! H+ is one-to-one and onto.

(ii) PH�
: W �! H� is a trace class operator.

(iii) f 2W =) z2f 2W:
We set new conditions. For f 2 H, de�ne f(z) = f(z):

(iv) f 2W =) f2W:

Let

gx(z) = e�xz:

(v) For any x 2 R; g�1x W satis�es (i).

Suppose the conditions (i)�(v). Then, for any x 2 R; there exists a unique

fW (x; �) 2W such that

fW (x; z) = e�xz
�
1 +

a1(x)

z
+
a2(x)

z2
+ � � �

�
: (47)

Since

fW (x; z) = e�xz

 
1 +

a1(x)

z
+
a2(x)

z2
+ � � �

!
;

and the property (iv) implies fW (x; �) 2 W; the uniqueness shows fW (x; z) =

fW (x; z); hence ai(x) 2 R:

Lemma 23 (Segal�Wilson): fW satis�es

�
d2

dx2
fW (x; z) � 2a01(x)fW (x; z) = �z2fW (x; z);

and fai(x)g1�i<1 satisfy

2a0i(x) = a00i�1(x) + 2a01(x)ai�1(x) for i = 2; 3; : : : : (48)

P r o f. Di�erentiating both sides of (47), we have

d2

dx2
fW (x; z)

= z2fW (x; z)� 2ze�xz
�
a01(x)

z
+
a02(x)

z2
+ � � �

�
+ e�xz

�
a001(x)

z
+
a002(x)

z2
+ � � �

�
= z2fW (x; z)� 2a01(x)fW (x; z) + e�xz

1X
i=1

a00i (x)� 2a0i+1(x) + 2a01(x)ai(x)

zi
:
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The linearity of the space W and (iii) imply

d2

dx2
fW (x; z)� z2fW (x; z) + 2a01(x)fW (x; z) 2W:

Therefore from (vi) it follows that8<: d2

dx2
fW (x; z)� z2fW (x; z) + 2a01(x)fW (x; z) = 0;

2a0i(x) = a00i�1(x) + 2a01(x)ai�1(x) for i = 2; 3; : : : :

Suppose V (x) is a real valued in�nitely di�erentiable function on R: Consider

a Schr�odinger operator

L = �
d2

dx2
+ q

on L2(R): If the boundaries �1 are of the limit circle type, then we have to

impose suitable boundary conditions at �1: For � 2 C such that Im (�) 6= 0 let

f+(x; �) be the solution for

Lf+ = �f+ ; f+(0; �) = 1

and�
f+ 2 L2(R+) if +1 is a limit point ;

f+ satis�es the boundary condition at +1 if +1 is a limit circle.

Set

m+(�) = f 0+(0; �);

which is called the Weyl function.

Lemma 25. There exist real valued smooth functions fbi(x)g1�i<1 such that

for each �xed n � 0

f+(x;�z2) = e�xz
�
1 +

b1(x)

z
+
b2(x)

z2
+ � � �+

bn(x)

zn
+O

�
1

zn+1

��
(49)

holds as jzj ! 1 in a region �
�

2
+ " < arg z < �" for any " > 0: Moreover, they

satisfy �
2b0i(x) = b00i�1(x) + 2b01(x)bi�1(x) for i = 2; 3; : : : ;

bi(0) = 0 for i = 1; 2; 3; : : : :
(50)
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P r o f. Let '; be the solutions for Lf = �z2f satisfying '(0) =  0(0) = 1;

'0(0) =  (0) = 0: Then

f+(x;�z2) = '(x; z) +m+(�z2) (x; z):

F. Gesztesy�B. Simon [5] proved for each a > 0 there exists a unique function

A(�) on [0; a] such that

m+(�z2) = �z �
Z a

0

A(�)e�2�zd�+O
�
e�2(a�")z

�
holds as jzj ! 1 in a region �

�

2
+ " < arg z < �" for any " > 0: The function

A is determined from m on [0; a] and smooth if so is m: On the other hand, '; 

can be represented as8>><>>:
'(x; z) = cosh zx+

Z x

0

K1(x; y) cosh zydy;

 (x; z) =
sinh zx

z
+

Z x

0

K2(x; y)
sinh zy

z
dy;

with smooth functions K1;K2: With these identities we see that f+(x;�z2) has
an asymptotic expansion (49) together with its derivatives f

(k)
+ of any order.

Substituting this expansion to the equation Lf+ = �z2f+; we have

0 = exz
�
�f 00+(x;�z

2) + q(x)f+(x;�z2) + z2f+(x;�z2)
�

= 2b
0

1(x) + q(x) +
2b02(x)� b

00
1(x) + b1(x)q(x)

z
+

2b03(x)� b002(x) + b2(x)q(x)

z2

+ � � �+
2b0n+1(x)� b00n(x) + bn(x)q(x)

zn
+O

�
1

zn+1

�
;

hence �
2b

0

1(x) + q(x) = 0

2b0n+1(x)� b00n(x) + bn(x)q(x) = 0

holds for any n � 1; which implies (50).

We introduce one more condition:

(vi) 1 2W:
Now we can state

Theorem 26. Suppose a subspace W of H satis�es the conditions (i) � (vi).

Then there exists a unique � 2 ��1 such that W =W�:
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P r o f. If a subspace W of H satis�es the conditions (i)�(vi); then we can

de�ne fW in (50): The condition (vi) shows fW (0; z) = 1; and hence

ai(0) = 0 for any i = 1; 2; : : : :

Then, setting q(x) = �2a01(x); from Lems. 24 and 25 we see fW (x; z) = f+(x;�z2)
identically. On the other hand, for this q we introduce f�(x;�z2) satisfying the

boundary condition at �1; and we can show fW (x;�z) = f�(x;�z2) identically.

Therefore we have

m+(�z2) = f 0W (0; z); m�(�z2) = �f 0W (0;�z): (51)

Now we consider the analytic continuation of fW : fW (x; z) is holomorphic on

fjzj > 1g and fW (x; z) = fW (x; z): Therefore m� are holomorphic on Cn[�1;1)

and take real values on (�1;�1): Therefore the representing measure �� has no

mass on (�1;�1): This combined with (51) shows that fW (x; z) is analytically

continuable to Cn ([� 1;1] [ [�i; i]) keeping the property fW (x; z) = fW (x; z):

Then it is immediate that

m+(� + i0) = f 0W (0; i
p
� + 0) = f 0W (0;�i

p
� + 0) = �m�(� + i0) for a.e. � > 0:

Then Proposition 6 shows that

m�(�z2) = �z �
Z 1

�1

�(d�)

�� � z

with a measure � on [� 1;1]: We have to proveZ 1

�1

�(d�)

1� �2
� 1: (52)

Suppose (52) is not valid. Then there exists �0 < �1 such thatZ 1

�1

�(d�)

��0 � �2
= 1: (53)

Set

f(z) = �
Z 1

�1

B(�2)�(d�)

� � z
with B(z2) =

1

z2 � �0
:

Then f 2 H� since m+(�z2) 2W: On the other hand, (53) implies

B(z2) =

Z 1

�1

B(z2)�B(�2)

z2 � �2
�(d�):
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Let

A(z2) = �
Z 1

�1

B(z2)�B(�2)

z2 � �2
��(d�):

Then

f(z) = A(z2) +m+(�z2)B(z2)

holds. However the Taylor expansions for A;B around the origin converge uni-

formly on fjzj � 1g ; and we know m+(�z2) 2W: Hence the property (iii) implies

f 2 W; hence W \ H� 6= f0g, which contradicts (i). Therefore (52) holds, thus

we have q 2 
�1: It is easy to see that W� � W since 1;m+(�z2) 2 W; which

shows W� =W in view of the property (i). The uniqueness of � is trivial since �

is determined from fW ; which completes the proof.

Remark 27. It is interesting to remove the condition (vi). Without (vi) one

can proceed in parallel with the above argument up to a certain point. In this case

we have to consider a meromorphic function on 1 < jzj � 1

ffW (x; z) =
fW (x; z)

fW (0; z)

instead of fW (x; z) itself. Since fW (0;1) = 1; there exists R � 1 such that

fW (0; z) 6= 0 for all z such that jzj > R: ffW satis�es LffW = �z2ffW and has

an expansion ffW (x; z) = e�xz
�
1 +

ea1(x)
z

+
ea2(x)
z2

+ � � �
�

on jzj > R: Since feai(x)g1�i<1 satisfy the same equations (50), we see eai(x) =
bi(x) for all i = 1; 2; : : : : Hence

ffW (x; z) = f+(x;�z2) (54)

identically, which implies

f 0W (0; z)

fW (0; z)
= m+(�z2): (55)

Then we can show as above that the left-hand side of (55) is analytically continu-

able to Cn ([�R;R] [ [�iR; iR]) ; which shows

m+(� + i0) = �m�(� + i0) for a.e. � > 0:

Hence h+ has an expression

m+(�z2) = �z �
Z R

�R

�(d�)

� � z
:
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Let �0 � �R2 be any number such thatZ R

�R

�(d�)

��0 � �2
� 1;

then 2�0 � q(x) � 0; which implies the boundaries �1 are of limit point type.

It is not clear if we can avoid the possibility that there exists a zero of fW (0; z)

in 1 < jzj < R:

8. Isospectral Property of KdV-Flow

We introduce a subgroup �0 of � by

�0 = fg 2 �; log g is a polynomial of odd degree with real coe�cientsg :

Let

Lq = �
d2

dx2
+ q:

Theorem 28. For q 2 
�0 and g 2 �0; there exists a unitary operator U(g; q)

on L2(R; dx) satisfying

LK(g)q = U(g; q)�1LqU(g; q):

P r o f. We prove this theorem only for gx(z) = e�xz and gx;t(z) = e�xz+4tz3 :

For a general g 2 �0 the proof is analogous. For gx(z) = e�xz; the proof is trivial,

since K(gx)q(�) = q(� + x) and we have only to set U(gx; q) = Tx independently

of V: For gx;t(z) = e�xz+4tz3 ; we employ the Lax representation. Set

u(t; x) = (K(gt;0)q) (x) = (K(gt;x)q) (0);

and de�ne an antisymmetric operator

Aq = 4D3 � 6qD � 3Dq

with D =
d

dx
: Then it is easy to see

[Lq; Aq] = LqAq �AqLq = 6qqx � qxxx;

where the left-hand side is a multiplication operator. Since u(t; x) satis�es the

KdV equation, we see
d

dt
Lu(t) = [Lu(t); Au(t)];
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where u(t)(�) = u(t; �): This formula is called the Lax representation of the KdV

equation. De�ne a one-parameter family of unitary operators by solving an equa-

tion
dU(t)

dt
= U(t)Au(t); U(0) = I:

Then it is obvious that Lu(t) = U(t)�1LqU(t); which concludes the proof.

Remark 29. One can expect Theorem 28 holds for any g 2 �; however to show

this we have to construct a pseudodi�erential operator for which the commutator

with Lq reduces to a multiplication operator.

9. Floquet Exponent

Let 
 = 
�0 be the space of generalized re�ectionless potentials and fK(g)gg2�
be the KdV �ow. We consider the set of all probability measures PK (
) on 


which are invariant under fK(g)gg2� and denote by Pshift (
) the set of all shift
invariant probability measures on 
: Since the set of all probability measures

P (
) on 
 is compact and the �ow fK(g)gg2� is commutative, we easily see that

PK (
) is a non-empty compact convex set. For � 2 Pshift (
), set

w(�) = w�(�) =

Z



m+(�; q)�(dq); (56)

which is called Floquet exponent for � 2 Pshift (
). This was �rst introduced
by Johson�Moser. Then it is well known that

w(�) =

Z



m�(�; q)�(dq) = �
1

2

Z



g�(0; 0; q)
�1�(dq); (57)

and

w0(�) =

Z



g�(0; 0; q)�(dq) (58)

hold (see S. Kotani [10]). Then the commutativity and the isospectral property

under K imply easily the following

Theorem 30. If � 2 Pshift (
), then for all g 2 � it holds K(g)� 2 Pshift (
)
and we have wK(g)� = w�:

Let WK be the set of all functions w satisfying

(i) w;�iw; w0 are Herglotz functions,
(ii) w(�) < 0 on (�1;��0];
(iii) Rew(� + i0) = 0 on [0;1);

(iv) w(�)=
p
��! �1 as �! �1:

Then from the compactness of 
 we have
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Theorem 31. For any � 2 PK (
) ; w� 2 WK is valid: Conversely, for any

w 2 WK there exists a � 2 PK (
) such that w = w�:

It is natural to ask

To what extent does w determine � 2 PK (
) ? (59)

If w comes from a �nite bands spectrum, then the characterization of all potentials

with �nite bands spectrum (see [7]) shows that w determines uniquely �.

Appendix. In this Appendix we collect several fundamental facts of

H-functions (Herglotz functions). For the proofs see P.L. Duren [2]. As we de�ned

in Sect. 2, a holomorphic function de�ned on C+ is called a Herglotz function if

it maps C+ into C+: It is well known that an H-function m has an expression

m(�) = �+ ��+

Z
R

�
1

� � �
�

�

1 + �2

�
�(d�)

with �; � 2 R; � � 0 and a nonnegative measure � on R satisfyingZ
R

(1 + �2)�1� (d�) <1:

The triple f�; �; �g is called the characteristics for m: The measure � can be

recovered from m by

�([a; b)) =
1

�
lim
"#0

Z b

a

Imm(� + i")d�

if � (fag) = � (fbg) = 0: It is also known that for a.e. � 2 R

lim
"#0

1

�
Imm(� + i") = �0(�)

holds, where �0(�) denotes the density of absolutely continuous part of �: m itself

has a �nite limit

lim
"#0

m(� + i") = m(� + i0) 6= 0 a.e.� 2 R

unless m � 0: It is of some use to note that if m is an H-function, so is �m�1 and

logm: Especially logm is useful when we have to factorize m in an appropriate

way. Since

Im logm(�) = argm(�) 2 [0; �];

applying the above representation for m, we easily see that

logm(�) = 
 +
1

�

Z
R

�
1

� � �
�

�

1 + �2

�
argm(� + i0)d�

with 
 2 R:
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