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The paper gives a short account of some basic properties of Dirichlet-
to-Neumann operators Ay pq including the corresponding semigroups moti-
vated by the Laplacian transport in anisotropic media (v # I') and by elliptic
systems with dynamical boundary conditions. To illustrate these notions and
the properties we use the explicitly constructed Laz semigroups. We demon-
strate that for a general smooth bounded convex domain Q C R? the cor-
responding Dirichlet-to-Neumann semigroup {U(t) = e’tA%fm}DO in the
Hilbert space L?(99) belongs to the trace-norm von Neumann-Schatten
ideal for any ¢ > 0. This means that it is in fact an immediate Gibbs semi-
group. Recently H. Emamirad and I. Laadnani have constructed a Trotter—
Kato—Chernoff product-type approximating family {(V, aa(t/n))"}, <,
strongly converging to the semigroup U(t) for n — co. We conclude the
paper by discussion of a conjecture about convergence of the Emamirad—
Laadnani approzimantes in the trace-norm topology.
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1. Laplacian Transport and Dirichlet-to-Neumann Operators

Example 1.1. It is well known (see, e.g., [LeUl]) that the problem of
determining a conductivity matriz field y(x) = [fyi,j(x)];-i’jzl, for z in a bounded
open domain Q C R?, is related to "measuring” the elliptic Dirichlet-to-Neumann
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map for associated conductivity equation. Notice that the solution of this problem
has a lot of practical applications in various domains: geophysics, electrochemistry
etc. It is also an important diagnostic tool in medicine, e.g., in the electrical
impedance tomography; the tissue in the human body is an example of highly
anisotropic conductor [BaBr].

Under the assumption that there is no sources or sinks of current the potential
v(x), = € Q, for a given voltage f(w), w € 9, on the (smooth) boundary 9 of
Q is a solution of the Dirichlet problem:

{le(")/VV) =0 in 9, ®1)
vlgo =f on O0Q.

Then the corresponding to (P1) Dirichlet-to-Neumann map (operator) A, sq is
defined by
Ay oo f = Ovp/Ovy :=v -y Vg |aq - (1.1)

Here v is the unit outer-normal vector to the boundary at w € 9€2 and the function
u := uy is the solution of the Dirichlet problem (P1).

The Dirichlet-to-Neumann operator (1.1) is also called the voltage-to-current
map, since the function A, pq f gives the induced current flux trough the boundary
0. The key (inverse) problem is whether one can determine the conductivity
matrix v by knowing electrical boundary measurements, i.e., the corresponding
Dirichlet-to-Neumann operator? Unfortunately, this operator does not determine
the matrix 7 uniquely, see e.g. [GrUl| and references there.

Example 1.2. The problem of electrical current flux in the form (P1)
is an example of the so-called Laplacian transport. Besides the voltage-to-current
problem the motivation to study this kind of transport comes for instance from
the transfer across biological membranes, see e.g. [Sap]|, |GrFiSap].

Let some "species" of concentration C(z), z € R?, diffuse in the isotropic
bulk (y = I) from a (distant) source localized on the closed boundary 9 to-
wards a semipermeable compact interface 9€2 on which they disappear at a given
rate W. Then the steady concentration field (Laplacian transport with a diffusion
coefficient D) obeys the set of equations

AC =0, 7€\ 9,
C(wo € 09) = Cy, at the source, (P2)
(=D) 0,C(w) =W (C(w) —0), on the interface w € 9f.

Let C =Cy(1 —u). Then Au=0, z€ Q. If we put p:= D/W, then the
boundary conditions on 02 take the form: (I + pd,)u |gpa (w) =1 |sq (w), where
(1 |sa)(w) = xoa(w) is a characteristic function of the set 92, and u(wy) = 0,
wp € 0€)y on the source boundary.
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Consider now the following auxiliary Laplace—Dirichlet problem
Au=0, 2€Q\Q ulsg (w) =f(wed) and u |sg, (w) =0, (1.2)

with solution ;. Then similarly to (1.1), with the problem (1.2) we can associate
a Dirihlet-to-Neumann operator

A—1p0: [ = Oyus |ag (1.3)

with the domain dom(Aj pq), which belongs to a certain Sobolev space (Sect. 2).

The advantage of this approach is that as soon as the operator (1.3) is defined
it can be applied for studying the mized boundary value problem (P2). This
gives in particular the value of the particle flux due to Laplacian transport across
the membrane 0. Indeed, one obtains that (I + pAra0)u |an= 1 |sq, and that
the local (diffusive) particle fluz is defined as:

¢ laa:= D Co(9nu) |aa= D Co(Araa(I + phra0) 1) aq - (1.4)
Then the corresponding total flux across the membrane 0f2
® := (¢, 1)r2(90) = D Co(A(I + phr,00) " 1,1) 1290y (1.5)

is experimentally measurable macroscopic response of the system expressed via
transport parameters D, Co,  and geometry of 9Q. Here (-, ')L2(3Q) is a scalar
product in the Hilbert space OH := L?(09).

The aim of this paper is twofold:

(i) to give a short account of some standard results about Dirichlet-to-Neumann
operators and related Dirichlet-to-Neumann semigroups that solve a certain class
of elliptic systems with dynamical boundary conditions;

(ii) to present some recent results concerning the approzimation theory and
the Gibbs character of the Dirichlet-to-Neumann semigroups for compact sets 2
with smooth boundaries 0€2.

To this end in the next Sect. 2 we recall some fundamental properties of
the Dirichlet-to-Neumann operators and semigroups, we illustrate them by a few
elementary examples, including the Laz semigroups |Lax].

In Section 3 we present the strong Emamirad-Laadnani approzimations of
the Dirichlet-to-Neumann semigroups inspired by the Chernoff theory and by its
generalizations in [NeZag, CaZag2].

We show in Sect. 4 that for compact sets € with smooth boundaries 0f2
the Dirichlet-to-Neumann semigroups are in fact (immediate) Gibbs semigroups
[Zag2].

Some recent results and conjectures about approximations of the Dirichlet-to-
Neumann (Gibbs) semigroups in operator and trace-norm topologies are collected
in the last Sect. 5.
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2. Dirichlet-to-Neumann Operators and Semigroups

2.1. Dirichlet-to-Neumann Operators
Let © be an open bounded domain in R¢ with a smooth boundary 0. Let
be a C*°(Q) matrix-valued function on Q, which we call the Laplacian transport
matriz in domain €.
We suppose that the matrix-valued function y(z) := [’yi,j(x)]f’j:l satisfies the
following hypotheses:
(H1) The real coefficients are symmetric and v; ;(z) = v;j.:(z) € C°(Q).
(H2) There exist two constants 0 < ¢; < ¢y < oo such that for all ¢ € R? we
have
n
allél* < ) &&rig(e) < eallé). (2.1)
ij=1
Then the Dirichlet-to-Neumann operator A, sq associated with the Laplacian
transport in € is defined as follows.
Let f € C(09), and denote by vy the unique solution (see, e.g., [GiTr,
Th. 6.25]) of the Dirichlet problem

{A%aﬂ v:=div(y Vv) =0 in Q, P1)

v |3Q: f on 89,

in the Banach space X := C(Q). Here the operator A,sq is defined on its
maximal domain

dom(A4, 50) :={u € X : A, 90 ue X} (2.2)
Definition 2.1. The Dirichlet-to-Neumann operator is the map
Ay oq: f = 0vp/Ov, =v-yVus |aq, (2.3)
with the domain

dom(A, pn) = {f € 0C(QR) : vy € Ker(A, pa) and |(v-yVus |sa)| < oo}
(2.4)
Here v denotes the unit outer-normal vector at w € 99, and vy is the solution of
Dirichlet problem (P1).

The solution vy := Lgq f of the problem (P1) is called the y-harmonic lifting
of f, where Lsq : C(09Q) — C%(Q) N C_’(ﬁ) is called the lifting operator with

domain dom(Lyq) = C(99Q). If Thq : C(2) — C(9N) denotes the trace operator
on the smooth boundary 992, i.e., v |go= Tsa v, then [Eng|:

Lyo = (TaQ |Ker(A7,5Q) )71 and dOm(A%aQ) = Tag{Ker(A%ag)}. (25)
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Remark 2.2. Let 0X := C(0Q). Then (2.5) implies
ToaLloo u=u, u € 0X and LyoTog w=w , w € Ker(A%QQ). (26)

One also gets that the lifting operator is bounded: Lgq € L(0X,X), whereas the
Dirichlet-to-Neumann operator (2.3) is obviously not.

Now let H be Hilbert space L?(2) and 0H := L?*(952) denote the boundary
space. In order that the problem (P1) admits a unigue solution vy, one has to

assume that f € W21/2(8S2), and then v; belongs the Sobolev space W3 (€2), see
e.g. |Tay, Ch.7]. So, we can define Dirichlet-to-Neumann operator in the Hilbert
space OH by (2.3) with the domain

dom (A p0) = {f € W3/2(09) : A, aaf € OH = L3(OQ)}. (2.7)

Proposition 2.3. The Dirichlet-to-Neumann operator (2.3) with domain (2.7)
in the Hilbert space OH is unbounded, nonnegative, selfadjoint, first-order elliptic
pseudodifferential operator with compact resolvent.

The complete proof can be found, e.g., in [Tay, Ch. 7], [Tayl]. Therefore, we
give here only some comments on these properties of the Dirichlet-to-Neumann
operator (2.3) in OH = L?(99).

Remark 2.4. (a) By virtue of definition (2.3) for any f € W;/Z(aﬁ) one gets

(f. Ao f Jom = / do(w) 07 (@) v (@) (Voy) () (2.8)
o0
= [ o av(iB (V) = [ dx (93 T ) > 0
Q Q

since the matriz vy verifies (H2). Thus, operator A so is nonnegative.

(b) In fact to ensure the existence of the trace Too(v-yV(Laaf)) one has ini-
tially to define the operator Ay sq for f € WS/Z((?Q). Then Dirichlet-to-Neumann
operator is a selfadjoint extension with domain (2.7) and moreover it is a bounded
map A, o0 : W;/Z(aﬁ) — W271/2(8Q).

(¢) By (2.8) and since derivatives of the first-order are involved in (2.3), one
can conclude that this operator should be elliptic and pseudodifferential. If y(x) =
I, then Arpq is, roughly, the operator (—Aag)l/Z, where Agq is the Laplace—
Beltrami operator on 02 with corresponding induced metric [Tay, Ch.7], [Tayl].

(d) Compactness of the imbedding W21/2(8Q) — L%(09) implies the compact-
ness of the resolvent of Ay 5.
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By (a) and (d) the spectrum o (A, 5n) of the Dirichlet-to-Neumann operator
is a set of nonnegative increasing eigenvalues {A;}7°,. The rate of increasing is
given by the Weyl asymptotic formula, see, e.g., [Hor, Tay|:

Proposition 2.5. Let A, po(x,&), for (x,§) € T*0Q, be the symbol of the
first-order elliptic pseudodifferential Dirichlet-to-Neumann operator Ay pq. Then
the asymptotic behaviour of the corresponding eigenvalues as k — oo has the form

k 1/(d—1)
>\k ~ )

1

(27T)d_1
Ay pa(r,8)<1

where

C(09,A,) := d de.

Another important result is due to Hislop and Lutzer [HiLu|. It concerns
a localization (rapid decay) of the y-harmonic lifting of the corresponding eigen-
functions.

Proposition 2.6. Let {¢;}72, be eigenfunctions of the Dirichlet-to-Neumann
operator: Ay g0 = Apdr with [|¢kll290) = 1. Let vy, 1= Loa¢y be the y-harmonic
lifting of ¢y to 2 corresponding to the problem (P1). Then for any compact C C
and z € C one gets the representation

(04, (@)] = (2, p,C) [\, (2.9)

with arbitrary large p > 0. Here 1(x,p,C) is a decreasing function of the distance
dist(z, 092).

Since by the Weyl asymptotic formula we have Ay = O(kY(4=1)) the decay im-
plied by the estimate (2.9) is algebraic.

Conjecture 2.7. [HiLu|. In fact the order of decay instead of (x,p,C)/A; P
is exponential: O(exp[— kdist(C, 092)]).

2.2. Example of a Dirichlet-to-Neumann Operator

To illustrate the results mentioned above we consider a simple example which
will be useful below for contraction of the Laz semigroups.

Consider a homogeneous isotropic case: y(x) = I, and let Q = Qp := {z €
R4=3: ||z|| < R}. Then A, 0, = Asa, and for the harmonic lifting of

F@) =Y 1 08, 0) € Wy (0928)

I,m
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we obtain l
vr(r0,0) =" () i Vi 0,9, (2:10)
l,m
since the spherical functions {Yl,m}?io,|m| < form a complete orthonormal basis
in the Hilbert space OH = L?(0Qr, df sinfdyp).
Definition (2.3) and (2.10) imply that nonnegative, selfadjoint, first-order
elliptic pseudodifferential Dirichlet-to-Neumann operator

oo m=l

(Aroopf)(w=(R,0,0) => Y (é) I Y (0, 9) (2.11)

[=0 m=—1

has discrete spectrum o(A7pqay) == {Am = I/R}2, iml<1 with spherical eigen-
functions -

(Ao, Yim) (6.9) = () Vi (8,6 .12

and multiplicity m. The operator (2.11) is obviously unbounded and it has a com-
pact resolvent.

Remark 2.8. Since by virtue of (2.10) the ~y-harmonic lifting of the eigen-
function Y, to the ball Qg is

r

Uy, (10, 0) = (E)l Yi,m(0, ),

one can check the localization (Prop. 2.6) and Conjecture about the exponential

decay explicitly. For distances 0 < dist(z,00r) = R —r < R, one obtains
vy, (1,0, )| = O(e~ (E-T/E),

2.3. Dirichlet-to-Neumann Semigroups on 0X

To define the Dirichlet-to-Neumann semigroups on the boundary Banach space
0X = C(092) we can follow the line of reasoning of [Esc| or [Eng|. To this end
consider in X = C(Q) the following elliptic system with the dynamical boundary
conditions

div(yVu(t,-)) =0 in (0,00) x Q,
du(t,-)/0t + Ou(t,-)/Ovy, =0 on (0,00) x 0L, (P2)
u(0,) = f on 0N.

Proposition 2.9. The problem (P2) has a unique solution ug(t,x) for any
f e C(09). Its trace on the boundary 02 has the form

ug(t,w) := (Tonus(t, ) (w) = (U(#)f)(w), (2.13)

where the family of operators {U(t) = e **02},50 is a Co-semigroup generated
by the Dirichlet-to-Neumann operator of the problem (P1).
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The following key result about the properties of the Dirichlet-to-Neumann
semigroups on the boundary Banach space 0X = C(99) is due to Escher—Engel
[Esc, Eng] and Emamirad-Laadnani [EmLal:

Proposition 2.10. The semigroup {U(t) = e *Avo9 }e>0 is analytic, compact,
positive, irreducible and Markov Cy-semigroup of contractions on C(052).

Remark 2.11. The complete proof can be found in the papers quoted above.
So, here we make only some comments and hints concerning Prop. 2.10.

2.4. Dirichlet-to-Neumann Semigroups on 0H

The Dirichlet-to-Neumann semigroup {U(t) = e 492}~ on OH is defined
by selfadjoint and nonnegative Dirichlet-to-Neumann generator A, go of Prop. 2.3.

Proposition 2.12. The Dirichlet-to-Neumann semigroup {U(t) = e~ o0},
on the Hilbert space OH is a holomorphic quasisectorial contraction with values
in the trace-class € (OH) for Re (t) > 0.

Remark 2.13. The first part of the statement follows from Prop. 2.5. Since
the generator Ay pq is selfadjoint and nonnegative, the semigroup {U(t)}; is holo-
morphic and quasisectorial contraction for Re(t) > 0, see, e.g., [CaZagl, Zagl].
The compactness of the resolvent of A, s implies the compactness of {U(t)}i>o0,
but to prove the last part of the statement we need a supplementary argument
about asymptotic behaviour of its eigenvalues given by the Weyl asymptotic for-
mula (Prop. 2.5).

This behaviour of eigenvalues implies the second part of Prop. 2.12:

Lemma 2.14. The Dirichlet-to-Neumann semigroup U(t) has values in the
trace-class €1(OH) for any t > 0.

P rof  Since the Dirichlet-to-Neumann operator A, sn is selfadjoint, we
have to prove that

IUE =) e < oo (2.14)
k>1
for t > 0. Here || - ||; denotes the norm in the trace-class €;(0#H). Then the Weyl

asymptotic formula implies that there exists a bounded M and a function r(k)
such that

D e <N " exp{—t[(k/c) )T 4 (k)]}

k>1 k>1

< ™S exp{—t(k/c) 7).

k>1

Here ¢ := C'(09, A) and the last sum converges for any ¢ > 0, which proves the
equation (2.14). ]
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2.5. Example: Lax Semigroups

A beautiful example of explicit representation of the Dirichlet-to-Neumann
semigroup (2.13) is due to Lax [Lax, Ch. 36].
Let y(z) = I, and Q = Qp (see Sect. 2.2). Following [Lax| we define the

mapping
K(t) : v(z) = v(eF ) for any u e C(Qr), (2.15)

which is a semigroup for the parameter ¢ > 0 in the Banach space X = C(Qg):
(K(T)Kt)v)(z) = v(e ™ Re R gy = p(e TH/E ) 76>0, 2 € Q. (2.16)
Remark 2.15. It is clear that if v(z) is (v = I)-harmonic in C(Qg), then the
function: x — U(e_t/R x) is also harmonic. Therefore,
us(t,z) = vp(e " 2) = (K()Loag )(z) = (Logs fr) (@), © € Qr,  (2.17)

is the harmonic lifting of the function fi(w) := vf(e*t/R w) , w € 0Ng, where vy
solves the problem (P1) for~y = 1. Since in the spherical coordinates x = (r,0, p)
one has

OQug(t,z)/0t = —Orvf(e*t/Rr,O, Lp)e*t/R (r/R)

and

Qus(t,R,0,¢)/0vr = arvf(e_t/Rr, 0, Lp)e_t/R,

we get that Ous(t,w)/0t+0us(t,w)/Ovr =0, i.e., the function (2.17) is a solution
of the problem (P2).

Hence, according to (2.13) and (2.17) the operator family
S(t) := Toa, K (t) Loa,, t > 0, (2.18)

defines the Dirichlet-to-Neumann semigroup corresponding to the problem (P2)
for v(x) = I, and Q = Qp, which is known as the Laz semigroup. By virtue of
(2.17) and (2.18) the action of this semigroup is known explicitly:

(S(t)f)(w) = vi(e " Rw), w e dk. (2.19)
Notice that the semigroup relation
S(T)S(t) = TagRK(T)LQQRTQQRK(t)LagR = S(T + t), (2.20)

follows from the properties of lifting and trace operators (see Remark 2.2), from
identity (2.16) and definition (2.18). One finds the generator A,—;sq, of this
semigroup from the limit

0 =lim sup [1(f ~ SU)w) ~ (Aymr o0, ) (@) 2.21)
—Vwedr

. 1 _
= lim sup |_(Uf(R7 97 (;0) - vf(e t/R R, 97 ‘;0)) - (A’Y:IﬁQRf)(Ra 97 ‘;0)|
t—0 weHNR t
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Then the operator

(A’YZI,aﬂR f) (R7 07 (P) = 87"Uf (’)” = Ra 07 (P) (222)
for any function f from the domain

dom(Az90,) = {f € 0C(Qr) : vy € Ker(Ar,pa,) and [(9,vf) |aay | < oo}
(2.23)
is identical to (2.4) for the case v = I and 9Q = 0Qpx. Therefore, the gene-
rator (2.22) of the Lax semigroup is the Dirichlet-to-Neumann operator in this
particular case of the Banach space 0X = C(0Qg).

Similarly, we can consider the Lax semigroup (2.18) in the Hilbert space OH =
L?(00g, dO sinfdyp). Since the generator of this semigroup is a particular case
of the Dirichlet-to-Neumann operator (2.11), by (2.12) and (2.10) we again obtain
the corresponding action in the explicit form

(S(t)f)(w) (2.24)
oo m=l oo 5\s I s
— @) =Y Y S 58 () 48 vinlo0)
=0 m=—1 s=0
oo m=l
=5 N (@ Y FI Vim0, 0) = vi(e Y Pw), w € 0,
=0 m=—1

which coincides with (2.19).

Notice that for ¢ > 0 the Lax semigroups have their values in the trace-class
¢1(0H). This explicitly follows from (2.12), i.e., from the fact that the spectrum
of the semigroup generator o(Az90,) = {A\im = Z/R}?io,|m|<l is discrete and

TrS(t) = i(Zl +1) e < . (2.25)
=0

The last is proven in the whole generality in Th. 2.14.

3. Product Approximations of Dirichlet-to-Neumann
Semigroups

3.1. Approximating Family

Since in contrast to the Lax semigroup (y = I) the action of the general
Dirichlet-to-Neumann semigroup for y # I is known only implicitly (2.13), it is
useful to construct converging approximations, which are simpler for calculations
and analysis.
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One of them is the Emamirad-Laadnani approzimation [EmLa], which is mo-
tivated by the explicit action (2.19), (2.24) of the Lax semigroup

(St ) (w) = (Tha, Kr(t)Loa, f)(w) = vi(e™ w), w € 0k, (3.1)
Kr(t) :v(z) — v(e " z) for any v e C(Qg) (or H(QR)).

The suggestion of [EmLa| consists in substituting the family {Kg(t)}+>0 by the
v—deformed operator family

Ko p(t) : v(x) = v(e” B 7@ 1) for any v € C(Qr) (or H(Qr)).  (3.2)

Definition 3.1. For the ball Qg the Emamirad—Laadnani approximating
family {V r(t) := V, a0, (t) }i>0 is defined by

(Vo r() ) (@) = (Toan Ky.r(t) Loay f)(w) = vi(e” R 7@ w) 0w € 9Qg. (3.3)

Remark 3.2. (a) Notice that the approximating family (3.3) is not a semigroup

(V3 r(0)Va,r(5)f)(w) = (Toa, Ky,r(t) Loa, f(s))(w) (3.4)
= vf(s)(e*(t/R) ¥(w) w) # vf(e*((tJrs)/R) ¥(w) w) = (V%R(t +5)f)(w).

(b) This family is strongly continuous at t = 0:

1}i\r‘% Vyr(t)f = f forany f € 0X (ordH). (3.5)

(c) By definition (3.3) this family has the derivative at t = +0:

(0:Vy,r(1) ) (W) li=0= —v(w) - 7(w)(Vuf)(w) = =(Ay 005 f) (@), (3.6)

which for any f € dom(A, pa,) coincides with the (minus) Dirichlet-to-Neumann
operator (2.8).

3.2. Strong Approximation of the Dirichlet-to-Neumann Semigroups

By virtue of Remark 3.2 the Emamirad-Laadnani approximation family veri-
fies the conditions of the Chernoff approzimation theorem (|Che, Th. 1.1]):

Proposition 3.3. Let {®(s)}s>0 be a family of the linear contractions on
a Banach space B and let Xo be the generator of a Cy-contraction semigroup.
Define X (s) := s~ — ®(s)), s > 0. Then for s — +0 the family {X(s)}s>0
converges strongly in the resolvent sense to the operator Xy if and only if the
sequence {®(t/n)"}n>1, t > 0, converges strongly to e=*X0 as n — oo uniformly
on any compact t-intervals in R}F.
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Notice that {V,, r(t)};>0 in the Banach space 0X is the family of contractions
because of the mazimum principle for the -harmonic functions vy. Since the
Dirichlet-to-Neumann operator (2.3) is densely defined and closed, Remark 3.2
(c) implies that the family X (s) := s™'(I — V,, g(s)) converges for s — +0 to
Xo = A, pay in the strong resolvent sense.

Similar arguments are valid for the case of the Hilbert space 0H. By virtue
of Remark 2.4 the Dirichlet-to-Neumann operator A, s is nonnegative and self-
adjoint. This implies again that (3.3) is the family of contractions in H and that
by Remark 3.2 (c) the family X (s) := s }(I — V, gr(s)) converges for s — +0 to
Xo = A, pay in the strong resolvent sense.

Resuming the above observations we obtain the strong approximation of the
Dirichlet-to-Neumann semigroup U ()

Corollary 3.4. [EmLa|
le (Vy,r(@/n)"f =U(t)f, for every f € 0X or OH, (3.7)
uniformly on any compact t-intervals in (0, 00).

The Emamirad-Laadnani approximation theorem (Cor. 3.4) has the following
important extension to more general geometry than the ball [EmLa).

Definition 3.5. We say that a bounded smooth domain Q in R has the pro-
perty of the interior ball if for any w € 9% there erists a tangent to 0X) at w plane

Ty, and such that one can construct a ball tangent to T, at w, which is totally
included in €.

If © has this property, then with any point w € 92, one can associate a unique
point z,, which is the center of the biggest ball B(z,,r,) of radius r, included
in Q. For any 0 < r < ry,, we can construct the approximating family V()
related to the ball B(zy,,r) := {z € Q : |z — z,,| < r} of radius r, which
is centered on the line perpendicular to 7, at the point w € 99, ie., z,, =
(r/ru)zy + (1 —r/ry)w. Then we define

(Vo () f)(w) := Taq vy (wr,w + e~ M@ (p uw)) : (3.8)

Here v, is the outer-normal vector at w, the function vy = Laq f is the y-harmonic
lifting of the boundary condition f on 92 , and Thq is the trace operator

Tho : HI(Q) DU =0 |3Q€ H1/2(8Q) (39)

Remark 3.6. Notice that:
(a) since v, = (wW—xr,) /7, one gets (Vy . (t = 0)f)(w) == (Ton vf)(w) = f(w);
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(b) by virtue of (3.8) the strong derivative at t = 0 has the form

(0:Vyr(t =0)f)(w) = —v(w)rw - (Vop)(w) = —(Ay 00f) (),
see (3.6).
Proposition 3.7. [EmLa|. Let Q has the property of interior ball, and let

inf {r > 0: B(x, cQ} >0,
inf (7> 0: Blaun) C9)

sup {r > 0: B(zy,ry) C Q} < o0.
weoN)

For any 0 < s <1 we define V, 4, i.e.,

Vy.sr f(w) = vy (xs,w + e_(t/(s”)h(‘*’)(srw Vw)) ’ (3.10)
where gy, = sty + (1 — s)w. Then for any 0 < s <1
le (Vysr, (t/n))"f =U(t)f, for every f € 0X or OH, (3.11)

uniformly on any compact t-intervals in (0,00).

Remark 3.8. By Definition 3.1 for the ball Qg and the constant matriz-valued
function y(z) = I one obviously has Vo—rr(t) = S(t) = U(t). On the other
hand, for a general smooth domain @ with geometry verifying the conditions of
Prop. 3.7, one is obliged to consider the family of approzrimations V., 4., even for
the homogeneous case v = 1.

4. Dirichlet-to-Neumann Gibbs Semigroups

4.1. Gibbs Semigroups

Since by Lemma 2.14 for any Dirichlet-to-Neumann semigroup we obtain
U(t > 0) € € (0H), then one can check that it is in fact a Gibbs semigroup.
To this end we recall the main definitions and some results that we need for the
proof (see, e.g., [Zag2]).

Let 9 be a separable, infinite-dimensional complex Hilbert space. We denote
by L($)) the algebra of all bounded operators on §) and by € (9) C L($) the
subspace of all compact operators. The € (9) is a *-ideal in L(9), that is: if A €
Coo($), then A* € €o(9) and if A € €o($H) and B € L($)), then AB € € (9)
and BA € €, ($). We say that a compact operator A € €, ($)) belongs to the
von Neumann-Schatten x-ideal €,($) for a certain 1 < p < oo, if the norm

1/p
1Al == [ D sn(A)P < 00, (4.1)

n>1
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where s,,(A) := \/An(A*A) are the singular values of A defined by the eigenvalues
{A()}n>1 of nonnegative selfadjoint operator A*A. Since the norm |[|A]|, is
a nonincreasing function of p > 0, one gets

[A[lr = [|Allp = | Allg > [[Alleo (= [IA]]) (4.2)

for 1 <p < g < co. Then for the von Neumann—Schatten ideals this implies the
inclusions

C1(H) € &(H) € &y(H) C Coo(H)- (4.3)

Let p~! = ¢~ ' +r~!. Then, by virtue of the Hélder inequality applied to (4.1),
one gets ||[AB||, < [|All4[|Bllr, if A € €4(H) and B € &,(%). Consequently, we
obtain

Lemma 4.1. The operator A belongs to the trace-class €1($)) if and only if
there exist two (Hilbert—Schmidt) operators Ky, Ko € €o(9), such that A =
Ky Ky. Similarly, if K € €,(9), then K? € &(9).

Let K be an integral operator in the Hilbert space L?>(D,u). It is a Hilbert—
Schmidt operator if and only if its kernel k(x,y) € L?>(D x D, x i), and then

one gets the estimate ||K|l2 < ||kl L2(DxDyuxp)-

The proof is quite straightforward and can be found in, e.g., [Kat, Sim].

Definition 4.2. [Zag2|. Let {G(t)};>0 be a Co-semigroup on $ with {G(t)}i>o
C Cxo(9). It is called the immediate Gibbs semigroup if G(t) € €1(9) for any
t > 0, and it is called the eventually Gibbs semigroup if there is ty > 0 such that
G(t) € €1 (9) for any t > to.

Remark 4.3. (a) Notice that by Lem. 4.1 any Cy-semigroup such that one has
{G(t)}i>0 C €(H) for some p < oo is an immediate Gibbs semigroup.

(b) Since compact Cy-semigroups are normcontinuous for any t > 0,
the immediate Gibbs semigroups are || - ||1-norm continuous for t > 0.

For more details on the Gibbs semigroups properties we refer to the book
[Zag2].

Corollary 4.4. By wvirtue of Prop. 2.12, Def. 4.2 and Remark 4.3 the
Dirichlet-to-Neumann semigroup {U(t) = e 99}, on the Hilbert space OH
is a || - ||1-holomorphic quasisectorial immediate Gibbs for Re (t) > 0.

4.2. Compact and Tr-norm Approximating Family

Proposition 4.5. [EmLa| For the ball Qr the Emamirad-Laadnani appro-
zimating family {V, r(t)}i>0 consists of compact operators on the Banach space

0X = C(09Qg) for any t > 0.
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The proof follows from Def. 3.1 by Arzela—Ascoli criterium of compactness,
since representation (3.3) and conditions on 7 imply the uniform bound and
equicontinuity of the sets {V, r(t)(0X)}; for any ¢ > 0.

For the case of Hilbert space we recall the following useful condition for cha-
racterization of the Tr-class operators [Zag2].

Proposition 4.6. If A € L(9) and > 22, [|Aej|| < oo for an orthonormal
basis {ej};-";l of 9, then A € €1(9).

Theorem 4.7. On the Hilbert space OH = L?(0r) the approzvimating family
{V3,r(t) }i>0 C €1(OH).

P rof  Since the eigenfunctions {¢;};>, of the selfadjoint Dirichlet-to-
Neumann operator A, o, form an orthonormal basis in L?(9g), we apply
Prop. 4.6 for this basis.

Let 0y r = {zu(t) := e (t/R) 7(w) whwedny- By representation (3.3) and
by estimate (2.9) one obtains

IVy (el = / dor(w) |5, (30)
00r
< |0Qr| sup P(zy,p, O~ 1) EP/A1), (4.4)
we&QR

Then, by hypothesis (H2) on the matrix 7 for the norm of the vector z,, in R?
one gets the estimate

||£Ew|| < ||e*(t/R) 'YH R < 6701(t/R) R.

Hence, for any ¢ > 0 the dist(z,,dQr) > (1 — e /®))R > 0, which for the
estimates in (2.9) and in (4.4) implies that

0< inf ¢(xw7p7 aQt>0,’y,R) < sup ¢(xw7p7 aQt>0,’y,R)'
wEINR wEINR

Then, for 2p/(d — 1) > 1 the estimate (4.4) ensures the convergence of the series
in the inequality

Vi@l <D IVl

k=1
which finishes the proof. ]
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5. Concluding Remarks: Trace-Norm Approximations

The strong Emamirad-Laadnani approximation theorem (Cor. 3.4) and the re-
sults of Sect. 4.2 proving that Dirichlet-to-Neumann semigroup U (t) and appro-
ximants V, po(t/n)" belong to &, (0H), for all n > 1 and ¢t > 0, motivate the
following conjecture:

Conjecture 5.1. [EmZa|. The Emamirad—Laadnani approzimation theorem
is valid in the Tr-norm topology of €,(0H).

Remark 5.2. Notice that the strong approximation of the Dirichlet-to-
Neumann Gibbs semigroup U (t) by the Tr-class family (V, 9a(t/n))" does not lift
automatically the topology of convergence to, e.g., operator-norm approximation

[Zag2].

Therefore, to prove Conjecture 5.1 one needs additional arguments similar
to those of [CaZag2|. To this end we put the difference in question A, (t) :=
(Vy,00(t/n))™ — U(t) in the following form:

An(t) = {(Vyea(t/n)™ = (U(t/n)* } (V3 r(t/n)™ (5.1)
+ (U(t/n) " {(Vypa(t/n)™ — (U(t/n))™" }.
Here for any n > 1, we define two variables k, = [n/2] and m,, = [(n + 1)/2],

where [z] denotes the integer part of z > 0, i.e., n = ky + my,. Then, for the
estimate of A, (¢) in the &, (0H)-topology one gets

1Al < (Vo (t/n) ™ = (UE/m)* | |(Vyoet/n)™ [ (5.2)
+ W@/ I [(Vya(t/n)™ — (U (t/n)™"|.

In spite of Remark 5.2, the ezplicit representation of approximants
{(Vy,6a(t/n))"},~, allows to prove the corresponding operator-norm estimate.

Theorem 5.3. [EmZal. Let V, p0,(t) be defined by (5.3). Then one gets the
estimate

I(Vyo0r(t/n)" =U@)| <e(n), lim e(n) =0, (5.3)

n—oo

uniformly for any t-compact in R}F.

To establish (5.3) we use the "telescopic" representation

(Vy00,(t/n))" = U(t) (5.4)
n—1

= (Vy00, (t/n) "4V, o0, (E/n) = U(t/n)}(U(t/n))*,
s=0

and the operator-norm estimate of {V, sq,(t/n) — U(t/n)} for large n.
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The next auxiliary result establishes a relation between the family of operators
Vy.00,(t) and the Dirichlet-to-Neumann semigroup U(t).

Lemma 5.4. [EmZa|. There exists a bounded operator W, pa, (t) on OH such
that

V3,00, () = Wa 00, (1)U (?) (5.5)
for any t > 0.

Now we return to the main inequality (5.2). To estimate the first term in
the right-hand side of (5.2) we need Th. 5.3 and the Ginibre-Gruber inequality
|CaZag2|

1(Vy,00(t/n)™ (1 < C U(mnt/n).

To establish the latter we use representation (5.5) given by Lem. 5.4.
To estimate the second term one needs only the result of Th. 5.3. All together
this gives a proof of Conjecture 5.1 at least for the ball Qp.
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