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1. Introduction

In the present paper, we study the linear relations generated by a weight non-
negative operator function and a differential expression with variable unbounded
positively definite operator coefficient degenerating on one of the ends of the in-
terval. For the case when there is no operator weight, the spaces of boundary
values (SBV) for maximal operator generated by this differential operator expres-
sion were constructed in [1-5]. The SBV allows to describe various classes of
restrictions of maximal operator. (The results of papers [1-3] can be found in
monograph [6].)

Differential expressions with operator weight generate linear relations that, in
general, are not operators. In the present paper we construct the SBV for a maxi-
mal relation. We study various restrictions of maximal relation and describe the
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spectrum of these restrictions by using SBV. We prove that if the relation (L(\) —
AE)~!is a bounded everywhere defined operator, then it is an integral operator.
In this case we determine the criterion of holomorphicity for the operator function
A — (LX) — AE)~! (here L()) is a restriction of maximal relation, A\ € C, E is
the identity operator). To simplify the proofs the main theorems are proved with
abstract spaces of boundary values being used. A description of the generalized
resolvents of minimal relation is based on the obtained results. Notice that the
formula of generalized resolvents of minimal relation generated by nonnegative
operator function and differential expression with bounded operator coefficients
was obtained in [7, 8]. Our formula differs from that given in [7, 8], because we
consider a differential elliptic-type expression with unbounded operator coefficient.

One of the difficulties in the studying of operators and relations generated by
differential operator expression of elliptic-type is the constructing of the Green
function in one of the boundary value problems. We construct this function in
Sect. 3.

2. Main Assumptions, Notation

Let H be a separable Hilbert space with the scalar product (+,-) and the norm
||I-ll. On a compact interval [0,b], we consider the differential expression

lly] = —y" +t*Ai(t)y,

where o > 0, and the operator function A, (¢) satisfies the following conditions:
1) Ai(t) is a positively definite selfadjoint operator in H for any fixed t € [0, b];
2) the operators A; (t) have the constant domain D(A;(t)) = D(A1); 3) A1(t)x
is a function strongly continuously differentiable on [0, b] for any = € D(A;).

We fix a point to € [0,]. Let {H,}, —1 < 7 < 1, be a Hilbert scale of the
spaces [6, Ch. 2; 9, Ch. 1] generated by A;(tg). Notice that the definition of the
Hilbert scale implies Hy = H. It follows from the properties of A; (t) that the
scale {H,} does not depend on the choice of point ty € [0,b] in the sense below.
If ) € [0,b] is any other point and {H’} is a scale of the spaces generated by
operator A (ty), then the sets H, and ET; coincide and their norms are equivalent.
For fixed t € [0, b], the operator A;(t) is a continuous one-to-one mapping of H.,
onto H. Then its adjoint operator A (t) is a continuous one-to-one mapping of
H onto H_;, and A (t) is an extension of A;(t) [6, Ch. 2; 9, Ch. 1]. Further, we
denote [T[y] = —y" + t* A (t)y.

Let A(t) be a function strongly measurable on [0, b] whose values are bounded
selfadjoint operators in H. Suppose the norm || A(¢)]| is integrable on [0, b]. More-
over, we assume that the inequality

(A(t)z,z) > 0 (1)
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holds for any z € H and for almost all ¢ € [0,b]. Generally, it is assumed that
a set of points ¢ € [0, b] satisfying (1) depends on z.

We claim that there exists a set Zy C [0,b] of measure zero such that the set
Z = [0,b]\ Zy has the following property: for all ¢ € Z and for all z € H inequality
(1) holds. Indeed, due to separability of the space H there exists a countable set
{z,} (n € N) dense in H. Let Z,, be a set of ¢ € [0,b] such that inequality (1)
holds, where z is replaced by z,,. We denote Zy,, = [0,b]\ Z,, Zo = ,, Zo,n. Then
the measure of the set Zj is equal to zero, and for all t € Z = [0,b] \ Zy and for
all n € N inequality (1) holds, where z is replaced by ;. Since the operator A(t)
is bounded and the set {z,} is dense in H, we obtain the desired statement. So,
inequality (1) holds on some set Z such that Z does not depend on z € H, and
the measure of the set [0,b] \ Z is equal to zero.

Since the norm ||A(t)|| is integrable on [0, b], we have HAl/p(t)H € L,(0,b).
On the set of functions continuous on the interval [0,b] and ranging in H, we
introduce the norm

1/p

b
lyll, = /HAI/P(t)y(t)Hp | , 1<p<oo.
0

Identifying the functions y such that [ly[|, = 0 with zero, then performing the
completion, we obtain a Banach space denoted by B=L,(H, A(t);0,b). The ele-
ments of B are the classes of functions identified with each other in the norm ||-[| ..
In what follows, § denotes a class of functions with representative y. To avoid a
complicated terminology we say that the function y belongs to B.

Let Go(t) be a set of elements = € H such that A(t)z =0, H(t) = H© Go(t),
and Ay(t) be a restriction of A(t) to H(t). Then the operator Ay(t) acting in
H(t) has the inverse A,'() (which, in general, is unbounded). By {H¢(t)},
—00 < ¢ < 00, we denote a Hilbert scale of spaces generated by operator A, 1(t).
As known from [6, Ch. 2; 9, Ch. 1], the operator Ay(t) can be extended to the
operator Ag(t) = Apq(t) that continuously and bijectively maps H_o(t) onto
Hi_4(t), 0 < a < 1. Further, in Ap 4 (t) we will omit the symbol o characterizing
the domain of operator Ag«(%)). By A(t) we denote the operator that is defined on
H_,(t) ® Go(t) and is equal to Ag(t) on H_,(t) and to zero on Go(t). Obviously,
the operator A(t) is an extension of A(t).

The description of the space B for p > 1 was given in [8] and the case of p = 2
was considered in [10]. The space B consists of elements (i.e., function classes)
with representatives of the form flo_l/p(t)P(t)h(t), where P(t) is an orthogonal
projection of H onto H(t), h(t) € L,(H;0,b). Without changing considerably
the proof given in [8], we obtain the above statements for p = 1. The space
Li(H, A(t);0,b) is used only when constructing the Green function in Sect. 3.
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For p >1, the dual space of B is the space B* = L,(H, A(t);0,b)p 1 +¢ 1 =1)
(see [8]). A sesquilinear form (i.e., the form that is linear in the first argument and
antilinear in the second one) determined by duality between B and B* is denoted
by (-,-), and the action of the functional § € B* on the element f € B is given by
the equality

b
(Fr) = / (A1) (8), (1)),
0

which is independent of the choice of representatives f € f ,gEQ.

2. The Green Function

In this section, we construct the Green function G(t,s,A) of the Neumann
problem for the expression [*[y] — AA(t)y. The construction is based on the
Green function G(t,s) (see [5]).

By [5], the operator function G(t,s) is called the Green function of
the Neumann problem for the expression [[y], i.e., of the problem

lly] = —y" + t* A1 (t)y = g(¢), (2)
y'(0) =4/(b) =0, (3)

if the integral y(t) = / G(t,s)g(s)ds is a strong solution (see [11]) of equation

(2) and it satisfies conditions (3) for any strongly continuous function g(t) in the
space H,i. By [11], the function y(¢) (t € [0,b]) is called a strong solution of
equation (2) if y(¢) € D(A;) for any ¢, and y(t) is twice differentiable in H, and
y(t) satisfies (2). It was proved in [5] that for sufficiently large k there exists
a Green function Gg(t,s) of the Neumann problem for the expression

kly] = =y + t2 A1 (t)y + k*t%y.

Lemma 1. There exists a Green function of problem (2), (3).

Proof. By L (L}) denote an operator generated by the expression [[y]
(Ie[y]) on the functions y(t) that are strongly continuous in H, on [0,b], twice
differentiable in H on [0, b] and they satisfy boundary conditions of the Neumann
problem (3). Let £ (L) be a closure of L' as well as of £} in the space La(H;0,b).
It was proved in [5]| that for sufficiently large k& the operator [,,;1 exists, it is
continuous in Ly(H;0,b) and is an integral operator with the kernel Gi(t,s).
Since L differs from L; by a bounded selfadjoint operator and L is selfadjoint,
we see that L is also selfadjoint. Obviously, £ is nonnegative. We claim that the
operator £~! exists and it is bounded in Ly(H;0,b).
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Indeed, let {y,} be a sequence of functions g, from the domain of £' such that

(L' Yns Yn) o (m05) = 0

as n — oo and “yn||L2(H;0,b) = 1. Therefore,
b b
2
(' ) o 1108) = / lya(0)||” de + / (AL (8 (8), (1))
0 0

b b
> / I @ dt + e / £ (yn(8) yn(t))dt 0 as n — oo,
0 0

where ¢; > 0 does not depend on ¢. (Here and further, the symbols ¢y, s, ...
denote positive constants that are different in various inequalities.) Hence,

b
/Hy;l(t)H2dt 0
0

and
b b
/ 19 (8), yn (B = (0 + 1)~ B [y ()2 — / 19 Re(y!, (), yn (£))dt - 0
0 0

as n — oo. (Here the formula of integration by parts is used.) This yields that
|yn(b)|| = 0. Therefore, as n — oo,

b
Yn(t) = yn(b) — /t y! ()dt — 0

uniformly on [0,b]. The above contradicts the equality |yn|l;,(s;0) = 1. Thus
the existence and boundedness of the operator £~! are proved. Consequently, the
operator L is positively definite in Lo(H;0,b).

We denote Gy = E,;l. As noted above, Gy is an integral operator with the
kernel G (t,s). By T denote the operator of multiplication on ¢t* in Lo(H;0,b).
Suppose G = TY2G,T'/2. The operator G is selfadjoint. Moreover, G is
an integral operator with the kernel t*/2G}, (¢, s)s*/2. We will prove that the opera-
tor k2G7 — E has an everywhere defined inverse operator in the space Ly(H;0,b).

Let v, € Ly(H;0,b), where n € N. We denote 7—1/2% = Up, Gru, = wy.
Then Lrw, = u, and T Y2Lw, = v,. It follows from the equality £; =
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L + k2T that Lw, belongs to the domain of operator 72, and T Y2Lw, =
vy, — k2T 2w,. Hence, by direct calculation we obtain

(U, (B — K2G7)vy) = (Un,vy) — K2(TY2GT 20, v,)
= (T7Y2(L + BT )wn, TV2(L + k2T )wy) — k2 (wn, (£ + K2T)w,)
= k2 (Lwp, wpn) + (T_I/QEwn,T_l/Qﬁwn)
= k2 (Lwy, wy) + (v, — E2TY 20, v, — k27'1/2wn)

(in this equality, (-,-) is a scalar product in Ls(H;0,b)). Suppose (vn,(F —
k2G1)v,) — 0 as n — oo. It follows from the last equalities that

(['wna wn) — 0, (vn - T1/2’U)n, Un — Tl/an) — 0.

Since L is a positive definite operator, we have w, — 0in Ly(H;0,b)). Therefore,
vp — 0 in Lo(H;0,b) as n — oo. Thus the operator (kG — E)~! exists and it
is everywhere defined.

In the space Lo(H;0,b), we consider the integral equation

b
K(t, s)z = t*2Gy(t, s)z + k> /to‘/2Gk(t, )72 K (T, 8)xdr (4)
0

with the unknown function K(t,s)z, where x € H. Since the operator
kG — E has the everywhere defined inverse operator, we see that the equation
(4) is solvable. In [5], it was proved that

|GE(t, s)ll < e, (5)

where ¢; does not depend on s, t. Using (4), (5), we obtain

2
to‘/2Gk(t,s)xH dt <o llz)?,  (6)

- b
/||]C(ta 8)$||2dt < H(kZGT—E)IHQ/
’ 0

where ¢y does not depend on s. Using (4)-(6), we get
1, s)]| < es, (7)

where c3 does not depend on ¢, s.
We define the function G(t, s) by the formula

b
G(t,s)x = G(t,s)z + k? /Gk(t,T)Ta/ZIC(T, s)xdr. (8)
0
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It follows from (4), (8) that t'/2G(t,s) = K(t,s). Hence, taking into account (8),

we obtain
b

G(t,s)r = Gp(t,s)z + k? /Gk(t, T)T*G(T, s)zdT. 9)
0
The function G(t, s) satisfies the boundary conditions

Gi(0,5) = Gi(b,s) =0, s#0,5#Db;

These equalities follow from (9) and from the fact that the function Gg(¢,s)
satisfies the same conditions (see [5]).
Formulas (5), (7), (8) imply

1G (¢, 9)]l < e, (11)

where ¢; does not depend on ¢, s. In [5], the operator Gg(t,s) is proved to

extend to Gk(t s) in H_{ such that it is a continuous mapping of each space

H,, =1 < 7 <1, of the scale {H,} into itself. The operator function Gy(t, s) is

umformly bounded on [0,b] x [0,b] with respect to the norm in each space H.,.

By the construction, the operator function G(t, s) possesses the same properties.
Suppose the function g(t) is strongly continuous in H. .. We denote

b b

z(t):/G(t,s)g(s)ds, zk(t):/Gk(t,s)g(s)ds.

0 0

It follows from (9), (10) that z(¢) takes the values in D(A;), it is twice strongly
differentiable in H, and 2’'(0) = 2'(b) = 0. Since the function zx(t) is a strong
solution of the equation lx[y] = g, we see that (9) implies the equality lx[z] =
Ik[zk] + K*%2 = g + k®t%2. Hence [[2] = g. Lemma 1 is proved.

We notice some more properties of the function G(¢,s). Let G be an operator
b

defined by the formula Gv = / G(t,s)v(s)ds in Ly(H;0,b). Then L' = G.

Since the operator L is selfadjo[;nt, we have G*(t,s) = G(s,t). The function
G(t,s) is strongly continuous with respect to ¢ for each fixed s € [0,b] what
follows from (7), (8) and the fact that the function Gg(t,s) possesses the same
property (see [4, 5]).

Lemma 2. Suppose h(t) € L1(H;0,b). Then the function

b

y(t) = /G(t,s)h(s)ds (12)

0
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has the following properties:

(a) y is continuous on [0,b] in the space H and strongly differentiable on [0, b]
in the space ﬁ_l,'

(b) ' is absolutely continuous in the space H i;

(c) y satisfies the equation

Iyl = —y" + t* Af (H)y = h(t) (13)

and boundary conditions (3).

Proof We take a sequence of functions hy(t) such that the sequence
{hn(t)} converges to h(t) in Li(H;0,b) as n — oo and the functions hy(t) are

strongly continuous in the space Hy;. Then, by Lemma 1, the functions y, (t) =
b

G(t,s)hn(s)ds are strong solutions of the problem (13), (3), where h(t) is
0
replaced by Ay, (t). Thus the equality

—Yn () + t AT (£)yn (t) = hn (1) (14)

holds. From (11), (12), it follows that the sequence {yn(¢)} converges to y(¢)
uniformly in H. Therefore the sequence {A] (t)yn(t)} uniformly converges to
A7 (t)y(t) in the space H_;. Then (14) implies the convergence of the sequence
{yr(t)} in LlA(I:I,l;O, b). From this and (3) it follows that {y/ ()} converges

uniformly in H ;. Now all assertions of Lemma 2 are obtained from the above in
a standard way. The proof of Lemma 2 is complete.

Lemma 3. For any function h(t) € L1(H;0,b) and any elements 1,29 € H
there exists a unique solution y(t) of equation (13) such that y(t) has the properties
(a), (b) of Lemma 2 and satisfies the boundary conditions

y'(0) = —z1, '(b) = zo. (15)

b
This solution has the form y(t) = G(t,0)z1 + G(t,b)zs +/ G(t,s)h(s)ds.
0

Proof. First, we notice that the invertibility of operator £ yields the unique-
ness of solution. Further, as follows from [5], the function zx(t) = G(t,0)z1 +
G (t,b)z2 has the properties (a), (b) and satisfies the equation [ [y] = 0 and
conditions (15). Hence, taking into account (9), (10), we obtain that the function
z(t) = G(t,0)z1 + G(t,b)x2 has the properties (a), (b), it is a solution of the
equation [*[y] = 0 and it satisfies the conditions (15). Now, applying Lemma 2,
we complete the proof of Lemma 3.

To construct the Green function G(t, s, A) we consider the equation

Iyl = M)y = —y" + 17 AT ()y(t) = MA(R)y(t) = A®t)f(2). (16)
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Let G(t,s,\) be an operator function whose values are bounded operators
in H. We say that G(t,s, ) is the Green function of problem (16), (3) if for any
function f € Li(H, A(t);0,b) the integral

b
26 = [ 65 VA (5)ds
0
possesses the properties (a), (b) of Lemma 2 and satisfies equation (16) and the
boundary conditions (3).

As shown in the proof of Lemma 1, the operator £ is positively definite in
Ly(H;0,b). From the equality G = £~! it follows that G is a positively definite
operator. Consequently, the kernel AY/2(t)G(t, s)AY/?(s) determines the bounded
nonnegative operator

b
G v = / A2t $)AV2(s)0(s)ds (v € Lo(H;0,b))
0
in the space Lo(H;0,b).
By po(G4) we denote a set A € C such that the operator A\G4 — E has

a bounded everywhere defined inverse operator. The set pg(G4) contains all
nonreal numbers, the negative ones and zero. Further, we will assume that A €

po(Ga).

Theorem 1. For any X\ € po(G 4), there exists a Green function G(t,s,\) of
problem (16), (3).

P roof. We consider the integral equation
b
K(t, s, Nz = A"2(t)G(t, s)z + >\/Al/Z(t)G(t,T)AI/Z(T)K(T, s, Nzdr  (17)
0

with the unknown function K (¢, s, A)z, where z € H. Equation (17) can be solved
in Ly(H;0,b) for A € po(G ).
We introduce the function G(t, s, A) by the equality

b
G(t,s,\)z = G(t,s)z + A/G(t, T)AY2(T)K (1,5, \)zdr. (18)
0

For fixed s € [0,b], the function AY2(t)K (t,s,\)z (z € H) belongs to Li(H;0,b).
Consequently, G(t, s, A) is a strongly continuous function with respect to ¢ in the
space H. It follows from (17), (18) that

AV2(0)G(t,5,0) = K(t, 5, \).
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Hence, using (18), we get

b
G(t,s,\)x = G(t,s)x + A /G(t, T)A(T)G(T, 8, \)zdT. (19)
0

Moreover, by (10), it follows that
G(0,5, )z = G(b,s,\)x =0, s#0,s# b;
G1(0,0,\)x = —z, G}(b,0, )z = G}(0,b,\)z =0, G}(b,b,\)x = =. (20)

Further proof is done analogously to that of [12], where the case of @ = 0
was considered. In particular, similarly as in [12], we obtain that for any element
dy € H_1(s) ® Gy(s) the equality

G*(s,t, \)A(s)d, = G(t, 5, \)A(s)d;
holds. Therefore,
G*(s,t,\)A(s)f(s) = G(t, s, \)A(s) f(s) (21)

for any function f € Ly(H, A(t);0,b).

For A € po(G4), the function G(¢,s,\) is bounded with respect to the first
argument. Therefore the function G*(t, s, A) has the same property. From this
and from (21) there follows the equality

b b

/G(t,s,)\)fi(s)f(s)ds = /G*(s,t, N A(s)f(s)ds

0 0

and the existence of integrals in it. Using (19), (20) and the properties of function
G(t,s), we complete the proof.

In [12], the Green function for the expression [*[y] — AA(t) was constructed
in the case of @« = 0. If « = 0 and A =0, then G(¢,s,0) = G(¢,s) coincides with
the Green function constructed in [13].

By U(t, A), denote the operator one-row matrix U(t,A) = (Ui (¢, A), Ua(t, A)),
where

Up(t,\) = G(£,0,)), Us(t,\) = G(t,b, \). (22)

Lemma 4. Let X\ € po(G4). For any elements x1,22 € H and any function
f € Li(H,A(t);0,b) there exists a unique function y having the properties (a),
(b) of Lemma 2 and satisfying equation (16) and boundary conditions (15). This
function has the form

y(t) = U1 (t, >\)$1 + Ug(t, )\)1‘2 + F(t), (23)
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where
b b
Fm:ﬁm@m&m@m:/@@ummV@@ (24)
0 0

Proof. It follows from Lemma 3 and equalities (19), (20), (22) that the
function yo(t) = Uy (¢, A\)z1 + Ua(t, A)z2 has the properties (a), (b) of Lemma 2,
and yo(t) satisfies the boundary conditions (15) and the equation

—y" + 1AL (H)y — MA(t)y = 0. (25)

Hence, taking into account Theorem 1, we obtain that (23) has all the properties
indicated in the lemma. To prove that problem (25), (15) has a unique solution is
to prove the uniqueness of the solution of problem (16), (15). Let the function uy,
having the properties (a), (b), be a solution of equation (25) with homogeneous

b

conditions (3). We put u(t) = )\/ G(t,s)A(s)yo(s)ds. Using Lemma 3, we get
0

uo(t) = u(t). Hence,

b
AWQMMa:A/mﬂmG@gA@%@m&
0

Since X € po(G ), we have AY2(t)ug(t) = 0 for almost all ¢ € [0,b]. Therefore,
uo(t) = u(t) = 0 for all £ € [0,b]. So, the uniqueness of the solution of problem
(25), (15) is established. Lemma 4 is proved.

Remark 1. Suppose the function y has the properties (a), (b), and it
satisfies equation (16) and boundary conditions (15), where z;,z2 € H. Then
y'(t) € H for all t € [0, b].

Indeed, the function y is a solution of nondegenerate equation on each interval
[, b] (o > 0). Consequently, y'(¢t) € H for all ¢ € [, b] (see [12]). Hence, taking
into account (15), we obtain the desired statement.

Lemma 5. Suppose F' is defined by equality (24); then the operator f — F =
F(t,f,\) is a continuous mapping of the space B into the space C(H;0,b).
Proof coincides with that of the analogous lemma in [12].

Corollary 1. The operator f — F = F(t, 1, A) is continuous in B.

4. Maximal and Minimal Relations

In this section, the maximal and minimal relations generated by expression
[*[y] and operator function A(t) in the space B = L, (H, A(t);0,b) are defined and
the properties of these relations are studied. Everywhere below we will assume
that p > 1.
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Terminology concerning linear relations can be found, for example, in [6, 14,
15]. The linear relation 7' in the Banach space B is understood as a linear manifold
T C B x B. Further the following notations are used: {-,-} is an ordered pair;
KerT is a set of ordered pairs of the form {z,0} € T; ker T is a set of elements
z such that {z,0} € T, D(T) is a domain of T'; R(T) is a range of values; p(T)
is a resolvent set of the relation T, i.e., a set of points A\ € C such that the
relation (T — AFE) ! is a bounded everywhere defined operator; o.(T) (o,(T)) is
a continuous spectrum (residual spectrum) of the relation T, i.e., a set of points
X € C such that the relation (T'— AE) ! is a densely defined and unbounded (not
densely defined) operator; o, (T') is the point spectrum of T, i.e., a set of points
A € C such that the relation (T — AE)~! is not an operator. Since all relations
considered are linear, the word "linear" will often be omitted.

By D’ we denote a set of functions y(t) € B satisfying the following conditions:
i) y is strongly continuous on [0, b] in the space H and strongly differentiable in
the space H_1, and y/(t) € H for all t € [0,b]; (ii) ¢/ is absolutely continuous
in F_y; iii) I*[y](t) € Hy(t) for almost all ¢, and the function Ay'(t)I*[y] € B
(p~' 4+ ¢t = 1). To each class of functions identified with y € D’ in B we
assign the class of functions identified with Ag'(¢)[*[y] in B. In general, this
correspondence is not an operator as the function y may be identified with zero
in B and A;'(t)I*[y] may be nonzero. Thus, in the space B we obtain a linear
relation L'. Denote its closure by L and call it a maximal relation. We define the
minimal relation Ly as a restriction of L to the set of elements § € B that have
representatives y € D' with the property y(0) = 4/'(0) = y(b) = ¢'(b) = 0.

Let Qo be a set of elements z € H x H for which the equality A(¢)U (¢, \)x =0
holds almost everywhere. Using Theorem 1, we get

b

U(t,0)x =U(t,\)x — )\/G*(s,t, MNA(s)U(s,0)zds, (26)
0
b
U(t, Nz =U(t,0)x + )\/G*(s,t)ﬁ(s)U(s, A)zds. (27)
0

By (26), (27), it follows that Qo does not depend on A. By @ we denote
an orthogonal complement of Qg in H x H. In ) we introduce the norm

1/r

b
loll, = { [[a@us o] @) <klal, r>1se@ e
0

We denote the completion of @ with respect to the norm ||-||, by Q_(r). It follows
from (26), (27) that the replacement of U(s,0) by U(s,\) in (28) leads to the
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same set Q_(r) with the equivalent norm. Let the symbol U(s, Az (z € Q_(r))
denote a class of functions to which the sequence {U (£, \)z,} (2, € Q) converges
whenever {z,} converges to z in the space Q_(r).

We introduce the operator V;.(\) : Q_(r) = L,(H, A(¢);0,b) by the formula
Vi(N)z = U(t, A)z. Tt follows from (28) that the operator V;.()) is continuous, the
range R(V;(A)) is closed, and ker V;.(A) = {0}. Hence the range of the adjoint
operator V*(A) : L, (H,A(t);0,b) - Q*(r) C Q = @ coincides with Q* (r)
(here r=!' 47" = 1). We find the form of V;*()\). For any elements = € Q and
f € Ly (H,A(t);0,b), we have

b
(Vi (N)a) = / (A(s)f (5), U(s, Nz)ds
0

b
—( / U (s, ) A(s)  (s)ds, ) = (V (V) ). (20)
0

Here (V*(A)f,z) is a scalar product of the elements V*(\)f € Q* (r) C Q and
x € Qin Q. For z; € Q*(r), this scalar product (z,z) is extended by continuity
to the sesquilinear form (zy,z_) determined by the duality between Q* (r) and
(Q—(r). Taking into account (29) and that ) can be densely embedded in Q_(r),
we obtain

b
VO f = / U (s, NV A(s) f (5)ds. (30)
0

Further, to avoid complicated notation, we denote Q_ = Q_(p), Q4+ = Q* (q),
where p~! + ¢~! = 1. Thus the following lemma is proved.

Lemma 6. The operator Vq*(j\) s a continuous mapping of B onto Q+.

Lemma 7. For any A € po(Ga), the relation L — \E consists of the pairs
{7, f} € B x B such that . .
g=U(t,\)z + F, (31)
where x € Q_ and F are a class of functions identified in B with the function
(24).
Proof It follows from Theorem 1, Lemma 1 and the definition of the
space (Q_ that a pair {g, f} € B x B satisfying (31) belongs to L — AE. Now

let {7,f} € L — AE. Then ‘there exists a sequence of pairs {n, fn} € I' = \E
converging to the pair {7, f} in B x B. Using Lemma 4, we obtain that the
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function y, can be represented in the form

b

yn(t) = U(t, Nz, + /G*(s,t, S\)A(s)fn(s)ds, (32)

0

where z,, € Q. From the convergence of the sequence of pairs {gp, fn} in B xB
there follows the convergence of the sequence {U(t, \)z,} in B. When passing to
(32) to the limit as n — oo, we find that g admits the form (31). The proof of
Lemma 7 is complete.

Corollary 2. The operator V,(\) is a continuous one-to-one mapping of Q—
onto ker(L — \E).

Remark 2 Inequality (31), the element z € @Q_ and the function F are
uniquely determined by the pair {§, f} € L — AE. The pair {§, f} € L' — \E if
and only if 2 € Q and in this case z = {—¢/(0),4'(b)}.

Remark 3. It follows from (22), (24), (30) that Vq*(j\)f ={F(0),F(b)}.

Remark 4. When p =2 and there is no operator weight (i.e., A(t) = E),
the equality Q= H_3/3(q42) X H_3/4 is valid (see [5]).

Lemma 8. For any A € po(Ga) the relation Ly — AE is closed.

P roof. Suppose the sequence of pairs {ijn, fn} € Lo — AE converges to the
pair {7, f} in the space B x B. It follows from the definition of Ly and Remark 2
that we can choose representatives y,, f, of the classes of functions ¢, fn such
that they satisfy (32), where z,, € Q and y,(0) = y,(b) = y.,(0) = y/,(b) = 0.
Using Remark 3 and Lemma 4, we get x, = 0 and %*(j\)fn = 0. Passing to
the limit as n — oo in the last equality and in (32), we obtain that x = 0 and
V() f =0 in (31). Therefore {§, f/} € Ly — AE. Lemma 8 is proved.

Remark 5 It follows from the proof of Lemma 8 that R(Ly — AE) =
ker V' (A).

5. Spectrum of Restrictions of the Maximal Relation L

In this section, we introduce an abstract space of boundary values (SBV).
By means of SBV we describe the spectrum of restrictions of the relation L and
study the bounded operators (L(A\) — AE) !, where Ly C L()\) C L.

Suppose By, By, Bi, By are Banach spaces, T C B; x By is a closed relation,
and 6: T — B; X 32 is a linear operator. We denote §; = P;d, 1 = 1,2, where P;
is the projection B; x By onto B;, i.e. , Pi{z1, 22} = x; (the similar notation will
be used in the analogous cases below). The following definition is given in [16]
for operators and in [17] for relations.

136 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 2



On Linear Relations Generated by Nonnegative Operator Function...

Definition. The quadruple (Bl, By, 61, d2) 1s called a space of boundary values
(SBV) for a closed relation T if the operator § is a continuous mapping of T onto
B; x BQ, and the restriction of the operator §1 to KerT is a one-to-one mapping
of KerT onto B;.

We define an operator ®s : By — B by the equality ®5 = 023, where g =
(61|kerr) ! is the operator inverse to the restriction of d; to Ker7. We denote
To = kerd, T) = kerd;. Then Ty C T} C T, R(T1) = R(T), and the relation T
is an operator (see [16, 17]).

From the definition of SBV, it follows that between the relations 6 C By X By
and T with the property Ty € T C T there is a one-to-one correspondence
determined by the equality 67" = 0. In this case we denote T' = Tj.

Lemma 9. Ty = Tg.
Corollary 3. The relation Ty is closed if and only if 0 is closed.

Remark 6. By the continuity of operator ®s the relation @ is closed if
and only if the relation 8 — ®@; is closed.

Lemma 10. Let R(T) = By. Then the following statements are valid:

1) the range R(Ty) is closed if and only if the range R(0 — ®s) is closed;

2) diim By /R(Ty) = dim By /R (0 — ®s);

3) dimker(Ty) = dimker(f — ®5).

The proves of Lemmas 9, 10 are based on the following statement, that might
be known.

Lemma 11. Suppose By, By are Banach spaces, A : By — By is a bounded
linear operator with the range R(A) = Bs, X C By is a linear manifold such that
ker A C X. Then AX = AX and dimB;/X = dim By/AX.

Proof of Lemma 11. The continuity of operator A implies AX C AX.
We prove the inverse inclusion. Let Bgo) = B;/ker A be a quotient space and 7
be a canonical mapping of By onto BY. We define an operator Ay by the equality
A = Agm. Then Ag is a continuous one-to-one mapping of B} onto Bs. Let
a € AX, a, € AX, where n € N. If a sequence {a,} converges to a, then
the sequence {Aalan} converges to Aala in the space BEU). Since ker A C X,
we see that all elements of the classes of adjacency Ay Ya, belong to X. Let
b e Aala. Then we can choose a sequence {b,} such that b, € Aalan C X and
{b,} converges to b. Therefore b € X. Since Ab = a, we have AX C AX.
The equality AX = AX is proved.

Let Ay be an operator defined by the equality Aym = mo A, where 7, mo are
canonical mappings of By, Ba onto quotient spaces Bi/X, Ba/AX, respectively.
Since A; is a continuous one-to-one mapping of Bi/X onto By/AX, we have
dim B;/X = dim By/AX. The proof of Lemma 11 is complete.
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Proof of Lemma 9. In Lemma 11 we take By = By x By, By = Bl X Bg,
A =6, X =Ty. Then AX = 6Ty = 6, and AX = 6Ty = 6. Hence, Ty = Tj,.
Lemma 9 is proved.

Proof of Lemma 10. We define an operator W : By — By by the equality
Wf = 6{T7"f, f}, where f € By. From the continuity of 77" (see [16, 17])
and the properties of operators dy, do it follows that W is a continuous mapping
of By onto Bg. Moreover, using the definition of the relations Ty, T1, we get
ker W = R(Ty). Any pair {y, f} € T is uniquely represented in the form {y, f} =
mo +m, where mg € KerT, m € Ty, namely, {y, f} = {y—Tl_lf, 0} +{T1_1f,f}.
Hence, (02 — ®501){y, f} = 62{T, ' f, f} = W f. Therefore, WR(Ty) = R(6 — ®s).
In Lemma 11 we take By = By, Bo = By, A=W, X = R(Ty). Then we obtain
the first and the second statements of Lemma 10. An element u € T has the form
u = ug + v, where uy € KerT, v € Tp, if and only if dou — ®561u = 0. Hence
the restriction of the operator d; to KerTy is a one-to-one mapping of KerTy onto
ker(f — ®;5). From the above the third statement of the lemma follows. Lemma 10
is proved.

Let By = By = B’ and let the quadruple (By, By, 61, d2) be an SBV for a closed
relation T C B’ x B'. A pair {y1,y2} € T if and only if the pair {y1,y2 — A\y1} €
T — ME. For any pair {y1,y2 — \y1} € T — AE we put 6(A){y1,y2 — Ay1} =
Myi,y2}. As proved in [17], A € p(Ty) if and only if the quadruple
(B, Ba,61(\),02()\)) is an SBV for the relation T — AE. As above, we denote
P50 = 62(A) (01 (N) [Rer(7—2E)) By — By. Lemma 10 implies the following
assertion.

Theorem 2. Let X € p(T1). Then the following statements are valid:

1) the range R(Ty — AE) is closed if and only if the range R(6 — ®55)) is
closed;

2) dimB'/R(Ty — AE) = dim Bo/R(0 — P5());

3) dimker(Ty — AE) = dimker(6 — ®5y)).

Corollary 4. Suppose that the relation 0 is closed. A point X € p(T1) belongs
to the point spectrum op,(Ty) of the relation Ty if and only if ker(6 — ®5(5)) # {0}.
A point X € p(Ty) belongs to the residual spectrum o.(Ty) (to the continuous
spectrum o.(Ty)) if and only if the relation (6 — CI)(;()\))_I is a non-densely defined
(densely defined and unbounded) operator. A point A € p(Ty) belongs to the
resolvent set p(Ty) if and only if (0 — '1)50\))_1 is a bounded everywhere defined
operator.

Notice that for abstract SBV introduced in |20, 21] the statements similar to
Cor. 4 were obtained in [18, 19].

In view of Lemma 10 and Theorem 2, we recall the following definitions (see
[22] for relations and [23, Ch. 4] for operators). Let S C B; x By be a closed
linear relation. The quantity x(S) = dimker S — dim By /R(S) is called an index
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of S if one of the subspaces ker S or Bo/R(S) is finite-dimensional. The relation
S is called normal solvable if R(S) is closed; it is called semi-Fredholm if it is
normal solvable and ker S or By /R(S) is finite-dimensional; it is called a Fredholm
relation if it is semi-Fredholm, and the subspaces ker S and By/R(S) are finite-
dimensional; it is called regular solvable if it is a Fredholm relation and x(S) = 0;
it is called solvable if R(S) = By and ker S = {0}. Theorem 2 implies that the
relations Ty — AE and 6 — @) simultaneously possess or do not possess the
properties listed in this definition.

We apply the obtained results to the relation L generated by the expression
[ [y] and the operator function A(t).

We define the boundary operators v : L — Q_, vo : L — Q+ for the relation
L in the following way. Let a pair {§, f} € L. Then § has form (31) for A = 0.
By (31), to each pair {gj,f} € L we assign a pair of boundary values by the
formulas

b
i FY =2, wli Fy =V (0)f = / Ut (5,0/A(s)f(s)ds.  (33)
0

It follows from Remark 2 that the pair {y1{7, f +,ve{7, f +} of boundary values
is uniquely determined for each pair {g, f } € L. By Lemmas 6, 7 and Corollary 2,
for each A € pg(G 1) the quadruple (Q_, Q+,1,72) is the space of boundary values
for the relation L. As above, by v we denote the operator defined by the equality
i, £ = {1 {9, f 1, 72{5, f}}. The operator v is a continuous mapping of I onto
Q- x Q+. It follows from Remark 3 and the proof of Lemma 8 that kery = L.
Analogously as above, for any pair {yi,y2} € L we put y(A\){y1,y2 — Ay1} =
Y{y1,y2}. Using Lemma 7, we get po(G4) C p(L1), where L; = ker~y;. Hence,
for all A € po(G 4) the quadruple (Q_, Q4,71 (A),72())) is an SBV for the relation
L — AE. By ®(\) we denote the corresponding operator ®,y). Using (33), we
obtain

b
() = A/U*(S,O)A(S)U(s,)\)ds.
0

Let 6 C Q- % Q+ be a linear relation and Ly C L be a linear relation such
that yLg = 6. From Theorem 2, we get the following statement.

Theorem 3. Let A € po(G4). Then the following statements are valid:

1) the range R(Lg — AE) is closed if and only if the range R(0 — ®(N)) is
closed;

2) diimB/R(Ly — AE) = dim Q /R(6 — ®(\);

3) dimker(Lg — AE) = dimker( — ®())).
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Corollary 4 with Ty replaced by Lg and @55 replaced by ®(X) holds for the
relation L.

Suppose 8(A\) C Q_ x Q. and Lgny C L are the families of linear relations
such that yLgy) = 0(A). By Lemma 4, the relation R(X) = (Lgy) — AE)~L s
a bounded everywhere defined operator if and only if ((\) — ®(\)) ! is bounded
everywhere defined.

The following two theorems can be proved in view of Lemma 7 and Corollary 4
by analogy with the corresponding assertions in [12], where the case of p = 2,
a = 0, was considered.

Theorem 4. Suppose R()\) = (Lg(}\)—AE)_l (or (O(N\)—@(N\))~1) is a bounded
everywhere defined operator. Then R(\) is an integral operator of the form

b
f:/r} (£ (OO — BN) U (5, 8) + G* (5,8, ) A(s)) f(s)ds.  (34)
0

Theorem 5. Suppose the relation R(X\g) (or (0(\o) — ®(Xo)™!) is a bounded
everywhere defined operator. Then the family R(\) is holomorphic in the point \g
if and only if the family (0(\) — ®(X\)) ™! is holomorphic in Xg.

Remark 7. If the relation T'(\p) is a bounded everywhere defined operator
and the family of relations T'(A) is holomorphic in the point Ay, then the relations

T (M) are bounded everywhere defined operators in some neighborhood of Ay (see
[23, Ch. 7; 24]).

6. Maximal and Minimal Relations in Ly(H, A(t);0,b).
Description of Generalized Resolvents

In this section, we prove that the minimal relation L is symmetric in the
space Lo(H, A(t);0,b) and describe the generalized resolvents of the relation Ly.

Further, we will consider the case of B = Lo(H, A(t);0,b), i.e., p = 2. Notice
that the norm in B is generated by the scalar product

b
(f,9)8 = /(A(t)f(t),g(t))dt.
0

The space Q_ is a Hilbert space with the scalar product

(:El, :EQ)_ = (ﬁ(, 0)(1:1, U(-, 0):52)]3.

This scalar product generates the norm (28) under r = 2. The space Q_ can
be treated as a space with the negative norm with respect to @ [6, Ch. 2; 9,
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Ch. 1]. By Q4, denote the corresponding space with the positive norm. Using
the definitions of positive and negative spaces, we get Q)+ = Q4.

Lemma 12. Let the pairs {ij, f},{%,G} € L'. Then there exist such represen-
tatives y € §, z € Z that the following equality holds:

(fs2)B = (5,9)8 = —(y/(b), 2(b)) + (4 (0), 2(0)) + (y(b), 2’ (b)) — (¥(0), 2 (0)). (35)

Proof. It follows from Lemma 7 and Remark 2 that there exist such
representatives y € ¢, z € Z that

b
y(t) = U(t,0)v + /G*(s,t)fi(s)f(s)ds,

0
b

z(t) = U(t,0)w + /G*(s,t)fi(s)g(s)ds,
0

where v,w € Q. Since f,§ € B, we obtain that the functions A(s)f(s), A(s)g(s)
belong to Ly (H;0,b). We chose two sequences {f,} and {g,} of functions such
that f,, gn are strongly continuous functions in the space _FI+1 and the sequences
{fn}, {gn} converge to the functions A(s)f(s) and A(s)g(s), respectively, in the
space L1(H;0,b). Moreover, we take two sequences {v,}, {w,}, where v,,w, €
H.,,, such that {vn}, {wn} converge to v, w, respectively, in the space H.
Then the functions

b b

yn(t) = U(t,0)v, + /G*(s,t)fn(s)ds, zn(t) = U(t,0)w, + /G*(s,t)gn(s)ds
0 0

are strong solutions [11] of equation (2) with the right parts f,, g,, respectively.
Hence, yn(t), zn(t) € D(A1) for each ¢ € [0,b]. Therefore,

b b b
/ (Ulyal, 20)dt — / (g 2]}t = / (g2 (t) + Ar (D) (t), 20 (£))dt
0 0 0

b

b b
- / (n(8), —21 (8) + Av(8)2a (1)) dt = — / (Wl (£), 2 (£))t + / (yn (1), 2 (1)) dt
0 0

0
= —(Un(0),20() + (¥(0), 2n(0)) + (yn (D), 2, (b)) — (yn(0), 2,,(0)).  (36)

It follows from (11) that y,(0), yn(b), 2,(0), 2,(b) converge to y(0), y(b),
z(0), z(b), respectively, in the space H. Since v, = {—y,(0),y,(b)}, w, =
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{=2,(0), 2, (0)}, v ={=y(0),4'(b)}, w = {=2(0),2(b)}, we have y,,(0), y,(b),
21 (0), 2., (b) converge to y'(0), y'(b), 2'(0), 2'(b), respectively, in the space H.

In (36), we pass to the limit as n — oo and obtain (35). The proof of Lemma 12
is complete.

Corollary 5. The relation Lo is symmetric.

Proof follows from Remark 2, Lemma 12 and the definition of Ly.

Lemma 13. Lj = L.

In view of Lemma 7 and Corollary 5, the proof of Lemma 13 is the same as
that of the similar assertion in [12].

Theorem 6. The range R(v) of the operator v coincides with Q— x Q4+, and
for any pairs {g, f},{2,g} € L "the Green formula” is valid:

(f,2)B — (5,9)B = (Y2, Z1) — (Y1, Zo), (37)

where {Ylv YQ} = 7{?]7 f}7 {Zla Z2} = 7{275}'

Proof. Theequality R(y) = Q- x Q4 follows from Lemmas 6, 7, Corollary 2
and equalities (33). In view of Lemma 12, formula (37) is proved in the same way
as the similar one in [12]. Theorem 6 is proved.

In a particular case of Q- = Q4+ = @, Theorem 6 implies that the ordered
triple (Q,71,72) is a space of boundary values in the sense of papers |20, 21].
Using the argumentation of [20, 21|, we obtain the following assertion.

Lemma 14. For fized A, the relations Lg(y) and O(\) are or are not simul-
taneously accumulative (dissipative, symmetric, mazimal accumulative, mazimal
dissipative, mazimal symmetric, selfadjoint).

When there is no operator weight (i.e., (A(t) = E), the relation L is an ope-
rator, and in this case Theorem 6 was proved in [1] for the expression [[y] with
a constant operator coefficient A;(t) = Ay, and in [2, 3| for {[y] with a variable
operator coefficient A;(¢) satisfying the conditions listed in Sect. 2. The case
of @ = 0 was considered in these papers. In [1], the boundary values did not
contain the Green function. In [3], for the variable operator coefficient A4;(¢), the
boundary values were constructed so that they did not contain the Green function.
Moreover, additional conditions were imposed on the function A;(¢), and the
example proving the necessity of these conditions was given. The boundary values
containing the Green function were constructed in [2] as @ = 0 and in [4, 5] as
a > 0, and they differ from the boundary values (33) introduced in the present
paper. The papers [1-3, 20, 21] are reviewed in the monograph [6]. Notice that
for the first time linear relations were applied to the description of extensions of
differential operators in [25] (see also [14]), where the differential expressions with
bounded operator coefficients were considered.
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We recall a definition of the generalized resolvent. Suppose that B is a Hilbert
space, Ly is a closed symmetric relation, Ly C B x B. The operator function R),
ImA # 0, is called a generalized resolvent of the relation Ly if there exists the
Hilbert space B D B and the selfadjoint relation £ D Ly, £ C B x B such that the
condition Ry = P(L — AE)~!|g, where P is an orthogonal projection of B onto
B, is satisfied.

Detailed bibliography on generalized resolvents is given in the monograph [14].

In view of Theorems 4, 5 and Lemma 14, the proof of the following theorem
is the same as that of the similar assertion in [12], where the case of @ = 0 was
considered.

Theorem 7. Any generalized resolvent Ry (ImA # 0) of the relation Ly is the
integral operator (34), where O(A\) C Q— X Q4+, and O(\) is a holomorphic family,
the values of which O(\) are mazimal accumulative relations in the case of TmA > 0
and mazimal dissipative relations in the case of Im\ < 0, with 6*(\) = 6()).
Conversely, if O(\) is a family of the linear relations with the mentioned above
properties, then the family of operators Ry of form (34) is a generalized resolvent

of the relation Ly.
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