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A. Khrabustovskyionverges in some suitable sense to the union of the spetrum of �
 and thespetrum of L. Also we study the behavior of orresponding eigenvalues.These results generalize the results by C. Anne [1℄. The behavior of spetrumis studied on a manifold with one attahed handle having a �xed length anda vanishingly small radius in [1℄. These results are extended to the ase of theLaplaian ating on di�erential p-forms in [2℄. The onvergene of spetra onmanifolds whih ollapse to a graph was studied in [6℄.In Setion 2 we onsider the manifold M " whose topologial genus inreasesas " ! 0. It is onstruted in the following way. Let 
 be a ompat two-dimensional Riemannian manifold without boundary, and D"i , i = 1 : : : N(") =3N1(") be a system of noninterseting balls ("holes") in 
 depending on ". Let
" = 
nN(")Si=1 D"i . Suppose that the set f1 : : : N(")g is divided into subsets thatonsist of three elements. If the indexes i, j, k lie on one subset we onnet the"holes" D"i ;D"j ;D"k by means of a manifold that onsists of the tubes G"i ; G"j ; G"kand a trunated sphere B"ijk (see Fig. 2 below). As a result, we obtain the manifoldM " = 
" [i;j;k �G"i [G"j [G"k [B"ijk� :We suppose that the number of "holes" inreases as " ! 0, while their radiitend to 0. It is supposed that the radii of the "holes" are muh smaller than thedistanes between them. We also suppose that, in ontrast to the manifold �" inSet. 1 and in ontrast to [1℄, the metri is suh that the lengthes of the tubesonverge to 0.We obtain the following result: if some onditions on a distribution of the"holes" and on the metris on the tubes and the trunated spheres are hold,then the spetrum of the operator ��" onverges in some suitable sense to thespetrum of the operator L de�ned by the formula[Lu℄(x) = ��
u(x) + Z
 W (x; y)(u(x)� u(y))dy:Here W (x; y) is a positive symmetri funtion. We present an example for whihW (x; y) is alulated expliitly.The behavior of the spetrum of manifolds with omplex mirostruture wasstudied in [5, 8℄ for another type of manifolds. We note that the behavior ofspetrum of manifold with the attahed one handle, having a vanishingly smallradius and (in ontrast to [1℄) a vanishingly small length, was studied in [4℄.The proof of main results is based on the abstrat sheme proposed in [7℄.Throughout the paper, we will denote by C various onstants independentfrom ".146 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin Handles1. Riemannian Manifold with Attahed "Graph"1.1. Problem Setting and Main ResultLet 
 be a two-dimensional ompat Riemannian manifold without boundaryand with a metri g. By �
 we denote the orresponding Laplae�Beltramioperator. Let D"i , i = 1 : : : N be a system of balls in 
 with the enters xi 2 
and the radii ". We onsider the following domain with holes:
" = 
n N[i=1D"i :To 
" we glue the manifold �" illustrated on Fig. 1 and onstruted as follows.Let � be a graph in R3 . We denote the verties of this graph by pi, i = 1 : : : m(m > N) and the edges of the same graph by "ij. "ij onnets the verties pi andpj. We introdue the symmetri matrix fAijgmi;j=1 suh that Aij = 1 if p"i and p"jare onneted and Aij = 0 otherwise. We suppose that for the �rst N vertiespi, i = 1 : : : N there is only one pj suh that Aij = 1. These are the ends of thegraph.Let zij be the natural parameter on ij , zij 2 [0; lij ℄. We denote by p(zij) thepoint on ij that orresponds to the natural parameter zij .We denote by G"ij the ylinder with the axis bij = fp(zij) 2 ij : zij 2 [Æ"; lij�Æ"℄; Æ" � 0g and with the radius ". The length of G"ij is equal to l"ij = lij � 2Æ".We hoose the standard ylindrial oordinates on G"ijG"ij = �('ij ; zij) : 'ij 2 [0; 2�℄; zij 2 [Æ"; lij � Æ"�	 :Clearly, Æ" an be hosen suh that:1. G"ij are pairwise disjoint,2. jÆ"j � C � ".The boundary of G"ij onsists of two irles S"ij and S"ji. Here we suppose that S"ijis loser to the vertex pi, and S"ji is loser to the vertex pj .For i 2 fN + 1 : : : mg, let B"i be the sphere of the radius b" =p"2 + Æ"2 withthe enter pi. It is lear that S"ij � B"i . Let D"ij be a part of B"i that lies insidethe ylinder G"ij, and let B"i = B"i n [j:Aij=1Dij:We obtain a two-dimensional manifold (see Fig. 1):�" = m[i=124 [i;j:Aij=1;i<jG"ij35 m[i=N+1B"i :Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 147



A. Khrabustovskyi

Fig. 1: Manifold �".The boundary of �" onsists of S"ij, i, j : i = 1 : : : N , Aij = 1.Now we suppose that S"ij , i, j : i = 1 : : : N , Aij = 1 are di�eomorphi to �D"i .Using this di�eomorphisms, we glue �" to 
" and obtain a manifold withoutboundary M " = 
" [ �":We denote by ~x the points of this manifold. Clearly, M " an be overed bya system of harts and suitable loal oordinates fx1; x2g an be introdued.It is supposed that M " is equipped with the metri g" that oinides with themetri g on 
" and with the Eulidean metris indued from R3 on �". By g"�� ,we denote the omponents of the metri tensor in loal oordinates.Let L2(B) be a Hilbert spae of the real-valued funtions on B � M " withthe salar produt and the norm(u; v)L2(B) = ZB u(~x) � v(~x)d~x; kuk2L2(B) = ZB �u(~x)�2d~x;where d~x =qdetg"��dx1dx2 is the volume form.We denote H" := L2(M "); H0 := L2(
)� L2(�).Let �" be a Laplae�Beltrami operator on M ". It is well known that thespetrum of the operator ��" is purely disrete. Let 0 = �"1 < �"2 � �"3 � ::: ��"k !k!1 1 be the eigenvalues of ��" written with aount of their multipli-ity, u"1; u"2; u"3 ::: be the orresponding eigenvetors normalized by the ondition(u"i ; u"j)H" = Æij .In this setion we study the behavior of �"k as "! 0.148 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesLet L : L2(�) ! L2(�) be a Laplae operator on the graph � with Dirihletboundary onditions, i.e., L is de�ned by the operation[Lu℄(x) = � d2udzij (x); x = p(zij) 2 ijand by a de�nitional domain onsisting of the funtions u 2 H2(ij) 8i; j andsuh that if we denote by uij the restrition of u on ij , thenfor i = 1; N : u(xi) = 0;for i = N + 1;m : 8><>:uij(pi) are equivalent for all j : Aij = 1;Xj:Aij=1 �uij�� (pi) = 0;where ��� means the derivative in the diretion outward to ij . In short, u isa ontinuous funtion on � that satis�es the Dirihlet onditions on the endsof the graph as well as Kirhho� onditions in the verties (for more preisedesription of di�erential operators on the graphs and its properties see, e.g., [6℄).To desribe the behavior of eigenfuntions we introdue the operator R" :H0 ! H": [R"f ℄(~x) = 8><>:f0(~x); ~x 2 
";fij(zij)"�1=2; ~x = (zij ; 'ij) 2 G"ij;0; ~x 2 B"i ;f = (f0; fij; i; j : Aij = 1) 2 L2(
)� L2(�):Let L : H0 !H0: L = ���
 00 L� ;and let �0; �1; �2::: be the eigenvalues of L written with aount of their multi-pliity. It is lear that the spetrum of L is the union of the eigenvalues of theoperator ��
 and the eigenvalues of the operator L that are taken with aountof their multipliity.Theorem 1.1. For any k=1,2,3. . .�"k ! �k; "! 0:Theorem 1.2. Let �k < �k+1 = �k+2 = : : : = �k+m < �k+m+1 (i.e.,the multipliity of �k+1 is equal to m). Let N(�k+1) be the eigenspae of theJournal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 149



A. Khrabustovskyieigenvalue �k+1: Then for any w 2 N(�k+1) there exists a linear ombination �u"of the eigenfuntions u"k+1 : : : u"k+m suh thatk�u" �R"wkH" ! 0; "! 0: (1.1.1)1.2. Proof of Theorems 1.1 and 1.2We prove Theorems 1.1 and 1.2 for the ase N = 3;m = 4, i.e., �" onsists ofthree tubes G"14; G"24; G"34 and the trunated sphere B"4 that onnets these tubes.For the general ase the theorems are proved in a similar way. We introdue newnotations: l"i := l"i4; zi := zi4; 'i := 'i4; G"i := G"i4;S"j := S"4j ; C"i := S"i4; B" := B"4; B" := B"4; i; j = 1; 2; 3;(i.e. ��" = Si=1;2;3C"i ).For simpliity we suppose that the metri g is Eulidean in some neighbour-hood of the holes D"i (and thus g" is ontinuous). For the general ase the proofneeds small modi�ations.We denote byA" andA0 the operators inverse to��"+I and L+I, respetively(I is an idential operator).Now we study the behavior of A" as "! 0.Theorem 1.3. The following onditions are ful�lled:C1. For any f 2 H0 kR"fkH" ! kfkH0 ; "! 0: (1.2.1)C2. The operators A";A0 are positive, ompat, self-adjoint and bounded inL(H") uniformly with respet to ".C3. For any f 2 H0kA"R"f �R"A0fkH" ! 0; "! 0: (1.2.2)C4. For any sequene f " 2 H" suh that sup kf "kH" < 1 there exists thesubsequene "0 and w 2 H0 suh thatkA"f " �R"wkH" ! 0; " = "0 ! 0: (1.2.3)P r o o f 1. The ondition C1 follows diretly from the de�nition of theoperator R".150 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin Handles2. The ondition C2 follows easily from the properties of the resolvent, namelythe following estimate is valid kA"kL(H") � 1:3. Let f 2 H. We denote u" = A"R"f , f " = R"f . To desribe the behaviorof u" on 
" we introdue the operator �"0 : H1(M ")! H1(
) with the followingproperties:1) k�"u"kH0 + kr"�"u"kH0 � Cnku"kH" + kr"u"kH"o, C > 0,2) �"0u"(~x) = u"(~x) on 
".(Here kr"u"kH" := ZM" 2X�;�=1 g��" �u�x� �u�x� d~x, where g��" are the omponents of thetensor inverse to g"). This operator exists, see, e.g, [3℄.Due to C1�C2 we have ku"kH" � kf "kH" ! kfkH0 . Moreover, using varia-tional methods, we obtainkr"u"k2H" � 2kf "kH" � ku"kH" :Using these inequalities and the properties of the operator �"0, we onlude that�"0u" is bounded in H1(
) uniformly with respet to ", and therefore there existsa subsequene (still denoted by ") suh that�"0u" !"!0 u0 2 H1(
) weakly in H1(
) and strongly in L2(
): (1.2.4)To desribe the behavior of u" on the tubes G"i , i = 1; 2; 3, we represent u" inthe form u"('i; zi) = P "i u"(zi) +Q"iu"('i; zi); (1.2.5)where P "i u"(zi) = 12� 2�Z0 u"('i; zi)d'i:Let �"i : H1(G"i )! H1([0; li℄) that is de�ned by the formula�"iu"(zi) = 8><>:p"P "i (zi); zi 2 [Æ"; li � Æ"℄;p"P "i (Æ"); zi 2 [0; Æ");p"P "i (li � Æ"); zi 2 (li � Æ"; li℄:
Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 151



A. KhrabustovskyiWe have the following estimates: ddzi�"iu"2L2[0;li℄ = li�Æ"ZÆ" 0� ��zi 12� 2�Z0 u"('i; zi)p"d'i1A2 dzi� 12� li�Æ"ZÆ" 2�Z0 � ��ziu"('i; zi)�2 "d'idzi � (2�)�1kr"u"k20"; (1.2.6)k�"iu"k2L2[0;li℄ � Æ" h(�"iu"(Æ"))2 + (�"iu"(li � Æ"))2i+ (2�)�1ku"k2L2(G"i ): (1.2.7)Further, (�"iu"(Æ"))2 � 20�(�"iu"(zi))2 + li li�Æ"ZÆ" ���� ��zi�"iu"('i; zi)����2 dzi1A :Integrating this estimate on zi from Æ" to li � Æ" one has(�"iu"(Æ"))2 � C k�"iu"k2L2[Æ";li�Æ"℄ +  ddzi�"iu"2L2[Æ";li�Æ"℄! (1.2.8)and, similarly,(�"iu"(li � Æ"))2 � C k�"iu"k2L2[Æ";li�Æ"℄ +  ddzi�"iu"2L2[Æ";li�Æ"℄! : (1.2.9)It follows from (1.2.6)-(1.2.9) that �iu" is bounded in H1([0; li℄), and thereforefor i = 1; 2; 3 there exists a subsequene (still denoted by ") suh that�"iu" !"!0 ui 2 H1([0; li℄) weakly in H1([0; li℄) and strongly in L2([0; li℄):(1.2.10)The following lemma says that u" is vanishingly small in B".Lemma 1.1. Let u" 2 H1(M "). Thenku"k2L2(B")� C�"2kr"u"k2L2(B") + "kr"u"k2L2([iG"i ) + "2j ln "j�kr"u"k2L2(
") + ku"k2L2(
")��:P r o o f. At �rst we note that u" an be extended to the whole ball B" in suha way that kr"u"kL2(B") � Ckr"u"kL2(B") (see [9, p. 118, Ex. 4.10℄). Let us �x i152 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin Handlesfrom f1; 2; 3g. We introdue the spherial oordinates ' 2 [0; 2�℄; � 2 [0; �℄ on B"suh that the points of S"i have the oordinates ' 2 [0; 2�℄; � = arsin("=b") =: �".So, we extend u" to B" and haveu"('; �) = u"('; �") + �Z�" �u"('; )� d :Further, 2�Z0 ���"Z�" (u"('; �))2b"2 sin �d�d'� C"20� ���"Z�" ��u"('; )� �2 sin d d' � ���"Z�" (sin )�1d + 2�Z0 (u"('; �"))2 d'1A :(1.2.11)Sine C1 � �" � C2, the �rst term is estimated by C"2kr"u"k2L2(B"). Nowwe estimate the seond term. Representing the orresponding integral in theylindrial oordinates, one hasu"('; �") � u"('i; li) = u"('i; 0) + liZ0 �u"('i; zi)�zi dzi:Let D" and R" be the balls in 
 with the radii d" and r" (r" > d"). Then forany u 2 H1(R" nD") the following estimate is valid (see [1℄):kuk2L2(�D") � Cd" �j ln d"j � kruk2L2(R"nD") + 1(r")2 kuk2L2(R"nD")� : (1.2.12)Using (1.2.12), we have"2 2�Z0 (u"('i; li))2 d'i � C"2 2640� 2�Z0 u"('i; 0)d'i1A2 + 2�Z0 liZ0 ��u"('i; zi)�zi �2 dzi375� Ch"2j ln "j�ku"k2L2(
") + kr"u"k2L2(
")�+ "kr"u"k2L2(G"i )i:We denote D�"i = f('; �) 2 B" : � 2 [� � �"; �"℄g. It follows from (1.2.11) thatfor i = 1; 2; 3: ku"k2L2(B"n(D"i[D�"i ))� C�"2kr"u"k2L2(B") + "kr"u"k2L2(G"i ) + "2j ln "j�kr"u"k2L2(
") + ku"k2L2(
")��:Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 153



A. KhrabustovskyiThe lemma is proved sine Si=1;2;3 [B" n (D"i [D�"i )℄ = B".We return to the proof of Theorem 1.3. We denote u := (u0; u1; u2; u3). Letus prove that u = A0f , what is equal to the ful�lment of the following onditions:I: ui(0) = 0; i = 1; 2; 3; (1.2.13)II: u1(l1) = u2(l2) = u1(l3); (1.2.14)III: (ru0;rw)H0 + (u0; w)H0 = (f0; w)H0 ; 8w 2 H1(
); (1.2.15)IV: 3Xi=1 liZ0 (ui(z))0(wi(z))0dz + 3Xi=1 liZ0 ui(z)wi(z)dz= 3Xi=1 liZ0 fi(z)wi(z)dz; 8wi 2 H1[0; li℄: (1.2.16)Let us verify the ful�lment of these onditions.I. Using the trae theorem, for i = 1; 2; 3 we haveui(0) = lim"!0�"iu"(0) = lim"!0�"iu"(Æ") = p" lim"!0 �u"i ; (1.2.17)where �u"i is the mean value of u" over �D"i . It follows from (1.2.12), (1.2.17) that(1.2.13) is valid.II. For i; j = 1; 2; 3, one hasjui(li)� uj(lj)j = lim"!0p"jû"i � û"jj; (1.2.18)where û"i is the average value of u" over the irle S"i .We denote v"(~x) := u"(~x)� U ", where U " is the average value of u" over B",and by v̂"i we denote the average value of v" over the irle S"i .Using the inequality of the type (1.2.12) and Poinare inequality, one hasjv̂"i j2 � C �����ln tan �"2 ���� � kr"v"k2L2(B") + 1(b"i )2 kv"k2L2(B")�� C ����ln tan �"2 ���� � kr"v"k2L2(B"): (1.2.19)Using (1.2.19), we havejû"i � û"j j = jv̂"i � v̂"j j � jv̂"i j+ jv̂"j j � Cs����ln tan �"2 ���� � kr"v"kL2(B"): (1.2.20)
154 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesSine ��ln tan �"2 �� < C, it follows from (1.2.18), (1.2.20) that (1.2.14) is ful�lled.III. Clearly, it is su�ient to prove (1.2.15) for w suh that9Æ > 0 8i = 1 : : : 3 : �g(supp(w); x"i ) � Æ;where �g is the distane on 
 generated by the metri g (beause the set of thesew is dense in H1(
)). Then for these w and for su�iently small " supp(w) � 
".Let w"(~x) 2 L2(M "): w"(~x) = w(~x) in 
" and w" = 0 in M " n 
". Clearly,w" 2 H2(M ") for " being small enough.We have0 = lim"!0�(r"u";r"w")H" + (u"; w")H" � (f "; w")H"�= lim"!0�(r�"u";rw)L2(
) + (�"u"; w)L2(
) � (f;w)L2(
)�= (ru0;rw)H0 + (u0; w)H0 � (f0; w)H0 ;and (1.2.15) is valid.IV. It is su�ient to prove (1:2:16) for suh wi that9Æ > 0 8z 2 [0; Æ℄ : wi(z) = 0 and 8z 2 [li � Æ; li℄ : wi(z) = wi(li);beause the set of these wi is dense in the set of test funtions mentioned above.For su�iently small " Æ" � Æ, and therefore these wi satisfy the onditions:8z 2 [0; Æ"℄ : wi(z) = 0 and 8z 2 [li � Æ"; li℄ : wi(z) = wi(li).At �rst, let us estimate the reminder Q"u" on G"i . Using Poinare inequality,we have li�Æ"ZÆ" 2�Z0 (Q"iu"('i; zi))2d'idzi � C li�Æ"ZÆ" 2�Z0 ��Q"iu"�'i �2 d'idzi= C li�Æ"ZÆ" 2�Z0 ��u"�'i�2 d'dzi � C"kr"u"k2L2(G"i ): (1.2.21)Using the above and the representation (1.2.5), we have3Xi=1 liZ0 (ui(zi))0(wi(zi))0dzi = 3Xi=1 lim"!0 12� 2�Z0 li�Æ"ZÆ" ��"iu"�zi �w"i�zi dzid'i= 3Xi=1 lim"!0 12� 24 2�Z0 li�Æ"ZÆ" �u"�zi � ��zi � wip"� "dzid'i + 2�Z0 li�Æ"ZÆ" p"Q"iu" � �2wi�z2i dzid'i35 :Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 155



A. KhrabustovskyiIn view of (1.2.21) the seond integral tends to zero. Therefore we have3Xi=1 liZ0 (ui(z))0(wi(z))0dz = 12� lim"!0(r"u";rw")H" ;where w" 2 H1(M ")w"(x) = 8><>:wi(zi)"�1=2; ~x = (zi; 'i) 2 Gi;0; ~x 2 
";wi(li � Æ")"�1=2; ~x 2 B":In the same way using Lemma 1.1, we obtain3Xi=1 0� liZ0 ui(z)wi(z)dz � liZ0 fi(z)wi(z)dz1A = 12� lim"!0�(u"; w")H" � (f "; w")H"�:The last two equalities imply the ondition (1.2.16).Thus we prove that u = A0f .It is easy to see that (1.2.2) follows from (1.2.4), (1.2.10), (1.2.21), andLemma 1.1. The ondition C3 is ful�lled.4. It remains to verify the ful�lment of the ondition C4. Let f " 2 H" besuh that sup kf "kH" < 1. We denote u" = A"f ". It is lear that the normsku"k2L2(M")+kr"u"k2L2(M") are uniformly bounded with respet to ". In the sameway as in item 3 one an prove that there exists a subsequene (still denoted by ")suh that the following limits existw0 = lim"!0�"0u" 2 H1(
) strongly in L2(
); (1.2.22)wi = lim"!0�"iu" 2 H1[0; li℄; i = 1; 2; 3 strongly in L2[0; li℄: (1.2.23)By means Lemma 1.1 we haveku"k2L2(B") ! 0; "! 0: (1.2.24)The ful�lment of the ondition C4 (with w = (w0; w1; w2; w3)) follows easilyfrom (1.2.21)�(1.2.24).Theorem 1.3 is proved.We ontinue the proves of Theorems 1.1 and 1.2. Let �"1 � �"2 � �"3 � : : : ��"k !k!1 0 be the eigenvalues of A" written with aount of their multipliityand let f "1 ; f "2 : : : be the orresponding eigenvetors normalized by the ondition(f "i ; f "j )H" = Æij . Let �1 � �2 � �3 � : : : � �k !k!1 0 be the eigenvalues of A.156 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesIt is proved in [7℄ that the onditions C1�C4 imply�"k ! �k; "! 0; k = 1; 2; 3 : : :and, moreover, if �k � �k+1 = �k+2 = : : : = �k+m > �k+m+1, then for any w 2N(�k+1) there exists a linear ombination �f " of the eigenfuntions f "k+1 : : : f "k+msuh that k �f " �R"wkH" ! 0; "! 0:Sine �"k = 1�"k � 1, �k = 1�k � 1, u"k = f "k (and so N(�k) = N(�k)), it followsthat Theorems 1.1 and 1.2 are proved.2. Riemannian Manifold of Inreasing Genus2.1. Setting of the Problem and Main ResultLet 
 be a two-dimensional ompat Riemannian manifold without boundaryand with a metri g. By �
 we denote the orresponding Laplae�Beltramioperator. Let D"i , i = 1 : : : N(") = 3N1(") be a system of the balls in 
 withenters x"i 2 
 and radii d". We onsider the following domain with holes:
" = 
nN(")[i=1 D"i :Let G"i , i = 1 : : : N("), be a set of tubesG"i = f~x = ('i; zi) : 'i 2 [0; 2�℄; zi 2 [0; 1℄g:We suppose that C"i = f~x = ('i; zi) 2 G"i : zi = 0g � �G"iis di�eomorphi to �D"i . Using this di�eomorphism, we glue G"i , i = 1 : : : N(") to
". By S"i we denote the "ends" of G"iS"i = f~x = ('i; zi) 2 G"i : zi = 1g � �G"i :We divide the set f1 : : : N(")g into subsets, eah onsisting of three elements.For any three indexes i; j; k we introdue the number Aijk, and set Aijk = 1 ifi; j; k belong to the same subset, and we set Aijk = 0 otherwise. If Aijk = 1, wesay that the orresponding holes D"i ;D"j ;D"k are onneted.
Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 157



A. KhrabustovskyiFor any i; j; k : Aijk = 1 we onsider the sphere B"ijk � R3 with the radius b".Let D"i ;D"j ;D"k be the geodesi balls on B"ijk with the radii b" arsin�d"b"�. It islear that the radii of the irles �D"i ; �D"j ; �D"k are equal to d". LetB"ijk = B"ijkn(D"i [D"j [ D"k):One an see that �D"i ; �D"j ; �D"k are di�eomorphi to S"i ; S"j ; S"k, respetively. Us-ing these di�eomorphisms, we glue B"ijk to G"i [ G"j [ G"k. Thus we obtain themanifold (see Fig. 2)M " = 
" [ 24 [i;j;k:Aijk=1(B"ijk [G"i [G"j [G"k)35 :We denote the points of the manifold by ~x. Clearly,M " an be overed by a systemof harts, and suitable loal oordinates fx1; x2g an be introdued. It is supposedthat M " is equipped with the metri g" that oinides with the metri g on 
"and with the metris indued from R3 on B"ijk. On G"i the metri is de�ned bythe formula for the square of the element of length:ds2 = q"i dz2i + (d")2d'2i ; q"i > 0:By g"�� , we denote the omponents of metri tensor in loal oordinates.

Fig. 2: Manifold M ".We denote r"i = minj �g(x"i ; x"j), where �g is a distane on 
 generated bymetri g. It is supposed that the following properties are valid:(i) j ln d"j�1 � C(r"i )2, r"i = O("), 0 < C1 � "2N(") � C2, "! 0;(ii) q"i � q" ! 0; "! 0, i.e., the lengthes of the ylinders G"i tend to zero;(iii) (b")2�j ln d"j+ ��ln tan �"2 ��+ pq"d" �! 0; "! 0; �" = arsin d"b" :158 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesLet �" be a Laplae�Beltrami operator onM ". Let 0 = �"1 < �"2 � �"3 � : : : ��"k !k!11 be the eigenvalues of ��" written with aount of their multipliity,and u"1; u"2; u"3 : : : be the orresponding eigenvetors normalized by the ondition(u"i ; u"j)H" = Æij.To desribe the behavior of �"k as "! 0 we introdue the notations:R"i = f~x 2 
" : d" � �g(~x; x"i ) � r"i =2g; bC"i = f~x 2 
" : �g(~x; x"i ) = r"i =2g;�"ijk = G"i [G"j [G"k [B"ijk; b�"ijk = R"i [R"j [R"k [ �"ijk:For i; j; k : Aijk = 1, we onsider the problem�"v = 0 in b�"ijk; v = 1 on bC"i and v = 0 on bC"j [ bC"k: (2.1.1)The solution of (2.1.1) we denote by v"ijk. It is lear that v"ijk = v"ikj .For i; j; k : Aijk = 1, we denoteW "ijk = � Zb�"ijk (r"v"ijk;r"v"jik)d~x;(here (r"u;r"v) := 2X�;�=1 g��" �u�x� �v�x� ), otherwise we set W "ijk = 0 (i.e., W "ijk =�(r"v"ijk;r"v"jik)L2(b�"ijk)).We introdue the generalized funtionW "(x; y) = Xi;j;k=1:::N(")W "ijkÆ(x� x"i )Æ(y � x"j) 2 D0(
� 
):The limit(iv) 9 lim"!0W "(x; y) =W (x; y) 2 L1(
�
) - positive symmetri funtion,is supposed to exist.We denote H" := L2(M "), H0 := L2(
).Theorem 2.1. For any k = 1; 2; 3 : : :�"k ! �k; "! 0;where 0 = �1 < �2 � �3 � : : : are the eigenvalues of the operator L : L2(
) !L2(
): [Lu℄(x) = ��
u(x) + Z
 W (x; y)(u(x) � u(y))dy:
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A. KhrabustovskyiTheorem 2.2. Let R" : H0 !H":[R"f ℄(~x) = 8<:f(~x); ~x 2 
";0; ~x 2 Si;j;k:Aijk=1�"ijk:Then the eigenfuntions of ��" onverge in the sense (1.1.1) to the eigen-funtions of the operator L.2.2. Proof of Theorems 2.1 and 2.2We denote by A" and A the operators inverse to ��"+I and L+I, respetively.Analogously as in the previous setion, Theorems 2.1 and 2.2 follow fromTheorem 2.3. The onditions C1�C4 are ful�lled.P r o o f. The onditions C1�C2 are trivial. Let us hek the ondition C3.Let f 2 H. We denote u" = A"R"f , f " = R"f , u0 = A0f . Notie that thefollowing estimates are valid:ku"kL2(M") � kf "kL2(M"); kr"u"k2L2(M") � 2kf "kL2(M") � ku"kL2(M"): (2.2.1)It is well known that u" minimizes the funtionalJ"[u"℄ = ZM" �jr"u"j2 + (u")2 � 2f "u"� d~x (2.2.2)in the lass of funtions H1(M "), while u0 minimizes the funtionalJ0[u℄ = Z
 �jruj2 + u2 � 2fu�dx+ Z
 Z
 12W (x; y) (u(x)� u(y))2 dxdy (2.2.3)in the lass of funtions H1(
). The onverse assertions are also true.In order to prove that u" onverges to u0, we onsider the following abstratsheme.Let H" be a Hilbert spae depending on the parameter " > 0, (u"; v")"; ku"k"be a salar produt and norm in this spae, and F " be the ontinuous linear fun-tionals in H" whih are uniformly bounded with respet to ". Let H be a Hilbertspae with the salar produt (u; v) and the norm kuk, and F be a ontinuouslinear funtional in H.Consider the following two problems of minimization:ku"k2" + F "[u"℄! inf; u" 2 H"; (2.2.4)kuk2 + F [u℄! inf; u 2 H: (2.2.5)160 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesLet u" and u0 be the minimizants of the problems (2.2.4) and (2.2.5). The fol-lowing theorem is proved in [3℄.Theorem 2.4. Let M be a dense subset of H, let �" : H" ! H, and P " :M ! H" be the operators satisfying the following onditions:(a) k�"w"k � Ckw"k;8w" 2 H";(b1) �"P "w ! w weakly in H as "! 0;8w 2M ;(b2) lim"!0 kP "wk" = kwk;8w 2M ;(b3) for any sequene " 2 H" suh that �"" !  weakly as " ! 0, for anyw 2M one has lim"!0 j(P "w; ")"j � Ckwkkk;() for any sequene " 2 H", suh that �"" !  weakly, as "! 0, one haslim"!0F "["℄ = F [℄:Then �"u" !"!0 u0 weakly in H:Notie that Theorem 2.4 holds true if the onditions (b3) and () hold onlyfor suh sequenes " that the norms k"k" are uniformly bounded with respetto " beause in the proof of Theorem 2.4 the onditions (b3) and () are used onlywith these sequenes.Now we apply our abstrat sheme. Let H" be the Hilbert spae H1(M ") ofthe funtions on M " with the salar produt(u"; v")" = ZM" [(r"u";r"v") + u"v"℄ d~x;and let F " be a linear funtional de�ned by the formulaF "[u"℄ = ZM" �2f "u"d~x:Let H be the Hilbert spae H1(
) with the salar produt(u; v) = Z
 [(ru;rv) + uv℄ dx+ Z
 Z
 12W (x; y)(u(x) � u(y))(v(x) � v(y))dxdy;and f be a linear funtional on it de�ned by the formulaF [u℄ = Z
 �2fudx:Obviously, the funtionals F " are uniformly bounded with respet to ".Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 161



A. KhrabustovskyiNow we introdue the operators �" and P " satisfying the onditions (a)�()of Theorem 2.4.The existene of the operator �" : H1(M ")! H1(
) that has the propertieskr�"u"k2L2(
) + k�"u"k2L2(
) � C�kru"k2L2(
") + ku"k2L2(
")�; (2.2.6)�"u"(~x) = u"(~x); ~x 2 
" (2.2.7)is proved in [9, p. 118, Ex. 4.10℄).Clearly, (a) follows from (2.2.6).We introdue the operator P ". Let '(r) be a twie ontinuously di�erentiablenon-negative funtion on the half-line [0;1) equal to 1 for r 2 [0; 1=4℄ and equalto 0 for r � 1=2. We set'"i (x) = '��g(x; x"i )r"i � ; '"0i(x) = '��g(x; x"i )d"0 � ;where d"0i = exp(�j ln d"j1=2).Let M = C2(
), M is dense in H1(
) and let w 2M . We de�ne the operatorP " by the equality[P "w℄(~x) = 8>>>><>>>>:w(~x) + (w"i � w(~x))'"0i(~x) +�(v"ijk(~x)� 1)w"i+v"jik(~x)w"j + v"kij(~x)w"k�'"i (~x); ~x 2 R"i ; j; k : Aijk = 1;v"ijk(~x)w"i + v"jik(~x)w"j + v"kij(~x)w"k; ~x 2 �"ijk;where w"i = w(x"i ).To see that the onditions (b1)�(b3) hold, we use the following estimates ofthe solution v"ijk of (2.1.1).Lemma 2.1 Let R"0q = f~x 2 
" : d"0q � �g(x; x"q) � r"q=2g. Then fori; j; k : Aijk = 1 and q 2 fi; j; kg:jD�(v"ijk(~x)� Æiq)j � C ����D�(ln�g(x"q; ~x))lnd" ���� ; ~x 2 R"0q j�j = 0; 1:The p r o o f of the lemma is arried out in the same way as that ofLemma 2.4 in [9, p. 44℄ using the inequality 0 � v"ijk � 1 whih follows from themaximum priniple.
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On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesLemma 2.2 Let u" 2 H1(M "). Then for any i; j; k : Aijk = 1ku"k2B"ijk � C �(b")2 ����ln tan �"2 ���� � kr"u"k2L2(B"ijk) + pq"(b")2d" kr"u"k2L2(G"i[G"j[G"k)+(b")2�j lnd"j � kr"u"k2L2(R"i[R"j[R"k) + 1r"i 2 ku"k2L2(R"i[R"j[R"k)�� ;ku"k2G"i � C �q"kr"u"k2L2(Gi) + d"pq"�j lnd"j � kr"u"k2L2(R"i ) + 1r"i 2 ku"k2L2(R"i )�� :The p r o o f of this lemma is arried out in the same way as the proof ofLemma 1.1.We verify that the ondition (b2) holds. We denote bR"i = f~x 2 
" : r"i =4 ��g(~x; x"i ) � r"i =2g. Let w 2M . ThenkP "wk2" = Z
" �jrwj2 + w2�dx+ Xi<j<k:Aijk=1 Zb�"ijk �w"i 2jrv"ijkj2 + w"j2jrv"jikj2 + w"k2jrv"kijj2+2w"iw"j (rv"ijk;rv"jik) + 2w"jw"k(rv"jik;rv"kij) + 2w"iw"k(rv"ijk;rv"kij)�d~x+ Æ("):(2.2.8)Here Æ(") are the remaining integrals estimated as follow?:jÆ(")j � C(w) Xi;j;k:Aijk=1 �J"ijk +E"ijk + I"ijk + Y "ijk + (d"0)2� ;where J"ijk = ZbR"i[ bR"j[ bR"k �jr"v"ijkj2 + 1r"i 2 jv"ijkj2� d~x;E"ijk = ZR"0i[R"0j[R"0k �jr"v"ijkj+ 1r"i jv"ijkj� d~x;I"ijk = ZR"i jv"ijk � 1j2d~x+ ZR"j[R"k jv"ijkj2d~x; Y "ijk = Z�"ijk jv"ijkj2d~x:?The sum Pi<j<k:Aijk=1 means that any three indexes fi; j; kg appear only ones in this sum.Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 163



A. KhrabustovskyiUsing Lemma 2.1 and maximum priniple for v"ijk, we haveJ"ijk � Cj lnd"j�2(1 + j ln r"i j2); (2.2.9)E"ijk � Cj lnd"j�1�r"i j ln r"i j+ d"0j lnd"0j�; (2.2.10)I"ijk � C�(d"0)2(1 + j lnd"j�1) + (r"i ln r"i = lnd")2�; (2.2.11)Y "ijk � C � j�"ijkj � C(d"pq" + (b")2); (2.2.12)Using (i)�(iii), we onlude thatÆ(") ! 0; "! 0: (2.2.13)We denote V "ijk = Rb�"ijk jr"v"ijkj2d~x, where i; j; k : Aijk=1. Sine v"ijk + v"jik +v"kij = 1 for any i; j; k : Aijk = 1, we have V "ijk = W "ijk +W "ikj. Therefore (2.2.8)an be rewritten in the formkP "wk2 =Z
 �jrwj2 +w2�dx+ Xi;j;k=1:::N(")W "ijk�(w(x"i ))2 � w(x"i )w(x"j)�+ Æ(")= Z
 �jrwj2 + w2�dx+ 12 Xi;j;k=1:::N(")W "ijk�w(x"i )� w(x"j)�2 + Æ("): (2.2.14)It is easy to see that (b2) follows from (iv), (2.2.13) and (2.2.14).We verify the ondition (b1). Let w 2 M . In view of the onditions (a) and(b2), the norms k�"P "wk" are uniformly bounded with respet to ", and in thesame way as in (b2) one an prove that �"P "w ! w strongly in L2(
). Thus theondition (b1) also holds.We verify the ondition (b3). Let w 2 M , and the sequene " 2 H" is suhthat the norms k"k" are uniformly bounded with respet to ", and �"" ! weakly in H as "! 0. Integrating by parts, we have(P "w; ")" = (��
w + w;�"")L2(
) + Æ("); (2.2.15)where Æ(") are the remaining integrals. Using Lemma 2.1, in the same way as in(b2) we obtain the estimatelim"!0 jÆ(")j � C lim"!08><>:0�N(")Xi=1 (w"i )2jR"i j1A1=2 k�""kL2(
)9>=>; :Sine �"" onverges weakly to  in H, then �"" onverges strongly to  inL2(
), and therefore we havelim"!0 jÆ(")j � CkwkL2(M") � kkL2(
) � Ckwk � kk: (2.2.16)164 Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2



On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesIt follows from (2.2.15)�(2.2.16) that (b3) holds.Further, we verify that the ondition () holds. Let the sequene " 2 H" besuh that �"" !  weakly in H. Then �"" !  strongly in L2(
). We havejF "["℄� F [℄j = ������ Z
" f � (�"" � )d~x������+ ������� Z
n
" fd~x�������! 0; "! 0;and so the ondition () holds.Thus all the onditions of Theorem 2.4 hold. Hene �"u" ! u0 weakly in H.Therefore, by the embedding theorem, �"u" ! u0 strongly in L2(
): Finally, wehave kA"R"f �R"A0fk2H" = ku"k2L2([�"ijk) + k�"u" � u0k2L2(
"):In view of Lemma 2.2, (i�iii) and (2.2.1) ku"k2L2([�"ijk) ! 0; " ! 0. Thus C3 isproved.And �nally, we verify the ful�lment of the ondition C4. Let f " 2 H" besuh that sup kf "kH" < 1. Let u" = A"f ". In view of (2.2.1), �"u" is weaklyompat in H1(
) and so there exists the subsequene "0 and w 2 H1(
) suhthat �"u" ! w strongly in L2(
): This and Lemma 2.2 imply C4.Theorem 2.3 and therefore Theorems 2.1 and 2.2 are proved.2.3. ExampleWe onsider an example of the manifoldM " and alulate the funtionW (x; y)expliitly.Let 
 ontain the subset K, whih is a �at square with the side equal to l.Let " > 0 and let n" = �1"�1=3.We divide K into the squares K"�, � = 1 : : : n"2 with the side length l=n".Within eah squareK"� we ut out n"4 holesD"i with the radius d" = exp ��n"6=l6�and suh that their enters form a periodi lattie with the period ln"3 . It is learthat j lnd"j�1 = l4(r"i )2. The total number of D"i is equal to N(") = n"6.For eah hole D"i we denote the number of square K"� ontaining this hole by�(i). Sine the number of holes within the square K"� is equal to n"2 � n"2, wean assign to eah hole D"i � K"� the pair (�(i); (i)), �(i); (i) 2 f1 : : : n"2g. So,eah hole D"i is haraterized by (�(i); �(i); (i)).If �(i) = �(j) = (k); �(j) = �(k) = (i); �(k) = �(i) = (j) and only inthis ase, then we join the boundaries of the holes D"i ;D"k;D"j by means of themanifold �"ijk = G"i [G"j [G"k [B"ijk.Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 165



A. KhrabustovskyiWe set q"i = [q � j lnd"j � d"℄2; q > 0and hoose suh b" that (iii) is valid andln�tan �"2 � = lnd" ! 0; "! 0; �" = arsin d"b"(for example d" � Cb").In order to alulate W (x; y) we �nd a suitable approximation for the solutionv"ijk to (2.1.1). Namely, we represent it in the form v"ijk = bv"ijk + w"ijk, where
bv"ijk(~x) =

8>>>>>>>>>>><>>>>>>>>>>>:
a"i ln j~x� x"i j+ b"i ; ~x 2 R"i ;A"i z +B"i ; ~x = (zi; 'i) 2 G"i ;a"j ln j~x� x"jj+ b"j; ~x 2 R"j ;A"jz +B"j ; ~x = (zj ; 'j) 2 G"j;a"k ln j~x� x"kj+ b"k; ~x 2 R"k;A"kz +B"k; ~x = (zk; 'k) 2 G"k;C"ijk; ~x 2 B"ijk:We hose the onstants a"i ; b"i : : : A"k; B"k; C"ijk suh that:1) bv"ijk is a harmoni funtion in G"i [R"i , G"j [R"j , G"k [R"k,2) bv"ijk = 1 on bC"i , bv"ijk = 0 on bC"j [ bC"k,3) bv"ijkjS"i = bv"ijkjS"j = bv"ijkjS"k =M , where M is a onstant,4) �bv"ijk�~n jS"i + �bv"ijk�~n jS"j + �bv"ijk�~n jS"k = 0, ~n is the outward (or inward) normal?.As a result, we obtaina"i = 2j ln d"j�13(1 + q) (1 + o(1)) = �2a"j = �2a"k;A"i = �a"ipq"id" ; A"j = �a"jpq"jd" ; A"k = �a"kpq"kd" ;b"i = 1� a"i ln(r"i =2); b"j = �a"j ln(r"j=2); b"k = �a"k ln(r"k=2);B"i = a"i lnd" + b"i ; B"j = a"j lnd" + b"j ; B"k = a"k lnd" + b"k:?Here the normal derivatives are taken in an arbitrary point of S"i . It is easy to see that theonditions 1)�3) guarantee that �bv"ijk�~n are onstant on S"i , as on S"j and S"k). The ondition 4)determines the onstant M from the ondition 3).
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On the Spetrum of Riemannian Manifolds with Attahed Thin HandlesDiret alulations show thatkr"bv"ijkk2L2(b�"ijk) = 4�3(1 + q) j lnd"j�1(1 + �o(1)) ! 0; "! 0; (2.3.1)(r"bv"ijk;r"bv"jik)L2(b�"ijk) = � 2�3(1 + q) j ln d"j�1(1 + �o(1)); "! 0: (2.3.2)Now we prove that w"ijk gives vanishingly small ontribution toW "ijk. Sine v"ijkminimizes the funtional I"[v℄ = kr"vk20" in the lass of funtions from H1(b�"ijk)equal to 1 on bS"i and equal to 0 on bS"j [ bS"k, then kr"v"ijkk2L2(M") � kr"bv"ijkk2L2(M")and therefore kr"w"ijkk2L2(M") � 2 ��(r"w"ijk;r"bv"ijk)L2(M")�� :Using the properties of the funtion bv"ijk, we obtainkr"w"ijkk20" � 4�d" ����� A"ipq"i w"i + A"jpq"j w"j + A"ipq"j w"k����� = 4�ja"iw"i + a"jw"j + a"kw"kj= 4�ja"j(w"j � w"i ) + a"k(w"k � w"i )j; (2.3.3)where w"i ; w"j ; w"k are the average values of w"ijk in S"i ; S"j ; S"k, respetively.The following estimate is validjw"i � w"j j+ jw"i � w"kj � Crj ln tan �"2 j � kr"v"ijkk0"� Crj ln tan �"2 j � kr"bv"ijkk0" � Crj ln tan �"2 j=j ln d"j !"!0 0: (2.3.4)The proof is similar to that of (1.2.20).It follows from (2.3.3), (2.3.4) and from the form of the oe�ients a"i ; a"j ; a"kthat kr"w"k20" = �o(j lnd"j�1): (2.3.5)We have W "ijk = ��(bv"ijk; bv"jik)L2(b�"ijk) + (bv"ijk; w"jik)L2(b�"ijk)+ (w"ijk; bv"jik)L2(b�"ijk) + (w"ijk; w"jik)L2(b�"ijk)�: (2.3.6)It follows from (2.3.1), (2.3.2), (2.3.5), (2.3.6) thatW "ijk � �(bv"ijk; bv"jik)L2(b�"ijk) � 2�3(1 + q) j lnd"j�1:Journal of Mathematial Physis, Analysis, Geometry, 2009, vol. 5, No. 2 167



A. KhrabustovskyiLet w(x; y) 2 C1(
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