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Let G be a simply connected domain in the complex plane C, d(w,dG) be
a distance from the point w € G to 9G.
Denote by L%(G) the space of measurable functions f in G such that

191y = [ 0P (. 0G)dmau) < +00,0 <p < +o0.6 > ~1 (1)
G

where dmy is the plane Lebesque measure, and denote by H(G) the set of all
analytic functions in G. Also, put A’é(G) =H(G)N L’é(G). Denote by h’é(G) the
subspace of L’é(G) consisting of harmonic functions.

In this paper we generalize the Hardy—Littlewood theorem [1]: if f € H(S),
0<p<+oo, f(0) =0, B> —1, then there exist positive constants ¢; and ca such
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that

o1 [ 1P (2l dma(c)

S

S/\f’(z)\p(l — |2))P P dms(2) < Cz/lf(Z)l”(l —lz))dma(z),  (2)
S

S

where S is an open unit disk in the complex plane C.

Considerable attention was paid to this result in papers [2, 3]. The estimation
(2) was carried out in [2]| for simply connected domains with the boundary from
the class C!, and in [3] — for the addition of the convex bounded domains, but
only at p = 2.

Notice that I" is the curve of Lavrentiev class (L) if [(wq,ws2) < clw; — we|,
where for any wy,wy € T', and [(wy, ws) is the length of the shortest arc of I' with
endpoints wi, ws.

We prove an analogue of the left estimation of (2) for any open set and of the
right estimation of (2) for simply connected domains G with the boundary from
class (L).

The received estimations allow us to construct explicitly the bounded linear
integral operator from hfg(G) onto A%(G) for any 0 < p < +00 and from L%(G)
onto AR(G) for any 1 < p < +oo.

We are grateful to Prof. V. Havin, for his attracting our attention to paper
[4] and to Prof. H. Hedenmalm, who submitted it to us.

1. Auxiliary Lemmas

In [5], M.M. Dzrbashyan proved that if f € A’é(S), 1 <p<+o0,>-1,
then the integral representation is valid

_ﬁ+1/u—KﬁW@)
oo (1-— Zz)ﬁ+2

f(2) dms(¢),z € S. (3)

Let us prove (3) for 0 <p < 1.
B+2

Lemma 1. Suppose [ € A’/;(S), 0<p<l,pB>-1,1n> > 1; then
fe A},(S).

Here and in the sequel we denote by ¢, ¢q,...,cn(,3,...) some arbitrary
positive constants depending on «, 3, ... whose specific values are immaterial.
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1 - 2|

Proof. Let K,(z) ={w:|w—z| < p}, where p = 5 Then, by the
subharmonicity of |f|?,
P < s [ QP dmalc)
S 2(C)-
Kp(2)
It is easy to see that for all { € K,(z) we have ! _2|Z| <1-¢ < 30 ; il
Hence, we get
1 B
-l < LB ipop am)
() wio
41— o)’ » 4-2° P10
= e [ roram© < e [IHOF 0= K)o
p(2) Kp(2)
_c Pl _ 18
<G S/ TP (1~ 1¢) dma(0).
Therefore, we obtain
p ¢ P(1_ N8 ‘1
1P < S/ HOP (=4 dmal©) < ot
and |f(z)| < Lﬁ Thus, if n > pr2_ 1, then
(1—lz)) » P 1
dmo(z) dr
/| A tdma(z CQS/ (L—|z) 7 30/ (1—r) % "
The lemma is proved.
If fe A’é(S), 0<p<l,B8>-1,n> % — 1, using Lemma 1 we have
_n+l [0 :
f) =12 S/ s Am Q) @)
Lemma 2. Suppose f € H(S), f € Ap(S), 0 <p < oo, 8> —1,
f®) (%) =0,k=0,1,....,n—1,neN, € 8;0<p< +00, n>n—l+¥
Then 9 —

£G) = cln) [
S

(1= G+
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where P(z,() is some polynomial in z and ¢, z € S.

Proof. By the condition of the lemma f(z) =

Using (3) for 1 < p < +oo or (3') for 0 < p < 1, we get

(1-— Cz ’7+2
S
z
. . . . . (z —t)n 1
Integrating this equality n times and taking into account | ————dt =
(1=
— 20
P where P(z,() is some polynomial in z and ¢, z € S, we obtain (4)
(1 —Zz)"*"JF?’ ) poly ) ) .

Lemma 3 (see [6]). Let v(z) be a nonnegative subharmonic function on S.
Suppose 0 < p <1, n > —1; then the following is valid:

p

/ o(2)(1 — |2)dms(z) | < e / (0(2)) (1 — |2/ 2~2dms(2).

S S

Let BMOA be a space of analytic functions of a bounded mean oscillation.
This is the class of functions f(z) analytic on the unit disc S for which

zZ4+a
\iipl I fall; < 00, fa(z) = f(1 s

)_f(a’)a

where ||-||, denotes the H!-norm.

Lemma 4 (see [7]). Let G be a simply connected domain with boundary
I' € (L). Suppose ¢ : S — G conformally, f(z) = alny'(2), and a is any positive
constant. Then f € BMOA.

Lemma 5 (see [7]). Suppose f € BMOA, |t| <1, and any a € C\{0}. Then
there exists such M = M(a) that the following inequality is valid:

2 (1—|t)
1=l

1
21
[s]=1

Laf(s) af (1) ‘2 _

Lemma 6. Let G be a simply connected domain. Suppose ¢ : S — G confor-
mally, f®) € AY(G), k=0,1,...,n,n €N, 0<p<+00, f>—L.
Then f®) () € AB(S), k=0,1,...,n,n €N, 0 < p < 400, a > 2(6+1).
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Proof By the condition of the lemma, [ ‘f(k) (w)‘p d8 (w, 0G)dmy(w) =
G
cf ‘f(k)(ap(z))‘p dP(o(2), 0Q) |¢' (2)|* dma(z) < +oco. Then, using Koebe’s in-
S

equality (see [8, p. 51])

iid(“‘i(f)ijm <|¢'(2)] < 47‘1(“‘;(?]3@, (5)
we get
170" @0, 06)dmat) 2 [ [FO ] (1= o) 1) dma(a),

The following estimate for the umvalent analytic functions is well known (see

[8, p. 53]):

1—|z| 1+ |z
Ay SO T )

Using it, we obtain

/ IO 1= 121)? | ()] dina2)

> ¢ / 7 o[ (1= 127~ [ dma2)

= / ‘f(’“)(w(Z))‘p (1 = |2 dma(2)
S
where o > 2(8 + 1).
Finally, since [ |f®)(p(2))|” (1 — |2])*dma(2) < ¢ f |F®) (w)|” d (w, 0G)dms (w)
S

< +00, then f)(p )EAp(S),kzo,l,...,n,nEN,0<p<+oo,oz22(ﬁ+1).
The lemma is proved.

Lemma 7. Suppose1<p<+oo,z68,n>0,0<z<n.
p

Then

(1-— 2yn _
/ - \”“m )|<|>-;f+1 Ama(C) < et = J21) 7

(1 —[¢]?)
M=oyt
1

—p)" (L—p)" [ 8
// i(0—0) n+1 1+1d0d'0 :/ 7+1/ 1 i(c—0) n+1dp‘
\1—77)6 \ (1—p)7 (L=p)r" S [L—rpeilz=0)]

0

Proof. Suppose z =re, ¢ = pe'?; then / ‘ ma(C)
1—
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de
Since / - 7 < a , then
E ‘1 — rpeile=0)|" (1L —=rp)t

1 1

/ (1— / do / "
2 .
) (L=p)7 l+1 |1 = rpeilo=0) "H l—m p):f§+1

0

However, if n > 0, 0 < 7 < 1, then
p

1
et
P
) l—m p)%+1
r 1—p?)n 1 1—p?)n
SC?,/ ( _:0) l+1dp+04/ ( _:0) l—HdpS%_
S (L= p)(1=p)7 J (L=r)1(1=p)> (1-r)>

This completes the proof.

Lemma 8. Let G be a simply connected domain with boundary T' € (L).
Suppose ¢ : S — G conformally, ¢ € S 7' > —1 keZ,.

If1<p,q<+00, x4(0) = (1— )3, 0 < 2 ; Y < kptr+1, n>kp+¢+z+1,
then

/ kp+7+2 1— kp+1., P
[0 : _(M LD

_ el QP (- A )

7
: ! "
Ifo<p<l, 77>k—1+i3 then
o' (2 kp+7+2 (1- |Z|)kp+'r
_ Zz‘p(nﬂ) dms(2)
kp+T1 T
_eldQrTa ICI)’Cer (7")
- (1 = [¢lyptrth=
kp+T1+42 , . _
Proof Let f(z) = flngo (2), z € S, z = re'”. Using Lemmas 4
and 5, we get
w lc +74+2 t kptr+2
= [leenr e B o,
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where 0 < || < 1.
Suppose

kp+'r+2 kp+7.P
L [P U e 0
C ‘77+1

Since ¢ = pe’, we obtain

1
k:p—I—T—— kp+7+2 1
/ / ¢ (re - Tpeiae—i0|77+1dadr
0
1
kp—l—r—— kp+T+2 1
<o | \(p re' ———dodr.
/ 1 — ’r'p 77 |1 _ Tpewe—10|

By the construction, ¢'(z) # 0, z € S, and (¢'(2))¥P*7+2 is an analytic function

1
in the unit disk S. The function U¢(z) = m is also analytic in S for the
—(z
fixed ( € S. Then \Ilc(z)(Lp'(z))kp"”"r2 is an analytic function in S.
It follows that if

k 2 k 2 ;
I( /‘(p re' ‘p+7+ |1—rpe“’e*29| /“P v ‘\p((mw)‘da’

then I (r) monotonically grows on [0,1). Hence we obtain

™
, 1 —p? 1
< [l ot g
11— peive=i0)° (1 —p?)

. 1-p
/‘ ZO’ kp+ +2|1 ( ) dU.

,06“76 i0 |

With ¢t = ¢ and (8) being taken into account, we get

0 | kp+T+2
, e |¢' ()T
1(r) < 2
(1—p?)
Using the above, we have
k +r+2 1 Py T3
/< Co ‘(P ,06 pP+T p+T dr
- 1 —rp)n-1
0
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But,if0< L <kp+7+1,7>kp+7+2+ 2L, then
q q

1

! kp+T 1 L kp+'r z kp+'r z
S A AT i ——
/ 1—rp’71 3/ 1—7"’71 ta
0 0 p

cs\L —p
<
- (I=p?
kp+7+2 (1 — p)kp”_g
‘ (1—p)nt

k 2
|/ ()T (1 2D+ (2)
C ‘77+1

10

However, we see that I < cg | (pe') . Finally, we obtain

dmo(z)

_ CI@’(C)IWFTH (L= D"+ (€)
- (1—1IchrT

The analogous estimate (7') follows easily. The proof is finished.

2. The Formulation and the Proof of Basic Theorems

Theorem 1. Let G be any connected open set in the complex plane C. Suppose
fe Ag(G), 0 <p<+oo, 8>—1. Then for any n € N we have

/‘f )[[ a8 1,96 )dms a0) < el ) /|f PP (w, 9G ) dms (w).

Proof LetG = UQk be the Whitney decomposition sets G, where

k
Q. defined is a square such that cidiam(Qy) < dist(Qr,¢ G) < cadiam(Qy), the
constants c¢1,ce do not depend on G (see [9, p. 199]). It is possible to take
ci =1,co =4. Then

/ ‘ £ dm’+ﬂ(w 8G)dms(w Z / ‘ F d"p+ﬁ(w 8G) dms (w)

<c max
. WEQE

£ )| 74742 w,06) <e 7| £ wg)| 4wy, 0G),
k

where wy, € 0Qk. Next, by Q) denote the square with the same center as @, but
1
stretched in (1 4 €) times, 0 < e < i Then Qr C Q}.
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1 . .
Let 0 < p= Zdzst(Qk,an), Cpwy) = {w : |w —wy| < p}.

!
: (n) _ ! f(w) :
Since f\"(wy) omi | w—wg dw, it follows that
aC,

7 )| < i ma 7)) < = 7))

pP" weal, - d*(wy, 0Q)
where wy, € 0C,.

= NP
‘p c1| /()| . Using the facts that d(wg,0G) <

Hence we get ‘f(”)(wk) S I (i, 0G)

d(wy, 0G), we have

> ‘f(n) (wr) ‘p A" (wy, 0G) < er Yy | f (@) d°F2 (o, OG).
k P

1
Next, let 0 < p/ = gdist(Qk,aQZ) and Ky (wy) = {w : lw — | < p'}. Tt is clear
that K, (w) C Q. Therefore, we see that

7T p?
K ()

F@)F < =z [ ) dmat) <= 1) dmato)
QL

Thus we get | (ix)[? d°+2(in, 9G) < c3 [ |f(w)] & (w, 0G)dms (w).
Q%
Finally, we have

/ ‘ £ (w) ‘pd”’”“ﬁ (w, Q) dma (w)
G

< Xk: / ()P d° (w, G )dms (w) < 4 / 1 (w)[PdP (1, 0G)dms (w).
Qy G

The theorem is proved.

Similarly, the following theorem holds.

Theorem 2 ( see [10]). Let G be any connected open set in the complex
plane C'. Suppose u € h’é(G), 0<p<+oo, 8>—1. Then

/ |\gradu(w)[PdP*P (w, 0G)dma(w) < ¢(B) / lu(w) [Pd® (w, DG )dma (w).
G G

Theorem 3. Let G be a simply connected domain with boundary T' € (L).
Suppose f € H(G), f®(wy) =0, k=0,1,....,n—1,n€ N, wg € G; 7 > —1,
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0 < p < 400. Then the following is valid:

(n, T /‘f dnp'i'T(w 0G)dma(w)

< / | (w)Pd” (w, OG) dimy (w)
< eoln, T /‘f d"W(w 8G)dms (w).

P roof Using Theorem 1, we see that

(n, T /‘f d”p+T(w 0G)dma(w)

< / | (w) [P (w, DG )dma (w).
G

In the proof of the right estimation the induction method is used.

For n=1, let us prove that

I= / | f (w)|Pd" (w, OG)dma (w / |1 (w) [PdP*7 (w, 0G) dmy (w).

(11)

Without loss of generality, assume that the integral on the right is convergent.

Suppose ¢ : S — G conformally, ¢(0) = wg, ¢’ (0) > 0, w = p(z); then

/ () P (0(2),0G) | (2)|” dms(2)

<o [ 17N @ (0. 06) ') dma).
S
Thus, using (5), we can see that

[ 15 PA ~[al) |4 ()] dima(c)
S

c / P[P = 1277 | ()72 dma(2).
S
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Let F(z) = f(¢(2)), then / ‘F'(z)‘p(l — |2|)P*7T ‘tp'(z)‘H_Q dmg(z) < +oo.
S
Using (6), we get |¢/(2)| > ¢(1 — |z|). Hence, we see that

/ |F'(2)|P(1 = |2)P 27T dmy(2) < +o0.
S

Taking into account (2), we obtain

/ PO D dma(z) < e [ IFEPO =620 dmaz) < oo,
S

that is f(¢) € AR(S), 0 <p < +oo, a > 2(1 +1).

Let us consider the two cases of the proof (12).
Case 1: 0 < p < 1. Using f(p) € AL(S5), 0 < p < +o0, @ > 2(7 + 1), and
Lemma 2 for n > —1, we have

(1= 1) (€)' P(2:0)
flp(2)) = S/ T dm ).

However, we see that |f(p(2))] < / ‘1 |C:n+1 (C))‘ “PI(O‘ dma(().

Applying Lemma 3, we obtain

_ |/12\np+2p—2
(1 |C| )7717 p) ‘f/( ‘p “P )‘p de(C)

FeE)P < e /

) ‘1 _ ZZ‘P(TPA

Now we get

1F ()P (1127 |¢' ()|

. 1 — |¢|2)np+2p—2
<a(l— ) |9 +2/( <)

5|

1 Gyt ') | () dma(<).

Integrating with respect to z and changing the order of integration, we have

/ Fe)P (1= J2])7 @)+ dima(2)

T+2
< @/\f’(@(())\p(l — ¢ | /|‘P 11— n+1|z|) dmy(z)dmy Q).

S
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T+ 3

Using Lemma 8 for £k =0, n >

) (1~ |27 sl (O (L= ¢)”
/ \1 c\”"“ AmelE) <

Combing thls with the last inequality, we get (12) and, consequently, (10) for
n=10<p<1.
Case 2: 1 < p < 400. As above, we have

|<c/‘1 _'C' D7) 9] dma©).

— 1, we obtain

Multiplying and d1v1d1ng the rlght hand side of the above inequality by the func-

tion x,(¢) = (1 |C|) , 0 <Yert 1, and then using Holder’s inequality
q
with the exponent p, we get
p <c 1 - |C| ! Pt Pd
|/ ((2))] ATE T |/ ((D]" ' (O dma(C)

QY

(1= [¢)MA )
s/ gt

C2

— 1|2y 4
Using Lemma 7, we obtain (1 |C|_) X3 () dmy(() < —————
n+1 z
s (1= [2I)3

Likewise as in the above, we have

/If DI (L= 127 ¢ ()] dma(2) 303/\f’(<p(§))\”(1— AplardG]
S

T+2 e -1
. /Iw DO

e
(7|

Applying Lemma 8 for k = 0, 0< — <1+, n>7+2+1,we get
q q
7' -1 T T -2
|/ () (1= |27 (1 = |2]) " ea [ (O™ (1= ¢ (1 = ¢~
1 dms(z) < —1
\1 L (=1l

Combmg this with the last inequality, we get (12) and, consequently, (10) for
n=1,1<p< 4o0o0. Now, by the induction hypothesis, the inequality

/|f Pd™ (1, OG) dims (w) < c/‘f )[[ @47 (w, 0G) dms )
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holds and it is equivalent to

/ () Pd((2), 0G) | (2)[* dima(2)

<o / 1P| a7 (p(2), 06) | ¢/ ()] dma2).
Using (5), we obtain

/If(w(Z))l”(l — 27| (2)["* dma(2)

S
<o / TP (D] (= ) ()T dma (). (13)
S
Prove that )
J1rOn] @ =1al)#+ )77 dmaz
< [ |10 L= ) EP ) [ dy (). (1)

Without loss of generality, similarly as in the above we may again assume that

J1rOn] @ 1a) @77 dmaz) < 4o

Then

10N @ 1a2E4 7 dma(a) < o0,
S

Hence, we obtain f¥)(p) € A%(S),0 < p < +o0, a > 2(kp+7+1). By Lemma 2,
for n > —1 we have

— Py (k) 'P(2,¢
f(k)(tp(z)) _ /(1 9 )Zl(f_ Z(Z‘;Ef_)l)) P(z,() dma(Q).
S
Therefore, we get |f*)(i(2))| / - - K:"ﬂ ED ()] [¢(€) dma(€)
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Let us consider the two cases of the proof (14).
Case 1: 0 < p < 1. Applying Lemma 3, we see that

O] <o [

5 |

L [¢ffym+r-

p /
T FED )] [ dma(©).

On the other hand,

P kp+1+2 kp+T1+2
PO ED| (1= 12D [T < a1 = )T | (2) [P

112\ np+2p—2 P
x / 1=l FED )| @ (O dma(o).

) ‘1 _ CZ‘P(THU

Integrating with respect to z and changing the order of integration, we have

[ 1OEn] @ = ) | @7 dima)

S
<o / FED )] 1= ey r2 | ()

VEPFTEZ (1 || yhetT
/Iso A=)t dmy (2)dms(C).

_ Ez‘p(ﬂJrl)

3
Applying Lemma 8 for n > k — 1 + i, we see that
p

k +7+2 kp+T7+2
| ()T (1 — |2 (O (1 = ICI)’“””

ca | (¢
N T

_ Zz‘p(nﬂ)

Combing this with the last inequality, we get (14) for 0 < p < 1.
Case 2: 1 < p < 4+00. As above, we obtain

7 / LR e o] amato

Let x,(¢) = (1—|§|) 0<E<kp+7'+1
Applying Holder’s inequality, we conclude that

]__
‘f(k (2) <c/‘1 CZ‘Jﬂ r ‘f(Hl)(C)‘p“P’(Z)‘pdmﬂox
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(1= ¢ ©)
(/ Pt dm““)

S

b
q

=)™ c2
H , by L 7, we obt = d S g
owever, by Lemma /, we obtain / ‘1 _ Cz‘nﬂ mZ(C) (1 _ |z|)5
Thus, we have
/ ‘f Z 1 _ |Z|)kp+7 ‘(,0 (Z)‘kp+7+2 de(z)
1
<03/\fk+1 a1
/ |(p/(z)|kp+’r+2 (1 o |Z|)kp+’f(l — |Z|)_% de(z) de(C)
S ‘1 _Zz‘nﬂ

Applying Lemma 8 for 0 < 7 <kp+7+1,77>kp+7’+2+1,we see that
q q

/ kp+T1+2 1— kp+7(] _ —%

el QI (1= ¢y — |y %

(1 —1¢m1
Combing this with the last inequality, we get (14) for 1 < p < 400.
Also, we claim that

<

/ |f (w)|Pd" (w, OG)dma(w) < / ‘ f<’f+1>(w)"’d<’f+1>p+f(w,aG)de(w) (15)

or

[1#@PA[al) 2] dina(c)
S

p T (k T
<oy / D ()| (@ = ) ®E7 [l ()| T dmg(2),

where 0 < p < 4+00. Indeed, using (13) and (14) for 0 < p < +00, we obtain (15).
Finally, we have proved that

/ £) P (0, 9G) dm (o / el

for every n € N, 0 < p < 4o0.

(w, OG) dma (w)
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Theorem 4. Let G be a simply connected domain with boundary T' € (L).
Suppose f € H(G), f(wy) =0, wyg € G; ¢ : S = G conformally, p(0) = wy,
©'(0) > 0, v is the converse function. If f = u+iv, u € h’é(G), 0<p<+oo,
B> —1, then f € Ag(G), 0<p<+o0, > —1, and the operator

wrl | (1= [P
) (= Pl

determines a bounded linear operator hg(G) — A’B’(G) for o >2(B+1).
In particular, the operator of harmonic conjugate v = T'(u) determines a bounded
linear operator h’é(G) — hg(G) forall 0 <p < +o00, B> —1.

Proof. Weclaim that if u € hg(G), then f € Ag(G), 0<p<+oo,f>-—1.
Indeed, using Theorem 3, we get

w(p) [ ()| dma(u)  (16)

Po(u)(w) =

/ |f (w)[Pd® (w, BG)dmag (w / |f'(w)[PdP P (w, 0G)dma(w).  (17)

Since |f'(w)| = |gradu(w)], it follows that

/ | (w)[Pd? (w, DG )dms (w) < / (gradu(w) [Pd?*? (w, 0G) dms (w).

Using Theorem 2, we obtain

/ (gradu(w) Pd? 2 (w, 0G)dms (w) < e / () PP (1, DG )dms (w).
G
Hence we have
/ |f (w)[Pd? (w, 8G)dmy(w) < ¢1 / u(w)[Pd® (w, 8G)dmy(w) < +oo.  (18)
G

However, we see that f € A%(G), 0 <p< 400, > —1. By Lemma 6, for
fe Ag(G), 0<p<+oo, 8> —1weget f(o) € AL(S), a > 2(8+1). By (3) for
F(p(0)) = F(uwn) = 0, s0 that

a+1/(1— ICIQ)“U(W(C))d

T (1 _Zz)oz+2

flp(2)) = ma(C)-

Substituting z for ¢ (w), ¢ for ¥ (u), we get
:a+1/ wa )

(w))ot2 u)fdmg(u).

G
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Combing this with (18), we get the statement of the theorem.

Remark 1. For the case of the domains with smooth boundary a similar
statement was carried out by the second author in [11] for 0 < p < +o0.

Theorem 5. Let G be a simply connected domain with boundary T' € (L).
Suppose f € H(G), f(wy) =0, wy € G; ¢ : S — G conformally, 1 is the converse
function. Then the operator

atl [ (-
Fw) = Pa(w) = “ = [ BRI
G

F) [ ()| dmia ()

is a bounded projection from Lg(G) to A’é(G) for 1 <p < +o00, a> 3, moreover,
1Pl iy < (B 11 (19)

Proof Iffe Ag(G), then F(w) = f(w), w € G, a > f. We claim that if
fe Lg(G), then F € Ag(G) and

/ F(p(2) P (L= |2 |¢'(2)|*+* dms(2)
/ P = 1) | (2)] 72 dma2). (20)
Indeed, we get F(gp / 1|C_| > M( D) mgy(¢). And hence, we have
)
FpE)) <o [ LTEET

‘1_— ‘a+2|f( ©(€))| dma(Q).

Multiplying and dividing the right-hand side of the above inequality by the func-
(X
tion x,(¢) = (1—1¢]) (M), 0<”t< B+ 1, and applying Holder’s inequality with
q

the exponent p, we get
|F(¢(2))[”

2
q

/\1—c ‘lﬁ'z o P« | f 1‘;'_“( e dma(c)
S
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1A12\an 9
; '_C'Zl‘jg“) dma () <

Co
(1—1|z)%

1
It is easy to prove that / (

S
Hence we get

)P ( —zﬁ 6+2mz c P ()
/|F D (L= [21)° [ (2) m()sgs/w(on (1=K

1P ) e
/|(p 2 ‘1— |z‘|t)x+(21 =) dma(z) dma(C). (21)

UsingLemmanork:(),T:ﬁ,0<1<1+B,a>6+1+1,weobtain
q q

el (O (1= [¢DP—[¢) 77
al) < =

/|‘P |B+2 —|Z|)5(1—|Z|)_%d

C ‘04—1—2

Combing this with (21), we get the statement of the theorem for the case 1 < p <
+o00. Using Lemma 8 for a > 8 + 2, we obtain the statement of the theorem for
the case p = 1.

Remark2 An analogue of Theorem 5 for integral operators with Bergman
kernel is proved by a different method in [12] for domains with piecewise smooth
boundary, and in [13| for domains having the angle —. However, it is shown in[12,

9
2 2 1

13] that for p ¢ (1 n ik 19) 3 < 9 < 1, the operator is not bounded as the

operator from L}(Q) to AP(Q2). According to [4], the operator acting from L§(€2)

to AP(€2) is bounded in the case of simply connected domains for pg < p < pgpi 1
4
po € [g; 2).
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