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We consider the deformed Gaussian Ensemble Hn = H
(0)
n +Mn in which

H
(0)
n is a hermitian matrix (possibly random) and Mn is the Gaussian Uni-

tary Ensemble (GUE) random matrix (independent of H
(0)
n ). Assuming that

the Normalized Counting Measure of H
(0)
n converges weakly (in probability)

to a nonrandom measure N (0) with a bounded support, we prove the univer-
sality of the local eigenvalue statistics in the bulk of the limiting spectrum
of Hn.
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1. Introduction

Universality is an important topic of the random matrix theory. It deals with
statistical properties of eigenvalues of n × n random matrices on the intervals
whose length tends to zero as n → ∞. According to the universality hypothesis
these properties do not depend on large extent on the ensemble. The hypothesis
was formulated in the early 60s and since then was proved in certain cases. Best
of all the universality is studied in the case of ensembles with a unitary invariant
probability distribution (known also as unitary matrix models) ([1–3]).

To formulate the universality hypothesis we need some notations and defi-
nitions. Denote by λ

(n)
1 , . . . , λ

(n)
n the eigenvalues of random matrix. Define the

Normalized Counting Measure (NCM) of eigenvalues of the matrix as

Nn(4) = ]{λ(n)
j ∈ 4, j = 1, . . . , n}/n, Nn(R) = 1, (1.1)
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where 4 is an arbitrary interval of the real axis. For many known random
matrices the expectation Nn = E{Nn} is absolutely continuous, i.e.,

Nn(4) =
∫

4
ρn(λ)d λ. (1.2)

The nonnegative function ρn in (1.2) is called the Density of States.
Define also the m-point correlation function R

(n)
m by the equality:

E





∑

j1 6=... 6=jm

ϕm(λj1 , . . . , λjm)



 =

∫
ϕm(λ1, . . . , λm)R(n)

m (λ1, . . . , λm)dλ1, . . . , dλm,

(1.3)
where ϕm : Rm → C is bounded, continuous and symmetric in its arguments
and the summation is over all m-tuples of distinct integers j1, . . . , jm = 1, . . . , n.
Here and below integrals without limits denote the integration over the whole
real axis.

The global regime of the random matrix theory, centered around the weak
convergence of the Normalized Counting Measure of eigenvalues, is well studied
for many ensembles. It is shown that Nn converges weakly to a nonrandom
limiting measure N known as the Integrated Density of States (IDS). The IDS is
normalized to unity and is absolutely continuous in many cases

N(R) = 1, N(4) =
∫

4
ρ(λ)d λ. (1.4)

The nonnegative function ρ in (1.4) is called the limiting density of states of the
ensemble.

We will call the spectrum the support of N and define the bulk of the spectrum
as

bulkN = {λ|∃(a, b) ⊂ suppN : λ ∈ (a, b), inf
µ∈(a,b)

ρ(µ) > 0}

Then the universality hypothesis for hermitian random matrices on the bulk of
the spectrum says that we have for any λ0 ∈ bulkN :

(i) for any fixed m uniformly in x1, x2, . . . , xm varying in any compact set in
R

lim
n→∞

1
(nρn(λ0))m

R(n)
m

(
λ0 +

x1

ρn(λ0) n
, . . . , λ0 +

xm

ρn(λ0) n

)
= det{S(xi−xj)}m

i,j=1,

(1.5)
where

S(x) =
sin(πx)

πx
, (1.6)
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and R
(n)
m , ρn are defined in (1.3) and (1.2), respectively;

(ii) if
En(4) = P{λ(n)

i 6∈ 4, i = 1, n} (1.7)

is the gap probability, then

lim
n→∞En

([
λ0 +

a

ρn(λ0) n
, λ0 +

b

ρn(λ0) n

])
= det{1− Sa,b}, (1.8)

where the operator Sa,b is defined on L2[a, b] by the formula

(Sa,bf)(x) =

b∫

a

S(x− y)f(y)d y,

and S is defined in (1.6).
In this paper we study the universality of the local bulk regime of random

matrices of the deformed Gaussian Unitary Ensemble (GUE)

Hn = H(0)
n + Mn, (1.9)

where H
(0)
n is a Hermitian matrix (possibly random, and in this case independent

of Mn) with eigenvalues {h(n)
j }n

j=1 and Mn is the GUE matrix, defined as

Mn = n−1/2W, (1.10)

where W is a Hermitian n × n matrix whose entries <Wjk and =Wjk are inde-
pendent Gaussian random variables such that

E{Wjk} = E{(Wjk)2} = 0, E{|Wjk|2} = 1, j, k = 1, . . . , n. (1.11)

Let
N (0)

n (4) = ]{h(n)
j ∈ 4, j = 1, . . . , n}/n. (1.12)

be the Normalized Counting Measure of eigenvalues of H
(0)
n .

Note also that since the probability law of Mn is unitary invariant, we can
assume without loss of generality that H

(0)
n is diagonal.

The global regime for the ensemble (1.9)–(1.11) is well enough studied. In par-
ticular, it was shown in [4] that if N

(0)
n converges weakly (with probability 1) to

a nonrandom measure N (0) as n → ∞, then Nn also converges weakly (with
probability 1) to a nonrandom measure N . Moreover, the Stieltjes transforms f
of N and f (0) of N (0) are related as

f(z) = f (0)(z + f(z)). (1.13)
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It follows from definition (1.1) and the above result that any n-independent in-
terval ∆ of spectral axis such that N(∆) > 0 contains O(n) eigenvalues. Thus,
to deal with a finite number of eigenvalues as n →∞, in particular, with the gap
probability, one has to consider spectral intervals, whose length tends to zero as
n →∞. In the case of local bulk regime we are about the intervals of the length
O(n−1).

Random matrix theory possesses the powerful techniques of analysis of the
local regime based on the so-called determinant formulas for the correlation func-
tions [5]. For the GUE, more generally for the hermitian matrix models, the
determinant formulas follow from the possibility to write the joint probability
density of its eigenvalues as the square of the determinant, formed by certain
orthogonal polynomials, and then as the determinant formed by reproducing ker-
nel of the polynomials, that are also heavily used in the subsequent asymptotic
analysis [1–3]. Unfortunately, the orthogonal polynomials have not appeared
so far in the studying of the deformed Gaussian Unitary Ensemble. However,
it was shown in physical papers [6–8] that correlation functions of the deformed
Gaussian Unitary Ensemble can be written in the determinant form, although
the corresponding kernel is not, in general, a reproducing kernel of a system of
orthogonal polynomials. This was done by using as a crucial step the Harish-
Chandra/Itzykson–Zuber formula for certain integrals over the unitary group.

This important result was used in [9] to prove the universality of the local
bulk regime of matrices (1.9), where H

(0)
n = n−1/2W (0) is a hermitian random

matrix with independent (modulo symmetry) entries:

W (0) = {W (0)
jk }n

j,k, W
(0)
jk = W

(0)
kj ,

E{W (0)
jk } = E{(W (0)

jk )2} = 0, E{|W (0)
jk |2} = 1, sup

j,k
E{|W (0)

jk |p} < ∞. (1.14)

It was proved in [9] that if p > 2(m + 2), then (1.5) is valid, and if p > 6, then
(1.8) is valid.

Later in the papers [10, 11] a special case of (1.9) was studied, where H
(0)
n

has two eigenvalues ±a of equal multiplicity. In this case the universality in the
bulk and at the edge of the spectrum was proved.

In this paper we consider random matrices (1.9) for a rather general class of
H

(0)
n both random and nonrandom. The main results are the following theorems.

Theorem 1. Let H
(0)
n in (1.9) be nonrandom and such that its Normalized

Counting Measure (1.12) converges weakly to a measure N (0) of bounded support.
Then for any λ0, ρ(λ0) > 0 the universality properties (1.5 ) and (1.8) hold.

Theorem 2. Let the eigenvalues {h(n)
j }n

j=1 of H
(0)
n in (1.9) be a collection of

random variables independent of W of (1.10). Assume that there exists
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a nonrandom measure N (0) of bounded support such that for any finite interval
∆ ⊂ R and for any ε > 0

lim
n→∞P(h)

n {|N (0)(∆)−N (0)
n (∆)| > ε} = 0, (1.15)

where P(h)
n {. . .} denotes the probability law of {h(n)

j }n
j=1. Then for any λ0,

ρ(λ0) > 0 the universality properties (1.5) and (1.8) hold.

The paper is organized as follows. In Section 2 we give a proof of determinant
formulas for correlation functions (1.3) following essentially [6, 7]. Theorem 1 is
proved in Section 3. Section 4 deals with the proof of Theorem 2.

Note that we denote by C, C1, etc. and c, c1, etc. various constants appearing
below, which can be different in different formulas.

2. The Determinant Formulas

It is well known (see, for example, [5]) that the correlation functions (1.3) for
the GUE can be written in the determinant form

R(n)
m (λ1, . . . , λm) = det{Kn(λi, λj)} (2.1)

with

Kn(λi, λj) =
n−1∑

k=0

φk(λi)φk(λj), φk(x) = n1/4hk(
√

nx)e−nx2/4,

where {hk}k≥0 are orthonormal Hermite polynomials. We want to find the
analogs of these formulas in the case of random matrices (1.9). We essentially
follow [6, 7].

Proposition 1. Let Hn be the random matrix defined in (1.9). Then for its
correlation function (1.3) the determinant formula (2.1) is valid with

Kn(λ, µ)

= n

∫

L

d t

2π

∮

C

d v

2π

exp
{
−n

2
(v2 − 2vλ− t2 + 2µ t))

}

v − t

n∏

j=1

(
t− h

(n)
j

v − h
(n)
j

)
, (2.2)

where L is a line parallel to the imaginary axis and lying to the left of all
{h(n)

j }n
j=1, and C is a closed contour, encircling {h(n)

j }n
j=1 and not intersecting L.
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P r o o f. The probability distribution for ensemble (1.9) is

Pn(Hn) =
1

Zn
e−

1
2
TrW2

=
1

Z ′n
e
−n

2
Tr

(
H2

n−2HnH
(0)
n

)
, (2.3)

where
Z ′n =

∫
e
−n

2
Tr

(
H2

n−2HnH
(0)
n

)
dHn, (2.4)

and

dHn =
n∏

j=1

d Hjj

∏

1≤i<j≤n

d<Hijd=Hij .

Consider the function

Um(t1, . . . , tm) = E{Tr eint1Hn . . . Tr eintmHn} (2.5)

and use (2.3) to obtain

Um(t1, . . . , tm) =
1

Z ′n

∫
e
−n

2
Tr

(
H2

n−2HnH
(0)
n

)
Tr eint1Hn . . . Tr eintmHn dHn. (2.6)

Let us change variables to Hn = U∗ΛU , where U is a unitary matrix and the
matrix Λ is

Λ =




λ1 0 . . . 0 0
0 λ2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 . . . 0 λn


 .

Then the differential dHn in (2.6) transforms to 42(Λ)d Λdµ(U), where dΛ =
n∏

j=1
d λj ,

4(Λ) =
n∏

i<j

(λi − λj) (2.7)

is a Vandermonde determinant, and µ(U) is the normalized to unity Haar measure
on the unitary group U(n). Integral over the unitary group U(n) can be easily
computed using the well-known Harish-Chandra/Itsykson–Zuber formula (see [5,
App. 5]).

Proposition 2. Let A and B be normal n × n matrices with eigenvalues
{ai}n

i=1, {bi}n
i=1, correspondingly. Then we have

∫
exp{TrAU∗BU}dµ(U) =

det[exp{aibj}]ni,j=1

4(A)4(B)
, (2.8)

where 4(A) and 4(B) are Vandermonde determinants (2.7) for the eigenvalues
of A and B.
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Thus, we get from (2.6)

Um(t1, . . . , tm) =
1

Z ′n

∫
e
−n

2

n∑
j=1

λ2
j

n∏

k=1

(
n∑

l=1

eintkλl

)
4(Λ)

det
{

enλjh
(n)
k

}n

j,k=1

4(H(0)
n )

dΛ.

The integral here is symmetric function of {λl}n
l=1. Thus we can rewrite the above

formula as

Um(t1, . . . , tm) =
n!
Z ′n

n∑

k1,...,km=1

∫
e
−n

2

n∑
j=1

λ2
j+n

n∑
j=1

λjh
(n)
j +in(t1λk1

+...+tmλkm ) 4(Λ)

4(H(0)
n )

dΛ.

(2.9)
It is easy to check that we have for any b1, . . . , bn ∈ C

∫
e
−n

2

n∑
j=1

λ2
j+n

n∑
j=1

λjbj

4(Λ)dΛ =
(

2π

n

)n/2

4(b1, . . . , bn)e
n
2

n∑
j=1

b2j
.

Thus, the integration over {λj}n
j=1 in (2.9) yields

Um(t1, . . . , tm) = exp{−n

2
Tr (H(0)

n )2}
n∑

k1,...,km=1

4(b1, . . . , bn)

4(H(0)
n )

exp{n

2

n∑

j=1

b2
j},

(2.10)
where bj = h

(n)
j +it1δj,k1 +. . .+itmδj,km . Let us find the inverse Fourier transform

of (2.10). It is easy to see that if some of kj ’s coincide (for example, k1 = k2 =

. . . = kl), then the inverse Fourier transform of this term becomes
l−1∏
i=1

δ(λi−λi+1)

and hence can be omitted for λi 6= λj . Therefore, we have for λi 6= λj

Rm(λ1, . . . , λm) = nm
∑̃∫

d t1 . . . d tm
(2π)m

4(b1, . . . , bn)

4(H(0)
n )

exp{n

2

n∑

j=1

b2
j−in

m∑

l=1

tlλkl
},

where
∑̃

denotes the sum over the m-tuples (k1, . . . , km) of distinct kj ’s. Now
we transform the integrals over {tj}n

j=1 to the line L′ parallel to the real axis and
lying in the upper half-plane. Use the identity

4(b1, . . . , bn)

4(H(0)
n )

=
m∏

l=1

∏

j=1,n,j 6=kl


1 +

itkl

h
(n)
kl
− h

(n)
j


 ∏

1≤l<s≤m

(h(n)
kl

+ itkl
− h

(n)
ks
− itks)(h

(n)
kl
− h

(n)
ks

)

(h(n)
kl

+ itkl
− h

(n)
ks

)(h(n)
kl
− h

(n)
ks
− itks)

,
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and write its r.h.s. as the integral
∮

Cm

d u1 . . . d um

(2πi)m

m∏

k=1

n∏

j=1

(
1 +

itk

uk − h
(n)
j

) ∏

k<l

(uk + itk − ul − itl)(uk − ul)
(uk + itk − ul)(uk − ul − itl)

,

where C is a closed contour, encircling {h(n)
j }n

j=1 and not intersecting L′. This
leads to the representation

Rm(λ1, . . . , λm) = nm

∫

L′

d t1 . . . d tm

(2π)m
m∏

k=1

tk

e
−n

2

n∑
k=m

t2k−in
m∑

k=1
tkλk

∮

C

d u1 . . . d um

(2πi)m

×e
in

m∑
k=1

tkuk m∏
k=1

n∏
j=1

(
1 +

itk

uk − h
(n)
j

)
∏
k<l

(uk + itk − ul − itl)(uk − ul)
(uk + itk − ul)(uk − ul − itl)

.

Changing variables here as tk → tk + iuk and then as itk → tk, we get

Rm(λ1, . . . , λm) = nm

∫

L

d t1 . . . d tm
(2π)m

∮

C

d u1 . . . d um

(2π)m
m∏

k=1

(uk − tk)

×e
n( 1

2

n∑
k=m

t2k−
m∑

k=1
tkλk+

m∑
k=1

ukλk− 1
2

n∑
k=m

u2
k) m∏

k=1

n∏
j=1

tk − h
(n)
j

uk − h
(n)
j

×(−1)m(m−1)/2
∏
k<l

(tk − tl)(uk − ul)
(uk − tl)(ul − tk)

,

(2.11)

where L is a line parallel to the imaginary axis and lying to the left of all {h(n)
j }n

j=1,

and C is a closed contour, encircling {h(n)
j }n

j=1 and not intersecting L. Now the
identity (see [12, Probl. 7.3])

(−1)
m(m−1)

2

∏

k<l

(tk − tl)(uk − ul)
(uk − tl)(ul − tk)

∏

k

1
uk − tk

= det
[

1
uk − tj

]m

k,j=1

and formula (2.11) yield (2.1) with (2.2).

3. Proof of Theorem 1

In this section we prove Theorem 1 using (2.1) and passing to the limit n →∞
in (2.2).

Putting in formula (2.2) λ = λ0 + ξ/n and µ = λ0 + η/n, we get

Kn(λ0 + ξ/n, λ0 + η/n)

= n

∫

L

dt

2π

∮

C

dv

2π
exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t
, (3.1)
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where

Sn(z, λ0) =
z2

2
+

1
n

n∑

i=1

ln(z − h
(n)
j )− λ0z − S∗ (3.2)

with some constant S∗ which will be chosen later (see (3.16)), and C is a closed
contour, encircling {h(n)

j }n
j=1, and L is a line parallel to the imaginary axis and

lying to the left of C. Formula (2.1) reduces the proof of (1.5) to the proof of the
relation

lim
n→∞

1
nρn(λ0)

Kn

(
λ0 +

ξ

nρn(λ0)
, λ0 +

η

nρn(λ0)

)
= S(ξ − η),

where S is defined in (1.6).
Now we will choose the contour C in (3.1) as some n-dependent contour Cn.

Define

f (0)
n (z) =

1
n

n∑

j=1

1

h
(n)
j − z

, (3.3)

and for given λ ∈ R consider the equation

z − f (0)
n (z) = λ. (3.4)

It can be written as a polynomial equation of degree (n+1) and so it has (n+1)
roots. Since the l.h.s. of (3.4) tends to +∞, if z ∈ R → h

(n)
j + 0, and the l.h.s.

tends to −∞, if z ∈ R→ h
(n)
j −0, the n−1 roots are always real and belong to the

segments between adjacent h
(n)
j ’s . If λ is big enough, then all n+1 roots are real.

Let zn(λ) be a real root equal to λ − 1/λ + O(1/λ2), as λ → ∞. If λ decreases,
then zn(λ) decreases too, and coming to some λc1 the real root disappears and
there appear two complex ones – zn(λ) and zn(λ). Then zn(λ) may be real again,
then again complex, and so on, however as soon as λ becomes less then some λc2 ,
the root becomes real again. Introduce

Cn = {z ∈ C : z = zn(λ), =zn(λ) > 0} ∪ {z ∈ C : z = zn(λ), =zn(λ) > 0} ∪ S,
(3.5)

where S is a set of points z = zn(λ) in which zn(λ) becomes real. It is clear

that the set of corresponding λ’s is
k⋃

j=1
Ik, where {Ij}k

j=1 are non intersecting

segments, and that Cn is closed and encircles {h(n)
j }n

j=1.
Let us consider the limiting equation

z − f (0)(z) = λ, f (0)(z) =
∫

N (0)(d h)
h− z

, (3.6)

where λ ∈ R is fixed. We have
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Lemma 1. Let H
(0)
n in (1.9) be a Hermitian matrix (possibly random and

in this case independent of Mn). Assume that the NCM N
(0)
n of H

(0)
n converges

weakly with probability 1 to a nonrandom measure N (0). Then the IDS N is
absolutely continuous and its density ρ is continuous, and equation (3.6) has
a unique solution in the open upper half-plane =z > 0 for any λ such that ρ(λ) >
0. This solution is continuous in λ in the domain where it exists and

π−1=z(λ) = ρ(λ). (3.7)

P r o o f. It follows from (1.13) that

=f(z) =
∫

(=z + =f(z))N (0)(d h)
|h− z − f(z)|2 .

Thus, since =f(z) > 0 for =z > 0, we have

∫
N (0)(d h)

|h− z − f(z)|2 =
=f(z)

=f(z) + =z
≤ 1. (3.8)

This and (1.13) yield

|f(z)| ≤
∫

N (0)(d h)
|h− z − f(z)| ≤

(∫
N (0)(d h)

|h− z − f(z)|2
)1/2

≤ 1. (3.9)

According to (3.9) we have that there exists a sequence {zk}∞k=1 : zk → λ0 ∈ R,
=zk > 0 such that f(zk) → φ0 as k →∞. Let {ẑk}∞k=1 be another sequence such
that ẑk → λ0 and f(ẑk) → φ1 6= φ0 as k → ∞. Denote fk = f(zk), f̂k = f(ẑk).
Then we have

fk = f (0)(zk + fk), f̂k = f (0)(ẑk + f̂k)

and also
fk = f (0)(zk + fk).

Hence, we obtain

(ẑk + f̂k − zk − fk)
∫

N (0)(d h)

(h− ẑk − f̂k)(h− zk − fk)
= f̂k − fk, (3.10)

and thus, since f̂k − fk → φ1 − φ0 6= 0, ẑk − zk → 0 we get

lim
k→∞

∫
N (0)(d h)

(h− ẑk − f̂k)(h− zk − fk)
= lim

k→∞
f̂k − fk

ẑk + f̂k − zk − fk

= 1. (3.11)
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Therefore, we obtain from (3.8) for zk and ẑk and from (3.11)

lim
k→∞

∫ ∣∣∣∣
1

h− zk − fk
− 1

h− ẑk − f̂k

∣∣∣∣
2

N (0)(d h)

= lim
k→∞

(∫
N (0)(d h)

|h− zk − fk|2 +
∫

N (0)(d h)

|h− ẑk − f̂k|2

−2<
∫

N (0)(d h)

(h− ẑk − f̂k)(h− zk − fk)

)
= 0.

Hence, we have also for any M > 0

lim
k→∞

M∫

−M

∣∣∣∣
1

h− zk − fk
− 1

h− ẑk − f̂k

∣∣∣∣
2

N (0)(d h) = 0. (3.12)

Let us take the segment 4M = [−M, M ] such that N (0)(4M ) > 0. Formula
(3.12) yields that for any ε > 0 and for any k > K there exists h = h(k) ∈ 4M

such that
∣∣∣∣

1
h− zk − fk

− 1

h− ẑk − f̂k

∣∣∣∣ =

∣∣∣∣∣
zk − ẑk + fk − f̂k

(h− zk − fk)(h− ẑk − f̂k)

∣∣∣∣∣ ≤ ε.

Since |h − zk − fk| ≤ M + λ0 + |φ0|, |h − ẑk − f̂k| ≤ M + λ0 + |φ1|, the last
inequality yields

|zk − ẑk + fk − f̂k| ≤ Cε

for any ε > 0 and for any k > K = K(ε). This is evidently impossible for
φ0 6= φ1. Therefore, we proved that for any λ ∈ R there exists lim

z→λ
f(z).

Let us prove the uniqueness of the solution. Suppose that there are z1, z2 :
z1 6= z2 in the open upper half-plane such that

z1 − f (0)(z1) = λ, z2 − f (0)(z2) = λ.

Again, analogously to (3.10) and (3.11), we obtain

(z1 − z2)

(
1−

∫
N (0)(d h)

(h− z1)(h− z2))

)
= 0,

thus ∫
N (0)(d h)

(h− z1)(h− z2)
= 1. (3.13)
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Considering the imaginary part (3.6), we get for i = 1, 2
∫

N (0)(d h)
|zi − h|2 = 1. (3.14)

Therefore, (3.13) and (3.14) yield
∫ ∣∣∣∣

1
h− z1

− 1
h− z2

∣∣∣∣ N (0)(d h) = 0,

and hence z1 = z2.
Set

z(λ) = λ + f(λ + i 0) (3.15)

for λ such that =z(λ) = =f(λ + i 0) > 0. Using (1.13), we obtain that

z(λ)− f (0)(z(λ)) = λ.

Hence, for any λ, such that =f(λ+ i 0) > 0, there exists a solution of (3.6) in the
open upper half-plane.

Let us prove now the continuity of f(λ + i0). Given ε > 0 and λ1 ∈ R, there
exists δ1 > 0 such that

|f(z)− f(λ1 + i0)| < ε/2, ∀z : |z − λ1| < δ1, =z > 0.

Choose λ2 ∈ R such that |λ1 − λ2| < δ1. Then there exists δ2 > 0 such that

|f(z)− f(λ2 + i0)| < ε/2, ∀z : |z − λ2| < δ2, =z > 0.

Hence, there exists z ∈ C+, satisfying the both inequalities, and we can write
the inequality

|f(λ1 + i0)− f(λ2 + i0)| ≤ |f(z)− f(λ1 + i0)|+ |f(z)− f(λ2 + i0)| < ε,

implying the continuity of f(λ + i0) and, thus, the continuity of z(λ) of (3.15).
Therefore, we proved that for any λ ∈ R there exists lim

z→λ
=f(z) and this limit

is continuous in λ. According to the Stieltjes–Perron formula it means that the
measure N is absolutely continuous and its density ρ(λ) = 1/π=f(λ + i 0) is
continuous. Moreover, (1.13) and (3.6) imply (3.7). The lemma is proved.

Now let us choose the constant in (3.2) such that

S∗ = <

z2

n(λ0)/2 +
1
n

n∑

j=1

ln(zn(λ0)− h
(n)
j )− λ0zn(λ0)


 (3.16)

and study the behavior of <Sn(zn(λ), λ0) on the contour Cn of (3.5).
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Lemma 2. Let z belong to the upper part of Cn, i.e., z = zn(λ) = xn(λ) +

iyn(λ), yn(λ) > 0, λ ∈
k⋃

j=1
Ij, where

zn(λ)− f (0)
n (zn(λ)) = λ. (3.17)

Then <Sn(zn(λ), λ0) ≥ 0, and the equality holds only at λ = λ0. The same is
valid for the lower part of Cn, i.e., z = zn(λ).

P r o o f. The real and the imaginary parts of (3.17) yield for xn = <zn and
yn = =zn:





xn(λ) +
1
n

n∑

j=1

xn(λ)− h
(n)
j

(xn(λ)− h
(n)
j )2 + y2

n(λ)
= λ,

yn(λ)


1− 1

n

n∑

j=1

1

(xn(λ)− h
(n)
j )2 + y2

n(λ)


 = 0.

(3.18)

Differentiating (3.17) with respect to λ, we obtain

z′n(λ)
(

1− d

d z
f (0)

n (zn(λ))
)

= 1,

i.e.,

z′n(λ) =
(

1− d

d z
f (0)

n (zn(λ))
)−1

, (3.19)

where f
(0)
n (z) is defined in (3.3).

It follows from the implicit function theorem that Cn intersects the real axis
at the points where

1− d

d x
f (0)

n (x) = 0.

Since
d

d x
f (0)

n (x) =
1
n

n∑

j=1

1

(x− h
(n)
j )2

,

the inequality

1− d

d x
f (0)

n (x) < 0 (3.20)

holds in a neighborhood of every h
(n)
j , j = 1, . . . , n. Thus, the function

1 − d

d x
f (0)

n (x) is always positive for real x outside Cn. On the other hand, we

have zn(λ) = xn(λ) outside Cn and in this case we get

x′n(λ) = z′n(λ) =
(

1− d

d z
f (0)

n (zn(λ))
)−1

> 0. (3.21)

408 Journal of Mathematical Physics, Analysis, Geometry, 2009, vol. 5, No. 4



Universality of the Deformed GUE

Now let λ ∈
k⋃

j=1
Ij , i.e., zn(λ) belongs to Cn. We get from (3.19)

<z′n(λ) = x′n(λ) = <
((

1− d

d z
f (0)

n (zn(λ))
)−1

)
=

an(λ)
a2

n(λ) + b2
n(λ)

, (3.22)

where 



an(λ) = <
(

1− d

d z
f (0)

n (zn(λ))
)

,

bn(λ) = =
(

1− d

d z
f (0)

n (zn(λ))
)

,
(3.23)

and hence

an(λ) = 1− 1
n

n∑

j=1

(xn(λ)− h
(n)
j )2 − y2

n(λ)

((xn(λ)− h
(n)
j )2 + y2

n(λ))2
.

Taking into account that yn(λ) 6= 0 for λ ∈
k⋃

j=1
Ij , we obtain from (3.18) that

1
n

n∑

j=1

1

(xn(λ)− h
(n)
j )2 + y2

n(λ)
= 1. (3.24)

This and the previous equation yield

an(λ) =
1
n

n∑

j=1

2y2
n(λ)

((xn(λ)− h
(n)
j )2 + y2

n(λ))2
> 0. (3.25)

It follows from (3.23) and (3.25) that in this case x′n(λ) > 0 if only yn(λ) 6= 0.
Thus, xn(λ) is a strictly monotone increasing function defined everywhere in R.

Substituting the expression zn(λ) = xn(λ)+ iyn(λ) into (3.2) and using (3.4),
we obtain

d

d λ
<Sn(zn(λ), λ0)

= <

z′n(λ)


zn(λ) +

1
n

n∑

j=1

1

zn(λ)− h
(n)
j

− λ0





 = x′n(λ)(λ− λ0). (3.26)

Since x′n(λ) > 0 (see (3.22), (3.25) and (3.21)), the function <Sn(zn(λ), λ0) has
a minimum at λ = λ0, and since <Sn(zn(λ0), λ0) = 0, <Sn(zn(λ), λ0) ≥ 0, and
the equality holds only at λ = λ0.

Note that the lower part of Cn differs from the upper one only by the sign of
yn(λ), hence <Sn(z, λ0) ≥ 0, z ∈ Cn, and the equality holds only at z = z(λ0)
and z = z(λ0).
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A similar fact about the behavior of <Sn(z, λ0) along the line

Ln = {z ∈ C : z = ζn(y) = xn(λ0) + i y} (3.27)

is given by

Lemma 3. Consider the part of Ln lying in the upper half-plane y > 0.
On this part <Sn(z, λ0) = <Sn(ζn(y), λ0) ≤ 0 and the equality holds only at
y = yn(λ0). The same is valid for the lower part of Ln and y = −yn(λ0).

P r o o f. The function <Sn(z, λ0) is for z ∈ Ln

<Sn(ζn(y), λ0) =
x2

n(λ0)− y2

2
+

1
n
<

n∑

j=1

ln(xn(λ0) + iy − h
(n)
j )− λ0xn(λ0)− S∗.

Differentiating this with respect to y, we obtain

d

d y
<Sn(ζn(y), λ0) = y


−1 +

1
n

n∑

j=1

1

(xn(λ0)− h
(n)
j )2 + y2


 . (3.28)

Taking into account that

n∑

j=1

1
(xn(λ0)− hj)2 + y2

is monotone in y, we have from (3.24) that
d

d y
<Sn(ζn(y), λ0) has a unique zero at

y = yn(λ0) (for y > 0), hence, y = yn(λ0) is a maximum point of <Sn(ζn(y), λ0).
Similarly, for y < 0 the maximum point is y = −yn(λ0). Therefore,
<Sn(z, λ0) ≤ 0 on Ln and the equality holds only at z = z(λ0) or z = z(λ0).

Thus, we have for t ∈ Ln and v ∈ Cn (see Lemmas 2 and 3)

<(n(Sn(t, λ0)− Sn(v, λ0))) ≤ 0, (3.29)

and the equality holds only if v and t are both equal to zn(λ0) or zn(λ0).
We need below the second derivative of <Sn(z, λ0). Assume that λ ∈ Uδ(λ0) =

(λ0 − δ, λ0 + δ). We get from (3.26)

d2

d λ2
<(−Sn(zn(λ), λ0)) = −x′n(λ) + x′′n(λ)(λ0 − λ). (3.30)
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Lemma 4. There exists an n-independent c > 0 and δ > 0 such that

d2

d λ2
<(−Sn(zn(λ), λ0)) < −c

for any λ ∈ Uδ(λ0).

P r o o f. It follows from (3.30) that to prove the lemma it is sufficient to
show that the second derivative x′′n(λ) is bounded uniformly in n and that the
first derivative x′n(λ) is bounded from below by a positive constant uniformly in
n in some sufficiently small neighborhood Uδ(λ0) of λ0. Thus, we will show that
x′n(λ) ≥ C for all λ ∈ Uδ(λ0).

Note that the inequality 2|yn(λ)||xn(λ)− h
(n)
j | ≤ (xn(λ)− h

(n)
j )2 + y2

n(λ) and
(3.24) yield for bn of (3.23)

|bn(λ)| =
∣∣∣∣∣∣
1
n

n∑

j=1

2yn(λ)(xn(λ)− h
(n)
j )

((xn(λ)− h
(n)
j )2 + y2

n(λ))2

∣∣∣∣∣∣
≤ 1

n

n∑

j=1

2|yn(λ)||(xn(λ)− h
(n)
j )|

((xn(λ)− h
(n)
j )2 + y2

n(λ))2

≤ 1
n

n∑

j=1

1

(xn(λ)− h
(n)
j )2 + y2

n(λ)
= 1.

This and (3.22) imply

x′n(λ) ≥ an(λ)
a2

n(λ) + 1
. (3.31)

Lemma 5 (see below) and (3.31) yield that x′n(λ) ≥ C for all λ ∈ Uδ(λ0). By the
same lemma x′′n is uniformly bounded, thus the second term in (3.30) is of O(δ).
Lemma 4 is proved.

Lemma 5. There exists n-independent C1 and C2 such that we have for all
λ ∈ Uδ(λ0)

|xn(λ)| ≤ C1, 0 < C2 ≤ |yn(λ)| ≤ 1, |x′′n(λ)| ≤ C1, (3.32)

where an n-independent δ is small enough. Moreover,

0 < c1 < an(λ) < c2, λ ∈ Uδ(λ0), (3.33)

for some n-independent c1 and c2.

P r o o f. We use Lemma 1. Consider the solution z(λ) of limiting equation
(3.6). It follows from the lemma and the hypothesis of Theorem 1 (ρ(λ0) > 0)
that =z(λ0) > 0. Taking into account the continuity of z(λ), for any ε1 > 0 we
can take a sufficiently small neighborhood Uδ1(λ0) such that

|z(λ)− z(λ0)| < ε1/2, λ ∈ Uδ1(λ0). (3.34)
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Note that we can choose λ0-independent δ1 since z(λ) is uniformly continuous.
Consider the one-parameter family of the functions ϕλ(z) = −f (0)(z) + z −

λ and the function φn(z) = −f
(0)
n (z) + f (0)(z), where f (0), f

(0)
n are defined in

(3.6),(3.3), and the set ω = {z : |z − z(λ0)| ≤ ε1}. Let us show that for any
λ ∈ Uδ1(λ0) and z ∈ ∂ω we have

|ϕλ(z)| > c0, (3.35)

where c0 does not depend on λ. Assume the opposite and choose a sequence
{λk}k≥1,λk ∈ Uδ1(λ0) such that |ϕλk

(zk)| → 0, as k → ∞. There exists a sub-
sequence {λkm}, converging to some λ ∈ Uδ1(λ0) such that the subsequence {zkm}
converges to z ∈ ∂ω. For these λ and z we have ϕλ(z) = 0. But the equation
ϕλ(z) = 0 has in the upper half-plane only one root z(λ), which is inside the
circle of the radius ε1/2 and with the center z(λ0). This contradiction proves
(3.35).

Since for any ε > 0 there exists n0 such that for any n > n0

|f (0)
n (z)− f (0)(z)| ≤ ε (3.36)

for z on any compact set of the upper half-plane (recall the weak convergence of
{N (0)

n } to N (0)), we have for n > n0, where n0 is big enough

|φn(z)| < c0, z ∈ ∂ω. (3.37)

Comparing (3.35) and (3.37), we obtain for n > n0

|ϕλ(z)| > |φn(z)|, z ∈ ∂ω, ∀λ ∈ Uδ1(λ0).

Since both functions are analytic, the Rouchet theorem implies that ϕλ(z) and
ϕλ(z) + φn(z) = z− f

(0)
n (z)−λ have the same number of zeros in ω. Since ϕλ(z)

has only one zero in ω, we conclude that zn(λ) belongs to ω, xn(λ) is bounded,
and yn(λ) ≥ C2 > 0 uniformly in n if λ ∈ Uδ(λ0) for any δ < δ1. Besides, (3.24)
yields that 0 ≤ yn(λ) ≤ 1 for any λ. Since zn(λ) is real analytic, we have proved
also that x′′n(λ) is bounded uniformly in n if λ ∈ Uδ(λ0) for any δ < δ1 (since
|x′′(λ)− x′′n(λ)| ≤ Cε1, λ ∈ Uδ(λ0)). Thus, we have proved (3.32).

Note that we have also proved that for any λ0 such that ρ(λ0) > 0 and for
any ε1 > 0 there exists δ such that for any λ ∈ Uδ(λ0) and any n > N(δ, ε1)

|zn(λ)− z(λ)| ≤ 2ε1. (3.38)

Since f
(0)
n is analytic for =z 6= 0, we have

∣∣∣∣
d

d z
f (0)

n (z)− d

d z
f (0)(z)

∣∣∣∣ ≤ Cε (3.39)
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uniformly on any compact set of the upper half-plane. This, (3.38) and (3.23)
imply that it is sufficient to prove (3.33) for

<
(

1− d

d z
f (0)(z(λ))

)
=

∫
2y2(λ)N (0)(d h)

((x(λ)− h)2 + y2(λ))2
, λ ∈ Uδ(λ0). (3.40)

Now (3.33) follows from (3.34), =z(λ0) > 0, and suppN (0) ⊂ [−M, M ], M < ∞.

It follows from Lemma 5 and the equalities

<Sn(zn(λ0), λ0) = 0,
d

d λ
<Sn(zn(λ), λ0)

∣∣∣
λ=λ0

= 0

(see (3.2), (3.16), and (3.26)) that

< (−Sn(zn(λ), λ0)) < −c
(λ− λ0)2

2
, λ ∈ Uδ(λ0). (3.41)

Since
d

d λ
<(Sn(zn(λ), λ0)) has a unique zero at λ = λ0 (see (3.21), (3.22), (3.25),

and (3.26)), the function < (Sn(zn(λ), λ0)) is monotone for λ 6= λ0, and we have

<(−Sn(zn(λ), λ0)) < −c
δ2

2
, λ 6∈ Uδ(λ0). (3.42)

We need an analogous fact in a neighborhood of zn(λ0) on Ln. We get from (3.2)

d2

d y2
<(Sn(ζn(y), λ0)) = −<

(
1− d

d z
f (0)

n (ζn(y))
)

, (3.43)

where ζn(y) is defined in (3.27). Since for any ε1 > 0 there exists N such that
for n > N we have |z(λ0)− zn(λ0)| ≤ ε1/2 (see (3.38)), we can choose δ > 0 such
that |ζn(y)− z(λ0)| ≤ ε1 for y ∈ U2δ(y(λ0)). We obtain for such y (see (3.38) and
(3.39)) ∣∣∣∣

d

d z
f (0)

n (ζn(y))− d

d z
f (0)(z(λ0))

∣∣∣∣ ≤ Cε1.

But since expression in (3.40) for λ = λ0 is bounded from below by a positive
constant, the previous inequality and (3.43) yield

d2

d y2
<(Sn(ζn(y), λ0)) < −c, y ∈ U2δ(y(λ0)).

Recall that yn(λ0) ∈ Uδ(y(λ0)) starting from some n. Hence, we obtain if n is
big enough

|yn(λ0)− y| > δ, y 6∈ U2δ(y(λ0)).
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Thus, since

<Sn(zn(λ0), λ0) = 0,
d

d y
<Sn(ζn(y), λ0)

∣∣∣
y=yn(λ0)

= 0

(see (3.2), (3.16), (3.24), and (3.28)), we get

<(Sn(ζn(y), λ0)) < −c
(y − yn(λ0))2

2
, y ∈ U2δ(y(λ0)). (3.44)

Since
d

d y
<(Sn(ζn(y), λ0)) has a unique zero at y = yn(λ0) (see (3.24) and (3.28)),

the function <(Sn(ζn(y), λ0)) is monotone for y 6= yn(λ0), and we have

<(Sn(ζn(y), λ0)) < −c
δ2

2
, y 6∈ U2δ(y(λ0)). (3.45)

Besides, since it is easy to see that
d2

d y2
<(Sn(ζn(y), λ0)) → −1 as y → ∞ uni-

formly in n, <(Sn(ζn(y), λ0)) is convex for |y| > K for some sufficiently big
n-independent K > 0. Hence, we get for such K (recall that zn(λ0) is in some
neighborhood of z(λ0))

<(Sn(ζn(y), λ0)) < −c1|y|+ c2, c1 > 0, |y| > K. (3.46)

Denote U1 = Uδ(λ0), U2 = U2δ(y(λ0)). Using formulas (3.41), (3.42), and (3.44)–
(3.46), we obtain for all sufficiently big n and K

∣∣∣∣∣∣

∫

Ln

dt

2π

∮

Cn

dv

2π
exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t

∣∣∣∣∣∣

≤ C




∫

U2

∫

U1

+
∫

U2

∫

Cn\U1


 exp{<(n(Sn(ζn(y), λ0)− Sn(zn(λ), λ0)))}|z′n|

|zn(λ)− ζn(y)| d λ d y

+




∫

Ln\U2

∫

U1

+
∫

Ln\U2

∫

Cn\U1


 exp{<(n(Sn(ζn(y), λ0)− Sn(zn(λ), λ0)))}|z′n|

|zn(λ)− ζn(y)| d λ d y

≤ C

∫

U2

∫

U1

|z′n(λ)|d λdy

|zn(λ)− ζn(y)| + C1 · |Cn| · e−cnδ2/2

+C2(Ke−cnδ2/2 + e−n(c1K−c2)) + C3 · |Cn| · e−cnδ2/2(Ke−cnδ2/2 + e−n(c1K−c2)),
(3.47)
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where |Cn| is the length of Cn and c1K − c2 > 0. Note that
∫

U2

∫

U1

|z′n(λ)|d λdy

|zn(λ)− ζn(y)| ≤
∫

U2

∫

U1

|z′n(λ)|d λdy√
(1− cosαn + o(δ))(|zn(λ)|2 + |ζn(y)|2) ,

where αn is the angle between Cn and Ln at z(λ0), i.e., cotαn =
y′n(λ0)
x′n(λ0)

, where

xn(λ) = <zn(λ), yn(λ) = =zn(λ). Since x′n(λ0) > c > 0 (see (3.31) and (3.33)),
cosαn < 1− ε, and we can write

∫

U2

∫

U1

|z′n(λ)|d λdy√
(1− cosαn + o(δ))(|zn(λ)|2 + |ζn(y)|2)

≤ C0

∫

U2

∫

U1

|z′n(λ)|d λdy√
|zn(λ)|2 + |ζn(y)|2 ≤ Cδ. (3.48)

Now we need

Lemma 6. Let l(x) be the oriented length of the upper part of the contour Cn

between x0 = xn(λ0) and x (we take l(x) > 0 for x > x0 to obtain l′(x) > 0).
Then for any collection {h(n)

j }n
j=1, l(x) admits the bound

|l(x1)− l(x2)| ≤ C|x1 − x2|
with an absolute constant C. Moreover,

|Cn| ≤ Cn,

where |Cn| is the length of Cn.

P r o o f. We will find the bound for the length of the part of Cn between
the lines <z = x1 and <z = x2, x2 − x1 = 2. It follows from (3.22) and (3.25)
that one can express yn(λ) via xn(λ) to obtain the ”graph” yn(x) of the upper
part of Cn. Denote

y2
n(x) = s(x), x− h

(n)
j = 4j ,

σk =
1
n

n∑

j=1

1
(42

j + s)k
, σkl =

1
n

n∑

j=1

4l
j

(42
j + s)k

k = 1, 3, l = 1, 2.
(3.49)

Differentiating (3.24) with respect to x, we obtain the equality

−s′
1
n

n∑

j=1

1
(42

j + s)2
− 2

n

n∑

j=1

4j

(42
j + s)2

= 0
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implying that

|s′| = 2|σ21|σ−1
2 ≤ 2σ

1/2
22 σ

−1/2
2 ≤ 2σ

−1/2
2 ≤ 2σ−1

1 = 2. (3.50)

Differentiating (3.24) with respect to x twice, we have

s′′


 1

n

n∑

j=1

1
(42

j + s)2


− 2(s′)2


 1

n

n∑

j=1

1
(42

j + s)3




− 8s′


 1

n

n∑

j=1

4j

(42
j + s)3


 +

2
n

n∑

j=1

(42
j + s)2 − 442

j (42
j + s)

(42
j + s)4

= 0, (3.51)

or, in our notations (3.49),

s′′σ2 − 2(s′)2σ3 − 8s′σ31 + 2(4sσ3 − 3σ2) = 0. (3.52)

Note that

sσ3 =
1
n

n∑

j=1

s

(42
j + s)3

≤ 1
n

n∑

j=1

1
(42

j + s)2
= σ2,

and also

σ2
31 =


 1

n

n∑

j=1

4j

(42
j + s)3




2

≤ 1
n

n∑

j=1

42
j

(42
j + s)3

· 1
n

n∑

j=1

1
(42

j + s)3
≤ σ2σ3.

Using these inequalities, we get from (3.52)

s′′σ2 = 2(s′)2σ3 + 8s′σ31 − 2(4sσ3 − 3σ2) = 2σ3 (s′ + 2σ31/σ3)
2 − 8σ2

31/σ3

−8sσ3 + 6σ2 ≥ −8σ2
31/σ3 − 2σ2 ≥ −10σ2

or
s′′ ≥ −10. (3.53)

Let x∗ ∈ [x1;x2] be the maximum point of yn(x) and

y′n(x) =
s′(x)

2
√

s(x)
> 0, x ∈ [x3, x∗]

for some x3 ∈ [x1; x∗]. Then we have

l(x∗)− l(x3) =

x∗∫

x3

√
1 + (y′n(x))2d x =

x∗∫

x3

√√√√1 +

(
s′(x)

2
√

s(x)

)2

d x

≤
x∗∫

x3

(
1 +

s′(x)
2
√

s(x)

)
d x = (x∗ − x3) +

√
s∗ −√s3 ≤ (x∗ − x3) +

√
s∗ − s3,

(3.54)
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where s∗ = s(x∗), s3 = s(x3). Taking into account that s′(x∗) = 0, we write

s3 − s∗ =
s′′(ξ)(x3 − x∗)2

2
,

where ξ ∈ [x3, x∗]. This and (3.53) imply

0 ≤ s∗ − s3 ≤ 5(x3 − x∗)2.

Hence, we get in view of (3.54)

l(x∗)− l(x3) ≤ (1 +
√

5)(x∗ − x3). (3.55)

We have a similar inequality for x3 > x∗ and y′n(x) < 0, x ∈ [x∗, x3]. Take now
an arbitrary x3 ∈ [x1; x2] and denote x∗ the nearest to x3 maximum point of
yn(x) in [x1, x2]. Then, splitting [x1, x∗] in the segments of monotonicity of yn

and using (3.50), (3.55) and its analog for decreasing yn(x), we obtain

l(x3)−l(x1) = l(x∗)−l(x1)+

x3∫

x∗

l′(x)d x ≤ (1+
√

5)(x∗−x1)+

x3∫

x∗

(
1 +

|s′(x)|
2
√

s(x)

)
d x

≤ (1 +
√

5)(x∗ − x1) + (x3 − x∗) +
√
|s3 − s∗|

≤ (1 +
√

5)(x∗ − x1) + (x3 − x∗) +
√

2
√

x3 − x∗ ≤ C
√

x3 − x1, (3.56)

where the last inequality holds, because |x3− x∗| ≤ |x3− x1| and |x3− x1| ≤ 2.
Hence,

l(x2)− l(x1) ≤ C
√

x2 − x1 ≤ C.

It follows from (3.24) that dist(xn(λ), {h(n)
j }n

j=1) ≤ 1. Thus, we can cover Cn by
n strips of width 2 and obtain that |Cn| ≤ Cn.

Using Lemma 6, (3.48), and (3.47), we get that

lim
n→∞

∫

Ln

dt

2π

∮

Cn

dv

2π
exp{vξ − ty}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t
= 0. (3.57)
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Consider the contour CR of the figure

R

-R

Cn
Cn

L Ln

and the integral ∮

Cn

dv

2π
In(v), (3.58)

where

In(v) = −
∮

CR

dt

2π
exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t
(3.59)

and the integral is understood in the Cauchy sense for v ∈ CR, i.e., for v = zn(λ0)
and v = zn(λ0). We have from the residue theorem (see [16, Sects. 1.5 and 3.3])

In(v) =





i exp{v(ξ − η)}, v is inside CR,
0, v is outside CR,

i

2
exp{v(ξ − η)}, v = zn(λ0), zn(λ0)

(according to Lemmas 2 and 3 Cn and Ln have only two points of intersection).
Hence,

∮

Cn

dv

2π
In(v) = − i

2π

zn(λ0)∫

zn(λ0)

exp{v(ξ−η)}dv = exp{xn(λ0)(ξ−η)}sin(yn(λ0)(ξ − η))
π(ξ − η)

,

where xn(λ) = <zn(λ), yn(λ) = =zn(λ). Note that for any fixed n and any fixed
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set {h(n)
j }n

j=1, we have for t = x± iR ∈ CR in view of Lemma 2

<(Sn(t, λ0)− Sn(zn(λ), λ0)) ≤ <Sn(t, λ0)

=
x2 −R2

2
+

1
2n

n∑

j=1

ln((x− h
(n)
j )2 + R2)− λ0x− S∗ ≤ −R2

4
(3.60)

for sufficiently big R. Hence, the integrals over the parts of the lines =z = ±R
in (3.59) are bounded by C1 e−nR2/4. Thus, we get after the limit R →∞

−
∮

Cn

dv

2π

∮

L
⋃

Ln

dt

2π
exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t

= exp{xn(λ0)(ξ − η)}sin(yn(λ0)(ξ − η))
π(ξ − η)

,

(3.61)

where xn(λ) = <zn(λ), yn(λ) = =zn(λ). Therefore, adding (3.61) and (3.47),
we obtain
1
n

Kn

(
λ0 +

x

n
, λ0 +

y

n

)
=

∫

L

dt

2π

∮

Cn

dv

2π
exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t

=




∫

Ln

dt

2π

∮

Cn

dv

2π
−

∮

L∪Ln

dt

2π

∮

Cn

dv

2π


 exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t

=
∫

Ln

dt

2π

∮

Cn

dv

2π
exp{vξ − tη}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t

(3.62)

+ exp{xn(λ0)(ξ − η)}sin(yn(λ0)(ξ − η))
π(ξ − η)

= exp{xn(λ0)(ξ − η)}sin(yn(λ0)(ξ − η))
π(ξ − η)

+ o(1), n →∞.

In view of (3.38), we can write for n > N the inequality |yn(λ0) − y(λ0)| ≤ ε1,
where yn(λ0) = =zn(λ0), y(λ0) = =z(λ0) and zn(λ0) and z(λ0) are solutions of
(3.4) and (3.6), respectively, for λ = λ0. Besides, it follows from (3.62) with
ξ = η = 0 that for

ρn(λ0) = n−1Kn(λ0, λ0) (3.63)

the inequality |ρn(λ0) − π−1yn(λ0)| < ε1 is valid for any ε1 > 0 and sufficiently
big n. Therefore we have proved that |ρn(λ0)− π−1y(λ0)| ≤ Cε1 for n > N , i.e.,
that lim

n→∞ ρn(λ0) = π−1=z(λ0). This and (3.7) imply that |ρn(λ0)−ρ(λ0)| ≤ Cε1

for n > N . Now we obtain (1.5) by using (2.1), (3.62), and the boundedness and
continuity of

det
{

sin(y(xj − xk))
π(xj − xk)

}m

j,k=1

(3.64)
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in y ∈ [0, 1] for any m ∈ N and |xj | ≤ K, j = 1, . . . ,m.
To prove the second statement (1.8) of the universality hypothesis we need

Lemma 7. We have for any set {h(n)
j }n

j=1 (i.e. for any realization if H
(0)
n is

random) and for any λ0, ρ(λ0) > 0, |ξ|, |η| ≤ K < ∞
∣∣∣∣
1
n

Kn(λ0 + ξ/n, λ0 + η/n)
∣∣∣∣ ≤ C, (3.65)

where Kn is defined in (2.2).

P r o o f. As in the proof of (1.5), take Cn of (3.5) as a contour C in (2.2)
and replace the integral over L by that over Ln of (3.27). Using (3.61), as in
(3.62) we get

1
n

Kn(λ0 + ξ/n, λ0 + η/n)

=
∫

Ln

dt

2π

∮

Cn

dv

2π
exp{ξv − tη)}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t

+exp{xn(λ0)(ξ − η)}sin(yn(λ0)(ξ − η))
π(ξ − η)

.

(3.66)

Using Lemma 8 (see below) and |ξ|, |η| ≤ K, we obtain

exp{xn(λ0)(ξ − η)} ≤ C. (3.67)

Besides, ∣∣∣∣
sin(yn(λ0)(xi − xj))

π(xi − xj)

∣∣∣∣ ≤ π−1yn(λ0). (3.68)

If yn(λ) 6= 0, then (3.24) implies that |yn(λ)| ≤ 1, thus yn(λ) is bounded uniformly
in n for any λ, in particular, for λ = λ0. Hence, to prove the lemma it is sufficient
to find a uniform in n bound for the integral on the r.h.s. of (3.66).

Note that we have for v = zn(λ) ∈ Cn (see (3.2) and (3.16))

−<Sn(v, λ0) = −x2
n(λ)− y2

n(λ)
2

+
x2

n(λ0)− y2
n(λ0)

2

+
1
2n

n∑

j=1

ln
(xn(λ0)− h

(n)
j )2 + y2

n(λ0)

(xn(λ)− h
(n)
j )2 + y2

n(λ)
+ λ0(xn(λ)− xn(λ0)).

(3.69)
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It follows from (3.24) and (3.21) that

1
2n

n∑

j=1

ln
(xn(λ0)− h

(n)
j )2 + y2

n(λ0)

(xn(λ)− h
(n)
j )2 + y2

n(λ)
=

1
n

n∑

j=1

ln

∣∣∣∣∣
zn(λ0)− h

(n)
j

zn(λ)− h
(n)
j

∣∣∣∣∣

=
1
n

n∑

j=1

ln

∣∣∣∣∣1 +
zn(λ0)− zn(λ)

zn(λ)− h
(n)
j

∣∣∣∣∣ ≤
1
n

n∑

j=1

|zn(λ0)− zn(λ)|
|zn(λ)− h

(n)
j |

≤ |zn(λ0)− zn(λ)|

 1

n

n∑

j=1

1

|zn(λ)− h
(n)
j |2




1/2

≤ |zn(λ0)− zn(λ)|.

(3.70)

Thus, (3.69), Lemma 8 (see below), (3.70), and the inequality |yn(λ)| ≤ 1 yield

<(−Sn(v, λ0)) ≤ −x2
n(λ)
2

+ C1|xn(λ)|+ C2. (3.71)

Besides, we have (see (3.2) and (3.16))

<Sn(t, λ0) =
x2

n(λ0)− y2

2
+

1
2n

n∑

j=1

ln
(xn(λ0)− h

(n)
j )2 + y2

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)
, (3.72)

where t = xn(λ0) + iy ∈ Ln. We get analogously to (3.70):

1
2n

n∑

j=1

ln
(xn(λ0)− h

(n)
j )2 + y2

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)
≤ |t− zn(λ0)|. (3.73)

Thus, (3.72), Lemma 8 (see below), (3.73), and the inequality |yn(λ0)| ≤ 1 imply

<(Sn(t, λ0)) ≤ −y2

2
+ C1|y|+ C2. (3.74)

Therefore, (3.71), (3.74), and Lemma 3 yield

<(Sn(t, λ0)−Sn(v, λ0)) ≤




−x2

n(λ)
2

+ C1|xn(λ)| − y2

2
+ C3|y|+ C4, t ∈ Ln \ J,

−x2
n(λ)
2

+ C1|xn(λ)|+ C2, t ∈ J,

(3.75)
where J = [xn(λ0)− iB, xn(λ0) + iB] ⊂ Ln, B is big enough.

Also, it is easy to see that for t = xn(λ0) + iy ∈ Ln and v = zn(λ) ∈ Cn we
obtain (see Lemma 8 below and note that |x|, |y| ≤ K)

<(ξv − yt) ≤ C1|xn(λ)|+ C2
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and
1

|v − t| ≤ min
{

1
|xn(λ)− xn(λ0)| ,

1
|y − yn(λ)|

}
.

This and (3.75) imply the bound
∫

Ln

∫

Cn\CA
n

∣∣∣∣exp{ξv − ηt}exp{n(Sn(t, λ0)− Sn(v, λ0))}
v − t

∣∣∣∣ d v d t

≤ C

∞∫

A

e−nξ2/2+nξC1+nC2d l(ξ),

where l(ξ) is defined in Lemma 6, and CA
n is a part of the contour Cn where

|xn(λ)| ≤ A. According to Lemma 6 we have

∞∫

A

e−nξ2/2+nξC1+nC2d l(ξ) =
∞∑

k=A

k+1∫

k

e−nξ2/2+nξC1+nC2d l(ξ)

≤
∞∑

k=A

e−nk2/2+nkC1+nC2(l(k + 1)− l(k))

≤ C

∞∑

k=A

e−nk2/2+nkC1+nC2 < e−nc,

if A and n are big enough. Thus we have
∫

Ln

∫

Cn\CA
n

∣∣∣∣exp{ξv − ηt}exp{n(Sn(t, λ0)− Sn(v, λ0))}
v − t

∣∣∣∣ d v d t ≤ e−nd. (3.76)

We have to estimate now the integral over the part of Cn, where xn(λ) ∈ I =
[−A,A]. Applying the same arguments as in the proof of (3.76), we obtain

∫

Ln\J

∫

CA
n

∣∣∣∣exp{ξv − ηt}exp{n(Sn(t, λ0)− Sn(v, λ0))}
v − t

∣∣∣∣ d v d t ≤ e−nc, (3.77)

where J = [xn(λ0)− iB, xn(λ0) + iB] ⊂ Ln and B is big enough.
Thus, according to (3.76) and (3.77), to prove Lemma 7 it remains to estimate

the integral
∫

J

dt

2π

∫

CA
n

d v

2π
exp{ξv − ηt}exp{n(Sn(t, λ0)− Sn(v, λ0))}

v − t
.
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In view of (3.67) and the bound
∫

J

d t√
(x− x0)2 + (t− yn(x))2

≤
√

2
∫

J

d t

|x− x0|+ |t− yn(x)| ≤2
√

2 ln |x− x0|−1+C

(recall that |yn(x)| ≤ 1), where x0 = xn(λ0), we have to estimate the integral
∫

I

(ln |x− x0|−1 + C)l′(x)d x, (3.78)

where l(x) is the oriented length of the part of Cn between x0 and x. We can
find from (3.56) that

− ln(x− x0) ≤ −C ln l(x),

and we obtain for (3.78)
∫

I

(ln |x− x0|−1 + C)l′(x)d x ≤
∫

I

(C + ln l(x)) l′(x)d x

= Cl(A)− l(A) ln l(A) ≤ C1.

Prove now the statement which we use in the proof of Lemma 7.

Lemma 8. There exists some n-independent constant C such that we have
for any n and any set {h(n)

j }n
j=1 (i.e. for any realization if H

(0)
n is random)

|xn(λ0)| ≤ C.

P r o o f. Taking the real part of (3.17) we get

xn(λ0) +
1
n

n∑

j=1

xn(λ0)− h
(n)
j

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)
= λ0.

This implies

|xn(λ0)| ≤ |λ0|+ 1
n

n∑

j=1

|xn(λ0)− h
(n)
j |

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)
≤ |λ0|

+


 1

n

n∑

j=1

(
xn(λ0)− h

(n)
j

)2

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)




1/2
 1

n

n∑

j=1

1

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)




1/2

≤ |λ0|+

 1

n

n∑

j=1

1

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)




1/2

.

(3.79)
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Note that we have from (3.24)

1
n

n∑

j=1

1

(xn(λ0)− h
(n)
j )2 + y2

n(λ0)
= 1,

if yn(λ0) 6= 0, and
1
n

n∑

j=1

1

(xn(λ0)− h
(n)
j )2

≤ 1,

if yn(λ0) = 0 (see (3.20)). Thus, (3.79) yields

|xn(λ0)| ≤ |λ0|+ 1,

and the lemma is proved.

Note that according to the Hadamard inequality ([14, Sect. I.5]) we have

∣∣∣∣∣det
{

1
n

Kn

(
λ0 +

xi

n
, λ0 +

xj

n

)}m

i,j=1

∣∣∣∣∣≤
m∏

i=1




m∑

j=1

∣∣∣∣
1
n

Kn

(
λ0 +

xi

n
, λ0 +

xj

n

)∣∣∣∣
2



1/2

.

(3.80)
This and Lemma 7 imply the bound

∣∣∣∣∣det
{

1
n

Kn

(
λ0 +

xi

n
, λ0 +

xj

n

)}m

i,j=1

∣∣∣∣∣ ≤ mm/2Cm. (3.81)

Now we are ready to prove (1.8). Indeed, it is well known (see, e.g., [5]) that

En

([
λ0 +

a

ρn(λ0) n
, λ0 +

b

ρn(λ0) n

])

= 1+
∞∑

l=1

(−1)l

l!

b∫

a

det
{

n−1Kn

(
λ0 +

xi

ρn(λ0) n
, λ0 +

xj

ρn(λ0)n

)}l

i,j=1

l∏

j=1

d xj .

(3.82)

Thus, according to the dominant convergence theorem, (1.5) and (3.81) yield
(1.8). Therefore, Theorem 1 is proved.

R e m a r k 1. Note that all the bounds in the proofs of results of this section
do not depend on (uniform in) {h(n)

j }n
j=1, n ∈ N.
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4. Proof of Theorem 2

In this section we prove the universality (1.5) and (1.8) of the local bulk
regime of Hermitian random matrices (1.9) in the conditions of Theorem 2.

Note that if the whole sequence {H(0)
n } is defined on the same (infinity di-

mensional) probability space and {N (0)
n } converges weakly with probability 1 to

a nonrandom measure N (0), then the existence of the weak nonrandom limit N
of {Nn} with probability 1 and (1.13) follows from the corresponding theorem
for a nonrandom sequence {H(0)

n }, which was proved in [4]. Indeed, it is easy to
check that all the bounds used in the proof of theorem are independent of (uni-
form in) {H(0)

n }, thus the theorem implies the weak convergence of {Nn} with
probability 1 with respect to the (infinity dimensional) product measures of the
probability law P(h) of {H(0)

n } (or their eigenvalues {{h(n)
l }n

l=1}) and the (infinity
dimensional) Gaussian law P of {Mn}. Likewise, the universality of local bulk
regime in this case follows from Theorem 1. Indeed, note first that now ρn is the
density of the expectation Nn of the Normalized Counting Measure Nn of Hn of
(1.9) with respect to the product P × P(h) measures of the law P(h) of {H(0)

n }
and that of {Mn}. Then the determinant formulas (2.1), (2.2) imply that

ρn(λ) =
1
n
E(h){Kn(λ, λ)}, (4.1)

where here and below the symbol E(h){. . .} denotes the expectation with respect
to the measure generated by {H(0)

n }. It follows then from (3.7) and (3.62) with
ξ = η = 0 that if ρ is the density of the limiting Normalized Counting Measure N
(see (1.13) and Lemma 1) and ρ(λ0) > 0, then we have with probability 1 (with
respect to P×P(h))

lim
n→∞n−1Kn(λ0, λ0) = π−1y(λ0) = ρ(λ0), (4.2)

where y(λ) = =z(λ) and z(λ) is the solution of (3.6). According to Lemma 7,
n−1Kn(λ0, λ0) is bounded uniformly in H

(0)
n , n ∈ N, thus (4.1), (4.2), and the

dominated convergence theorem imply that

lim
n→∞ ρn(λ0) = ρ(λ0) = π−1y(λ0). (4.3)

Denote as before f (0) the Stieltjes transform of (nonrandom) N (0) and

g(0)
n (z) =

∫
N

(0)
n (d h)
h− z

, =z 6= 0 (4.4)

the Stieltjes transform of (random) N
(0)
n , and consider the (random) equation (cf

(3.4))
z − g(0)

n (z) = λ, λ ∈ R. (4.5)
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It follows from Lemma 5 that if zn is the (random) solution of (4.5) such that
zn(λ) = λ−λ−1 +O(λ−2), λ →∞, and yn = =zn, then we have with probability
1

lim
n→∞π−1yn(λ0) = π−1y(λ0) = ρ(λ0)

and then (4.3) implies that we obtain with probability 1

lim
n→∞π−1yn(λ0)/ρn(λ0) = 1. (4.6)

Thus, (3.62), (3.81), and the formula

E(h)

{
det

{
1

nρn(λ0)
Kn

(
λ0 +

xi

nρn(λ0)
, λ0 +

xj

nρn(λ0)

)}m

i,j=1

}

for the correlation functions of eigenvalues of (1.9) lead to the universal form of
the rescaled correlation functions, i.e., the analog of the first assertion (1.5) of
Theorem 1, in the case where {N (0)

n } converges with probability 1 to a nonrandom
limit. The universal form of the appropriately scaled gap probability, i.e., the
analog of second assertion (1.8) of Theorem 1, can be proved similarly.

We will prove now analogous result for the case when {N (0)
n } converges in

probability to a nonrandom limit. We denote by P(h)
n the probability law of H

(0)
n

and by E(h)
n the corresponding expectation.

We start from the following

Lemma 9. Let g
(0)
n and f (0) be defined in (4.4) and (3.6). Then we have

under conditions of Theorem 2

lim
n→∞P(h)

n {max
z∈K

|g(0)
n (z)− f (0)(z)| > ε} = 0 (4.7)

uniformly in z of a compact set K in the upper half-plane. Moreover, the converse
assertion is true, i.e., if (4.7) is valid for some compact set K in the upper half-
plane, then we have (1.15).

P r o o f. Let us prove the first statement of the lemma. Note that it suffices
to prove (4.7) for any z ∈ K. Indeed, let {zj}l

j=1 be a ε-net of K. Then there
exists n0 such that for any n > n0 and for any δ > 0

P(h)
n





l⋃

j=1

{|g(0)
n (zj)− f (0)(zj)| > ε}



 ≤

l∑

j=1

P(h)
n {|g(0)

n (zj)− f (0)(zj)| > ε} < δ.

Besides, for any z ∈ K there exists zk ∈ {zj}l
j=1 such that |z − zk| < ε, and in

view of the bounds∣∣∣∣
d

d z
g(0)
n (z)

∣∣∣∣ ≤ 1/=2z,

∣∣∣∣
d

d z
f (0)(z)

∣∣∣∣ ≤ 1/=2z,
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we can write

|g(0)
n (z)− f (0)(z)| ≤ |g(0)

n (zk)− f (0)(zk)|+ 2ε/=2z.

Now, taking into account that =z is bounded from below by a positive constant
for z ∈ K, we have for any n > n0

P(h)
n {max

z∈K
|g(0)

n (z)− f (0)(z)| < Cε} > 1− δ.

We are left to prove that (4.7) is valid pointwise.
There exists A such that

|λ− z|−1 < ε, |λ| ≥ A. (4.8)

Set

ϕ(λ) =
1

λ− z
(λ ∈ R), ϕA(λ) =





1
λ− z

, λ ∈ [−A,A],

0, λ 6∈ [−A,A],

and let ϕε be a piecewise constant function on the segment [-A, A] such that

|ϕε(λ)− ϕA(λ)| < ε, |λ| ≤ A. (4.9)

If ϕε(λ) = ϕj , λ ∈ 4j , j = 1, s, then we have using (4.8)

|g(0)
n (z)− f (0)(z)| ≤

∣∣∣∣
∫

ϕ(λ)N (0)
n (d λ)−

∫
ϕA(λ)N (0)

n (d λ)
∣∣∣∣

+
∣∣∣∣
∫

ϕA(λ)N (0)
n (d λ)−

∫
ϕA(λ)N (0)(d λ)

∣∣∣∣

+
∣∣∣∣
∫

ϕA(λ)N (0)(d λ)−
∫

ϕ(λ)N (0)(d λ)
∣∣∣∣

≤ 2ε +
∣∣∣∣
∫

ϕA(λ)N (0)
n (d λ)−

∫
ϕA(λ)N (0)(d λ)

∣∣∣∣ . (4.10)

Besides, it follows from (4.9) that

∣∣∣∣
∫

ϕA(λ)N (0)
n (d λ)−

∫
ϕA(λ)N (0)(d λ)

∣∣∣∣ ≤
∣∣∣∣
∫

ϕA(λ)N (0)
n (d λ)

−
∫

ϕε(λ)N (0)
n (d λ)

∣∣∣∣+
∣∣∣∣
∫

ϕε(λ)N (0)
n (d λ)−

∫
ϕε(λ)N (0)(d λ)

∣∣∣∣+
∣∣∣∣
∫

ϕε(λ)N (0)(d λ)

−
∫

ϕA(λ)N (0)(d λ)
∣∣∣∣ ≤ 2ε +

∣∣∣∣
∫

ϕε(λ)N (0)
n (d λ)−

∫
ϕε(λ)N (0)(d λ)

∣∣∣∣ . (4.11)
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We have also that
∣∣∣∣
∫

ϕε(λ)N (0)
n (d λ)−

∫
ϕε(λ)N (0)(d λ)

∣∣∣∣ =
s∑

j=1

ϕj · |N (0)
n (4j)−N (0)(4j)|, (4.12)

and by the condition of Theorem 2, for any δ there exists N such that for any
n > N

P(h)
n {

l⋃

j=1

{|N (0)
n (4j)−N (0)(4j)| > ε}} < δ. (4.13)

Now the first assertion of the lemma follows from (4.10)–(4.13).
To prove the converse assertion we indicate explicitly the fact that g

(0)
n (z) and

N
(0)
n (∆) are random by writing g

(0)
n (z, ω) and N

(0)
n (∆, ω), ω ∈ Ω(0)

n , where Ω(0)
n

is the probability space on which N
(0)
n is defined. Assume now that (4.7) is true

but (1.15) is false, i.e., that there exists an interval ∆ ⊂ R, ε > 0, a subsequence
{ni}, and δ > 0 such that

P(h)
ni
{|N (0)

ni
(∆)−N (0)(∆)| > ε} ≥ δ, i ≥ 1.

On the other hand, it follows from (4.7) that for any r ∈ N there exists ν ∈ N
such that

P(h)
n {max

z∈K
|g(0)

n (z, ω)− f (0)(z)| < r−1} ≥ 1− δ/2, n ≥ ν.

This and the inequality P(h)
n {A ∩ B} ≥ P(h)

n {A} + P(h)
n {B} − 1 imply that the

P(h)
n -probability to have simultaneously the inequalities

|N (0)
ni

(∆)−N (0)(∆)| > ε (4.14)

and
max
z∈K

|g(0)
n (z, ω)− f (0)(z)| < r−1 (4.15)

is not less than δ/2 > 0 if ni ≥ max{n1, ν}. Denote the corresponding set
of realizations of N

(0)
n by Ω′δ. Since the collection {N (0)

ni (·, ω)}ni≥max{n1,ν},ω∈Ω′δ
consists of probability measures, there exists a subsequence {ni′ , ωi′} such that
{N (0)

n′i
(·, ωi′)} converges to a certain limit N∗ and their Stieltjes transforms

{g(0)
n′i

(·, ωi′)} converge uniformly on K to the Stieltjes transform f∗ of N∗. In view

of (4.15) f∗ = f (0), and in view of (4.14) |N∗(∆) − N (0)(∆)| > ε, i.e., N∗ 6=
N (0). On the other hand, in view of the one-to-one correspondence between non-
negative measures and their Stieltjes transforms f∗ = f (0) implies N∗ = N (0).
The lemma is proved.
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Next we prove the analog of (1.13) for the condition (1.15).

Lemma 10. In the conditions of Theorem 2 there exists a nonnegative pro-
bability measure N such that

lim
n→∞E{|Nn(∆)−N(∆)|} = 0 (4.16)

for any interval ∆ ⊂ R, where E{...} denotes the expectation with respect to the
product measure of H

(0)
n and Mn. The measure N can be found via its Stieltjes

transform f that is a unique solution of the functional equation (1.13) in the class
of functions, analytic for =z 6= 0 and such that =f(z) · =z ≥ 0.

P r o o f. It suffices to prove that for every z of a compact set K ⊂ C \ R
we have

lim
n→∞E{|gn(z)− f(z)|} = 0, (4.17)

where gn and f are the Stieltjes transform of Nn and N . Indeed, if yes, then by
using the compactness and a ε-net for {gn(z)− f(z)} on K (see the beginning of
the proof of Lemma 9), we obtain that

lim
n→∞E{max

z∈K
|gn(z)− f(z)|} = 0, (4.18)

and thus the Tchebyshev inequality implies the analog of (4.7) with gn instead
of g

(0)
n and f instead of f (0). Next, applying Lemma 9 to the pairs (gn, fn) and

(Nn, N) instead of (g(0)
n , f (0)) and (N (0)

n , N (0)), we obtain (1.15).
We will choose the compact set K satisfying the condition

min
z∈K

|=z| ≥ 3 (4.19)

and prove the relations
lim

n→∞E{gn(z)} = f(z), (4.20)

and
lim

n→∞Var{gn(z)} = 0 (4.21)

for every z ∈ K.
Denote

f̂n(z) = E
{

gn(z)|H(0)
n

}
, ẑn(z) = z + f̂n(z). (4.22)

Then it follows from [15] that

|f̂n(z)− g(0)
n (ẑn(z))| ≤ 1

n2|=z|5 (4.23)
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and
E

{|gn(z)− f̂n(z)|2} ≤ 1
n2|=z|4 , (4.24)

in particular, (4.23) is valid for every realization of H
(0)
n .

Let us prove that for every z ∈ K

lim
n→∞E

{|f̂n(z)− f(z)|2} = 0, (4.25)

where K is defined by (4.19) and f is the solution of (1.13).
It is easy to see that (4.20) follows immediately from (4.25), and (4.21) follows

from (4.25) and (4.24).
Consider the compact set

K1 = ∪z∈KB1(z),

where B1(z) ⊂ C is a disk of radius 1 centered in z: B1(z) = {z′ : |z − z′| < 1},
and the set of realization

Ωε = {ω : sup
z∈K1

|g(0)
n (z, ω)− f (0)(z)| ≤ ε}, (4.26)

where f (0) is defined in (3.6). Then, using (4.18) for the compact K1, we obtain

lim
n→∞P{Ωc

ε} = 0. (4.27)

Let z ∈ K, ω ∈ Ωε. Since |f̂n(z)| ≤ |=z|−1, then ẑ = z + f̂n(z) ∈ K1. Hence,
(4.23) and (4.26) imply

f̂n(z) = f (0)(z + f̂n(z)) + rn(z), |rn(z)| ≤ 2ε. (4.28)

Now we need the following general fact

Proposition 3. Let B be a Banach space with the norm || · ||, B = {f ∈
B, ||f || ≤ 1}, and the function F : B → B satisfies the condition

||F (f1)− F (f2)|| ≤ q||f1 − f2||, f1, f2 ∈ B, 0 < q < 1. (4.29)

Then for any r : ||r|| < (1− q) the equation

f = F (f) + r (4.30)

has a unique solution f(r) ∈ B, and

||f(r)− f(0)|| ≤ (1− q)−1||r||. (4.31)
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To prove the proposition, it suffices to consider the sequence {f (k)(r)}∞k=0 such
that

f (0)(r) = r, f (k+1)(r) = F (f (k)(r)) + r.

Then (4.29) yield

||f (k+1)(r)− f (k)(r)|| ≤ q||f (k)(r)− f (k−1)(r)||,
||f (k+1)(r)− f (k+1)(0)|| ≤ q||f (k)(r)− f (k)(0)||+ r,

and therefore there exists f(r) = limk→∞ f (k)(r), which satisfies (4.30) and (4.31).
We use the proposition for B = C, with Fz(f) = f (0)(z + f). Then (4.19)

guarantees that for any f ∈ B (4.29) is valid with q = 1/2. Hence, we obtain
from (4.28) and (4.30) for any z ∈ K, ω ∈ Ωε

|f̂n(z)− f(z)| ≤ 4ε.

Now, since |f(z)| ≤ |=z|−1 ≤ 1 and |f̂n(z)| < 1 for ω ∈ Ωε, then the last bound
and (4.27) yield

lim
n→∞E{|f̂n(z)− f(z)|2} ≤ 16ε2,

and since ε is arbitrary small, we obtain (4.25).

Let us take the disk ω = {z : |z(λ0)− z| ≤ ε1} as the compact set K in (4.7),
where z(λ0) is a solution of (3.6) for λ = λ0. Taking into account (4.7), we get
that for any δ > 0 and ε > 0 there exists n0 such that for all n > n0 the event
(cf (3.36))

Ωε,n0 = {max
z∈ω

|g(0)
n (z)− f (0)(z)| < ε}, (4.32)

satisfies the condition
P(h)

n {Ωε,n0} ≥ 1− δ. (4.33)

Since for any realization of {h(n)
j }n

j=1 the determinant formulas (2.1), (2.2) are

true, we can write that for any correlation function R
(n)
m of eigenvalues of (1.9)

R(n)
m (λ1, . . . , λm) = E(h)

n

{
det{Kn(λj , λk)}m

j,k=1

}
.

Thus, the proof of (1.5) in the case of random H
(0)
n reduces to that of the relation

lim
n→∞E(h)

n

{
det

{
1

nρn(λ0)
Kn

(
λ0 +

xi

nρn(λ0)
, λ0 +

xj

nρn(λ0)

)}m

i,j=1

}

= det
{

sinπ(xj − xk)
π(xj − xk)

}m

j,k=1

. (4.34)
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Consider the expression

E(h)
n

{
A(n)

m (x1, . . . , xm)
}

, (4.35)

where

A(n)
m (x1, . . . , xm) = det

{
1

nρn(λ0)
Kn

(
λ0 +

xi

n
, λ0 +

xj

n

)}m

i,j=1

− det
{

sin(yn(λ0)(xi − xj))
π(xi − xj)

}m

i,j=1

. (4.36)

Split the expectation in (4.35) in two parts, over Ωε,n0 of (4.32) and it comple-
ment. Since Theorem 1 is valid on (4.32), we can write for any n-independent
and nonrandom ε1 > 0 that |A(n)

m (x1, . . . , xm)| ≤ ε1 uniformly for |xj | ≤ K,
j = 1, . . . , m. In addition, it follows from (3.81), valid for every H

(0)
n , the bound

∣∣∣∣∣det
{

sin yn(λ0)(xj − xk)
π(xj − xk)

}m

j,k=1

∣∣∣∣∣ ≤ mm/2ym
n (λ0),

and the relation (3.24), also valid for any H
(0)
n and implying that 0 ≤ yn(λ0) ≤ 1,

that for any m ∈ N A
(n)
m (x1, . . . , xm) is bounded uniformly in |xj | ≤ K, j =

1, . . . , m, and H
(0)
n . This and (4.33)imply

|E(h)
n

{
A(n)

m (x1, . . . , xm)
}
| ≤ ε1 + Cδ,

i.e., that (4.18) vanishes as n →∞.
In particular, the case m = 1, ξ = η = 0 of this assertion leads to

lim
n→∞E(h)

n

{|n−1Kn(λ0, λ0)− π−1yn(λ0)|
}

= 0.

It follows also from Lemma 5 and (4.32)–(4.33) that

lim
n→∞E(h)

n {|yn(λ0)− yn(λ0)|} = 0.

Then (4.1) and (3.7) imply that

lim
n→∞E(h)

n {|π − yn(λ0)/ρn(λ0)|} = 0.

This relation and the boundedness and continuity of (3.64) in y ∈ [0, 1] imply
(1.5).

In view of the above the proof of (1.8) is essentially the same that in Theo-
rem 1.
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