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Infinite dimensional spaces frequently appear in physics; there are several
approaches to obtain a good categorical framework for this type of space,
and cartesian closedness of some category, embedding smooth manifolds, is
one of the most requested condition. In the first part of the paper, we start
from the failures presented by the classical Banach manifolds approach and
we will review the most studied approaches focusing on cartesian closedness:
the convenient setting, diffeology and synthetic differential geometry. In the
second part of the paper, we present a general settings to obtain cartesian
closedness. Using this approach, we can also easily obtain the possibility to
extend manifolds using nilpotent infinitesimal points, without any need to
have a background in formal logic.
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1. Introduction and Mathematical Motivations for Cartesian
Closedness

One of the aims of the present article is to review some of the most important,
i.e. well-established, approaches used to define geometrical structures in infinite
dimensional spaces. The review will be done with a particular focus on the prop-
erty of cartesian closedness. One of the most important example we have in mind
is the set Man(M, N) of all the smooth applications between two finite dimen-
sional manifolds M and N . For the aims of the present article, we are interested
to list some of the most studied structures on Man(M,N), and its subspaces,
that permit to develop at least a tangency theory. Using this terminology we
mean at least the notion of tangent functor and the notion of differentiability
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of maps between this type of infinite dimensional space, with sufficiently good
categorical properties. This is not a trivial goal because, for example, an impor-
tant example we can cite is the group Diff(M) of all the diffeomorphisms of a
manifold M . Flows in a compact manifold M can be considered as 1-parameter
subgroups of Diff(M), and it would seem useful to express the smoothness of a
flow by means of a suitable differentiable structure on Diff(M), which should also
behave like a classical Lie group with respect to this structure.

A typical restriction to distinguish among different approaches to infinite
dimensional spaces is the hypotheses of compactness of the domain M , assumed
to obtain some desired properties: is this a necessary hypotheses or are we forced
to assume it due to some restrictions of the chosen approach?

Another interesting property is the possibility to extend the classical notion of
manifold to a more general type of space, so as to get better categorical properties,
like the existence of infinite products or co-products or a cartesian closed category.

Finally, several authors had to tackle the following problem: suppose we have
a new notion of smooth space able to include the space Man(M,N), at least
for M compact and finite dimensional, and to embed faithfully the category of
smooth finite dimensional manifolds. Even if the extension of the notion of finite
dimensional manifold is faithful, usually the category C of these new smooth
spaces includes spaces which are too much general, so that it seems really hard
to generalize for these spaces meaningful results of differential geometry of finite
dimensional manifolds. For this reason, several authors (see, e.g., [1–4]) try to
select, among all their new smooth spaces in C, the best ones having some new
more restrictive properties. In this way the category C acts as a universe, usually
closed with respect to strong categorical operations (like arbitrary limits, colimits
and cartesian closedness), and the restricted class of smooth spaces works as a
true generalization of the notion of manifold.

For example, in [1] the category of Frölicher spaces acts as a universe, but
indeed the monograph is about manifolds modelled in convenient vector spaces
instead of classical Banach spaces (see Sect. 4). This permits to [1] to generalize,
as far as possible, to infinite dimensional manifolds the results of finite dimen-
sional spaces, but as a consequence, the class of manifolds modelled in convenient
vector spaces loses some desired categorical properties.

Analogously, in synthetic differential geometry (SDG; see, e.g., [3–5]) the class
of restricted smooth spaces is introduced using the notion of microlinear space
and the universe is a suitable topos, i.e., a whole model for intuitionistic set
theory. In this approach, the infinitesimals are used to study the properties of
this class of restricted, better behaved, spaces.

Of course, this is not possible in theories that have not an explicit language
of actual infinitesimals, like in the case of diffeological spaces (see [6]). For them,
we can proceed either as in convenient vector spaces theory considering the no-
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tion of vector space in the category of smooth diffeological spaces (i.e., smooth
diffeological spaces that are also vector spaces with smooth operations, see [6])
and considering manifolds modelled in diffeological vector spaces, or we can try
to develop directly for a generic diffeological space some notion of differential
geometry (see, e.g. [6–12]). In the following subsectio,ns we will return to this
problem giving some more precise definitions.

To understand better some differences between the approaches we are going
to describe shortly in this section, we want to motivate the notion of cartesian
closure, because it is one of the basic choices shared by several authors like [1–5,
12–25]. We firstly fix the notations for the notions of adjoint of a map.

Definition 1. If X, Y , Z are sets and f : X −→ ZY , g : X × Y −→ Z are
maps, then

∀(x, y) ∈ X × Y : f∨(x, y) := [f(x)] (y) ∈ Z,

∀x ∈ X : g∧(x) := g(x,−) ∈ ZY ,

hence

f∨ :X × Y −→ Z,

g∧ :X −→ ZY .

The map f∨ is called the adjoint of f and the map g∧ is called the adjoint? of g.

Let us note that (f∨)∧ = f and (g∧)∨ = g, that is, the two applications

(−)∨ :
(
ZY

)X −→ ZX×Y

(−)∧ :ZX×Y −→ (
ZY

)X

are one the inverse of the other and hence represent in explicit form the bijection
of sets

(
ZY

)X ' ZX×Y , i.e., Set(X,Set(Y, Z)) ' Set(X × Y,Z).
One of the main aim of the second part of the present work is to generalize the

notions of smooth manifold and of smooth map between two manifolds so as to
obtain a new category “with good properties” that will be denoted by C∞; if we
call smooth maps the morphisms of C∞ and smooth spaces its objects, then this
category must be cartesian closed, i.e., it has to verify the following properties
for every pair of smooth space X, Y ∈ C∞:

1. C∞(X, Y ) is a smooth space, i.e. C∞(X,Y ) ∈ C∞.
?Here we are using the notations of [26], but some authors, e.g. [1], used opposite notations

for the adjoint maps.
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2. The maps (−)∨ and (−)∧ are smooth, i.e., they realize in the category C∞
the bijection C∞(X, C∞(Y, Z)) ' C∞(X × Y, Z).

Property 1 is another way to state that the category we want to construct must
contain as objects the space of all the smooth maps between two generic objects
X, Y ∈ C∞:

C∞(X, Y ) = {f |X f−−−→ Y is smooth}
= {f |X f−−−→ Y is a morphism of C∞.

Moreover, let us note that as a consequence of property 2 we have that

X
f−−−→ C∞(Y,Z) is smooth ⇐⇒ X × Y X

f∨−−−−→ Z is smooth, (1)

X × Y
g−−−→ Z is smooth ⇐⇒ X

g∧−−−−→ C∞(Y,Z) is smooth. (2)

The importance of (1) and (2) can be explained saying that if we want to
study a smooth map having values in the space C∞(Y, Z), then it suffices to
study its adjoint map f∨. If, e.g., the spaces X, Y and Z are finite dimensional
manifolds, then C∞(Y, Z) is infinite-dimensional, but f∨ : X × Y −→ Z is a
standard smooth map between finite dimensional manifolds, and hence we have
a strong simplification. Conversely, if g : X × Y −→ Z is a smooth map, then it
generates a smooth map with values in C∞(Y,Z), and all the smooth maps with
values in this type of space can be generated in this way. Of course, this idea
is frequently used, even if informally, in the calculus of variations. Let us note
explicitly that the cartesian closure of the category C∞, i.e. properties 1 and 2,
does not say anything about smooth maps with a domain of the form C∞(Y, Z),
but it reformulates in a convenient way the problem of smoothness of maps with
codomain of this type. For a more abstract notion of cartesian closed category,
see, e.g., [26–29].

We also want to see a different motivation drawn from [2]. Let us suppose to
have a smooth function g : R× I −→ R, where I = [a, b], and define the integral
function

f(t) :=

b∫

a

g(t, s) ds ∀t ∈ R.

Then we can look at the function f as the composition of two applications

f : t ∈ R 7→ g(t,−) 7→
b∫

a

g(t,−) ∈ R.
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Hence, if we denote by i the application

i : h ∈ C∞(I,R) 7→
b∫

a

h ∈ R,

then
f = i ◦ g∧ , i.e. f(t) = i

(
g∧(t,−)

) ∀t ∈ R.

In this way, it is natural to try a proof of the formula for the derivation under
the integral sign in the following way:

df

dt
(t) =

d
dt

(
i ◦ g∧

)
= di

(
g∧(t)

) [
dg∧

dt
(t)

]
=

= i [∂1g(t,−)] =

b∫

a

∂1g(t, s) ds. (3)

Here we have supposed that the following properties hold:

• g∧ : R −→ C∞(I,R) is smooth,

• i : C∞(I,R) −→ R is smooth,

• the chain rule for the derivative of the composition of two functions,

• the differential of the function i is given by di(h) = i for every h ∈ C∞(I,R),
because i is linear,

• dg∧
dt (t) = ∂1g(t,−).

Let us note explicitly that the space C∞(I,R) is infinite dimensional.
Really, the aim of (3) is not to suggest a new proof, but to hint that a

theory where we can consider the previous properties seems to be very flexible
and powerful.

2. Physical Motivations for Cartesian Closedness

The use of a cartesian closed category as a useful framework for physics can
be motivated in four ways:

1. In physics, the necessity to use infinite dimensional spaces frequently ap-
pears. A classical example is the space Man(M,N) of all the smooth mappings
between two smooth manifolds M and N , or some of its subspaces, e.g., the space
of all the diffeomophisms of a smooth manifold. Typically, we are interested in
infinite dimensional Lie groups, because they appear, for example, in the study
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of both compressible and incompressible fluids, in magnetohydrodynamics, in
plasma-dynamics or in electrodynamics (see, e.g., [30] and references therein). It
is also sufficiently clear from the previous Sect. 1, and it will also be even more
clear from the following Sect. 10, that cartesian closedness is also a desirable
condition in the calculus of variations. Anyway, the most natural generalization
of finite dimensional linear spaces theory, i.e. Banach spaces theory, is essentially
incompatible with cartesian closedness and with an infinite dimensional theory
of Lie groups. We will review these incompatibility results in the next Sect. 3.

2. There has been a great effort to obtain a theory of smooth spaces able
to include cartesian closedness and smooth manifolds. The convenient setting
([1, 2]) is the more advanced theory of smooth spaces extending the theory of
Banach manifolds. Some applications of this notion to classical field theory can
be found in [31]. Anyway, other approaches to a new notion of smooth space
appear as motivated also by problems of physics. For example, the notion of
diffeological space has been used in [11, 12, 32], starting also from a variant of [18],
to study quantization of coadjoint orbits in groups of diffeomorphisms of infinite
dimension. Diffeological spaces form a cartesian closed, complete, co-complete
quasi-topos ([6, 33–35]). On the one hand, it is easier to obtain and to study
a diffeological space with respect to a manifold modelled in a convenient vector
space; on the other hand, the category of diffeological spaces contains several
pathological examples. In the present article, we will review both the convenient
setting and the diffeology approach, focusing on some of their qualities and lacks.

3. A strong motivation toward cartesian closedness is surely the role of topos
theory in foundational issues of quantum theory, quantum gravity and intuitionis-
tic theory of general relativity. Of course, any topos is a cartesian closed category.
The literature concerning this approach is vast. See, e.g., [36–45]. One of the ba-
sic ideas of this approach is to criticize some implicit hypothesis of every physical
theory: the space time as a manifold, the logic as classical, the category of sets
as a sufficiently reach framework for the right interpretation of physical theories,
the implicit assumption of the real (or complex) field as the ring of scalars. This
criticism permits to gain meaningful interpretations, e.g., in quantum theory or
in general relativity (see, e.g., [46–50]). On the other hand, taking a smooth
topos ([4, 5]) as a framework for physical theory permits to have at disposal the
infinitesimal calculus of synthetic differential geometry ([3–5, 14]). In this arti-
cle, we will see how it is possible to introduce, in a very simple way, nilpotent
infinitesimals to the real line R obtaining a ring •R, called a ring of Fermat reals.
Suitably generalizing the definition of the category C∞ of diffeological spaces, we
will see how it is possible to add new infinitesimally closed points to every diffe-
ological space (see Sect. 7), obtaining a new cartesian closed category •C∞. This
construction, even if it has several analogies with SDG, is so simple that it can be
studied directly in classical logic. In other words, it can be studied directly “from
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the outside” of •C∞, exactly as the models of SDG can in principle be studied
classically, even if the internal logic of the corresponding topos is intuitionistic.

4. Lawvere [51] suggested to consider a cartesian closed categorical framework
for the study of continuum mechanics. In fact, having cartesian closedness, it
seems possible to study the mechanics of a continuum body without the strong
limitations tied to manifolds theory. We will see some preliminary sketch of this
program in the present article. We will show that we are not forced to assume
that the configuration space of a continuum body B is necessarily a manifold
but that, more generally, a diffeological space structure rises more naturally. The
cartesian closedness of the category C∞ permits hence to define a motion without
having charts and atlases. The possibility to add to any B ∈ C∞ new infinitesimal
points obtaining the space •B ∈ •C∞ permits to study infinitesimal subbodies
of B. This approach has been already used in [52] in some elementary examples.

3. Banach Manifolds and Locally Convex Vector Spaces

Banach manifolds are the more natural generalization of finite-dimensional
manifolds if Banach spaces are taken as local model spaces. Even if, as we will
see more precisely in this section, this theory does not satisfy our condition to
present in this article only generalized notions of manifolds able to develop at
least a tangency theory and having sufficiently good categorical properties, Ba-
nach manifolds are the most studied concept in infinite dimensional differential
geometry. Some well- known references on Banach manifolds are [30, 53]. Among
the most important theorems in this framework, we can cite the implicit and in-
verse function theorems and the existence and uniqueness of solutions of Lipschitz
ordinary differential equations. The use of charts to prove these fundamental re-
sults is indispensable, so it is not easy to generalize them to the more general
contexts where we cannot use the notion of chart having values in some modelling
space with sufficiently good properties.

For the purposes of the present analysis, a typical example of infinite-dimen-
sional Banach space is the space Cr(M,E) of Cr-maps, where M is a compact
manifold, E is a Banach space and r ∈ N. The vector space Cr(M, E) is a Banach
space with respect to the norm

‖f‖r := max
0≤i≤r

sup
m∈M

∥∥ dif(m)
∥∥ , (4)

but the theory fails for the space C∞(M, E) :=
⋂+∞

r=0 Cr(M,E) of smooth map-
pings defined in M and with values in E. On the one hand, the hypotheses of
considering r < +∞ and M compact in the previous definition (4) are not intrin-
sic to the problem, but are motivated solely by the limitations of the instrument
we are trying to implement, i.e. a norm in the space Cr(M,E). Even if this is not
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a formal motivation, it remains very important in the real development of math-
ematics. On the other hand, more formally, any two different norms ‖ − ‖r and
‖− ‖s are not equivalent, and hence the space C∞(M ;E) is not normable with a
norm generating the same topology generated by the family of norms (‖ − ‖r)

+∞
r=0

(for details, see, e.g., [54]). In the following, saying that the space C∞(M, E) is
not normable, we will always mean with respect to this topology.

Moreover, C∞(M, E) is not a Banach manifold: indeed, it is separable and
metric (see [54]), hence, if it were a Banach manifold, then it would be embeddable
as an open subset of a Hilbert space (see [55]), and hence it would be normable.

Therefore, the category of Banach manifolds and smooth maps Ban is not
cartesian closed because it is not closed with respect to exponential objects
Ban(M,E) = C∞(M, E), see condition 1 in the previous definition of cartesian
closed category, Sect. 1.

This also proves that the category of Banach manifolds Ban and smooth
maps does not have arbitrary limits: in fact if it had infinite products, then we
would have ∏

m∈M

E = Ban(M, E) = C∞(M, E),

but we have already seen that this space is not a Banach manifold.
These important counter-examples can lead to the idea of considering the

spaces equipped with a family of norms, like (‖ − ‖r)
+∞
r=1, or, more generally, of

seminorms, i.e. toward the theory of locally convex vector spaces (see, e.g., [56]).
But any locally convex topology on the space C∞(M, E) is incompatible with
cartesian closure, as stated in the following

Theorem 2. Let F be a first countable locally convex vector space contained
in a cartesian closed subcategory T of the category Top of topological spaces and
continuous functions such that T (F,R) always contains all the linear continuous
functionals on the space F

F ∗ := Lin(F,R) ⊆ T (F,R).

Moreover, let us suppose that for every g ∈ F ∗ the application

λ ∈ R 7→ λg ∈ F ∗ (5)

is continuous with respect to the topology induced on F ∗ by the inclusion F ∗ ⊆
T (F,R) ∈ T . Then F is normable. Hence the category Ban is not cartesian
closed because the space

F = C∞(R,R)

is not normable.
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P r o o f. We can argue as in [1]: because T is cartesian closed, every
evaluation

evXY (x, f) := f(x) ∀x ∈ X ∀f ∈ T (X, Y )

is an arrow of T (this is a general result in every cartesian closed category, see,
e.g., [27]) and hence it is also a continuous function, because T is a subcategory
of Top by hypotheses. In this case, we also have that the restriction of evFR to
the subspace F ∗ = Lin(F,R) ⊆ T (F,R) of linear continuous functionals on the
space F can also be (jointly) continuous:

ε := evFR|F×F ∗ : F × F ∗ −→ R.

Then we can find neighborhoods U ⊆ F and V ⊆ F ∗ of zero such that ε(U×V ) ⊆
[−1, 1], that is

U ⊆ {u ∈ F | ∀f ∈ V : |f(u)| ≤ 1} .

But then, because the map (5) is continuous, taking a generic functional g ∈ F ∗,
we can always find λ ∈ R6=0 such that λg ∈ V , and hence |g(u)| ≤ 1/λ for every
u ∈ U . Any continuous functional is thus bounded on U , so the neighborhood U
itself is bounded (see, e.g., [1, 56]). But any locally convex vector space with a
bounded neighborhood of zero is normable (see, e.g., [56, 57]).

This theorem also asserts that notions like Fréchet manifolds (manifolds mod-
elled in locally convex metrizable and complete vector spaces) are incompatible
with cartesian closedness too.

For a more detailed study on the cartesian closedness and Banach manifolds,
see [15–17]; for a more detailed study on the relationships between the topology
on spaces of continuous linear functionals Lin(F, E) and normable spaces, see
[58, 59].

Because one of our aim is to obtain a category C∞ of “smooth” (and hence
topological) spaces embedding the category Ban, a direct consequence of The-
orem 2 is that, in general, we will not have a locally convex topology on spaces
of functions like C∞(M,R). Nevertheless, we will see that in the category C∞ of
diffeological spaces we always have that every arrow (i.e., every smooth function
in a generalized sense) is also continuous and every evaluation is smooth.

The fundamental results of [60–62] show that a Banach Lie group G acting
smoothly, transitively:

∀x, y ∈ M ∃ g ∈ G : g · x = y

and effectively:

∀g, h ∈ G : g 6= h =⇒ ∃x ∈ M : g · x 6= h · x
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on a compact manifold M must necessary be finite dimensional: dim(G) < +∞.
This result strongly underscores that the space of all the diffeomorphisms G =
Diff(M) of a compact manifold in itself cannot be a Banach Lie group.

We will see that the category Ban of smooth Banach manifolds is faithfully
embedded in the category C∞ of diffeological spaces.

4. The Convenient Vector Spaces Settings

It is very interesting to note that the original idea to define the differential of
functions f : Rn −→ Rm reducing it to the composition f ◦ c with differentiable
curves c : R −→ Rn goes back (for didactic reasons!) to [63]. In this work a
function f : R2 −→ R was called differentiable if all the compositions f ◦ c with
differentiable curves c : R −→ R2 are again differentiable and satisfy the chain
rule. Later (see [64]) this notion has been extended to mapping f : E −→ F
between generic topological vector spaces: f is said differentiable at x ∈ E if
there exists a continuous linear mapping l : E −→ F such that f ◦ c : R −→ F
is differentiable at 0 with derivative (l ◦ c′)(0) for each everywhere differentiable
curve c : R −→ E with c(0) = x. This notion of differentiable function is really
more restrictive than the usual one, but it is equivalent to the standard notion
of smooth function if in it we replace the word “differentiable” with “smooth”.
More generally, if we replace “differentiable” with “of class Ck and with locally
Lipschitz kth derivative”, we obtain an equivalence with the classical notion.
These results have been proved by [65] and the whole theory of convenient vector
spaces depends strongly on these nontrivial results.

Several theories which detach from the theory of Banach manifolds, like the
convenient vector spaces setting or the following diffeological spaces, are grounded
on the generalization of this idea (not necessarily knowing the cited article [63]).
In particular, the theory of convenient vector spaces is probably the most devel-
oped theory of infinite dimensional manifolds able to overpass several problems
of Banach manifolds. Presently, the most complete reference is [1], even if the
theory started with [20] and [2].

Only to mention a few results, in the convenient vector spaces setting the hard
implicit function theorem of Nash and Moser (see [1, 66]) can be proved, very
good results can also be obtained for both holomorphic and real analytic calculus,
the theorem of De Rham can be proved and the theory of infinite dimensional
Lie groups can be well developed.

Definition 3. We say that E is a convenient vector space iff E is a locally
convex vector space where every smooth curve has a primitive, i.e.

∀c ∈ C∞(R, E) ∃ p ∈ C∞(R, E) : p′ = c.
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Considering the Cauchy–Bochner integral, any Banach space is hence a conve-
nient vector space, but several nontrivial examples directly come from the carte-
sian closedness of the category of all the convenient vector spaces.

As mentioned in the previous section, what type of topology can be consid-
ered in a convenient vector space, due to the cartesian closedness of the related
category, is a nontrivial point. The idea to reduce, as far as possible, any pos-
sible notion to the corresponding notion for smooth curves, can take us toward
the natural idea to consider the final topology for which any smooth curve is also
continuous, i.e. the following

Definition 4. Let E be a convenient vector space, then we say that

U is c∞-open in E

iff
∀c ∈ C∞(R, E) : c−1(U) is open in R.

The category of convenient vector spaces is cartesian closed so that, for ex-
ample, C∞(R,R) is again a convenient vector space. We can now define as usual
the notion of chart modelled in a c∞-open set of a convenient vector space and
hence the corresponding notion of smooth manifold and of smooth map between
two manifolds. In the following, we will denote with C∞cvs the category of smooth
manifolds modelled in convenient vector spaces. Using suitable generalizations of
Boman’s theorem ([65]), it is hence possible to prove the following (see [1]).

Theorem 5. Let M, N be manifolds modelled on convenient vector spaces,
then we have that f : M −→ N is smooth iff

∀c ∈ C∞cvs(R,M) : f ◦ c ∈ C∞cvs(R, N).

Using the notion of c∞-open subset of a convenient vector space and the
notion of chart, it is possible to define a topology on every manifold considering
the final topology in which every chart is continuous. We have hence the expected
result: W is open in this topology on M if and only if c−1(W ) is open in R for
every smooth curve c ∈ C∞cvs(R,M).

The notion of Frölicher space provides the possibility to construct a category
with very good properties, acting as a universe for the class of manifolds modelled
in convenient vector spaces.

Definition 6. A Frölicher space is a triple (X, CX ,FX) consisting of a set X,
a subset CX ⊆ XR of curves on this set, and a subset FX ⊆ RX of real valued
functions defined on X, with the following properties:
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1. ∀f ∈ RX : f ∈ FX ⇐⇒ [∀c ∈ CX : f ◦ c ∈ C∞(R,R)] ,

2. ∀c ∈ XR : c ∈ CX ⇐⇒ [∀f ∈ FX : f ◦ c ∈ C∞(R,R)] .

The category of Frölicher spaces is cartesian closed and it possesses arbitrary
limits and colimits. A locally convex vector space E is a convenient vector space
if and only if it is a Frölicher space with respect to the curves and functions
defined as CX := C∞cvs(R, E) and FX := C∞cvs(E,R). Finally, because of cartesian
closedness, it is possible to define a unique structure of Frölicher space on the set
Y := C∞(M, N) of all the smooth maps between two manifolds given by

CY :=
{
c : R −→ NM | c∨ : R×N −→ M is smooth

}

and
FY :=

{
f : NM −→ R | ∀c ∈ CY : f ◦ c ∈ C∞(R; ,R)

}
.

In the following we will use again the symbol C∞(M,N) to indicate this structure
of Frölicher space.

As mentioned at the beginning of this section, the notion of manifold modelled
in convenient vector spaces permits to include several infinite dimensional spaces
nonascribable to Banach manifold theory, but, at the same time, forces us to lose
some good categorical property. In particular, the space of all smooth mappings
C∞(M, N) between two manifolds has a manifold structure only for M and N
finite dimensional (see [1], section IX). Moreover, if C∞(M, N) is this manifold
structure? on the set C∞(M, N), then the exponential law

C∞(M, C∞(N, P )) ' C∞(M ×N,P )

holds if and only if N is compact (see [1], Theorem 42.14).
Using an intuitive interpretation introduced by [21], we can say that in the

convenient vector spaces settings the fundamental figure of our spaces is the curve
and every notion is reduced to a corresponding notion about curves. Later, we
will use several times this intuitive, and fruitfully, interpretations also for other
types of figures. In the notion of Frölicher space there is a particular emphasis on
the symmetry between curves and functions, with the aim to obtain a category
with less pathological spaces, but this symmetry has not been adopted by other
authors, like in the following approach about diffeological spaces.

The possibility to use an infinitesimal language for diffeological spaces, has
been also opened for SDG, because [67, 68] proved that the category of convenient
spaces is embedded into the Cahier topos for SDG. A similar interesting approach

?Note that, e.g., if M = N = R, this structure is different from the structure of convenient
vector space (and Frölicher space) C∞(R,R), i.e., it has other classes of curves and functions;
for this reason the authors of [1] use a different symbol C∞(R,R).
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for the convenient setting is given by [69–71] with the study of microlinear spaces
in the category of Frölicher spaces.

We will see that both Frölicher spaces and manifolds modelled in convenient
vector spaces are embedded in the category C∞ of diffeological spaces, so that
our approach can supply a language of actual infinitesimals also to these settings.
This is a problem posed by [4]:

In recent years, several alternative solutions to the problem of gen-
eralizing manifolds to include function spaces and spaces with singu-
larities have been proposed in the literature. A particularly appealing
one is the theory of convenient vector spaces [...]. These structures
are in a way simpler than the sheaves considered in this book, but
one should notice that the theory of convenient vector spaces does not
include an attempt to develop an appropriate framework for infinitesi-
mal structures, which is one of the main motivations of our approach.

5. Diffeological Spaces

Using the language of the “fundamental figures” given on a general space X
introduced by [21], we can describe diffeological spaces as a natural generalization
of the previous idea to take as fundamental figures all the smooth curves c : R −→
X on the space X. To define the concept of diffeological space, we first denote
with

Op := {U | ∃n ∈ N : U is open in Rn}
the set of all the domains of our new figures in the space X. In informal words,
the idea of a diffeological space is to say that a smooth structure on the space
X is given specifying all the smooth figures p : U −→ X, for U ∈ Op. More
formally, we have

Definition 7. We say that (D, X) is a diffeological space iff X is a set and
D = {DU}U∈Op is a family of sets of functions

DU ⊆ Set(U,X) ∀U ∈ Op.

The functions p ∈ DU are called parametrizations or plots or figures on X of
type U . The family D has to satisfies the following conditions:

1. Every point of X is a figure, i.e., for every U ∈ Op and every constant map
p : U −→ X, we must have that p ∈ DU .

2. Every set of figures DU is closed with respect to re-parametrization, i.e., if
p : U −→ X is a figure in DU , and f ∈ C∞(V, U), where V ∈ Op, then
p ◦ f ∈ DV .
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3. The family D = {DU}U∈Op verifies a sheaf property, i.e., let V ∈ Op,
(Ui)i∈I be an open cover of V and p : V −→ X a map such that p|Ui ∈ DUi,
then p ∈ DV . In other words, a figure to be locally implies a figure to be
globally too.

Finally a map f : X −→ Y between two diffeological spaces (X,DX) and (Y,DY )
is said to be smooth if it takes figures of the domain space in figures of the
codomain space, i.e., if

∀U ∈ Op ∀p ∈ DX
U : f ◦ p ∈ DY

U .

The category of all the diffeological spaces will be denoted with C∞.

Of course, a diffeological space with support set X is a subsheaf of the presheaf
Set(−, X). If compared with Frölicher spaces, in Diffeology (i.e. the study of dif-
feological spaces, see [6]) the principal differences are in the generalization of the
types of figures, in the losing of the symmetry between figures and corresponding
functions (i.e., maps of type f : X −→ U for U ∈ Op) and in the fundamental
sheaf property. For example, the generalization to figures of arbitrary dimension
instead of curves only, permits to prove the cartesian closure of the category of
diffeological spaces very easily and without the use of the nontrivial Boman’s
theorem (see [1, 2, 65]). The original idea to consider figures of general dimen-
sion instead of curves only, and the fundamental sheaf condition date back to
[18, 72]; the definition of diffeological space, essentially in the form given above,
is originally of [11, 12].

The category of diffeological spaces has very good categorical properties, with
arbitrary limits (subspaces, products, pullbacks, etc.) and colimits (quotient
spaces, sums, pushforwards, etc.), cartesian closedness (so that the set theoretical
compositions and evaluations are always smooth) and indeed is a quasi-topos
([33, 35]). Classical Fréchet manifolds are fully and faithfully embedded in this
category (see [73]).

We can now define a diffeological vector space (over R) as any diffeological
space (E,D), where E is a vector space (over R), and such that the addition and
the multiplication by a scalar

(u, v) ∈ E ×E 7→ u + v ∈ E and (r, u) ∈ R×E 7→ ru ∈ E

are smooth (with respect to the suitable product diffeologies on the domains)
and, as usual, the notion of smooth manifolds modelled on diffeological vector
spaces.

Differential geometry on generic diffeological spaces can be developed surpris-
ingly far as showed, e.g., by [6]: homotopy theory, exterior differential calculus,
differential forms, Lie derivatives, integration on chains and Stokes formula, de
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Rham cohomology, Cartan formula, generalization of symplectic geometry to dif-
feological spaces. As said in [6]:

Thanks to the strong stability of diffeology under the most im-
portant categorical operations [...] every general construction relating
to this theory applies to spaces of functions, differential forms, fiber
bundles, homotopy, etc. without leaving the strict framework of dif-
feology. This makes the development of differential geometry much
more easier, much more natural, than usually.

It is also interesting to note that some of these generalizations (like Stokes for-
mula) are general consequences of this type of extension of the notion of manifolds,
as proved by [74], and hence are not special for Diffeology.

From our point of view, Diffeology is surely formally clear, but sometimes lacks
from the point of view of the intuitive geometrical interpretation. To illustrate
this assertion, we can consider the notion of tangent vector as formulated in [6].
In the following we will assume that (X,D) is a diffeological space and x ∈ X is a
point in the space X. The first idea is that the figures q : U −→ X of type U ⊆ Ru

of the space X permit to define the notion of smooth p-form without having the
notion of tangent vector, but abstracting the properties of the pullback q∗ of the
figure q ∈ DU . In other words, let us suppose that we have already defined what
a differential p-form on X is, then we would be able to define the pullback q∗ of
q as a map that associates to each differential form d ∈ Ωp(X) and to each point
u ∈ U ⊆ Ru a p-form in Λp(Ru). The idea is hence to define directly a p-form
as this action on figures through pullback, and asking the natural condition of
composition of pullbacks in case we take a parametrization f ∈ C∞(V,U) of the
domain of the figure q:

Definition 8. A differential p-form defined on X is a family of maps of the
form (αU )U∈Op. Each αU , for U open in Ru, associates to each figure q ∈ DU a
smooth p-form αU (q) : U −→ Λp(Rn) , i.e.,

αU : DU −→ C∞(U,Λp(Ru)),

and it must satisfy the condition

αV (q ◦ f) = f∗(αU (q))

for every plot q ∈ DU and for every smooth parametrization f ∈ C∞(V, U) defined
on the open set V ∈ Op. The set of all the differential p-forms defined on X will
be denoted by Ωp(X).

The method used to arrive at this definition is the (frequently used in mathe-
matics) “inversion of the effect with the cause” in case of bijection between effects
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and causes. Indeed, if X = is an open set of Rd, then it is possible to prove that
we have a natural isomorphism between the new definition and the classical no-
tion of smooth p-form, i.e., Ωp(U) ' C∞(U,Λp(U)), in other words, the pullbacks
of p-forms uniquely determine the p-forms themselves.
The previous definition satisfies all the properties one needs from it, like the
possibility to define a diffeology on Ωp(X), vector space structure, pullbacks,
exterior differential, exterior product, a natural notion of germ generated by a
p-form so that two forms are equal if and only if they generate the same germ
(that if they are “locally” equal), etc.

The first intuitive drawback of the definition of Ωp(X) is that there is no
mention to spaces Λp

x(X) of p-forms associated to each point x ∈ X and of the
relationships between these spaces and the whole Ωp(X). Therefore, to under-
stand better the following definitions, we introduce the following

Definition 9. We say that two forms α, β ∈ Ωp(X) have the same value at
x, and we write α ∼x β, if and only if for every figure q ∈ DU such that

0 ∈ U and q(0) = x

(in this case we will say that q is centered at x) we have that

α(q)(0) = β(q)(0).

Equivalence classes of p-forms by means of the equivalence relation ∼x are called
values of α at x and we will denote with Λp

x(X) := Ωp(X)/ ∼x this quotient set.

Using these values of 1-forms we can define tangent vectors. Firstly, we intro-
duce the paths on X and the values of a 1-form on each path with the following

Definition 10. Let us introduce the space of all the paths on X, i.e.,

Paths(X) := C∞(R, X),

and for each path q ∈ Paths(X), the map j(q) : Ω1(X) −→ R evaluating each
1-form at zero

j(q) : α ∈ Ω1(X) 7→ α(q)(0) ∈ R.

The map j(q) is linear and smooth (because it is an evaluation in a cartesian
closed category), hence

j : Paths(X) −→ L∞(Ω1(X),R),

where L∞(Ω1(X),R) is the space of all the linear smooth functionals defined on
the space of 1-forms of X.
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Secondly, we say that the set of all these values j(q) generates the whole
tangent space. The set of these generators is introduced in the following

Definition 11. The space C∧
x (X) is the image of all the paths passing through

x under the map j:

C∧
x (X) := {j(q) | q ∈ Paths(X) and q(0) = x} ⊆ L∞(Ω1(X),R).

In the space C∧
x (X) one can naturally define a multiplication by a scalar

r ∈ R that formalizes the idea to increase the speed of going through a given
path q ∈ Paths(X):

r · j(q) = j [q(r · (−))] ,

where q(r · (−)) is the path q(r · (−)) : s ∈ R −→ q(r · s) ∈ X. But the space
C∧

x (X) is not necessarily a vector space because is not closed with respect to
addition of these values j(q) of 1-forms on paths q centered at x, hence we finally
define

Definition 12. A tangent vector v ∈ Tx(X) is a linear combination of ele-
ments of C∧

x (X), i.e.,

v =
n∑

i=1

sivi

for some

n ∈ N,

(vi)n
i=1 sequence of C∧

x (X),
(si)n

i=1 sequence of R.

As we said, even if the definitions we have just introduced are formally correct,
in our opinion their intuitive geometric meaning remains obscure. Probably, this
partial lack of a clear and intuitive geometrical meaning is due to the searching
for the greatest generality. In classical manifolds theory, the definition of tan-
gent vector through 1-forms is not geometrically intrinsic unless of Riemannian
manifolds, so it is not clear why passing to a more general space we are able to
obtain this identification in an intrinsic way. Secondly, diffeological spaces in-
clude also spaces with singular points, like X =

{
(x, y) ∈ R2 |x · y = 0

}
. At the

origin x = (0, 0) ∈ X, there is no way to define in a geometrically meaningful
way the sum of the two tangent vectors corresponding to i = (1, 0) and j = (0, 1)
(without using the superspace R2). This is the principal motivation that conducts
SDG to introduce the notion of microlinear space as the spaces where to each
pair of tangent vectors it is possible to associate an infinitesimal parallelogram,
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fully contained in the space itself, whose diagonal represents the sum of these two
tangent vectors. The previous space X is not microlinear exactly at the origin.

As we will see later in the present work, it is possible to add, in a meaning-
ful and simple way, new infinitesimally closed points to every diffeological space.
This provides for these spaces, hence, a possible language of infinitesimals. The
use of these infinitesimals opens the possibility to simplify and clarify some con-
cepts already developed in the framework of diffeological spaces, e.g., gaining a
more clear geometrical meaning. Almost surely, this gain could be done only
for a suitable class of diffeological spaces. For a preliminary development in this
direction, in particular for the class of inf-linear spaces, corresponding formally
to infinitesimally linear spaces of SDG, see [34].

6. Synthetic Differential Geometry

The fundamental ideas upon which SGD? was born, originate from the works
of Ehresmann [75], Weil [76] and A. Grothendieck (see [77]). The first step was
the introduction, by [75], of the concept of k-jet at a point p in a manifold M . This
important geometric structure is determined by the kth order Taylor’s formula
of real valued functions f defined in a neighborhood of the point p ∈ M . As said
by [78]:

[...] the study of jets can be seen as a development of the earlier
idea of studying the infinitely nearby points on algebraic curves on
manifolds. Presumably it was Ehresmann’s initiative which stimulated
the paper by [76].

In this latter work A. Weil introduced the idea to formalize nilpotent infinites-
imals using algebraic methods, more precisely using quotient rings like R[x]/(x2)
or R[x, y]/(x2, y2). In general, the idea is to consider formal power series in n vari-
ables R[[x1, . . . , xn]] modulo the (k +1)-th power of a given ideal I = (i1, . . . , im)
of series i1, . . . , im ∈ R[[x1, . . . , xn]] with zeros constant term, i.e., such that
ij(0) = 0 for every j = 1, . . . , m. These types of objects are now called Weil
algebras, and C. Ehresmann’s jets are also special cases of Weil algebras. Very
roughly, we can guess the fundamental idea of A. Weil saying that, e.g., an el-
ement p ∈ R[x]/(x2) can be written as p = a + x · b, with a, b ∈ R; addiction
in this space is computed in the more obvious way, and multiplication is defined
by (a + x · b) · (α + x · β) = aα + x · (aβ + bα). We arrive at the same result
if we multiply the two polynomials p = a + x · b and q = α + x · β using the
formal rules x2 = 0. At the end, with a construction as simple as the definition
of the field of complex numbers, we have extended the real field into a ring with a
nonzero element x having zero square, i.e., a first order infinitesimal (let us note

?Frequently SDG is also called smooth infinitesimal analysis.
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that in this ring there are not infinitesimals of greater order). Using the same
idea, we can see that with the Weil algebra R[x, y]/(x2, y2) we can extend the real
field with two first order infinitesimals x, y whose product is not zero, because
x · y 6= 0. Suitably generalized to algebras of germs of smooth functions defined
on manifolds, these two examples, i.e. R[x]/(x2) and R[x, y]/(x2, y2), correspond
isomorphically to the first and second tangent bundles, respectively (see, e.g., [1,
3–5, 76, 79, 80] for more details). The next fundamental step to obtain a sin-
gle framework, where all these types of nilpotent infinitesimals are available, has
been performed by A. Grothendieck. His first aim was to use nilpotent infinites-
imals to treat infinitesimal structures in algebraic geometry. The basic idea was
to study an algebraic locus like S1 =

{
(x, y) ∈ R2 |x2 + y2 = 1

}
, not only as a

subset of points in the plane, but as the functor S1
F : CRing −→ Set, from the

category CRing of commutative rings with 1 to the category of sets, defined as

S1
F(A) :=

{
(a, b) ∈ A2 | a2 + b2 = 1

}
,

S1
F(A

f−−−→ B) := (f × f)|S1
F(A)

: S1
F(A) −→ S1

F(B)

(where f : A −→ B is a ring homomorphism and f × f : (a, b) ∈ A2 7→
(f(a), f(b)) ∈ B2). Using this approach, algebraic geometers started to under-
stand that the functor corresponding to the trivial locus {x ∈ R |x = x} = R,
i.e., the functor R(A) := {a ∈ A | a = a} = A = the underlying set of the
ring A, behaves like a set of scalars containing infinitesimals. For example,
D(A) :=

{
a ∈ A | a2 = 0

}
is a subfunctor of this functor R, and plays the role

of the space of first order infinitesimals. Being a subfunctor, D “behaves” like a
subset? of R. These ideas spring into the notion of Grothendieck topos. Lawvere
found that in the Grothendieck topos, and in other similar categories that later
will originate the general notion of topos (see [81]), an intuitionistic set-theoretic
language can be directly interpreted. In [21], he proposes a way to generalize
these construction of algebraic geometry to smooth manifolds, and to use this
generalization as a foundation for infinitesimal reasonings, with a single formal-
ism valid both for finite and infinite dimensional manifolds. This proposal is a
part of a bigger project, whose objective is to establish an intrinsic axiomatiza-
ton for continuum mechanics. The inclusion of infinite dimensional spaces, like
functions spaces, is a natural consequence of the cartesian closedness of every
topos.

The construction of a model for SDG which embeds the category of smooth
finite dimensional manifolds is not a simple task. Classical references are [4,
5]. Here we only want to sketch some of the fundamental ideas, first of all,

?In the sense that each Topos is a model of intuitionistic set theory, so that it is possible to
define a formal language for intuitionistic set theory where sentences like D ⊆ R are rigorous
and true in the model (see [4, 5] for more details).
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to underline the conceptual differences between SDG and the above mentioned
approaches to infinite dimensional differential geometry.

The first idea to generalize from the context of algebraic geometry to manifolds
theory is to find a corresponding of the category of CRing of commutative rings,
i.e., to pass from a context of polynomial operations to more general smooth
functions. Indeed, that category is replaced by that of C∞-rings:

Definition 13. A C∞-ring (A, +, ·, ι) is a ring (A, +, ·) together with an in-
terpretation ι(f) of each possible smooth map f : Rn −→ Rm, that is a map

i(f) : An −→ Am

such that ι preserves projections, compositions and identity maps, i.e.:
1. If p : Rm −→ R is a projection, then ι(p) : Am −→ A is a projection.
2. If Rd −→ gRn −→ fRm are smooth, then ι(f ◦ g) = ι(f) ◦ ι(g).
3. If 1Rn : Rn −→ Rn is the identity map, then ι(1Rn) = 1An.
Frequently, we will use also the notation A(f) := i(f). A homomorphism of

C∞-rings ϕ : A −→ B is a ring homomorphism which preserves the interpretation
of smooth maps, that is such that the following diagram commutes

An

A(f)

²²

ϕn
// Bn

B(f)

²²
Am

ϕm
// Bm

for every smooth map f : Rn −→ Rm.

We may define a C∞-ring in an equivalent but more concise way: let C∞

denote the category whose objects are the spaces Rd, d ≥ 0, and with smooth
functions as arrows, then a C∞-ring is a finite product preserving functor A :
C∞ −→ Set, and a C∞-homomorphism is just a natural transformation ϕ :
A −→ B. Indeed, given such a functor, the set A(R) has the structure of a
commutative ring (A(R), +A, ·A) given by +A := A(R × R −→ +R) and ·A :=
A(R × R −→ C·R), where + : R × R −→ R and · : R × R −→ R are the ring
operations on R.

Here are some examples of C∞-rings

Example 14. The ring C∞(Rd,R) of real valued smooth functions a : Rd −→
R, with pointwise ring operations, is a C∞-ring. Usually, it is denoted simply
with C∞(Rd). The smooth function f : Rn −→ Rm is interpreted in the following
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way. Let (h1, . . . , hn) ∈ C∞(Rd,R)n be n elements of the ring C∞(Rd). Their
product

(h1, . . . , hn) : x ∈ Rd 7→ (h1(x), . . . , hn(x)) ∈ Rn

can be composed with f : Rn −→ Rm and projected into its m components obtain-
ing

ι(f) := (p1 ◦ f ◦ (h1, . . . , hn), . . . , pm ◦ f ◦ (h1, . . . , hn)) ∈ C∞(Rd,R),

where pi : Rm −→ R are the projections.

Example 15. If M is a smooth manifold, the ring of real valued functions
defined on M, i.e., C∞(M,R), is a C∞-ring. Here, a smooth function f : Rn −→
Rm is interpreted using composition, similarly to the previous example. This ring
is also denoted by C∞(M). Moreover, it is well known that

C∞(M) = C∞(N) =⇒ M = N

for second countable Hausdorff manifolds. If g : N −→ M is a smooth map
between manifolds, then the C∞-homomorphism given by

C∞(g) : a ∈ C∞(M,R) 7→ a ◦ g ∈ C∞(N,R)

verifies the analogous embedding property:

C∞(g) = C∞(h) =⇒ g = h.

This means that manifolds can be faithfully considered as C∞-rings.

Example 16. Let A be a C∞-ring and I an ideal of A, then the quotient ring
A/I is also a C∞-ring. Indeed, if A(f) : An −→ Am is the interpretation of the
map f : Rn −→ Rm, we can define the interpretation (A/I)(f) : (A/I)n −→
(A/I)m as

(A/I)(f)([a1]I , . . . , [an]I) :=
= ([p1(A(f)(a1, . . . an))]I , [pm(A(f)(a1, . . . an))]I),

where [ai]I ∈ A/I denotes the equivalent classes of the quotient ring, and pj :
Am −→ A are the projections (see, e.g., [4] for more details). Examples included
in this case are the analogous of the above mentioned Dk := C∞(R)/(xk+1)
and D(2) := C∞(R)/(x2, y2), or the ring 4 := C∞0 (Rn) = C∞(Rn)/mg

{0}, where
mg
{0} is the ideal of smooth functions generating the zero germ at 0 ∈ Rn and

finally I := C∞0 (Rn \ {0}). These C∞-rings will play the role, in the final model,
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of infinitesimals of kth order Dk, of pairs of infinitesimals of first order whose
product is not necessarily zero D(2), of the set of all the infinitesimals 4, and of
the set of all the invertible infinitesimals I, respectively.

For each subset X ⊆ Rn, a function f : X −→ R is said to be smooth if there
is an open superset U ⊇ X and a smooth function g : U −→ R which extends
f , i.e., such that g|X = f . We can proceed as in the previous example using
composition to define C∞(X), the C∞-ring of real valued functions defined on X.
An important example, that uses this generalization and the previous example, is
C∞(N)/K, where C∞(N) is the ring of smooth functions on the natural numbers,
and K is the ideal of eventually vanishing functions. In the final model, this ring
will act as a set of infinitely large natural numbers.

Example 17. A C∞-ring A is called finitely generated if it is isomorphic to
one of the form C∞(Rn)/I, for some n ∈ N and some finitely generated ideal
I = (i1, . . . , im). For example, given an open subset U ⊆ Rn, we can find a
smooth function f : Rn −→ R such that f(x) 6= 0 if and only if x ∈ U . So U
is diffeomorphic to the closed set Û = {(x, y) | y · f(x) = 1} ⊆ Rn+1. Hence we
have the isomorphism of C∞-rings

C∞(U) ' C∞(Rn+1)/(y · f(x)− 1).

This proves that the C∞-ring C∞(U) is finitely generated. Using this result and
Whitney’s embedding theorem it is possible to prove that for a finite dimensional
second countable Hausdorff manifold M , the C∞-ring C∞(M) is finitely generated
too (see [4, 5]).

Therefore, the category L of finitely generated C∞-rings seems a good step
toward the goal to embed finite dimensional manifolds in a category with infinites-
imal objects. However, in general function spaces can not be constructed in L.
In order to have these function spaces, the first step is to extend the category L
in the category SetL

op
of presheaves on L, i.e., of functors F : Lop −→ Set:

Man ⊆ L ⊆ SetL
op

.

This is a natural step in this context because the embedding L ⊆ SetL
op

is a
well-know result in the category theory (Yoneda embedding), and because the
category SetL

op
is a topos. So, we can concretely see the possibility to embed

the category of smooth manifolds in a topos containing infinitesimal objects. Let
us note that manifolds are directly embedded in SetL

op
without “an extension

with new infinitesimal points”, so the approach is very different with respect to
nonstandard analysis ([82]).
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So, what is the ring of scalars representing the geometric line in the topos
SetL

op
? If A, B ∈ L are finitely generated C∞-rings, and f : A −→ B is a

C∞-homomorphism, then this geometric line is represented by the functor

R(A) = L(A, C∞(R)), (6)

R(A
f−−−→ B) : g ∈ R(A) 7→ g ◦ f ∈ R(B), (7)

corresponding, via the Yoneda embedding, to the C∞-ring C∞(R). Analogously,
the set of first order infinitesimal D corresponds in the topos SetL

op
to the functor

D(A) = L(A, C∞(R)/(x2)), (8)

D(A
f−−−→ B) : g ∈ D(A) 7→ g ◦ f ∈ D(B). (9)

Really, the topos SetL
op

is not a final model of SDG for several reasons.
Among these, we can mention that the properties like 1 6= 0 or ∀r ∈ R (x is in-
vertible ∨ (1− x) is invertible) are nonprovable in SetL

op
, and this is essentially

because the embedding Man ⊆ SetL
op

does not preserve open covers. A descrip-
tion of the final models is outside the scopes of the present article. For more
details, see, e.g., [4] and references therein.

It is in the opinion of important researchers in SDG ([4], see citation at the
end of Sect. 4) that these topos models are not sufficiently simple, even if, at the
same time, they are very rich and formally powerful. For these reasons, SDG is
usually presented in an “axiomatic” way, in the framework of a naive intuition-
istic set theory?, but with explicit introduction of particular axioms useful to
deal with smooth spaces (i.e., objects of SetL

op
or a better model) and smooth

functions (i.e., arrows of SetL
op

or a better model). This possibility is due to
the above mentioned internal language of a topos (that represents its intuition-
istic semantics). For example, a basic assumption is the so-called Kock–Lawvere
axiom:

Axiom R is a ring and we define D :=
{
h ∈ R |h2 = 0

}
, called the set of

first order infinitesimal. They satisfy

∀f : D −→ R ∃! m ∈ R : ∀h ∈ D : f(h) = f(0) + h ·m. (10)

The universal quantifier “for every function f : D −→ R” really means “for
every set theoretical function from D to R”, but definable using intuitionistic

?Exactly as almost every mathematician works in naive (classical) set theory. On the other
hand, to work in SDG, one has to learn to work in intuitionistic logic, i.e., avoiding the law of the
excluded middle, the proofs by reduction ad absurdum ending with a double negation, the full
De Morgan laws, the equivalence between double negation and affirmation, the full equivalence
between universal and existential quantifiers through negation, the axiom of choice, etc.
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logic (hence, classically it is a subset of C∞(R)). In semantical terms, this corre-
sponds to “for every arrow in the model SetL

op
”, i.e., for every smooth natural

transformation between the functor D (see (8) and (9)) and the functor R (see
(6) and (7)). It is not surprising to assert that (10) is incompatible with classical
logic: applying the Kock–Lawvere axiom (10) with the function

f(h) =

{
1 if h 6= 0
0 if h = 0

(11)

and considering the hypothesis ∃h0 ∈ D : h0 6= 0, we obtain

1 = 0 + h0 ·m.

Squaring this equality, we obtain 1 = 0. This incompatibility with classical logic
is a natural motivation to consider intuitionistic logic, only in a context of topos
theory and only if one is already thinking on the existence of models like SetL

op
.

In another context, we think that the more natural idea is to criticize (10) asking
some kind of limitation on the class of functions to which it can be really applied.

Finally we cite that the work of [76] has been the base for several other re-
searches tempting to formalize nilpotent infinitesimal methods. In this direction,
we can cite Weil functors (see [1, 79, 83]) and the recent [80].

7. The Cartesian Closure of a Category of Figures: Motivations
and Basic Hypotheses

The ideas used in this section arise from analogous ideas about diffeological
spaces and Frölicher spaces (see Sect. 4). In particular, our first references are
[2, 18]. For these reasons, in this section we will not present the proofs of the
most elementary facts; these can be easily generalized from the analogous proofs
of [1, 2, 18] or [6].

We present the definition of cartesian closure starting from a concrete cate-
gory F of topological spaces (satisfying few conditions), and embedding it in a
cartesian closed category F̄ . We will call F̄ the cartesian closure of F .
In this section we will assume the following hypotheses on the category F :

1. F is a subcategory of the category of topological spaces Top, and contains
all the constant maps c : H −→ X and all the open subspaces U ⊆ H (with
the induced topology) of every object H ∈ F . The corresponding inclusion
i : U ↪→ H is also an arrow of F , i.e. i ∈ FUH := F(U,H).

In the following, we will denote by | − | : F −→ Set the forgetful functor,
which associates to any H ∈ F its support set |H| ∈ Set. Moreover, with τH

we will denote the topology of H, and with (U ≺ H) the topological subspace of

248 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3



Infinite Dimensional Spaces and Cartesian Closedness

H induced on the open set U ∈ τH . The remaining assumptions on F are the
following:

2. The category F is closed with respect to restrictions to open sets, that
is if f ∈ FHK and U , V are open sets in H, K, respectively, and finally
f(U) ⊆ V , then f |U ∈ F(U ≺ H,V ≺ K);

3. Every topological space H ∈ F has the following “sheaf property”: let H,
K ∈ F be two objects of F , (Hi)i∈I an open cover of H and f : |H| −→ |K|
a map such that

∀i ∈ I : f |Hi ∈ F(Hi ≺ H,K),

then f ∈ FHK.

If we want to generalize the definition of diffeological space to the regular-
ity class Cn, n ≤ +∞, embedding finite dimensional Cn-manifolds, we can set
F = ORn, the category having as objects open sets U ⊆ Ru (with the induced
topology), for some u ∈ N depending on U , and with hom-set the usual space
Cn(U, V ) of Cn functions between the open sets U ⊆ Ru and V ⊆ Rv. Thus,
Cn := ORn, the category of Cn-diffeological spaces, is the cartesian closure of the
category ORn.

In general, what type of category F we have to choose depends on the setting
we need: e.g., in case we want to consider manifolds with boundary, we have to
take the analogous of the above mentioned category ORn, but having as objects
sets of type U ⊆ Ru

+ = {x ∈ Ru |xu ≥ 0}.

7.1. The cartesian closure and its first properties

The basic idea to define a space X of regularity Cn, which faithfully generalizes
the notion of manifold, is to substitute the notion of chart by a family of mappings
d : H −→ X of type H ∈ F . Indeed, for F = ORn these mappings are of
type d : U −→ X with U open in some Ru, thus they can be thought of as
u-dimensional figures on X (see also Sects. 5 and 4). The idea is that a Cn space
can be thought as a support set together with the specification of all the finite-
dimensional figures on the space itself. Generally speaking, we can think of F as a
category of types of figures ([21]). Always considering the case F = ORn, we can
also think F as a category which represents a well-known notion of regular space
and regular function: with the cartesian closure F̄ , we want to extend this notion
to a more general type of space (e.g., spaces of mappings). These are the ideas
we have already seen in Sect. 5 in the case of diffeological spaces, only suitably
generalized to a category of topological spaces F instead of F = ORinfty, which
is the case of diffeology. We will see that this generalization permits to obtain,
for a suitable choice of the category of figures F , a category •C∞ where every
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diffeological space X ∈ C∞ can be extended adding new infinitely close points
•X ∈ •C∞. It is possible to see that the corresponding extension functor •(−) :
C∞ −→ •C∞ has very good properties ([34]).

Definition 18. In the sequel we will frequently use the notation f · g := g ◦ f
for the composition of maps so as to facilitate the lecture of diagrams, but we will
continue to evaluate functions “on the right” hence (f · g)(x) = g(f(x)).

Objects and arrows of F̄ generalize the same notions of the diffeological setting
(see Sect. 5.).

Definition 19. If X is a set, then we say that (D, X) is an object of F̄ (or
simply an F̄-object) if D = {DH}H∈F is a family with

DH ⊆ Set(|H|, X) ∀H ∈ F .

We indicate by the notation FJH · DH the set of all the compositions f · d of
functions f ∈ FJH and d ∈ DH. The family D has finally to satisfy the following
conditions:

1. FJH · DH ⊆ DJ .

2. DH contains all the constant maps d : |H| −→ X.

3. Let H ∈ F , (Hi)i∈I an open cover of H and d : |H| −→ X a map such that
d|Hi ∈ D(Hi≺H), then d ∈ DH .

Finally, we set |(D, X)| := X to denote the underlying set of the space (D, X).

Because of condition 1, we can think of DH as the set of all the regular
functions defined on the “well-known” object H ∈ F and with values in the new
space X; in fact, this condition says that the set of figures DH is closed with
respect to re-parametrizations with a generic f ∈ FJH . Condition 3 is the above
mentioned sheaf property, and asserts that the property of being a figure d ∈ DH

has a local character depending on F .
We will frequently write d ∈H X to indicate that d ∈ DH , and we can read

it? saying that d is a figure of X of type H or d belongs to X at the level H or
d is a generalized element of X of type H.

The definition of arrow f : X −→ Y between two spaces X, Y ∈ F̄ is the
usual one for diffeological spaces, that is f takes, through composition, generalized
elements d ∈H X of type H in the domain X to generalized elements of the same
type in the codomain Y :

?The following are common terminologies used in topos theory, see [4, 5, 21]

250 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3



Infinite Dimensional Spaces and Cartesian Closedness

Definition 20. Let X, Y be F̄-objects, then we will write

f : X −→ Y

or, more precisely if needed ?

F̄ ² f : X −→ Y

iff f maps the support set of X into the support set of Y :

f : |X| −→ |Y |

and
d · f ∈H Y

for every type of figure H ∈ F and for every figure d of X of that type, i.e.
d ∈H X. In this case, we will also use the notation f(d) := d · f .

Note that we have f : X −→ Y in F̄ iff

∀H ∈ F ∀x ∈H X : f(x) ∈H Y,

moreover X = Y iff

∀H ∈ F ∀d : d ∈H X ⇐⇒ d ∈H Y.

These and many other properties justify the notation ∈H and the name “gener-
alized elements”.

With these definitions F̄ becomes a category. Note that it is, in general, in
the second Grothendieck universe (see [26, 77]) because D is a family indexed in
the set of objects of F (this is not the case for F = ORn, which is a set and not
a class).

The simplest F̄-object is K̄ := (F(−)K, |K|) for K ∈ F , where we recall that

FHK = F(H, K) =
{

f |H f−−−→ K in F
}

. For the space K̄ ∈ F̄ we have that

F̄ ² K̄
d−−−→ X ⇐⇒ d ∈K X.

Moreover, F(H,K) = F̄(H̄, K̄). Therefore, F is fully embedded in F̄ if H̄ = K̄
implies H = K; e.g., this is true if the given category of figures F verifies the
following condition:

|H| = |K| = S and H
1S−−−−→ K

1S−−−−→ H =⇒ H = K.

?We shall frequently use notations of type C ² f : A −→ B if we need to specify better the
category C we are considering.
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For example, this is true for F = ORn.
Moreover, let us note that the composition of two smooth functions in F̄ of

type d : H̄ −→ X and f : X −→ K̄ for H, K ∈ F , gives d · f ∈ F̄(H̄, K̄) =
F(H, K), which is an arrow in the old category of types of figures F .

Another way to construct an object of F̄ on a given support set X is to
generate it starting from a given family D0 = (D0

H)H , with D0
H ⊆ Set(|H|, X) for

any H ∈ F , closed with respect to constant functions, i.e., such that

∀H ∈ F ∀d : |H| −→ X is constant =⇒ d ∈ D0
H .

We will indicate this space by (F · D0, X). Its figures are, locally, compositions
f ·d with f ∈ FHK and d ∈ D0

K . More precisely, δ ∈H (F ·D0, X) iff δ : |H| −→ X
and for every h ∈ |H| there exists an open neighborhood U of h in H, a space
K ∈ F , a figure d ∈ D0

K and f : (U ≺ H) −→ K in F such that δ|U = f · d.
Diagrammatically we have

H
δ // X

h ∈ U
f

//
Â ?

OO

δ|U

;;vvvvvvvvvvvvvvvv
K

d

OO

On each space X ∈ F̄ we can put the final topology τX for which any figure
d ∈H X is continuous, that is

Definition 21. If X ∈ F̄ , then we say that a subset U ⊆ |X| is open in X,
and we will write U ∈ τX iff d−1(U) ∈ τH for any H ∈ F and any d ∈H X.

With respect to this topology any arrow of F̄ is continuous, and we still have
the initial τH in the space H̄, that is τH = τ H̄ (recall that, because of the
fundamental hypotheses on the category of types of figures F fixed in Sect. 7,
every type of figure H ∈ F is a topological space).

Recalling that in the case F = ORinfty we obtain that the cartesian closure
F̄ is the category of diffeological spaces, it can be useful to cite here [6]:

Even if diffeology is a theory which avoids topology on purpose,
topology is not completely absent from its content. But, in contrary to
some approach of standard differential geometry, here the topology is
a byproduct of the main structure, that is diffeology. Locality, through
local smooth maps, or local diffeomorphisms, is introduced without
referring to any topology a priori but will suggest the definition of a
topology a posteriori [i.e., τX ].
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Ultimately, this choice is due to the necessity to obtain a cartesian closed
category. In fact, if we do not start from a primitive notion of topology in
the definition of F̄-space, we can obtain cartesian closedness without having the
problem to define a topology in the set of maps F̄(X, Y ). Indeed, this is not an
easy problem, and classical solutions like the compact-open topology (see, e.g.,
[1, 84] and references therein) is not applicable to the smooth case. In fact, the
compact-open topology, which essentially coincides with the topology of uniform
convergence, is well suited for continuous maps f : X −→ Y between locally
compact Hausdorff topological spaces X and Y (indeed, the category of these
topological spaces is cartesian closed, see [27]). It can be generalized to the case
of Ck-regularity using k-jets (k ∈ N>0), i.e., using Taylor’s formulae up to k-th
order (see, e.g., [1]), but a generalization including the smooth case C∞ even for
a compact domain X fails. In fact, for X compact and Y a Banach space, the
space Ck(X, Y ) with the Ck compact-open topology is normable, but the space
C∞(R,R) is not normable, so its topology cannot be the compact-open one (see
also Sect. 3 and Theorem 2 for more details).

The study of the relationships between different topologies on the space of
maps C∞(M, N) for M , N manifolds, is not completely solved (see again [1] for
some results in this direction).

7.2. Categorical properties of the cartesian closure

We shall now examine subobjects in F̄ and their relationships with restric-
tions of functions; after this we will analyze completeness, co-completeness and
cartesian closure of F̄ .

Definition 22. Let X ∈ F̄ be a space in the cartesian closure of F , and
S ⊆ |X| a subset, then we define

(S ≺ X) := (D, S),

where, for every type of figure H ∈ F , we have set

d ∈ DH :⇐⇒ d : |H| −→ S and d · i ∈H X.

Here i : S ↪→ |X| is the inclusion map. In other words, we have a figure d of
type H in the subspace S iff composing d with the inclusion map i we obtain a
figure of the same type in the superspace X. We will call (S ≺ X) the subspace
induced on S by X.

Using this definition only it is very easy to prove that (S ≺ X) ∈ F̄ and
that its topology τ (S≺X) contains the topology induced by τX on the subset S.
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Moreover, we have that τ (S≺X) ⊆ τX if S is open in X, hence in this case we
have on (S ≺ X) exactly the induced topology.

Finally we can prove that these subspaces have good relationships with re-
strictions of maps:

Theorem 23. Let f : X −→ Y be an arrow of F̄ and U , V be subsets of |X|
and |Y |, respectively, such that f(U) ⊆ V , then

(U ≺ X) −→ f |U(V ≺ Y ) in F̄ .

Using our notation for subobjects we can prove the following useful and nat-
ural properties, directly from Definition 22:

• (U ≺ H̄) = (U ≺ H) for U open in H ∈ F (recall the definition of H̄ ∈ F̄ ,
for H ∈ F , given in Sect. 7.1. and also recall that, because of the hypotheses
of Sect. 7. on the category F , the subspace (U ≺ H) is a type of figure,
i.e. (U ≺ H) ∈ F , and we can thus apply the operator ¯(−) : F −→ F̄ of
inclusion of the types of figures F into the cartesian closure F̄);

• i : (S ≺ X) ↪→ X is the lifting of the inclusion i : S ↪→ |X| from Set to F̄ ;

• (|X| ≺ X) = X

• (S ≺ (T ≺ X)) = (S ≺ X) if S ⊆ T ⊆ |X|;
• (S ≺ X)× (T ≺ Y ) = (S × T ≺ X × Y ).

These properties imply that the relation X ⊆ Y iff |X| ⊆ |Y | and (|X| ≺ Y ) = X
is a partial order. Note that this relation is stronger than saying that the inclusion
is an arrow, because it asserts that X and the inclusion verify the universal
property of (|X| ≺ Y ), that is X is a subobject of Y . A trivial but useful
property of this subobjects notation is the following

Corollary 24. Let S ⊆ |X ′| and X ′ ⊆ X in F̄ , then

(S ≺ X ′) = (S ≺ X),

that is, in the operator (S ≺ −) we can change the superspace X with any one of
its subspaces X ′ ⊆ X containing S.

P r o o f. In fact X ′ ⊆ X means X ′ = (|X ′| ≺ X) and hence (S ≺ X ′) =
(S ≺ (|X ′| ≺ X)) = (S ≺ X) because of the previous properties of the operator
(− ≺ −).

An expected property that transfers from F to F̄ is the sheaf property; in
other words, it states that the property of being an arrow of the cartesian closure
F̄ is a local property.
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Theorem 25. Let X, Y ∈ F̄ be spaces in the cartesian closure, (Ui)i∈I an
open cover of X and f : |X| −→ |Y | a map from the support set of X to that of
Y such that

F̄ ² (Ui ≺ X)
f |Ui−−−−−→ Y ∀i ∈ I.

Then
F̄ ² X

f−−−→ Y.

Completeness and co-completeness are analyzed in the following theorem. For
its standard proof see, e.g., [2] for a similar theorem.

Theorem 26. Let (Xi)i∈I be a family of objects in F̄ and pi : |X| −→ |Xi| be
a map, for every i ∈ I. Let us define

d ∈H X :⇐⇒ d : |H| −→ |X| and ∀ i ∈ I : d · pi ∈H Xi

then (X
pi−−−−→ Xi)i∈I is a lifting of (|X| pi−−−−→ |Xi|)i∈I in F̄ .

Moreover, let ji : |Xi| −→ |X| be a map, for every i ∈ I, and let us suppose
that

∀x ∈ |X| ∃ i ∈ I ∃xi ∈ Xi : x = ji(xi).

Let us define d ∈H X iff d : |H| −→ |X| and for every h ∈ |H| there exists an open
neighborhood U of h in H, an index i ∈ I and a figure δ ∈U Xi such that d|U =

δ · ji; then we have that (Xi
ji−−−→ X)i∈I is a co-lifting of (|Xi| ji−−−→ |X|)i∈I

in F̄ .

The category of F̄ spaces is thus complete and co-complete and we can hence
consider spaces like quotient spaces X/ ∼, disjoint sums

∑
i∈I Xi, arbitrary prod-

ucts
∏

i∈I Xi, equalizers, etc.
Directly from the definitions of lifting and co-lifting, it is easy to prove that on

quotient spaces we exactly have the quotient topology and that on any product
we have a topology stronger than the product topology. We can write these
assertions in the following symbolic way:

τX/∼ = τX/ ∼ , (12)

τX × τ Y ⊆ τX×Y , (13)

where X and Y are F̄ spaces, ∼ is an equivalence relation on |X|, (X/ ∼) ∈ F̄ is
the quotient space, τX/ ∼ is the quotient topology, and τX × τ Y is the product
topology. Analogously, let ji : Xi −→

∑
i∈I Xi be the canonical injections in the

disjoint sum of the family of F̄-spaces (Xi)i∈I , i.e. ji(x) = (x, i). Then, we can
prove that A is open in

∑
i∈I Xi if and only if

∀i ∈ I : j−1
i (A) ∈ τXi

, (14)
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that is on the disjoint sum we have exactly the colimit topology. Because any
colimit can be obtained as a lifting from Set of quotient spaces and disjoint sums
(see [27]), we have the general result that the topology on the colimit of F̄-spaces
is exactly the colimit topology. In symbolic notations we can write

τ
(

colim
i∈I

Xi

)
= colim

i∈I
τXi

.

Finally, if we define

DH := {d : |H| −→ F̄(X, Y ) | H̄ ×X
d∨−−−−→ Y in F̄} ∀H ∈ F

(we recall that we use the notations d∨(h, x) := d(h)(x) and µ∧(x)(y) := µ(x, y),
see Sect. 1), then 〈D, F̄(X, Y )〉 =: Y X is an object of F̄ . With this definition,
see, e.g., [18] or [2], it is easy to prove that F̄ is cartesian closed, i.e., that the
F̄-isomorphism (−)∨ realizes

(Y X)Z ' Y Z×X .

8. Observables on Cn Spaces

If our aim is to embed the category of Cn manifolds into a cartesian closed
category, then the most natural way to apply the results of the previous Sect. 7
is to take as category F of types of figures F = Man, that is to consider directly
the cartesian closure of the category of finite dimensional Cn manifolds?. We shall
not follow this idea for several reasons. We will consider instead Cn := ORn, that
is the cartesian closure of the category ORn of open sets and Cn maps. For n = ∞
this gives exactly diffeological spaces. Indeed, as we noted in the previous Sect.
7., Man is in the second Grothendieck universe and, essentially for simplicity,
from this point of view the choice F = ORn is better. In spite of this choice,
it is natural to expect, and in fact we will prove it, that the categories of both
finite and infinite-dimensional manifolds are faithfully embedded in the previous
Cn = ORn. Another reason to choose our definition of Cn is that in this way
the category Cn is more natural to accept against Man; hence, ones again, we
are opting for a reason of simplicity. We will see that manifolds modelled in
convenient vector spaces are faithfully embedded in Cn, hence our choice to take
finite dimensional objects in the definition of Cn = ORn is not restrictive from
this point of view.

In this section, we pay attention to another type of map which goes “in the
opposite direction” with respect to figures d : K −→ X. They are important also

?We shall not formally assume any hypothesis on the topology of a manifold because we
will not need it in what follows. Moreover, if not differently specified, the word “manifold” will
always mean “finite dimensional manifold”.
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because we shall use them to introduce new infinitesimally closed points for any
X ∈ Cn.

Definition 27. Let X be an F̄ space, then we say that

UK is a zone (in X)

iff U ∈ τX, i.e., U is open in X, and K ∈ F is a type of figure. Moreover we
say that

c is an observable on UK and we will write c ∈UK X

iff c : (U ≺ X) −→ K̄ is a map of the cartesian closure F̄ .

So, the observables of a Cn space X are simply the maps of class Cn (i.e., are
the arrows of this category) defined on an open set of X and with values in an
open set K ⊆ Rd for some d ∈ N. Recall (see Sect. 7.1) that for any open set
K ∈ ORn, in the Cn space K̄ we take as figures of type H ∈ ORn all the ordinary
Cn-maps Cn(H, K), i.e., we have

K̄ = (Cn(−,K),K).

Therefore, the composition of figures d ∈H X with observables c ∈UK X gives
ordinary Cn maps:

d|S · c ∈ Cn(S, K), where S := d−1(U),

Cn ² (S ≺ H)
d|s−−−−→ (U ≺ X) c−−−→ K̄.

From our previous theorems of Sect. 7., it follows that Cn functions f : X −→ Y
take observables on the codomain to observables on the domain, i.e.:

c ∈UK Y =⇒ f |S · c ∈SK X, (15)

where S := f−1(U):

(S ≺ X)
f |S //

f |S ·c
&&LLLLLLLLLLLLLLLLLL

(U ≺ Y )

c

²²
K̄

Therefore, isomorphic Cn spaces have isomorphic sets of figures and observables,
and the isomorphisms are given by suitable simple compositions.

The following definition is useful to understand when the points of a space
are uniquely identified by all the observables. This condition is also connected
with the faithfulness of the extension functor •(−) : C∞ −→ •C∞ which adds
infinitesimally closed points to every diffeological space X ∈ C∞, obtaining •X ⊇
X (see the following Sect. 12).

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3 257



Paolo Giordano

Definition 28. If X ∈ Cn is a Cn space and x, y ∈ |X| are two points, then
we write

x ³ y

iff for every zone UK and every observable c ∈UK X we have
1. x ∈ U ⇐⇒ y ∈ U ;
2. x ∈ U =⇒ c(x) = c(y).

In this case we will read the relation x ³ y saying x and y are identified in X.
Moreover, we say that X is separated iff x ³ y implies x = y for any x, y ∈ |X|.

We point out that if two points are identified in X, then a generic open set
U ∈ τX contains the first one if and only if it contains the second too (take a
constant observable c : U −→ R). Furthermore, from (15) it follows that Cn

functions f : X −→ Y preserve the relation ³:

x ³ y in X =⇒ f(x) ³ f(y) in Y ∀x, y ∈ |X|.

Trivial examples of separated spaces can be obtained considering the objects
Ū ∈ Cn with U ∈ ORn (here (−) : ORn −→ Cn is the embedding of the types
of figures ORn into Cn, see 7.1) or taking subobjects of separated spaces. But
the full subcategory of separated Cn spaces has sufficiently good properties, as
proved in the following

Theorem 29. The category of separated Cn spaces is complete and admits
co-products. Moreover, if X, Y are separated, then Y X is separated too, and
hence separated spaces form a cartesian closed category.

Sketch of the proof. We only do some considerations about co-products, be-
cause from the definition of lifting (see Theorem 26) it can be directly proved that
products and equalizers of separated spaces are separated too. Let us consider
a family (Xi)i∈I of separated spaces with support sets Xi := |Xi|. Constructing
their sum in Set

X :=
∑

i∈I

Xi,

ji : x ∈ Xi 7−→ (x, i) ∈ X,

from the completeness of Cn we can lift this co-product of sets into a co-product
(Xi

i−−−→ X )i∈I in Cn. To prove that X is separated we take two points x, y ∈
X = |X | identified in X . These points are of the form x = (xr, r) and y = (ys, s),
with xr ∈ Xr, ys ∈ Xs and r, s ∈ I. We want to prove that r and s are necessarily
equal. In fact, from (14), for a generic A ⊆ X we have that

A ∈ τ X ⇐⇒ ∀ i ∈ I : j−1
i (A) ∈ τ Xi

,
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and hence Xr × {r} is open in X and x = (xr, r) ³ y = (ys, s) implies

(xr, r) ∈ Xr × {r} ⇐⇒ (ys, s) ∈ Xr × {r} hence r = s.

Thus x = y iff xr and ys = yr are identified in Xr and this is a consequence of
the following facts:

1. if U is open in Xr then U × {r} is open in X ;

2. if c ∈UK Xr, then γ(x, r) := c(x) ∀x ∈ U is an observable of X defined on
U × {r}.

Now, let us consider exponential objects. If f , g ∈ |Y X | are identified, to prove
that they are equal is equivalent to prove that f(x) and g(x) are identified in Y for
any x. To obtain this conclusion, it is sufficient to consider that the evaluation in
x, i.e., the application εx : ϕ ∈ |Y X | 7−→ ϕ(x) ∈ |Y |, is a Cn map, and hence from
any observable c ∈UK Y we can always obtain the observable εx|U′ · c ∈U′K Y X

where U ′ := ε−1
x (U).

Finally let us consider two Cn spaces such that the topology τX×Y is equal
to the product of the topologies τX and τ Y (recall that in general we have
τX × τ Y ⊆ τX×Y ). Then, if x, x′ ∈ |X| and y, y′ ∈ |Y |, directly from the
definition of the relation ³, it is possible to prove that x ³ x′ in X and y ³ y′ in
Y if and only if (x, y) ³ (x′, y′) in X × Y .

9. Manifolds as Objects of Cn

We can associate in a very natural way a Cn space M̄ to any Cn manifold
M ∈ Man with the following

Definition 30. The underlying set of M̄ is the underlying set of the manifold,
i.e. |M̄ | := |M |, and for every H ∈ ORn the figures d : H −→ M of type H are
all the ordinary Cn maps from H to the manifold M , i.e.,

d ∈H M̄ :⇐⇒ d ∈ Man(H,M).

This definition is only the trivial generalization from the smooth case to Cn

of the embedding of manifolds into the category of diffeological spaces (see, e.g.,
[6]).

The space M̄ is a Cn space with the same topology τ M̄ of the starting manifold
M . Moreover, the observables of M̄ are the most natural ones we could expect.
In fact, as a consequence of the Definition 30, it follows that

c ∈UK M̄ ⇐⇒ c ∈ Man(U,K). (16)
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Hence, it is clear that the space M̄ is separated, because from (16) we get that
charts are observables of the space. The following theorem says that the applica-
tion M 7→ M̄ from Man to Cn is a full embedding. Therefore, it also states that
the notion of Cn-space is a nontrivial generalization of the notion of manifold
which includes infinite-dimensional spaces too.

Theorem 31. Let M and N be Cn manifolds, then

1. M̄ = N̄ =⇒ M = N ;

2. Cn ² M̄
f−−−→ N̄ ⇐⇒ Man ² M

f−−−→ N .

Hence Man is fully embedded in Cn.

P r o o f. 1) If (U,ϕ) is a chart on M and A := ϕ(U), then ϕ−1|A : A −→ M
is a figure of M̄ , that is ϕ−1|A ∈A M̄ = N̄ . But, if ψ : U −→ ψ(U) ⊆ Rk is a
chart of N , then it is also an observable of N̄ . We have hence obtained a figure
ϕ−1|A ∈A N̄ and an observable ψ ∈Uψ(U) N̄ of the space N̄ . But composition of
figures and observables gives ordinary Cn maps, that is the atlases of M and N
are compatible.
2) For the implication ⇒ we use the same ideas as above and furthermore that
ϕ−1|A ∈A M̄ implies ϕ−1|A · f ∈A N̄ . Finally we can compose this A-figure of N̄
with a chart (observable) of N obtaining an ordinary Cn map. The implication
⇐ follows directly from the Definition 30.

Directly from these definitions we can prove that for two manifolds we also
have

M ×N = M̄ × N̄ .

This property is useful to prove the properties stated in the following examples.

10. Examples of Cn Spaces and Functions

1. Let M be a C∞ manifold modelled on convenient vector spaces (see Sect. 4).
We can define M̄ analogously as above, saying that d ∈H M̄ iff d : H −→ M
is a smooth map from H (open in some Rh) to the manifold M . In this
way, smooth curves on M are exactly the figures c ∈R M̄ of type R in M̄ .
On M we obviously think of the natural topology, that is the identification
topology with respect to some smooth atlas, which is also the final topology
with respect to all smooth curves and hence is also the final topology τ M̄

with respect to all figures of M̄ . More easily, with respect to the previous
case of finite dimensional manifolds (due to the results available for man-
ifolds modelled on convenient vector spaces, see Sect. 4), it is possible to
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study observables, obtaining that c ∈UK M̄ if and only if c : U −→ K is
smooth as a map between manifolds modelled on convenient vector spaces.
Moreover if (U,ϕ) is a chart of M on the convenient vector space E, then
ϕ : (U ≺ M̄) −→ (ϕ(U) ≺ Ē) is C∞. Using these results it is easy to prove
the analogous of Theorem 31 for the category of manifolds modelled on
convenient vector spaces. Hence also classical smooth manifolds modelled
on Banach spaces are embedded in C∞.

2. It is not difficult to prove that the following applications, frequently used
e.g., in calculus of variations, are smooth, that is they are arrows of C∞.

(a) The operator of derivation:

∂i : u ∈ C∞(Rn,Rk) 7−→ ∂u

∂xi
∈ C∞(Rn,Rk).

To prove that this operator is smooth, i.e., it is an arrow of the category
C∞, we have to show that it takes figures of type H ∈ ORinfty on its
domain to figures of the same type on the codomain. Figures of type
H of the space C∞(Rn,Rk) are maps of type d : H −→ C∞(Rn,Rk),
so that we have to consider the composition d · ∂i. Using cartesian
closedness we get that d∨ : H×Rn −→ Rk is an ordinary smooth map.
But, always due to cartesian closedness, the composition d ·∂i : H −→
C∞(Rn,Rk) is a figure if and only if its adjoint (d · ∂i)

∨ : H×Rn −→ Rk

is an ordinary smooth map, and by a direct calculation we get that
(d · ∂i)

∨ = ∂u+id
∨, where u ∈ N is the dimension of H ⊆ Ru. In fact

(d · ∂i)
∨ (h, r) = ∂i(d(h))(r) =

∂d(h)
∂xi

(r)

= limδ→0
d(h)(r + δ~ei)− d(h)(r)

δ

= limδ→0
d∨(h, r + δ~ei)− d∨(h, r)

δ
= ∂u+id

∨(h, r),

where ~ei = (0, i−1. . . . . . , 0, 1, 0, . . . , 0) ∈ Rn. This equality proves that
d · ∂i is a figure and hence that the operator ∂i is smooth.

(b) We can proceed in an analogous way (but here we have to use the
derivation under the integral sign) to prove that the integral operator

i : C∞(R2,R) −→ C∞(R,R),

u 7−→
b∫

a

u(−, s) ds

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3 261



Paolo Giordano

is smooth.

3. Because of cartesian closedness, the set-theoretical operations like the fol-
lowing ones are always Cn arrows (see, e.g., [26]):

• composition:
(f, g) ∈ BA × CB 7→ g ◦ f ∈ CA;

• evaluation:
(f, x) ∈ Y X ×X 7→ f(x) ∈ Y ;

• insertion:
x ∈ X 7→ (x,−) ∈ (X × Y )Y .

4. Using the smoothness of the previous set-theoretical operations and the
smoothness of the derivation and integral operators, we can easily prove
that the classical operator of the calculus of variations is smooth

I(u)(t) :=

b∫

a

F [u(t, s), ∂2u(t, s), s] ds,

I : C∞(R2,Rk) −→ C∞(R,R),

where the function F : Rk × Rk × R −→ R is smooth.

5. Inversion between smooth manifolds modelled on Banach spaces

(−)−1 : f ∈ Diff(N, M) 7→ f−1 ∈ Diff(M,N)

is a smooth mapping, where Diff(M, N) is the subspace of C∞(M̄, N̄) given
by the diffeomorphisms between M and N .
So (Diff(M, M), ◦) is a (generalized) Lie group. To prove that (−)−1 is
smooth let us consider a figure d ∈U Diff(N, M), then, using cartesian
closedness, the map f := (d · i)∨ : U ×N −→ M , where i : Diff(N, M) ↪→
MN is the inclusion, is an ordinary smooth function between Banach man-
ifolds. We have to prove that g := [d · (−)−1 · j]∨ : U ×M −→ N is smooth,
where j : Diff(M, N) ↪→ NM is the inclusion. But f [u, g(u,m)] = m and
D2f(u, n) = D[d(u)](n), hence the conclusion follows from the implicit
function theorem because d(u) ∈ Diff(N, M).

6. Since the category Cn is complete, we can also have Cn spaces with singular
points like, e.g., the equalizer {x ∈ X | f(x) = g(x)}. In this way, any
algebraic curve is a C∞ separated space too.
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7. Another type of space with singular points is the following. Let ϕ ∈
Cn(Rk,Rm) and consider the subspace ([0, 1]k ≺ Rk), then (ϕ([0, 1]k) ≺
Rm) ∈ Cn is a deformation in Rm of the hypercube [0, 1]k.

8. Let C be a continuum body, I the interval for time, and E the 3-dimen-
sional Euclidean space. We can define on C a natural structure of smooth
diffeological space. In fact, for any point p ∈ C let pr(t) ∈ E be the position
of p at time t in the frame of reference r; we define figures of type U on C
(U ∈ ORn) the functions d : U −→ C for which the following application

d̃ : U × I −→ E ,

(u, t) 7−→ d(u)r(t)

is smooth. For example, if U = R, then we can think of d : R −→ C as
a curve traced on the body and parametrized by u ∈ R. Hence we are
requiring that the position d(u)r(t) of the particle d(u) ∈ C in the frame of
reference r varies smoothly with the parameter u and the time t. This is a
generalization of the continuity of motion of any point of the body (take d
constant). This smooth (that is diffeological) space will be separated, as an
object of C∞, if different points of the body cannot have the same motion:

pr(−) = qr(−) =⇒ p = q ∀p, q ∈ C.

The configuration space of C can be viewed (see [85]) as a space of type

M :=
∑

t∈I

Mt where Mt ⊆ EC

and so, for the categorical properties of C∞ the spaces EC , Mt (no matter
how we choose these subspaces Mt) and M are always objects of C∞ as
well. With this structure the motion of C in the frame r:

µr : C × I −→ E ,

(p, t) 7−→ pr(t)

is a smooth map. Note that to obtain these results we need neither Mt

nor C to be manifolds, but only the possibility to associate to any point
p of C a motion pr(−) : I −→ E . If we had the possibility to develop a
differential geometry for these spaces too, we would have the possibility
to obtain many results of continuum mechanics for bodies which cannot
be naturally represented using a manifold or having an infinite-dimensional
configuration space. Moreover, in the next section we will see how to extend
any diffeological space with infinitesimal points, so that we can also consider
infinitesimal sub-bodies of C.
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11. The Ring of Fermat Reals

Surprisingly, it is quite simple to define an extension of the real field R contain-
ing nilpotent infinitesimals and having properties similar to those of SDG. Due to
its simplicity, this construction does not need any background in mathematical
logic. For the proof of these sections, see [34, 52, 86].

We need firstly the following class of functions

Definition 32. We say that x is a little-oh polynomial, and we write x ∈ Ro[t]
iff

1. x : R≥0 −→ R;

2. We can write

x(t) = r +
k∑

i=1

αi · tai + o(t) as t → 0+

for suitable
k ∈ N

r, α1, . . . , αk ∈ R
a1, . . . , ak ∈ R≥0.

Hence, a little-oh polynomial? x ∈ Ro[t] is a polynomial function with real
coefficients, in the real variable t ≥ 0, with generic positive powers of t, and up
to a little-oh function as t → 0+.

Remark 33. Sometimes, but not always, we will use a notation like ht := h(t)
for real functions of the real variable t. This permits to decrease the number of
parenthesis used in formulas and to leave the classical notation f(x) for functions
of the form f : •R −→ •R. Moreover, we will use a slight modification of Landau’s
little-oh notation: writing xt = yt + o(t) as t → 0+ we will always mean

limt→0+
xt − yt

t
= 0 and x0 = y0.

In other words, every little-oh function we will consider is continuous as t → 0+.

We can now define:

Definition 34. Let x, y ∈ Ro[t], then we say that x ∼ y or that x = y in
•R iff x(t) = y(t) + o(t) as t → 0+. Because it is easy to prove that ∼ is an
equivalence relation, we can define the quotient set •R := Ro[t]/ ∼.

?Actually in the following notation the variable t is mute.
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The equivalence relation ∼ is a congruence with respect to pointwise opera-
tions, hence •R is a commutative ring, called ring of Fermat reals. Where it will
be useful to simplify notations, we will write “x = y in •R” instead of x ∼ y,
and we will talk directly about the elements of Ro[t] instead of their equivalence
classes. For example, we can say that x = y in •R and z = w in •R imply
x + z = y + w in •R. The immersion of R in •R is r 7−→ r̂ defined by r̂(t) := r,
and in the sequel we will always identify R̂ with R, which is hence a subring of
•R. Conversely, the map ◦(−) : x ∈ •R 7→ ◦x = x(0) ∈ R, which evaluates each
Fermat real in 0, is well-defined. We will call ◦(−) the standard part map. In the
following, we will also use the notation dta := [t ∈ R≥0 7→ t1/a ∈ R]∼ ∈ •R so
that e.g. dt2 =

[
t1/2

]
∼ is a second order infinitesimal. In general, as we will see

from the definition of order of a generic infinitesimal, dta is an infinitesimal of
order a. Let us note that dta · dtb = dt ab

a+b
, moreover dtαa := ( dta)α = dt a

α
for

every α ≥ 1, and finally dta = 0 for every a < 1. For example, dt
[a]+1
a = 0 for

every a ∈ R>0, where [a] ∈ N is the integer part of a, i.e. [a] ≤ a < [a] + 1.
With the following theorem, we will introduce the decomposition of a Fermat

real x ∈ •R, that is a unique notation for its standard part and all its infinitesimal
parts.

Theorem 35. If x ∈ •R, then there exists one and only one sequence

(k, r, α1, . . . , αk, a1, . . . , ak)

such that
k ∈ N

r, α1, . . . , αk, a1, . . . , ak ∈ R
and

1. x = r +
k∑

i=1
αi · dtai in •R;

2. 0 > a1 > a2 > · · · > ak ≥ 1;

3. αi 6= 0 ∀i = 1, . . . , k.

On the basis of this theorem, we introduce the following notation

Definition 36. If x ∈ •R, on the basis of Theorem 35, we will use the nota-
tions ◦xi = αi and we will say that

x = ◦x +
k∑

i=1

◦xi · dtai is the decomposition (of x). (17)
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Finally, if k ≥ 1, that is if x ∈ •R\R, we set ω(x) := a1 and ωi(x) := ai. The real
number ω(x) = a1 is the greatest order in the decomposition (17) and is called
the order of the Fermat real x ∈ •R. The number ωi(x) = ai is called the ith
order of x. If x ∈ R, we set ω(x) := 0.

11.1. The ideals Dk

In this section, we will introduce the sets of nilpotent infinitesimals correspond-
ing to a kth order neighborhood of 0. Every smooth function restricted to this
neighborhood becomes a polynomial of order k, obviously given by its kth order
Taylor’s formula (without remainder). We start with a theorem characterizing
infinitesimals of order less than k.

Theorem 37. If x ∈ •R and k ∈ N>1, then xk = 0 in •R if and only if ◦x = 0
and ω(x) < k.

Definition 38. If a ∈ R≥0 ∪ {∞}, then

Da := {x ∈ •R | ◦x = 0, ω(x) < a + 1} .

Moreover, we will simply denote D1 by D.

1. If x = dt3, then ω(x) = 3 and x ∈ D3. More in general, dtk ∈ Da if and
only if ω( dtk) = k < a + 1. For example, dtk ∈ D if and only if 1 ≤ k < 2.

2. D∞ =
⋃

a Da = {x ∈ •R | ◦x = 0} is the set of all the infinitesimals of •R.

3. D0 = {0} because the only infinitesimal having order strictly less than 1 is,
by definition of order, x = 0.

The following theorem gathers several expected properties of the sets Da and
of the order of an infinitesimal ω(x). In this statement, if r ∈ R, then dre is the
ceiling of the real r, i.e., the unique integer dre ∈ Z such that dre − 1 < r ≤ dre.

Theorem 39. Let a, b ∈ R>0 and x, y ∈ D∞, then

1. a ≤ b =⇒ Da ⊆ Db,

2. x ∈ Dω(x),

3. a ∈ N =⇒ Da = {x ∈ •R |xa+1 = 0},
4. x ∈ Da =⇒ xdae+1 = 0,

5. x ∈ D∞ \ {0} and k = [ω(x)] =⇒ x ∈ Dk \Dk−1,
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6. x · y 6= 0 =⇒ 1
ω(x · y)

=
1

ω(x)
+

1
ω(y)

,

7. x + y 6= 0 =⇒ ω(x + y) = max (ω(x), ω(y)),

8. Da is an ideal.

Because of properties 6 and 7 of the previous theorem, we have that v(x) :=
1

ω(x) if x ∈ •R6=0 and v(0) := +∞ is a valuation on the ring •R, i.e., it is a function
v : •R −→ R ∪ {+∞} such that v(0) = +∞, v(x) ∈ R for x 6= 0, and such that
v(x · y) = v(x) + v(y) and v(x + y) ≥ min (v(x), v(y)) (in our case the equality
holds). This permits to mention here some analogies between the A. Robinson’s
valuation field ρR (also called the field of asymptotic numbers, see [87, 88]) and
our ring of Fermat reals.

11.2. Invertible Fermat reals

We can see more formally that to prove an equality of the form

f(x + h) = f(x) + h · f ′(x) ∀h ∈ D (18)

(analogous of the Kock–Lawvere axiom (10)), we cannot embed the reals R into
a field but only into a ring, necessarily containing nilpotent element. In fact,
applying (18) to the function f(h) = h2 for h ∈ D, where D ⊆ •R is a given
subset of •R, we have

f(h) = h2 = f(0) + h · f ′(0) = 0 ∀h ∈ D,

where we have supposed the preservation of the equality f ′(0) = 0 from R to •R.
In other words, if D and f(h) = h2 verify (18), then necessarily each element
h ∈ D must be a new type of number whose square is zero. Of course, in a field
the only subset D verifying this property is D = {0}.

Because we cannot have property (18) and a field at the same time, we need
a sufficiently good family of cancellation laws as substitutes. The simplest one of
them is the following:

Theorem 40. If x ∈ •R is a Fermat real and r, s ∈ R are standard real
numbers, then

(x · r = x · s in •R and x 6= 0) =⇒ r = s.

As a consequence of this result, we can always cancel a nonzero Fermat real
in an equality of the form x · r = x · s where r, s are standard reals. This is
obviously tied with the univocal identification of the first derivative in (18) and
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implies that formula (18) uniquely identifies the first derivative in case it is a
standard real number. For a partial reduction of this limitation using the notion
of equality =k up to kth order infinitesimals, i.e.,

x =k y ⇐⇒ ◦x = ◦y and ω(x− y) ≤ k,

see [34].
The last result of this section takes its ideas from the similar situations of

formal power series and gives also a formula to compute the inverse of an invertible
Fermat real.

Theorem 41. Let x = ◦x +
∑n

i=1
◦xi · dtai be the decomposition of a Fermat

real x ∈ •R. Then x is invertible if and only if ◦x 6= 0, and in this case

1
x

=
1
◦x
·

+∞∑

j=0

(−1)j ·
(

n∑

i=1

◦xi

◦x
· dtai

)j

. (19)

In the formula (19) we have to note that the series is actually a finite sum
because any dtai is nilpotent. For example, (1+ dt2)−1 = 1− dt2+ dt22− dt32+· · · =
1− dt2 + dt because dt32 = 0.

11.3. The derivation formula

In this section we want to give a proof of (18), called derivation formula in the
context of Fermat reals. Anyhow, before considering the proof of the derivation
formula, we have to extend a given smooth function f : R −→ R to a certain
function •f : •R −→ •R.

Definition 42. If U is an open subset of Rn, then •U := {x ∈ •Rn | ◦x ∈ U}.
Here, with the symbol •Rn we mean •Rn := •R× n. . . . . . ×•R.

Definition 43. Let A be an open subset of Rn, f : A −→ R a smooth function
and x ∈ •A, then we define

•f(x) := f ◦ x in •R.

In other words, using the notation [x]∼ ∈ •R for the equivalence class generated
by x ∈ Ro[t] modulo the relation ∼ defined in Definition 34, we can write the
previous definition as •f([x]∼) := [f ◦ x]∼.
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This definition is correct because it is easy to prove that little-oh polynomials
are preserved by smooth functions, and because the function f is locally Lipschitz,
so ∣∣∣∣

f(xt)− f(yt)
t

∣∣∣∣ ≤ K ·
∣∣∣∣
xt − yt

t

∣∣∣∣ ∀t ∈ (−δ, δ)

for a sufficiently small δ and some constant K, and hence if x = y in •R, then
also •f(x) = •f(y) in •R.

The function •f is an extension of f , that is

•f(r) = f(r) in •R ∀r ∈ R,

as it follows directly from the definition of equality in •R (i.e. Definition 34), thus
we can still use the symbol f(x) both for x ∈ •R and x ∈ R without confusion.

Theorem 44. Let A be an open set in R, x ∈ A and f : A −→ R a smooth
function, then

∃!m ∈ R ∀h ∈ D : f(x + h) = f(x) + h ·m. (20)

In this case we have m = f ′(x), where f ′(x) is the usual derivative of f at x.

P r o o f. Uniqueness follows from the previous cancellation law Theorem 40,
indeed, if m1 ∈ R and m2 ∈ R both verify (20), then h ·m1 = h ·m2 for every
h ∈ D. But there exists a nonzero first order infinitesimal, e.g., dt ∈ D, so it
follows from Theorem 40 that m1 = m2.

To prove the existence part, take h ∈ D, so that h2 = 0 in •R, i.e., h2
t = o(t)

for t → 0+. But f is smooth, hence from its second order Taylor’s formula we
have

f(x + ht) = f(x) + ht · f ′(x) +
h2

t

2
· f ′′(x) + o(h2

t ).

But
o(h2

t )
t

=
o(h2

t )
h2

t

· h2
t

t
→ 0 for t → 0+,

so
h2

t

2
· f ′′(x) + o(h2

t ) = o1(t) for t → 0+,

and we can write

f(x + ht) = f(x) + ht · f ′(x) + o1(t) for t → 0+

that is
f(x + h) = f(x) + h · f ′(x) in •R

and this proves the existence part because f ′(x) ∈ R.

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3 269



Paolo Giordano

For example, eh = 1 + h, sin(h) = h and cos(h) = 1 for every h ∈ D.
Analogously, we can prove the following infinitesimal Taylor’s formula.

Lemma 45. Let A be an open set in Rd, x ∈ A, n ∈ N>0 and f : A −→ R a
smooth function, then

∀h ∈ Dd
n : f(x + h) =

∑

j∈Nd

|j|≤n

hj

j!
· ∂|j|f

∂xj
(x).

For example, sin(h) = h− h3

6 if h ∈ D3 so that h4 = 0. Note that m = f ′(x) ∈
R, i.e., the slope is a standard real number, and that we can use the previous
formula with standard real numbers x only, and not with a generic x ∈ •R, but
it is possible to remove these limitations (see, e.g., [34]).

In other words, we can say that the derivation formula (20) allows us to
differentiate the usual differentiable functions using a language with infinitesimal
numbers and to obtain from this an ordinary function.

If we apply this theorem to the smooth function p(r) :=
∫ x+r
x f(t) dt for f

smooth, then we immediately obtain the following

Corollary 46. Let A be open in R, x ∈ A and f : A −→ R smooth. Then

∀h ∈ D :

x+h∫

x

f(t) dt = h · f(x).

Moreover, f(x) ∈ R is uniquely determined by this equality.

11.4. Order relation

From the previous sections one can draw the conclusion that the ring of Fermat
reals •R is essentially “the little-oh” calculus. But, on the other hand the Fermat
reals give us more flexibility than this calculus: working with •R we do not have to
bother ourselves with remainders made of “little-oh”, but we can neglect them and
use the useful algebraic calculus with nilpotent infinitesimals. Anyway, thinking
the elements of •R as new numbers, and not simply as “little-oh functions”,
permits to treat them in a different and new way, for example, to define on them
an order relation with a clear geometrical interpretation.

First of all, let us introduce the useful notation

∀0t ≥ 0 : P(t),
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and we will read the quantifier ∀0t ≥ 0 saying “for every t ≥ 0 (sufficiently)
small” to indicate that the property P(t) is true for all t in some right? neigh-
borhood of t = 0, i.e.

∃ δ > 0 ∀t ∈ [0, δ) : P(t).

The first heuristic idea to define an order relation is the following:

x ≤ y ⇐⇒ x− y ≤ 0 ⇐⇒ ∃z : z = 0 in •R and x− y ≤ z.

More precisely, if x, y ∈ •R are two little-oh polynomials, we want to ask
locally that?? xt is less than or equal to yt, but up to a o(t) for t → 0+, where
the little-oh function o(t) depends on x and y. Formally:

Definition 47. Let x, y ∈ •R, then we say

x ≤ y

iff we can find z ∈ •R such that z = 0 in •R and

∀0t ≥ 0 : xt ≤ yt + zt.

Recall that z = 0 in •R is equivalent to zt = o(t) for t → 0+. It is immediate
to see that we can equivalently define x ≤ y if and only if we can find x′ = x and
y′ = y in •R such that xt ≤ yt for every t sufficiently small. From this it also
follows that the relation ≤ is well-defined on •R, i.e. if x′ = x and y′ = y in •R
and x ≤ y, then x′ ≤ y′. As usual, we will use the notation x < y for x ≤ y and
x 6= y.

Theorem 48. The relation ≤ is an order, i.e., is reflexive, transitive and anti-
symmetric; it extends the order relation of R and with it (•R,≤) is an ordered
ring. Finally the following sentences are equivalent:

1. h ∈ D∞, i.e., h is an infinitesimal;

2. ∀r ∈ R>0 : −r < h < r.

?We recall that by Definition 32 our little-oh polynomials are always defined on R≥0.
??We recall that, to simplify the notations, we do not use equivalence classes as elements of

•R but directly little-oh functions. The only notion of equality between little-oh functions is,
of course, the equivalence relation defined in Definition 34 and, as usual, we must always prove
that our relations between little-oh polynomials are well-defined.
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11.5. Geometrical representation of Fermat reals

One of the conducting idea in the construction of Fermat reals is to maintain
always a clear intuitive meaning. More precisely, we always tried to keep a good
dialectic between provable formal properties and their intuitive meaning. In this
direction we can see the possibility to find a geometrical representation of Fermat
reals.

The idea is that to any Fermat real x ∈ •R we can associate the function

t ∈ R≥0 7→ ◦x +
N∑

i=1

◦xi · t1/ωi(x) ∈ R, (21)

where N is, of course, the number of addends in the decomposition of x. There-
fore, a geometric representation of this function is also a geometric representation
of the number x, because different Fermat reals have different decompositions,
see Theorem 35. Finally, we can guess that, because the notion of equality in •R
depends only on the germ generated by each little-oh polynomial (see Definition
34), we can represent each x ∈ •R with only the first small part of the function
(21).

Definition 49. If x ∈ •R and δ ∈ R>0, then

graphδ(x) :=

{
(◦x +

N∑

i=1

◦xi · t1/ωi(x), t) | 0 ≤ t < δ

}
,

where N is the number of addends in the decomposition of x.

Note that the values of the function are placed in the abscissa position. This
inversion of abscissa and ordinate in the graphδ(x) permits to represent this
graph as a line tangent to the classical straight line R and hence to have a better
graphical picture (see, e.g., the following figure). Finally, note that if x ∈ R is a
standard real, then N = 0 and the graphδ(x) is a vertical line passing through
◦x = x.

The following theorem permits to represent geometrically the Fermat reals

Theorem 50. If δ ∈ R>0, then the function

x ∈ •R 7→ graphδ(x) ⊂ R2

is injective. Moreover, if x, y ∈ •R, then we can find δ ∈ R>0 (depending on x
and y) such that x < y if and only if

∀p, q, t : (p, t) ∈ graphδ(x), (q, t) ∈ graphδ(y) =⇒ p < q. (22)
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We have seen how a simple extension •R of the real field, having the properties
similar to those of SDG, is possible. In the next section, we will see how to extend
this construction R 7→ •R to every diffeological space. Finally, using our cartesian
closure, we will insert all our extended spaces •X, for X ∈ C∞, in a cartesian
closed category.

Fig. 1. Different cases in which xi < yi.

12. Extending Smooth Spaces with Infinitesimals

The main aim of this section is to extend any C∞ space (i.e., any diffeological
space) and any C∞ function by means of our “infinitesimally close points”. First
of all, we will extend to a generic space X ∈ C∞ the notion of little-oh polynomial.
The set of these paths will be denoted by Xo[t]. Afterward, we shall use the
observables ϕ of the space X to generalize the equivalence relation ∼ (i.e., the
equality in •R, see Definition 34) using the following idea:

ϕ(xt) = ϕ(yt) + o(t) with ϕ ∈UK X.

Using this equivalence relation, we will define •X := Xo[t]/ ∼, which will be the
generalization of the Definition •R := Ro[t]/ ∼. Following this idea, the main
problem is to understand how to relate the little-oh polynomials x, y with the
domain U of ϕ. The second problem is that with this definition, •X is a set only,
without any kind of structure. Indeed, using the cartesian closure, we will tackle
the problem to define a meaningful category •C∞ and a suitable structure on •X
so that •X ∈ •C∞.

12.1. Little-oh polynomials in C∞

At first, we will define a little-oh polynomial in the space Rd, and secondly, we
will generalize this notion to a generic space X ∈ C∞ using observables.

Definition 51. We say that x is a little-oh polynomial in Rd, and we write
x ∈ Rd

o[t] iff

1. x : R≥0 −→ Rd.
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2. We can write

xt = r +
k∑

i=1

αi · tai + o(t) as t → 0+

for suitable
k ∈ N

r, α1, . . . , αk ∈ Rd

a1, . . . , ak ∈ R≥0.

Now let X ∈ C∞ and let C0(X) be the set of all the maps x : R≥0 −→ X which are
continuous at the origin t = 0 (recall that any diffeological space is a topological
space, see Definition 21), then we say that x ∈ C0(X) is a little-oh polynomial
(of X) iff for every zone UK of X, with K ⊆ Rk, and every observable ϕ ∈UK X
we have

x0 ∈ U =⇒ ϕ ◦ x ∈ Rk
o[t].

Moreover,

Xo[t] := Xo := {x ∈ C0(X) |x is a little-oh polynomial of X} .

Let us note that for d = 1 we have exactly the old Definition 32. A direct
verification proves that being a little-oh polynomial is a local property. Moreover,
we will prove later that the two parts of this definition (i.e. that of Xo[t] and
that of Rd

o[t]) are equivalent if X = Rd.
Because every f ∈ C∞(X,Y ) preserves the observables, we have that C∞

functions preserve little-oh polynomials too,

x ∈ Xo[t] =⇒ f ◦ x ∈ Yo[t].

Theorem 52. If M is a C∞ manifold and x : R≥0 −→ |M | is a map, then we
have that x ∈ M̄o[t] if and only if there exists a chart (U,ϕ) of M such that:

1. x(0) ∈ U

2. ϕ ◦ x ∈ Rd
o[t], where d := dim(M).

12.2. The Fermat extension of spaces and functions

Considering the previous definition of little-oh paths and the Definition 28, it
is now clear how to generalize the definition of equality in •R (see Definition 34)
to a generic X ∈ C∞:
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Definition 53. Let X be a C∞ space and let x, y ∈ Xo[t] be two little-oh
polynomials, then we say that

x ∼ y in X or simply x = y in •X

iff for every zone UK of X and every observable ϕ ∈UK X we have

1. x0 ∈ U ⇐⇒ y0 ∈ U ;

2. x0 ∈ U =⇒ ϕ(xt) = ϕ(yt) + o(t).

Obviously we will write •X := Xo[t]/∼ and •f(x) := f◦x if f ∈ C∞(X,Y ) and
x ∈ •X and we will call them the Fermat extension of X and of f , respectively.
As usual, we will also define the standard part of x ∈ •X as ◦x := x(0) ∈ X.

The correctness of the definition of •f is stated in the following:

Theorem 54. If f ∈ C∞(X, Y ) and x = y in •X then •f(x) = •f(y) in •Y .

Using the continuity of ϕ◦x we can note that x = y in •X implies that x0 and
y0 are identified in X (see Definition 28) and thus using constant maps x̂(t) := x,
for x ∈ X, we obtain an injection ˆ(−) : |X| −→ •X if the space X is separated.
Therefore, if Y is separated too, •f is really an extension of f . Finally, note that
the application •(−) preserves compositions and identities.

Moreover, it is not hard to prove that if X = M is a C∞ manifold then we
have that x = y in •M iff there exists a chart (U,ϕ) of M such that

1. x0, y0 ∈ U

2. ϕ(xt) = ϕ(yt) + o(t).

Moreover, the previous conditions do not depend on the chart (U,ϕ). In partic-
ular, if X = U is an open set in Rk, then x = y in •U is simply equivalent to the
limit relation x(t) = y(t) + o(t) as t → 0+; hence, if i : U ↪→ Rk is the inclusion
map, it is easy to prove that its Fermat extension •i : •U −→ •Rk is injective.
We will always identify •U with •i(•U), so we simply write •U ⊆ •Rk. According
to this identification, if U is open in Rk, we can also prove that

•U = {x ∈ •Rk | ◦x ∈ U}. (23)

This property says that the preliminary definition of •U given in Definition 42
is equivalent to the previous, more general, Definition 53 of extension. Using
the previous equivalent way to express the relation ∼ on manifolds, we see that
(x, y) = (x′, y′) in •(M × N) iff x = x′ in •M and y = y′ in •N . From this
conclusion we can prove that the following applications:

αMN := α : ([x]∼, [y]∼) ∈ •M × •N 7−→ [(x, y)]∼ ∈ •(M ×N), (24)
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βMN := β : [z]∼ ∈ •(M ×N) 7−→ ([z · pM ]∼, [z · pN ]∼) ∈ •M × •N (25)

(for clarity we have used the notation with the equivalence classes) are well-
defined bijections with α−1 = β (obviously pM , pN are the projections). We will
use the first one of them in the following section with the temporary notation
〈p, x〉 := α(p, x), hence f〈p, x〉 = f(α(p, x)) for f : •(M × N) −→ Y . This
simplifies our notations but permits to avoid the identification of •M × •N with
•(M×N) until we will have proved that α and β are arrows of the category •C∞.

12.3. The category of Fermat spaces

Up to now, every •X is a simple set only. Now we want to use the general
passage from a category of types of figures F to its cartesian closure F̄ so as to
put on any •X a useful structure of F̄ space. Our aim is to obtain a new cartesian
closed category F̄ =: •C∞, called the category of Fermat spaces, and a functor
•(−) : C∞ −→ •C∞, called the Fermat functor. Therefore, we have to choose F ,
that is, we have to understand what types of figures of •X we need. It may seem
very natural to take •g : •U −→ •V as arrow in F if g : U −→ V is in OR∞ (in
[89] we followed this way). The first problem in this idea is that, e.g.,

•R
•f−−−−→ •R =⇒ •f(0) = f(0) ∈ R,

hence there cannot exist a constant function of the type •f to a nonstandard
value, and so we cannot satisfy the closure of F with respect to generic constant
functions (see the hypotheses about the types of figures F in Sect. 7.1). But we
can make further considerations about this problem so as to motivate better the
choice of F . The first one is that we surely want to have the possibility to lift
maps? as simple as the sum between Fermat reals:

s : (p, q) ∈ •R× •R −→ p + q ∈ •R.

Therefore, we have to choose F so that the map s∧(p) : q ∈ •R −→ p + q ∈ •R
is an arrow of •C∞. Note that this map is neither constant nor of the type •f
because s∧(p)(0) = p and p could be a non standard Fermat real.

The second consideration is about the map α defined in (24): if we want α
to be an arrow of •C∞, then in the following situation we have to obtain a •C∞
arrow

•R× •R p×1•R−−−−−−→ •R× •R α−−−→ •(R× R)
•g−−−−→ •R

(r, s) 7−→ (p, s) 7−→ 〈p, s〉 7−→ •g〈p, s〉,
?I.e. to consider their adjoint function using cartesian closedness.
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where p ∈ •R and g ∈ C∞(R2,R). The idea we shall follow is exactly to take
as arrows of F all the maps that locally are of the form δ(s) = •g〈p, s〉, where
p ∈ •(Rp) works as a parameter of •g〈−,−〉. Obviously, in this way δ could also
be a constant map to a nonstandard value (take as g a projection). Frequently
one can find maps of the form •g〈p,−〉 in informal calculations in physics or
geometry. Actually, they simply are C∞ maps with some fixed parameter p,
which could be an infinitesimal distance (e.g., in the potential of the electric
dipole), an infinitesimal coefficient associated to a metric, or a side l := s(a,−)
of an infinitesimal surface s : [a, b] × [c, d] −→ •R, where [a, b], [c, d] ⊆ Dk (see
[52] for several examples).

Note the importance of the map α to perform passages like the following:

M ×N
f−−−→ Y in C∞,

•(M ×N)
•f−−−−→ •Y in •C∞,

•M × •N
•f−−−−→ •Y in •C∞ (identification via α),

•N
•f∧−−−−−→ •Y

•M using cartesian closedness.

This motivates the choice of arrows in F , but there is a second problem about
the choice of the objects of the category F . Take a manifold M and an arrow
t : D −→ •M in •C∞. Even if we have not still defined formally the meaning of
this “arrow”, we want to think t as a tangent vector applied either to a standard
point t(0) ∈ M or to a nonstandard one, t(0) ∈ •M \M . Roughly speaking, this
is the case when we can write t(h) = •g〈p, h〉 for every h ∈ D and for some g,
p. If we want to obtain this equality, it is useful to have two properties: the first
one is that the identity map over D, i.e. 1D, is a figure of D, i.e. 1D ∈D D. In
this way, the property t : D −→ •M , being an arrow of •C∞, implies that t is a
figure of •M of the type D, i.e. t ∈D

•M . The second property we would like
to obtain is to have maps of the form •g〈p,−〉 : D −→ •M as figures of •M . Of
course, we can thus say that necessarily t = •g〈p,−〉 for some g ∈ C∞(Rp,R) and
p ∈ Rp. Therefore, to obtain these properties, it would be useful to have D as an
object of F . But D is not the extension of a standard subset of R, thus what will
be the objects of F? We will take generic subsets S of •(Rs) with the topology
τ S generated by U = •U ∩ S, for U open in Rs (in this case we will say that the
open set U is defined by U in S). In other words, A ∈ τ S if and only if

A =
⋃
{•U ∩ S ⊆ A |U is open in Rs} . (26)

These are the motivations to introduce the category of the types of figures F
by means of the following

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3 277



Paolo Giordano

Definition 55. We call S•R∞ the category whose objects are topological spaces
(S,τ S), with S ⊆ •(Rs) for some s ∈ N which depends on S, and with the previous
topology τ S. In the following we will frequently use the simplified notation S
instead of the complete (S,τ S).

If S ⊆ •(Rs) and T ⊆ •(Rt) then we say that

S
f−−−→ T in S•R∞

iff f maps S in T and for every s ∈ S we can write

f(x) = •g〈p, x〉 ∀x ∈ •V ∩ S (27)

for some

V open in Rs such that s ∈ •V
p ∈ •U, where U is open in Rp

g ∈ C∞(U × V,Rt).

Moreover we will consider on S•R∞ the forgetful functor given by the inclusion
| − | : S•R∞ ↪→ Set, i.e. |(S,τ S)| := S. The category S•R∞ will be called the
category of subsets of •R∞ (but note that here ∞ indicates the class of regularity
of the functions we are considering).

In other words, locally a C∞ function f : S −→ T between two types of figures
S ⊆ •(Rs) and T ⊆ •(Rt) is constructed in the following way:

1. Start with an ordinary standard function g ∈ C∞(U × V,Rt), with U open
in Rp and V open in Rs. The space Rp has to be thought as a space of
parameters for the function g;

2. Consider its Fermat extension obtaining •g : •(U × V ) −→ •(Rt);

3. Consider the composition •g ◦ 〈−,−〉 : •U × •V −→ •(Rt), where 〈−,−〉 is
the map α given by (24);

4. Fix a parameter p ∈ •U as a first variable of the previous composition,
i.e. consider •g〈p,−〉 : •V −→ •(Rt). Locally, the map f is of this form:
f = •g〈p,−〉;

5. Because in the Definition 55 we ask s ∈ •V we have that V := •V ∩ S is
a neighborhood of s defined by V in S (see (26)). Analogously, •U is a
neighborhood of the parameter p.

Theorem 56. S•R∞ is a category of types of figures.

On the basis of this theorem, we can define
•C∞ := S•R∞.

Each object of •C∞ will be called a Fermat space.

278 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 3



Infinite Dimensional Spaces and Cartesian Closedness

12.4. The Fermat functor

Now the problem is: what Fermat space could we associate to sets like •X or
D?

Definition 57. Let X ∈ C∞, then for any subset Z ⊆ •X we call •(ZX)
the extended space generated on Z (see Sect. 7.1.) by the following set of figures
d : T −→ Z (where T ⊆ •(Rt) is a type of figure in S•R∞)

d ∈ D0
T (Z) :⇐⇒ d is constant or we can write

d = •h|T for some h ∈V X such that T ⊆ •V .
(28)

Thus, in the non-trivial case, we start from a standard figure h ∈V X of type
V ∈ OR∞ such that •V ⊇ T ; we extend this figure obtaining •h : •V −→ •X,
and finally the restriction •h|T is a generating figure if it maps T in Z. This
choice is very natural, and the adding of the alternative “d is constant” in the
previous disjunction is due to the need to have all constant figures in a family of
generating figures.

Using this definition of •(ZX), we set (with some abuses of language)

•X := •(•XX),
D := •(DR),
•R := •(•RR),

•Rk := •(•(Rk)Rk),

Dk := •(DkRk).

We will call •(ZX) the Fermat space induced on Z by X ∈ C∞. We can now
study the extension functor:

Theorem 58. Let f ∈ C∞(X, Y ) and Z a subset of •X with •f(Z) ⊆ W ⊆ •Y ,
then in •C∞ we have that

•(ZX)
•f |Z−−−−−→ •(WY ).

Therefore •(−) : C∞ −→ •C∞ is a functor called the Fermat functor.

It is possible to prove that this functor has very good properties like the preser-
vation of product of manifolds •(M × N) ' •M × •N and the preservation of
intersections, unions, inclusions, counter-images of open sets, intuitionistic nega-
tions and quantifiers. Finally, this functor is also an embedding of the category
of smooth manifolds into the category •C∞ of Fermat spaces (see [34]).
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Vector Spaces may Embed into the Cahiers Topos. arXiv:0908.0843v2 [math.DG],
2009.
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21(4) (1980), 353–365.

[79] A. Kriegl and P.W. Michor, Product Preserving Functors of Infinite Dimensional
Manifolds. — Arch. Math. (Brno) 32 (1996), No. 4, 289–306.

[80] W. Bertram. Differential Geometry, Lie Groups and Symmetric Spaces over General
Base Fields and Rings. AMS, Providence, 2008.

[81] J. Gray, The meeting of the Midwest Category Seminar in Zürich 1970. In: Reports
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