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1. Statement of the Problem

In this paper we study the following problem. Let Q = (0,1) C R!, Qr =
Q% (0,7),

c(u 2u
86(25 ) _ ng =0 in Qp, (1.1)
u(0,t) = go(t) on [0,T7, (1.2)
u(l,t) =g(t) on 0,71, (1.3)
c(u(y,0)) = c(uo(y)) on [0,1]. (1.4)

Here c(n) is a continuous function that is strictly increasing for n > 0 and
c(n) =0forn <0, go(t), g(t), uo(y) are given functions, go(t) < 0 and g(¢) > 0
vVt € [0,T].
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Problem (1.1)—(1.4) arises in the theory of fluid flow through a partially sat-
urated porous media (see [4-8, 10, 11, 13] and the references therein). The level
set {u = 0} splits the domain Q7 in two regions in which equation (1.1) is re-
spectively parabolic and elliptic. It was shown in [11, 7] that under appropriate
conditions on the data there exists a function y = s(t) for which

u(y,t) <0, c(u(y,t))=0 for 0<y<s(t),

and

u(y,t) >0, cu(y,t)) >0 for s(t)<y<lL.

In this problem the function s(¢) is the free (unknown) boundary, and our
main concern is to describe the qualitative properties of s(¢). It was shown in
[4] that under the conditions ¢(n) € C(R) N C**BA(RY), ¢(+0) = 0, and s(t) < I
the function s(t) is continuously differentiable. Contrary to [4], we will study the
case when

=, n>0, ac(0,1),
0, n <0.

This situation leads to the additional singularity in the free boundary problem.
In the region where the medium is saturated, y € (0, s(t)), we have

go(t)
) = —— t). 1.6
ulyt) = =Sy ¥ T 9o®) (1.6)
Note that the value s(0) is defined by the initial function wug(y) and it is
assumed that there is the only point s(0) € (0,1) that separates the saturated
and unsaturated regions. In the unsaturated region, y € (s(t),[), the function

u(y, t) satisfies the equation

c(n) = (1.5)

ou u® 9%u

i 1.

ot 1—ady? 0, (1.7)
and since at y = s(t) we have u(s(t),t) = 0, equation (1.7) is a degenerate

parabolic equation.
On the free boundary we have the following conditions:

u(s(t) —0,t) = u(s(t) +0,t) =0, (1.8)
ou ou
8—y(s(t) —0,t) = a—y(s(t) +0,t). (1.9)
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We drop the unessential factor 1/(1—«) in equation (1.7) and get the following
free boundary problem for unknown functions u(y,t) and s(t):

g;b —uCuy, =0 in ye(s(t),]), te(0,T), (1.10)
u(y,0) =uo(y),  y € (s(0),0), (1.11)

u(l,t) = g(t), t €1[0,T], (1.12)

u(s(t),t) =0, te[0,T], (1.13)
gZ(s(t),t) _ —i"(g, t€0,7), (1.14)

s(0) = s € (0,1). (1.15)

The structure of the paper is as follows. In Sec. 2, we reduce the free bound-
ary problem to a problem in a fixed domain and formulate our main result,
Theorem 2.1. In Sec. 3, we reformulate the nonlinear free boundary problem
as a nonlinear equation in Banach spaces by using Theorem 3.1. In Sec. 4, we
formulate the results relating to the principal model problem for the degenerate
parabolic equation. In Sec. 5, we finish the proof of Theorem 2.1. In Sec. 6, we
study the properties of the model problem and derive the corresponding estimates
by using an integral representation of its solution.

Remark1.1. The similar approach can be used for a free boundary problem
in the case of the constitutive function of the form

)= {17 n20 ag(0),
0, n<0.

2. Reduction of the Free Boundary Problem (1.10)—(1.15) to a
Problem in a Fixed Domain and the Main Result

Let s(t) = so + p(t) and introduce a spatial variable

_y=so—p(t) _y—s()
T = =
l—s9—p(t) 1—s(t)
such that the segment [s(¢), ] is mapped onto [0, 1] and the free boundary y = s(t)

is mapped at z = 0. Denote v(z,t) = u(y(z,t),t). In the new variables we get
the following problem in the fixed domain Gpr = G x (0,7T), G = [0, 1]:

(2.1)

0’1) r—1 Ov dp Vg )

T e —omaed e o 2.2

8t+l—so—p(t)8a:dt v (1 —s0— p(t))? 0 in Gr, (2.2)
U(.Z‘,O) = UO(J)), T € [0, 1], (23)
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o(1,t) = g(t), te€0,T], (2.4)
(0, = 0, t€[0,T), (2.5)

ov B I — 59— p(t)
%H:o = —go(t)ma t €[0,77, (2.6)
p(0) = 0. (2.7)

We will use the anisotropic Holder spaces C%7(Gr) of smooth functions u(z, t)
with the norm

s 0
[ &7 = &)+ @), + @, By e (0,1),

z,Gr
where o
u = max |u :L‘7t ,
| |GT G | ( )|
u\xr ,t —ulx ’t
<u>f)GT = sup lu(z1,t) (ﬂg )|’
(w1,t),(z2,t)EGT |x1 — o]
(u)w = sup \u(z,t1) — u(z,ta)]
t,Gp B |t — ‘7 ,
(z,t1),(x,t2) EGp 1—t2
and the Holder space C'*7([0,7]) with the norm |u(t )“3?}0 = |u ’ES)T 4 |ut|Eg)T]

with ‘Ut|[0,T] = ‘Ut|[0,T] + (Ut>§,[()],T]- We will also use the standard Holder spaces

C7([0,77), 0 < v < 1, with the norm \u][o = ]u\ o7+ (u >(7[2) -

2+, Q/Q(G )

For our purposes the weighted Holder space Cj, is appropriate,

where 5 € (0,1), ¢ =2 — «, and

@+8) _ | (0) (=)
[ull zro.0ra i,y = Nullacy’ = lulay + el + (uz)yq,
_’_|x Umx|G’ﬁ/q _’_|u|ﬁﬁ/q

We define the space C2"7(G) in the similar way.

We denote by 277 / Y(Gr) the subspace of 8B/ Y(Gr) such that u(z,t) €
C§+ﬁ”8/q(§T) if u(z,0) = w(x,0) = 0 and similarly define the spaces CP(Gr)
for the functions such that u(z,0) = 0 and the space C7([0,T7).

In problem (2.2)-(2.7), we assume that

T v0me(z) € C2([0,1]), wo(x) € CL([0,1]), %(0) >y —const >0, (2.8)

gO(t)’g(t) € Cl+7/q([07Tl])7 Tl > 07 v > 25/(]

298 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4



Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem

and that the consistency conditions of the first order are fulfilled. It means that

dg 1

0) — ——v§(1)vgee (1) = 0.
8t( ) (l_SO)QvO( )UO ( )

Theorem 2.1. Let the conditions (2.8), (2.9) be fulfilled with ¢ = 2 — «,
0 < 28/q < v, a+2vy/q < 1. Then there exists a unique solution of prob-

lem (2.2)—(2.7) for some 0 < T < Ty such that v(z,t) € Cgfﬁ’ﬁ/q(@T), p(t) €
CHHO/a([0, 7).

This theorem asserts the existence and uniqueness of the classical solution to
the elliptic-parabolic degenerate problem locally in time.

The similar result is valid if we change the boundary conditions (1.2), (1.3)
for the Neumann or mixed boundary conditions.

3. The Nonlinear Functional Equation

Introduce the notations

d
1 = 1)y — 9V
P - dt(0)7 v (JZ‘) - at (.’E,O)
Then from (2.9)
1) _ _ (06 (%) 002z (2))|2=0 .
g (I — 50)u02(0) (3.1)
and from equation (2.2)
1-z Ua(x)UOxx(CU)
vii(e) = SOUOI(x)p s (3.2)

Now we construct a function w(z,t) such that w(z,t) € Cﬁ”’”/q(éﬂ, v >
26/q, w(zx,0) = vo(z), wi(z,0) = v (x), w(0,t) = 0. Consider a model problem

ou o%u

7 a7 ~(1) _as

o T oY () — 2%Voge(z), >0, t>0,
171|CL”=0 = UOx(O),

u(z,0) = vo(x),
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where 7(z) and ©(M)(z) are the finite extensions of vg(z) and v™M(z) on
x > 0. It follows from Theorem 4.1 below that there exists a unique solution of
this problem and the estimate of the form (4.20) is valid so that in particular

u(z,t) € Cg+7’7/q(éT). Moreover, u(x,0) = vg(z) and % (x,0) = v (z) on [0,1]
by the construction. Now we set

w(z,t) =u(z,t) —u(0,1).

Since (0,0) = vp(0) = 0 and %;(0,0) = v (0) = 0 (due to consistency condi-
tions), the function w(x,t) has the desired properties.
We denote also
ot) =pM ¢
so that o(0) = 0, 0:(0) = pM) = p.(0).
To reduce problem (2.2)—(2.7) to a problem in the spaces C2+BB/ (G7) and
C'6/4([0,T]) with zero initial data, we introduce the new unknown functions

u(z,t) =v(x,t) —w(z,t), ) =pt) —o(t) (3.3)

such that §(0) = 0, 6;(0) =0, u(x,0) =0, us(x,0) = 0.
We rewrite equation (2.2) in the form

0%v dp Ov

ov
L(p,v) = o an(P’U)@ + (11(0)5(% =Y, (3.4)
where N )
v x —
anlpv) = —2 )= —2 35
For the new unknown functions 6(¢) and u(x,t) we obtain the equation
L((t) 4+ o(t),u(x,t) + w(z,t)) = 0. (3.6)

Next we single out the main linear part from L(d+ o, u+w) with respect to (4, u)
so that equation (3.6) takes the form

ou d%u ow
5~ atlow)zs +ai(o)d o

0%u

= —L(o,w) — [a11(o,w) — a11(d + o, u + w)]w
82

—la11(o,w) — a11(0 + o, u + w)]a—g:g
0 0
@16 +0)6 +0r) —ar(0)or] 5 —ar(0)ors
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—[a1(6 + o) (0 + 01) — ar(o)or — al(a)ét]?:

= —L(o,w) + F(6,u) = Fy(d,u).

One can check that the function F'(d,u) contains either “quadratic” terms with
respect to (d,u) or minor terms in the sense of smoothness. For instance, the

term
2u
[a11 (0, w) — a11(6 + o, u + w)}%
_ [ w® B (u+w)® } %
(l—so—0c(t)? (I—so—o(t)—4(t))?] Ox?
w w 0%u
N [(l —so—o(t)? (I—s0—o(t) - 5(75))2} dx?

N w* — (u+w)®  Ou
(1 —s9—o(t) —d(t))? Ox?
consists of the terms ”quadratic” in (d,u), and in the expression

ow

[a1(8 +0)(8 + 01) — ar(0)or — a1 (0) 1] 5

dé 1 1 ow
:dt(z—so—a(t)—a(t) _l—so—a(t)> oz

Lo ! S ow
dt \l—so—o(t)—6(t) 1—so—o(t)) Ox
the first term is “quadratic” and the second one is minor. Note also that by the
construction of o(t), w(z,t) and (3.2)

L<Ua w) |t:0 =0.

Thus problem (2.2)-(2.7) is transformed to the nonlinear problem for the func-
tions u(x,t) and §(t)

ou d%u ow

i all(a,w)w + al(a)ét% = Fy(d,u) in Gp, (3.8)
w(z,0) =0, §(0)=0, zel01], (3.9)

u(0,t) =0, u(l,t)=g(t) —w(l,t), tel0,T], (3.10)
%(O,t) = F1(6(t)), te|0,T], (3.11)

where
l—so—o(t)—4d(t) Ow

so+ot)+6(t) Oz

Fl((s(t» = _QO(t) (0, t)? (3'12)
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and moreover,

First we study the linear problem

U 2U/ w
% — an(a,w)g 3 + al( )5,5% = fo(l‘,t) in Gp, (3.14)
u(xz,0) =0, §(0)=0, x¢€ [0, 1}, (3.15)
w(0,8) = 0, u(1,t) = (1), te0,T), (3.16)
gz(o,t) = fl(t), t e [O,T], (3.17)

where o(t) = g(t) — w(1,t), fo(z,t) and fi(t) correspond to the right hand sides
of (3.8) and (3.11) for some fixed u(z,t) and §(¢) from classes CEP: B/q(G ) and
C'8/4([0,T)), respectively. So we assume

. B+1—

folw,t) € CPO1A@r), Aty e CT o ([0,T]), o(t) € C*P9(0,T]). (3.18)

From (3.5) we have

) = o
1 w(z, )\ , N
T (I—s0— o(t))? < (:c t)> o = a(z, )2, (3.19)

where 1 < a(z,t) < p~t, u = const > 0, for small ¢ since o(0) = 0 and w(x, 1) is

the smooth function with w(0,t) = 0, w,(0,t) > v > 0. Similar arguments give

do(t)

Ow z—1  Ow (:c,t)d(;(f) = —b(a,t) (3.20)

al(a)ét%(x,t) T l—so— o(t) Oz
with b(z,t) > p >0 for x € [0,1/2], ¢t € [0,T].

Theorem 3.1. Under conditions (3.18) there exists a unique solution of prob-
lem (3.14)~(3.17) u(z,t) € CZPP1UGy), 5(t) € CHP/9([0,T)) for some T > 0
and

(2 , (Btl=a) 1
25 + 01337 < € (1570 + lat - +IoliE) . )

The proof of Theorem 3.1 uses the well-known procedure (see [12], Ch. 4):
i) partition of unity on G,
ii) investigation of model problems in R; or R,
iii) construction of a regularizator.
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In the next section we describe the main model problem related to problem
(3.14)—(3.17). We will not discuss problems i) and iii). For discussion of these
problems see, for example, [1-3].

Problem (3.8)—(3.12) has the form

A(u,0) = F(u,0), (3.22)
where A(u, 0) is the linear bounded operator, and F(u, ) is the nonlinear operator
F(u,0) = (Fo(0,u), F1(9), g(t) — w(1,t)). (3.23)

Theorem 3.1 means that the operator A has the bounded inverse operator A~
Hence, equation (3.22) can be written as

(u,9) = Ail]-"(u, 9),

and in Sec. 5 we will show that the operator A~1F is contractive.
4. The Model Problem

Consider the differential operator defined by the left hand side in (3.14) and
freeze the coefficients a(z,t) from (3.19) and b(x,t) from (3.20) at the point
(z,t) = (0,0). Let a(0,0) = ag, b(0,0) = by, RT = {z >0}, R} = RT x [0,T].

We are looking for a solution (u(z,t),d(t)) of the problem

Pu_, i

a—ao O‘a 5 — oﬁzf(x,t) in R;, (4.1)
u(z,0) =0, §(0)=0, =€ R™, (4.2)
u(0.0) =0, 2%0,0)= fi(t), te0.7] (4.3)
with
flx,t) € CPPIURE),  fi(tye €T a([0,T)), (4.4)

where function f(x,t) has a finite support.

Note that by all norms in Holder spaces over unbounded domains R™ and R'TF
we mean supremum in M > 0 of the corresponding norms over sets RT N {|x| <
M} and RE N {|z| < M}.

Define the function

0(z,t) = u(,t) — bod(t). (4.5)
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The function 6(z,t) can be found from the equations

% - aoxagiz = f(z,t) in R}, (4.6)
9(x,0) =0, =€ RT, (4.7)
gi(O,t) = fi(t), t€[0,T]. (4.8)
To find the function §(¢) we have the relation
0(0,t) + bod(t) = 0. (4.9)

Keeping in mind also the problem of constructing of the function w(x,t) from
Sec. 3, we consider the next model problem for the unknown function u(x,t)

ou d%u

5 x"‘@ = f(z,t) in Rf, (4.10)
240, = Ailt), te0T) (@.11)
u(z,0) = uo(z), =€ R, (4.12)

where the functions f(z,t) and ug(z) have finite supports. In this case the fol-
lowing conditions are required in addition to (4.4):

uo(x) € C2T28/9(RY), f(x,0) € C?P/9(RT). (4.13)
To find a general solution of the equation
ou
ot " 0a?
we apply the Laplace transform in ¢ such that
pu — x%Uyy = 0, (4.14)

where u(x,p) is the Laplace image of u(x,t). The general solution of (4.14) is
(see [9], 8.491(7))

- 2 2
u(x,p) = Clxl/QI—l/q(gﬁxqm) + 02331/2K—1/q(5\/259ﬂ/2)7

where ¢ = 2 — o, I,(2), K,(2) are the modified Bessel functions, and ci, ¢y are

arbitrary constants. The Green function to the Neumann problem for equation

(4.14) is

2 1 q(3p' Pai) Ky gy (2p1 202 P e <

G(z,6,p) = {
2I (2 20/2) 1y (2pH/2g/2) 00261 260, > €,
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and the inverse Laplace transform gives (see [9], 6.653) the Green function for
problem (4.10)—(4.12)

/2¢a/2 La /2 29 4¢
Gz, &) = c(q)t—1H1/a <$Q§Q> Iy <2W> e # £ (4.15)

g%t g%t

Denote
¢a/? 24/2
qt1/2’ v= qt1/2

and rewrite the Green function as

u =

G(x,6,t) = c(q)t ™1 (wo) Iy ), (2uv)e” W HDy~20/e, (4.16)
We define the constant ¢(gq) in (4.16) by the condition
/G(x,g,t)dg 1 (4.17)
0

By direct calculations one can show that the function G(z,§,t — 7) satisfies
the equations
oG . 0*G oG o2
— — 22— =0 d— - (£“G) =0, < t. 4.18
5% L A T (4.18)
We use equations (4.18) and the Green formula to get the integral representation
of the solution to problem (4.10)—(4.12)

/dTO/G z, &t —71)f(&, 7)dE

[e'e) t
4 0/ G €, D)o (€)de — O/ (G, 6t — e fi(r)dr.  (4.19)

Theorem 4.1. Let in (4.10)—(4.13) and (4.4) the consistency condition f1(0)=
uoz(0) be fulfilled. Then there exists a unique solution u(z,t) € Co%+ﬁ’ﬁ/q(R¥),
a+ <1, q=2—a, such that
(272)

(/ng/q) q
[0,7]

Br,T

(8,8/9) + (u >((ﬁ+1*a)/Q) < C(R, T)((f)w B/q) +(f1)

Br,T Z/t,Br,T

+ (ut)

(% Uy

+1£ (2, 0)[ S 4 |2%ugg0| O, (4.20)

where Bpr = {0 <z < R} x [0,T], R > 0, and the constant C(R,T) is bounded
for bounded R and T'.
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The proof of (4.20) is based on the estimates of the potentials on the right
hand side of (4.19) and will be done in Sec. 6.

5. Proof of Theorem 2.1

Now we return to problem (3.22) and the equation
(u,0) = A~ F(u,6), (5.1)
where F(u,d) is defined in (3.23). We introduce the space
M = C3PP19(Gp) x CMHP19([o, T)) (5:2)
with the elements z = (u(x,t),d(t)) and the norm

2 (1
2l = lull S + 161547, (5.3)

and the space

W = CO8/(Gr) x &7 ([0, T]) x CYB/a([0, 7)) (5.4)

with the elements f = (f(x,t), fi(t), ¢(t)) and the norm

Btl-a

1fllw = LASHD 1 fily ot + 1l (5.5)

It is straightforward to check that analogously to the inequality for the stan-
dard Hoélder norms |u\(c?T from [12]

ul%) < cT% |u| (5.6)

which is valid for the functions u € C"/2(Gr), I < 1, I' integer, (see [12], Ch. 4),
in our case we have

-8 —B
W S5 < oo |ul|C5), 111G <o 11197, <y <1 (57)

a,Gp a,Gr

for the functions u € ¢/ 9(Gr) and f € C7"/4(Gr), and analogous inequality
is valid for the functions defined on [0,7"]. We will also use a known inequality

Ucmﬁﬁ/‘]) <CTﬂ/(I’f’55/q |g|55/q (5.8)

for the functions f,g € C?8/4(Gr). We give here the short outline of the proof
of inequalities (5.7).
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Consider, for example, a weighted Holder constant <xo‘um>iﬁ % in the defini-
YT

tion of the norm HuHSgﬁ) in the space Cﬁ+6’ﬁ/q(égp). Let function u(z,t) be in
T

fact more smooth, namely, u € Cng’m/q(éT) with0 < < y<1.
According to the definition,

<x04,u >(/6) _ sup ‘U(SE, t) - ’U(f, t)|
xx) A — ,

TET 1) () €Cr |z —z|8
where v(x,t) = x%uy,. Consider the ratio %

Consider two cases. If |z — Z| < T"/4, then

’U(l‘,t) _;U(f’ t)| _ |U(l‘,t) _i)(fa t)| ‘.’L‘ o f"yfﬂ < <v>77 T¥
|z — 7|8 |z —Z|Y z,Gr

If now |z — Z| > T4, then, as v(z,0) = 0,

oz, 1) —v(@,t)| _ [o(z, )] + [v(@,1)]

v/q £1/4 v/q 2
o — | < Ti/a < 2(v(z,t)) < 2v(x,t))) 2 T a .

t,Gr TB/q — t,Gr

Consequently, in both cases,
B =8 24
(1) O < OTT |uf P27,

Other terms in the definition of the norm ||u

|i2gﬁ ) can be treated in a quite
DM

similar way which leads to (5.7).
Due to our assumptions on the smoothness of the initial data ug(z), the
boundary functions go(t) and g(t), and consistency conditions (2.9) with (5.7),

we obtain

—B
1F(0,0)lw < PT "4, (5.9)

where P is a constant independent of T
We set
Mg={z€ M: |z||n <d},

where d > 0 is sufficiently small and will be given below.

Lemma 5.1. There holds an inequality
[F(22) = F(z1)llw < C(d+T7) |22 — 21l u, (5.10)

where x > 0 is a certain positive number, and the constant C is bounded for
bounded d and T .
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It follows from this lemma and from (5.9) that if 7" and d are sufficiently
small, then the mapping 2 — A~'F(z) maps M, into itself and is a contraction
in My. Hence this mapping has a unique fixed point. This completes the proof
of Theorem 2.1.

Proof of Lemma 5.1. The origin of the estimate (5.10) is that the
expression for F(z) = F(u,d) contains, as it was mentioned, either “quadratic”
terms or minor terms. Thus in the factor (d+7%) in (5.10) the value d appears as
we estimate “quadratic” terms and 7% appears for minor terms in view of (5.7).

As a typical example of calculations in the proof of Lemma 5.1, we show the
estimate of the term

w* — (u+w)®  O*u

EG) = 0 = o = o) on2

n (3.7). By the mean value theorem one can write

1
w® — (u4w)* = —au [ [ew+ (1 —&)(u+w)]* de
)
and hence o2
Bz) = (= aaﬁ)( )(l—so—a()—5(t))2

X

><O/1 [Ewﬂl_s)(“w)r—lda (5.11)

Since o — 1 < 0, some additional arguments are required to show the smoothness
of E(z) in z.

Taking into account that u(0,t) = w(0,t) = 0, we use the following represen-
tation with some sufficiently small a > 0:

cw(z,t) + (1 —e)(u(z,t) + w(z,t))

x

(5.12)

_ {fol [ewg(wz,t) + (1 — &) (ug(wz, t) + wy(wz, t))]dw, 0<z <a,

ew(w,t)+(1—¢e)(u(z,t)+w(z,t)) ’

= T > a,

where the mean value theorem is applied.
By the properties of the initial function ug(z) and w(zx,t), w;(0,0) > v > 0,
upz(0) > v > 0, and because u(x,t) € My, for sufficiently small 7" and d we get

wg(x,t) >v/2, (wg +ug)(z,t) >v/2 for 0 <z <a, (5.13)

308 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4



Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem

and for z > a

ew(z,t) + (1 —¢e)(u(z, t) + w(x,t))

T

> vy, v; =const >0 (5.14)

as far as w(x,t) > v for x > a. Moreover, the integrand in (5.12) is bounded
from above and the same is true for the left hand side of (5.14). Thus from (5.12),
inequalities (5.13), (5.14) and (u,d) € My it follows

- ew(z,t) + (1 —¢&)(u(z, t) + w(x,t))

vy <wy ', vy =const > 0. (5.15)

x
We observe also that for small d and T and ¢t < T
vy <1—s9—0(t)—6(t) <wvg', vz = const> 0. (5.16)

So we obtain the representation

E(z) = <xagizf) (g) O(2), (5.17)
) = oo = zj{sw e

0
and from (5.15), (5.16) it follows that ®(z) is the smooth function in z for z € My
and small ¢ > 0.
The difference E(z2) — E(z1), 21,22 € Mg, is evaluated as follows:

|B(22) — E(21)| "
82uz 82u1 u9
< « o (07 _“
- ‘<x 012 " 02 > ( x ) (z2) Gr
a82ul ve (8:8/9)
* ‘ <x 022 > (5 - 7)) .

! ‘ (‘”f@ () (@)~ 2(z1) o

X

(8,8/9)

Gr

To continue this estimate we note that

1
- = /ux(sx)ds, |<I>(z)|gT’ﬂ/q) < const, 2z €& My,
0
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|®(22) — @(z1)|(GBT”6/Q) < const - ||z — z1||m, 21,22 € Mg.

This leads to

|B(z2) — E(21)|%7 < const - (||22llar + |21 lar)ll22 — 1]l

< const - d HZ2_21HM7 21,29 € My.

Similar calculations of the rest of the terms in the difference F(z2) — F(z1)
prove Lemma 5.1. |

6. Proof of Theorem 4.1

In this section we use representation (4.19) to obtain the estimates from The-
orem 4.1. First we deduce some properties of the Green function G (x,¢,t) from
(4.16).

The Bessel function I, (z) has the series expansion

> 1 2\ B2k
Lu(z) = 1;::0 KD (u+k+1) (5) ’ (6.1)

where I" (z) is the Gamma function, and the asymptotic expansion for large z

Iu(z)rv\/%(1+f+...>. (6.2)

Here and below we will denote by C' various positive constants. From these
representations it follows that

2714 for 2 < 1,
Lo1jg~ C{ ez 12 for z > 1. (6:3)

Using (6.1)-(6.3), we can get the following estimates:

—(u2+v2) <1
-1/q,,—2a/q € y Uuv =1,
|G(x?§7 t)| S Ct U { 6_7(“’_”)2 (uv)l/qil/Qv w > 1’ (64)
—(u?+0?) <1
< —-1-1/q, —2a/q € y UV > 1, )
G (.6, 8)] < Ot “ e_v(u_v)2 (uv)l/qil/Q , uv >1, (65)
ol [ ) (2422, s
Gy (z,6,t)| < oMl ¢ vorurr), wwsdh 6.6
G (@6, 0)] < x { e—(u=v)’ (1+v) (uv)l/q_l/z, uv > 1, (69
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—2a/q —(u2+v?) ()2 4 2,2
(Gt (,€,8)] < O 17Va { ¢ (v* +ie’), ww <,

x e (u=v)? (1+v) (uv)l/q_l/Q, uv > 1,
(6.7)
= (u?+0?) <1
—2-1/q, —2a/q € y uv =~ 1,
|Gtt (CL‘,é,t)’ S Ct U { 677(1147”)2 (uv)l/q—l/Q’ wv > 1’ (68)

where 7y is some positive constant.
To check, for example, the estimate of G, (x,¢,t) for uv <1 in (6.6) we note
that for small z

92 _ 2
gML*W@)NC<1+1—ZiL+”>’

and v, = Cv/x, z, = Cz/x, where z = 2uv, u, v — from (4.16). Therefore
G (w,6,1) ~ —Ct~ Yy 20fagpe= () Dotfag | ()
T

-1 —2a — ’u,2 ’U2 ? d 1
+Ct /qu /qe ( + );a <Z /qI—l/q(z)>

- Ct—l/qu—m/qle—(u%v?) (UQ 42 2) '
x

Denote
[oe)

Ji(v) = /uae_'Y(“_“)2du,
0

00
Ja (v) = / u“e_'Y(“_”)Qdu7
1/2v
1/2v
J3 (v) = / ule == gy
0
Lemma 6.1. Let a>—1, v>0, v>0. The next inequalities are valid:

v® for v>1,
Ji(v) < C{ 1, for v<1, (6.9)
v® for wv>1,
< - .
Ja (v) < C{ e/ for v< ) (6.10)
e~ mv? for v>1
< ’ = :
Js (v) < C{ 1, for v<1, (6.11)

where 0 <y <.
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Proof. To prove (6.9) we split the integral J; (v)

v/2 3v/2 00
i () = / n / + / (e au) = Ay (0) + A (0) + A5 (v)
0 v/2 3v/2
(6.12)
We have |u —v|> > v2/4 for the integrand in A; and then
v/2
A (v) < /uae_wz/‘ldu < Cpatle—v?/4 < Ce= /8,
0

Since u € (v/2,3v/2) in Az (v),

3v/2 ()
As (v) < Cv® / e~ gy, < Cv® / e~ 1w=)* gy, < Cov®.
v/2 —0o0
For a >0
As (v) = / (v+2)° e dz < C / (v + 2%) e dz < C (v*+1),
v/2
and for a € (—1,0)
As (v) = / (v+2)%e 7 dz < Cv® / e dz < Co®.
v/2 —00

The estimates of A4; (v), i =1,2,3, give (6.9).
We first consider the integral Js (v) for v < 1/2. Then in Jo (v) uw —v >
Ly = 1_23)”2 > 1/4v and

2v
Jo (v) = /u“eV(“”)Qdug /uaeg(uv)Qe—géjgdu
1/2v 1/2v

oo
/ —3 (u—v) du<C’e 3207 0 < Ce~ 71/“
0

where we used estimate (6.9). The estimates for Jy (v) forv >1and 1/2 <v < 1
follow from (6.9).
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One can check that for v > 1 and v > 1/2v there is v — u > v/2, then

1/2v 1/2v
J3 (v) < / ule "0 Ady < e~V /4 / udu < Ce /4,
0 0

For v < 1 we can estimate J3 (v) by (6.9). This completes the proof of (6.11) and
Lemma 6.1. n

Lemma 6.2. Let 2, >0, ¢q=2—a, a € (0,1).

i) For & >z
_ q/2-1 _
s C{ (5(5 f)mgiqﬂ, | 5590 iix’ (6.13)
ii) For £ <z
292 — ¢4 > O (x — €) 29/*7 1. (6.14)
iii) For § > 0, 26/q < 1, and f (x) € C%/1(R*)
£ &)~ £ @1 < C @) 1L a2 — g2, (6.15)

where C(x) = const - max (1, ;1:0“5/‘1) .

Proof. In the casei)let Ay = £9/2 — 29/2 Successively using the change
of variables n =z + z and y = 2/ (£ — =), we get

£
2 2_ 2
1‘112/773 tdn ==

q q

xT

223

—x

1
2_q :2 . dy
@+2)i =2 )O/(H(g_m)y)l_q/z-

S

Foré —z >«

These estimates prove (6.13).
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In the case ii) let B (x,&) = 292 — ¢9/2. Similarly to the case i), we have

B (z,§) = / o2 (1 B —5y>a/2

and, hence, (6.14).

Let
|f (@) = [ (&)

|z9/2 _gq/Q‘%/q’

We prove that F'(x,§) is bounded if x is bounded. For £ > x and £ —x < x by
(6.13)

F(z,§) = Af =f(z)=f(&).

Fleg) <o c ggonia oo,
((f—x) x_a/2)25/q T
For £ > x and £ — x > = again by (6.13)

F(z,6) < CM C <f>(x25/q) w - C <f>(125/q) |z — §’5a/q,

(T o — ¢’
and we obtain (6.15) under |z — &| < 1. For |z —¢| > 1
F(z,§) < Cmax|f]|.

Finally, for £ <«

(( §|)Af BRE < Cx?la(f) (20
r— &)

Lemma 6.2 is proved. [

F(z,6) <C

Lemma 6.3. Let f(z) € C*/9(R"Y), 26/q < 1. Then the following integral

exists and
o

lim [ G (2,€,1) (f (z) = f(£)) € =0. (6.16)

0

Proof. In the integral

/wat (x) — 1 (£)) de
0

314 Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4



Classical Solution of a Degenerate Elliptic-Parabolic Free Boundary Problem

we change the variable according to & = (qtl/Qu) 21 _ o (q) t"/9u?/1. Below we
will frequently use this change £ — u. Using (6.15) and (6.4), we get

1f (x) = £ (€)] < C (2) | f12 o — u[*/ 1404

and
K (2,8) < C () |f|29 9/ (K (2,1) + K2 (2,1)), (6.17)

Ky (z,t) = e~ (=)’ (uv)l/q_1/2 et v — u|26/q du.

1/v

1/v

K (z,t) = / e (W) =41 lv — u|?/9 du,
0
7

To estimate K (z,t), we use the inequality |v — u|25/q <C (v25/q + u%/q) and
(6.9), then

1/v 1/v
_a 28
|K1(z,t)] <C eV’ /e“ w o du 4 e 0?0/ / e " u~/9dy y < const.
0 0

In the case of K (z,t), we use (6.10) to obtain

| Ko (z,1)] < C/ew(uvf (ww) /9172 y B+l

1/v
00

= CUO‘/Qq/e“(“”)2ua/2qdu§const.

1/v
Now Lemma 6.3 follows from (6.17). [

Lemma 6.4. Let
w(x,t>=/G<x,5,t>f<5>ds, fz)e CPl(RT), 28/q¢<1, Be(0,1).
0

Then
() e+ ()i < C (R (6.18)

vaR,T t7BR,T ~
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Proof Recall the notation: Qp = ([0,00) N Bg)r. From (4.17) it follows
0= [ GO~ F @]+ f (@) =20+ (2).
0

so that we need to estimate the function z (z,t). First we evaluate the Holder
constant of z (z,t) in ¢t. Let 0 < ¢t < . We have

t
|z (2,t) — 2 (z,7)] < /ZT (x,7)dr (6.19)
t
and from the representation of z (z,¢) and Lemma 6.2

2] < C(R |f|<”/q/|a (@ &.0la €| e

The change of variable £ — u leads to
2ol < C(R) [f1G0" " 47100 (Ko (w,1) + Ka (a,0) < O (R) || e7+009,

where K (x,t), Ky (x,t) were introduced in the proof of Lemma 6.3. Hence,

t
|z (1) = = (2. 0)| < C () fI2 /r‘l+ﬁ/QdT§c<R)|f|§§E/q> 71|
t

(6.20)

To estimate the Holder constant of z(z,t) with respect to  we consider two

cases. Let Az =7 —z > 0 and Az > t'/9. By Lemma 6.3 z (x,0) = 0 and by
(6.20), we get

2 @1) —z(x, )] _ [2(@1) —2(z,0)]  |2(2,t) — Z(%O)\ (R) | |25/
]Aar|*3 - t6/4 tB8/a ’

(6.21)
i.e., we have the required estimate.
In the case Az < t'/9 we consider two possibilities. The first one is Az < /2.
Then

2(T,t) — 2 (z,1) 2/((?(1%5,0 =G (x,6,1)) (f (&) — f(x)) dE
0
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+(f( /watdf-zﬂ:n:nt)%—w(mxt)
0
Using (4.17), we can evaluate i3 (x, T, t)
lia (2,2, 1) < | f] WD 7 — 2P0 = | 1|20 7 — 2 | — |
<19V 7 — 2| |Ax|*?T < O (R) | 1|V |7 — 2| (6.22)

To estimate i1 (x, Z,t) we apply the mean value theorem. Let 0 € [z,T], then

‘2ﬁ/q

ir (2. 7.8)] < C (R) |22/ / Gy (0.€.1) ||| a9 — 02" e

Due to Az < z/2 the values 0, T,z are equivalent. Therefore we change 6 by x
below. We change £ to u in the integral and use estimate (6.6) that gives

A
i1 (z,7,1)| < C (R) ||/ “"tﬁ/q (i1 (2,7, 1) + ir2 (2,7, 1)) ,

e V(u=)? (1+ ) (w)/?~ 2y~ lv —ul?/ du.

1/v

2‘11 (aj‘jf’ t) = /6_(UQ+UQ)U2 (1 + u2) u*% ”U _ u‘?ﬁ/q d'U,,
0
00

112 (a:,f, t) = /

1/v

Since e (v*+v?) lv—u|?? < Ce (%) 0 <y < 1, we get

1/v
i1 (2,7, )| < Cv2e™ / (1+u?) u ae 7 du,
0

and one can see that either the estimate
li1n (z, 7, t)| < Cv (6.23)

or

i1y (z, 7, t)| < Co? (6.24)

is valid.
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Similarly, with Lemma 6.1

o0

12 (2,7,t)| < C (1 +v)vt/471/2 / 1 w=0)? =% 0
1/v
—a/2q > 1
< 1 a/2q v , U =2
_C( +U)U { 6751/1)2) v <1,
and again
fz &, 7,8} = Co, (6.25)
or
lire (z,Z,1)| < Cov2. (6.26)

Now we use estimates (6.23) and (6.25) and can write
A
i1 (2,7, 1) < C (R) | |29 7"3#/%.

Note that in the case under consideration v = z%/2 /qt'/? and

|Ax] x4/2 Az 1=a/2 1 Ag q/2_6< .
Agf 2B | t/a = const.
It means
i1 (2,7, 1)) < C (R) | £/ | Az (6.27)

Thus for Az < x/2 and Az < ti/a
|2 (@, t) = 2 (x,0)] < C(R) |5V | Az’ (6.28)
Finally, we consider the case Az > x/2 and Az < t1/a . We have

‘Z (Tvt) —z(x,t)] <C <’Z(x7t) —Z(O,t)’ + |Z(:C,t) _Z<07t)‘>

|Ax‘ﬂ 8 B

since 2Ax > x and 3Ax > T. We evaluate, as an example, the second term on
the right hand side. To this end we use the inequality

|2 (2,t) = 2 (0, 1) < /\G(fmfﬂf) —G(0,& )] [f (&) = f (x)]d¢
0

/ (0,6,4) (F (0) — f (2)) de| = is (.7, 1) + ia (2,7, 1) .

0
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The term i4 (x,7,t) is evaluated by (4.17) and 2Az > z as follows:
lig (z,Z,0)] <|f(0)— f(x)| <{f >(26/q) 228/9 — <f)§72’1§/+q) B 28/a—8
<C (R (NEHD 1A, (6.29)

— z,Rt

The term i3 (z,7,t) is similar to i1 (z,7,t) and to estimate it we use the mean
value theorem. Let 6 € [0, z] and T = 69/2 /qt'/2. In this case we apply inequalities
(6.23) and (6.25) and get

. _ T
i3 (2, 1)] < C(R) S0 567%0° < C(R) [f15"
< <>rfr§§f/q>|m\ﬁ, (6.30)

since

= 9/ 1-8 B, q-1
ﬁ/ — 1B 1B aga—1 Tt
7 <t1/2> =x Pt 0 <t " =1.

Inequalities (6.20), (6.21), (6.28), (6.29), and (6.30) lead to inequality (6.18).
Lemma 6.4 is proved. [

Remark 6.1. The reader will see that in our subsequent evaluations in
Lemmas 6.5-6.8 we will apply the approach which is analogous to the approach
used in the proof of Lemma 6.4. We will use the change of variable £ — wu, split
the integration domain according to the small and large values of z = 2uv, and
apply the estimates of the Green function.

Lemma 6.5. Let
w(z,t) :/G(g;,g,t) fletyde,  flxt) e CPP9(RE), f(x,0)=0. (6.31)

Then (8) (8/a) (8/a)
(W) s + () < C (Y. (6.32)
Proof. First we estimate the Holder constant of w (z,¢) in t. Let 0 < ¢t < t,
At =t —t. In the case of At > t/2 it follows that At =1 —t >t — 2At. Then
At > t/3 and hence

(@8 —w@n) _ (\w(w,t)\ . |w<a:,t>|) |

]At]ﬁ/q
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Taking into account f(x,0) = 0, we can estimate the terms on the right hand
side. For example, by (4.17)

@Ol < [atwen DeDae < (@0 [owen de< i@y,

0 0

Therefore in this case
< >(ﬂ/f1) < C <f>(ﬂ/z) . (6.33)

R R}
Let now At < t/2 < t/2. We use the representation

w(m,f)—w(m,t): G(x,g,f) [f(g,f)—f({,t)] dg

+ [G (m,g,f) - G(x,&,t)] f(&t)dE = wy (x,t) + wo (,1) .

‘3\8 0\8

For the function w; (x,t) we obtain
fwn (. £)] < (f) 2 [Ae)1 / G (e 6.0) [de = ()32 a8 (6.34)

We apply the mean value theorem to estimate ws (x,t) and note that estimate
(6.5) means |Gy (z,€,t)| < Ct71|G (x,€,t) | . Moreover, the inequality At < ¢/2
implies that for any 6 € [¢t,?] the values 6, t, and ¢ are equivalent, 6 ~ t ~ .
Then

w (a1)| < 5 (19 91 / G (,€,0) | de < © 20 ()10 9

T

At|t Pl
= C(f >f’/q> g/ AT t1|—6/q <C(f >§ﬁlg NS (6.35)
From (6.33)—(6.35) it follows that
(wh nd < O Y (6.36)

in all cases.
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Our next step is to evaluate the Holder constant of w (z,t) with respect to x.
Let 0 < Az =7 — z. For Az > t'/7 due to w (z,0) = 0 we obtain

|w(Z,t) —w (z,t)] < lw(Z,t) —w(Z,0)] |w(z,t)—w(x,0)]

‘A$|ﬂ = tB/a tB/a
<20 <C (N (6.37)
Next we suppose Ax < tYV4 and Az < z /2. Consider the difference
0

The mean value theorem gives
G(7,&t) —G(z,61) =G, (0,6,t) (T —x), 6€][x,T],
and since 0 ~ x ~ T for Az < x/2
G(7,8,t) — G(2,6t) < C|Gy (2,8, 1)||Az].

We use this inequality in (6.38) and arrive at the situation which we already en-
countered in the proof of Lemma 6.4 (see inequalities (6.23) and (6.25)). There-
fore

q/2
o (2,8) — w (2, 1)] < C ()P0 BT ys/a ™"

tRJr T t1/2
_ C’( >£5}é§1_ ‘A |ﬁ | x| 23/2¢8/a=1/2
Az 1—a/2 Axr a/2—-8
—C{f >§5R@ Az yﬂ( . > (tl/q) <C(f >f,§3 Az)?. (6.39)

In the case Az > z/2 and Az < t'/9 we use the inequality
\Ax]ﬁ TP B

and, for instance, the second term on the right hand side is estimated as follows
(see the estimate of i3 in the proof of Lemma 6.4):

jw (1)

—w(0,t
SO0l o 2 tﬂ/q/|c: (6.6,)] g

g1/
<O pd ot P <t1 /2) <CU)e

T
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In this case we obtain

fw(@.1) — w(z,1)| < O ()32 [Axf (6.40)

Inequalities (6.36), (6.37), (6.39), and (6.40) give (6.32). Lemma 6.5 is proved. m

Corollary 6.1. Let f (z,t) € CPB/a (RE), f(z,0) € C?8/9(RY),

/Gxgt (&,1) de.
0

The inequality

() + WAL, OB (DD +1F @ OIFD)  (641)

rvBR,T t7R+
1s valid.

Inequality (6.41) is the consequence of (6.18) and (6.32). [

Lemma 6.6. (The potential of the initial data)

Let -
/G ,6,t) uo (§) dE,  2%uges € C*/T(RT). (6.42)
0
Then
() () 0+ wa) < O (R) e uoual 77 (6.43)

Proof We can consider the case of ug(0) = ug (0) = 0 since otherwise
we can introduce the function v (z,t) = u(z,t) — up (0) — up, (0) z in problem
(4.10)—(4.12). Using (4.18) and integrating by parts, we get

Lemma 6.4 gives the estimates of wy(x,t), and the estimate of w,(x,t) can be
obtained similarly. [
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Lemma 6.7. (The volume potential)
Let

o0

t
:/dT/G(x,g,t—T) f&r)de,  flx,t) e COPIO(RE),  (6.44)
0 0

f (x,0) € C?P/1(RY)

Then
(0 g+ 00y + () 517 < O (R) (50 415 (0027
(6.45)
Proof. First we derive the representation for w; (z,t). Let
t—h 0
wn(et)= [ dr [Glage-n) Fens
0 0

then
t—h o)

8whx, /dT/Gtxft—T (s d§+/G:c§h (§,t—h)d¢
0

0

t—h
/dT/Gt w6t —7) [f(67) = f(€)]de
0

/dgf /dTG (2,61 —7)
0

[e%) t—h [e%)
+O/Gx5h (€t )dé—O/dTO/Gtxu ) [ (€r) — f(E0)]de

—/G(a:,f,m f(§7t)d£+/G(w7€,t) f(£7t)d§+/G(w7£,h) f (.t~ hyde.
0 0 0

Now we go to the limit as h — 0 and get

= [ar [Gulagr-n) 1160 - rende+ [ Gl fende
0 0 0
=wy (x,t) + wo (z,1) . (6.46)
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The estimate of the function ws (z,t) is given by (6.41).
Since

f(§77—)_f(§7t) = (f(évT)_f(‘gao))_(f(gvt)_f(éao))a

we can assume that in the representation of w; (x,t), f(x,t) has the property
f(z,0)=0.
Consider the smoothness of w; (z,t) with respect to z. Let 0 < Az =7 — =
and Az < x/2. We have
wy (T, t) —wy (z,t)

= / dT/Gt (f,g,t—’r) [f(&T)—f(g,t)] dg
0

t—(Ax)?

- / dT/Gt (m7§7t_7) [f(§77-) _f<€7t)] dﬁ
0

t—(Ax)?

[Gt (vavt - T) - Gt (x7§7t - T)] [f (&T) - f (fvt)] df

_I_
U
3
+ 0\8

0
=11 (7, x, t) 12 (f, x, t) + i3 (T, x, t) . (6.47)
The comparison of (6.4) and (6.5) gives |G| < Ct~!|G|. With this remark and
(4.17) we have

t

i1 (%, 2,1)| < C<f>§i§? / dT/(t—T)—1+ﬂ/Q|G(x,§,t—7)y d¢
t—(Az)? 0

t

< c(po / dr (t— )"0 < 0 (1)) | Ag)f |

t,R}
t—(Ax)?
The integral is (T, z,t) is evaluated in a similar way. To estimate i3 (T, x,t) , we
change the integration variable & — u, use inequality (6.7), and note that due to
Az < z/2 the values 6 € [z,7T], x, and T are equivalent. As the result, we obtain

t—(Ax)? 00
fis @) NG 18al [ (t= 7y dr [1Ge 0,60 - 1l de
0 0
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t—(Ax)? /v
<C <f>iﬁéz) |A;C’ / (t — T)_H_ﬁ/q dre=""v? / e~ (1 + u2) u= Uy
g
0 0
t—(Ax)?

+C <f)§ﬁpf3) |Ax:c\ / (t — 7_)—1+ﬁ/q drvl/a=1/2

’ 0
X (1+v) / WM 1-1/2=e/qg=y(w=u)® gy

1/v

We drop the estimates of the internal integrals (see, for example, the proof of
Lemma 6.4) and write down

_qu
b=(2=) 74/2

. (B/a) 1Az R B B
iy (1) < € )10 12 / s

Ax 7 1
< C<f>i%;) | - ’xq/Q / y 1 1/2+5/‘1dy.
|Az|?

The last integral exists since, under our assumptions, % - g > 0 . Finally we get

is (7,2, )] < C ()PP 122 yar2 | p gjacr/2e0/
T x
Az
xT

- C <f>(5/II) |A:13’B <

tarz (8/0)
s ) <P |acp.
»ip
Now let Az > 2/2. In this case we use the equality
wy (T,1) — w1 (2,t) = [w1 (T,1) — w1 (0,8)] + [wy (z,1) — w1 (0,7)].

To estimate the second term on the right hand side, we represent it analogously
to the way it was done in (6.47)

wy (x,t) —wy (0,t) = ay (z,t) + a2 (x,t) + a3 (z,t) .

The values of a1 (z,t),as (x,t) are estimated similarly to i1 (%, z,t), and ag (z,t)
is estimated similarly to i3 (%, x,t), but in the case of a3 (x,t) we use the inequal-
ities in (6.23) and (6.25). We arrive at

fwn (2,) = wi (2. 1)] < C L A,
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So, we have proved that

(wr (@, 1), <o (nHP9. (6.48)

z, Ry — t,R;

To evaluate the Holder constant of the function wy (x,t) with respect to t we
use the representation (0 < At =1 —t)

wy (z,t) — wy (z,1)

T.EE—7) [f(&T)— f(&7)]de

5 t— T) [f (577_) _f(gat)] dé

L[
Lo

t—At 00
+ b/ dTO/ Gt iUﬁt—T) Gt(xaévt_T)] [f(gvT)_f(gat)]dg
t—At 0o
+ / df/at (2,65 —7) [F (&) — £ (&.7)] de
0 0
= Ay (z,t,1) + Az (2,8,7) + Az (2,1,7) + Ay (2,1,7) . (6.49)

We can estimate Ay (az, t,f) as follows:

00 t—At
| Ay (2,,7)] < FE]de | drG. (.68 7)
[ue /
<O - / 16 (2.6.8)] +1C (2.6, A de < O ()32 |an)1.
0

The integrals A; (af, t,f) , Ay (af, t,f) are estimated similarly

Ay (2,1,1)] < C( f]gz

D\w

1+B/qd7’/ |G (26,7 —7)| de
0
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t,RE
t—2At

<C <f>(ﬁ/Q) (f— t)—1+ﬁ/q dr < C <f>1(f5<;) |At|ﬁ/q.

In the integral As (33, t,f) it is natural to assume At < t. With this condition for
any 6 € [t,ﬂ the values 0, t, t are equivalent, so that if we apply the mean value
theorem, we obtain

Gt (l‘,f,f— 7-) - Gt (xagat_T) = Gtt (1'7579 - 7-) At ~ Gtt (wvfat - 7-) At.
We observe that from (6.8) and (6.4) it follows that

|Gtt (.f,f,t - T)‘ < C’t—T‘_z ’G (xvéat - 7—)‘ :

Therefore
t—At
|43 (2,8, 7)| < C <f>%? At / dr (t — 7)~2+b/
0
t—At
<C <f>§7ﬁ1%) At / dr (t — 7-)*2+/3/q <C <f>§,ﬂ1;? (At)ﬁ/q ‘
Thus it is proved that
(B8/9) (B8/9)
(wn () < O A s (6.50)

The inequalities (6.48), (6.50) together with the estimate of the function
wa (x,t) give (6.45) for we(x,t). The estimate of wy(x,t) is obtained in a similar
way. This completes the proof. [

Remark 6.2. Since the function w (z,t) from (6.44) is a solution of the
equation w; — x%wg, = f (x,t), we get

(@) p,  + @B, < CR) (DD +1F @OIF)  651)
]

The kernel of the simple layer potential in (4.19) is

9(2,) = G (2,&,1) € |emo= Ct 11/ e, (6.52)
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Lemma 6.8. (The simple layer potential)
Let

w(q:,t):/g(x,t—T)fl (F)dr, f(H) e CTTE(0,T)), F(0)=0. (6.53)
0

Then s >

(wn) P 4 (w0 4 ()P < o <f1>5 ‘ (6.54)

Proof  To prove Theorem 4.1 it is sufficient to consider the case of
f1(0) = 0 since otherwise we can introduce the other unknown function as it was
proposed in the proof of Lemma 6.7. We represent the derivative wy (z,t) in the
form

wy (2,8) = /gt (.t — 1) f1 (7) dr
0

t

:/gt(xat_T)[fl(T)_fl Jdr — fi(t /ngt_T

0 0

t

= /gt (z,t —7)[f1(7) = AL O] dr — f1 () g (2, 1) = w1 (2,) + w2 (z,1) . (6.55)
0

For the function ws (z,t) the Holder constant in ¢ is obtained as follows. We
represent wa (x,t) as

z9

wy (w,8) = g1 () g2 (,8) . g1 (1) = fi (6) 79 go(a,8) = e

and use the inequality
(we ()" < (g1 ()" max|gy (w, )] +max]gy (£)] (g2 (2. )){"" . (6.56)
The value (g2 (z, t)}gﬁ /9 can be evaluated as follows:

(g2 (2, ) PD < 1814 max |gos| < CH8/94~1 = Ot

1+48—«a

Since a1 (t) S <f1>t< 1 ) tﬁ/q,

14+6—a
max|gl<t>\<gz<m,t>>§ﬁ/”sc<f1>5 =)
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The term (g1 (t))gﬁ /9 max |g2 (x,t)| is estimated similarly, thus

o )0 < ) (65)
For the function w; (x,t) we consider the difference
wy (z,1) —wy (2,t) = / g (z,t—7) [f1 (1) = fr (F)] dr
t—2A¢t
- [ glat-n)la@) - A@ldr
t—At
t—At
+ [ ln@t-n) =gt -] (h(0 - fi©ldr
0
t—At 4
LA @) — £ (@] / g (E— ) dr =3 by (3 1,7) (6.58)
3 k=1

The estimate of by (:U, t,f) has the form

t
14+8-a e at
i <oul ) [ aon e R,
2A

(1.;-5%) 24t ez, ba (1-&-@—@) 5
< C(fi) /y o dy < C(f1), |A¢[/9.
0

The integral by (x, t, f) is estimated in the same way. It is natural to assume that
At < tin b3 (m,t,f), otherwise this integral is absent. The application of the
mean value theorem leads to (y = const > 0)

s e S
b3 (,,7)| < C<f1)t( ) |At] / (t— Tﬁ”%% o TE gy
0

t
1+48—«a _ 1, 148-a 148—«a
§0<f1>t< ! >|At|/y rat T dy§0<f1>f ! >\At\5/q-
At
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Finally,
(1+g_a) ha t—At
‘b4 (Zl),t,%)’ < C<f1>t 1 |At| q / (t _ 7_)—Q—i-l/q dr
0
8 1+8—«a 7 o1 1+8—«a
§0<f1>t< ' )IAtI ' /y 2+qdy§0<f1>t( ' )|At|ﬁ/‘I.
At

As the result, we have shown that

1+B—a>

<MW@§CU$ ’ (6.59)

To estimate the Holder constant for wy (x,t) in x we set 0 < Ax =T — x and
first consider the case of Az > ¢1/4, Since wy (x,0) = 0, we can write

|wi (T,1) —wi (@, D) _ |we (T, 0)] | |we (2,8)]
\Ax|5 - tB/a tB/a

< C<f1>t(1+ﬁT_a)

by using (6.59). Now we consider the case of Az < t!/9, first for the function
wa (T, t) . By the mean value theorem

z4 _z9
9 (@0) = g ant) = O |

q—1 09

0
= Ot71+1/qA$T€ q2t, 0 e [11375] )

so that
1+8—«a Y
'W@ﬁ—w@mécmﬁq>Awﬂﬁ%
1+B—«a . -
<o g
(1+5—a)
<c(f) " il

For the function wy (z,t) we study the difference

ge (@t =7) (fr (1) = fr(t)) dr

w1 (E, t) — w1 (m,t) —
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t—(Ax)? 3
+ / [gt(f7t_7—)_gt(x7t_7—)](f1(7—)_fl(t))d’r:zak('%E?t)'

0 k=1

It is easy to estimate a1 (z,T,t) and a9 (z,7,t) , for example, taking into account
Az < t1/4,

z4

t
14+8—a 1+8—a 1 _
@zl <l ) e s T
Az

(A)?
(=) Ltf=e g4l (5572) | a8
< C({fi) y 1 ady < C(f1), |Az|”.
0

Finally we estimate as (x,Z,t) by the mean value theorem

1+8—«

|aa($,T,t)ISC(f1>t< ’ >Al’

_oyltB-a _ 09
(t—7) "0 e TPendr

1+8—«

§C<f1>t( ! >Afﬁ

_9 14B8=-a
2+f1dy

1+8—«a 148~

< T A=) oy () e
Thus

1+Bfo¢)

@m@scwﬁq (6.60)

The estimates of the function wy(x, t) are proved by inequalities (6.59), (6.60).

The estimate of w,(x,t) is obtained in a similar way. [

Theorem 4.1 is the consequence of Lemmas 6.6-6.8.
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