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Space-like submanifolds, with dimension greater than three and with
negative definite normal bundle in a general de Sitter space, of any index,
are studied. For the compact space-like submanifolds whose mean curvature
has no zero and the corresponding normalized vector field is parallel, under
natural boundedness assumptions on the lengths of the gradient of the length
of the mean curvature and the covariant derivative of the second fundamental
form, it is proved that they must be totally umbilical. As an application,
two characterizations of totally umbilical space-like submanifolds in terms
of the scalar curvature and the length of its second fundamental form are
given. All the results extend the previous ones obtained by Liu for the case
of space-like hypersurfaces in de Sitter space of index one. In addition,
for the complete space-like submanifolds, whose normalized mean curvature
vector field is parallel, two characterizations of totally umbilical space-like
submanifolds and hyperbolic cylinders are obtained.
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1. Introduction

Let M, *?(c) be an (n 4 p)-dimensional connected semi-Riemannian manifold
of constant sectional curvature ¢ whose index is p. It is called an indefinite space
form of index p and simply a space form when p = 0. If ¢ > 0, we call it a de Sitter
space of index p and denote by Sy P (c). It was pointed out by Marsden and Tipler

[1] and Stumbles [2] that space-like hypersurfaces with constant mean curvature

Project supported by NSF of Shaanxi Province (SJ08A31) and NSF of Shaanxi Educational
Committee (11JK0479).

(© Shichang Shu, 2011



Space-like Submanifolds with Parallel Normalized Mean Curvature Vector Field

in arbitrary space-time got interesting in the relativity theory. Space-like hyper-
surfaces with constant mean curvature are convenient as initial hypersurfaces for
the Cauchy problem in arbitrary space-time and for studying the propagation of
gravitational radiation. Therefore, space-like hypersurfaces in a de Sitter space
with constant mean curvature have recently been studied by many differential
geometers from both physics and mathematical points of view. For example, one
can see [3-6]. Goddard [4] conjectured that the complete constant mean curva-
ture space-like hypersurfaces in a de Sitter space must be umbilical. Akutagawa
[3] and Ramanathan [6] proved independently that a complete space-like hyper-
surface in a de Sitter space with constant mean curvature is totally umbilical if
the mean curvature H satisfies H? < ¢ when n = 2 and n?H? < 4(n — 1)c when
n > 3. The well-known examples with H? = 4(n — 1)/n? are the umbilical sphere
S™((n — 2)%/n?)) and the hyperbolic cylinder H'(c1) x S"!(c2), e1 = (2 — n)
and ca = (n —2)/(n —1). Later, Cheng [7] generalized the result of [3] and [6] to
general submanifolds with higher codimension in a de Sitter space Sp ' ?(c).

On the other hand, there are some interesting results related to the study
of space-like hypersurfaces in a de Sitter space with constant scalar curvature,
see, for instance [8-10]. Recently, Camargo, Chaves and De Sousa Jr. [11] have
studied the complete space-like submanifolds with higher codimension in a de
Sitter space Sp tP (c). If the normalized mean curvature vector field is parallel,
the scalar curvature n(n—1)R is constant and R < ¢, they obtain some interesting
results.

We should notice that the investigation on space-like hypersurfaces with the
scalar curvature n(n—1)R and the mean curvature H being linearly related is also
interesting, see, for instance, [8, 9, 12, 13]. Cheng [12] and Li [8] obtained some
characteristic theorems of such hypersurfaces in terms of the sectional curvature.
Recently, the author [13] proved a characteristic theorem of such hypersurfaces
in terms of the mean curvature H. The well-known complete space-like hyper-
surfaces with constant mean curvature are given by

M"={pe S?H | piﬂ + .- +p721+1 = cosh? r},

with r € R and 1 < k < n, where R! is the set of all real numbers. We can
prove that M" is isometric to the Riemannian product H*(sinhr) x S"~*(coshr)
of a k-dimensional hyperbolic space and a (n — k)-dimensional sphere of radii
sinh r and cosh r, respectively. M™ has k principal curvatures equal to cothr and
(n — k) principal curvatures equal to tanhr, so the mean curvature is given by
nH = kcothr + (n — k) tanhr. If k£ = 1, the Riemannian product H!(sinhr) x
S"=1(coshr) is called a hyperbolic cylinder.

Let [VA]> = 32, po(h8)? and [VH|* = 37, ((H$)?. From Proposition 3.1
and Proposition 3.2 in Section 3, we should notice that the condition |VhA|? >
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n?|V H|? is the natural generalization of one of the following three conditions: (i)
H = constant, (ii) the scalar curvature n(n — 1)R is constant and R < ¢, (i)
the scalar curvature n(n — 1)R is proportional to the mean curvature H, that is,
n(n—1)R =kH.

For compact space-like hypersurfaces in a de Sitter space S?H (1) with |[Vh|? >
n?|VH|?, Liu [13] has recently proved the following results:

Theorem 1.1. Let M™ be an n-dimensional (n > 3) compact space-like hy-
persurface in an (n+1)-dimensional de Sitter space ST (1). If [Vh|?> > n?|VH|?

and
|h* < 2v/n —1,

then M™ is a totally umbilical hypersurface, where |h|? is the squared norm of the
second fundamental form and H is the mean curvature of M™.

Corollary 1.1. Let M™ be an n-dimensional (n > 3) compact space-like
hypersurface with constant scalar curvature n(n — 1)R in an (n + 1)-dimensional
de Sitter space SPT(1). If R < 1 and

Bf* < 2vn—1,

then M™ is a totally umbilical hypersurface.

Corollary 1.2. Let M™ be an n-dimensional (n > 3) compact space-like
hypersurface in an (n+ 1)-dimensional de Sitter space S?H(l). Suppose that the
scalar curvature n(n — 1)R is proportional to the mean curvature H of M"™, that
is, there exists a constant k such that n(n — 1)R = kH. If

> <2vn—1,

then M™ is a totally umbilical hypersurface.

It is natural and interesting to study the n-dimensional compact space-like
submanifolds in a de Sitter space Sy *(c) with |[VA[> > n?|VH|?>. We should
point out that the normalized mean curvature vector field is defined by %, where
¢ and H denote the mean curvature vector field and the mean curvature of M™,
respectively. It is well known that submanifolds with nonzero parallel mean cur-
vature vector field also have parallel normalized mean curvature vector field. The
condition to have parallel normalized mean curvature vector field is much weaker
than the condition to have parallel mean curvature vector field. If the mean cur-
vature vector field is parallel, that is, VH = 0, we have H constant.
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In this paper, by using Cheng-Yau’s self-adjoint operator, we generalize Liu’s
results to general submanifolds in a de Sitter space Sj " (¢) with parallel normal-
ized mean curvature vector field. We shall prove the following:

Theorem 1.2. Let M™ be an n-dimensional (n > 3) compact space-like
submanifold in an (n + p)-dimensional de Sitter space Sy P(c). Suppose that the
normalized mean curvature vector field is parallel. If |[Vh|?> > n?|VH|? and
\/n—1+(1 l)n—l (n —2)?
n p’n 2nyn —1

then M™ is a totally umbilical submanifold, where |h|? is the squared norm of the
second fundamental form and H is the mean curvature of M™.

1

o)

|h|? < ne/[(1+ J;

Since we know that submanifolds with nonzero parallel mean curvature vector
field also have parallel normalized mean curvature vector field and VH = 0, we
can easily see that

Corollary 1.3. Let M™ be an n-dimensional (n > 3) compact space-like
submanifold with nonzero parallel mean curvature vector field in an (n + p)-
dimensional de Sitter space Sy P (c). If

1n-1_(n-2)?

Jn=1
n +( p) n 2nvn — 1

then M™ is a totally umbilical submanifold.

1

o)

A < ne/(1+

]7

We also have the following:

Corollary 1.4. Let M™ be an n-dimensional (n > 3) compact space-like
submanifold with constant scalar curvature n(n — 1)R in an (n + p)-dimensional
de Sitter space Sp P (c). Suppose that the normalized mean curvature vector field
1s parallel. If R < c and

;W@;1+Ulw_l+(n_%2

h? < 1
(A" < ne/[(1+ p’n 2nyv/n — 1

I

then M™ is a totally umbilical submanifold.
Corollary 1.5. Let M™ be an n-dimensional (n > 3) compact space-like

submanifold in an (n + p)-dimensional de Sitter space S}}er(c). Suppose that
the normalized mean curvature vector field is parallel and the scalar curvature
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n(n — 1)R is proportional to the mean curvature H of M"™, that is, there exists a
constant k such that n(n —1)R = kH. If

1.v/n—1 Iln—1 (n—2)72
WP < nef[(L+ ) ==+ (1= )=+ g sy

I,

then M™ is a totally umbilical submanifold.

Remark 1.1. If p=1and c=1, we have

1. vn—1 1.n—1 —2)2
WP <nefla+ HYPTL g Lynmty (22
p n pn 2nvn —1
then Theorem 1.2, Corollary 1.3 and Corollary 1.4 reduce to Theorem 1.1, Corol-
lary 1.1 and Corollary 1.2, respectively. Therefore, we generalize the previous
results obtained by Liu [9] to general submanifolds with higher codimension.

|=2vn—1,

Remark 1.2. We should notice that L.J. Alias and A. Romero [14] proved
an integral formula for the compact space-like n-submanifolds in de Sitter spaces
Sy tp (c), 1 < q < p, by calculating the divergence of certain tangent vector fields
and using the divergence theorem. They obtained a Bernstein type result for the
complete maximal submanifolds in S; 7(c), 1 < ¢ < p. From [15], if p = ¢, we
know that the complete maximal space-like submanifolds in Sj7(c) or Ryt are
totally geodesic. Therefore, the class of all these submanifolds is very small. But
if ¢ < p, we see that the class of complete maximal space-like submanifolds is very
large (see [16]). Thus, it is very interesting to study the n-dimensional space-like
submanifolds in Sg tp (¢), 1 < q < p. The Simons’ formulas of the n-dimensional
space-like submanifolds in Sgﬂo(c), 1 < g < p, from those in S}}+p(c). Thus, the
results will be different.

2. Preliminary

Let Sp*P(c) be an (n 4 p)-dimensional de Sitter space with index p. Let M™
be an n-dimensional connected space-like submanifold immersed in Sy ?(c). We
choose a local field of the semi-Riemannian orthonormal frames eq, ..., e,y in
SpP(c) such that at each point of M™, ey, ..., e, span the tangent space of M™
and form an orthonormal frame there. We use the following convention on the
range of indices:

1<ABC,...<n+p;, 1<i,jk,...<n, n+1<a,0,7,...<n—+p.

Let w1, ... ,wnpqp be its dual frame field so that the semi-Riemannian metric of
SpTP(e) is given by d5? = Y w? — S w? = Y eawi, where g; = 1 and ¢, = —1.
7 a A
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Then the structure equations of Sy ?(c) are given by

dwy = ZEBWAB Awp, wAB+wpa =0, (2.1)
B
1
dwap =) ecwac Nwop — 3 Y ecepKapepwo Awp, (2.2)
c C.D
Kapcp = ceaep(dacdpp — 04pdBC). (2.3)

If we restrict these form to M™, then
we=0, n+l<a<n+np. (2.4)

From Cartan’s lemma we have

Wa, = Y h&wj,  hS = hs. (2.5)
J
The connection forms of M™ are characterized by the structure equations

n
dw; = Zwij Nwj, wij +wj; = 0, (26)

j=1

1
dwij = Zwik N Wi — 5 Z Rijklwk N wy, (2.7)
k k.l

Rijry = c(Sixj1 — 6udjn) — > _(hiLhS — hGhSy), (2.8)

«

where R;jj; are the components of the curvature tensor of M™.
Denote by h the second fundamental form of M™. Then

h = Z hijw; ® wj ® eq. (2.9)
i7j7a

Denote by &, H and |h|? the mean curvature vector field, the mean curvature
and the squared norm of the second fundamental form of M™, respectively. Then
they are defined by

<= %Z(Z hii)ea, H =] = % YO B2 P =) (h)% (2.10)
o a i i,j,a

Moreover, the normal curvature tensor R,gy, the Ricci curvature tensor R
and the scalar curvature n(n — 1)R are expressed as

Raﬁkl = Z(hgmhfnl - ;thrﬁnk)v (211)

m

Journal of Mathematical Physics, Analysis, Geometry, 2011, vol. 7, No. 4 357



Shichang Shu

Ry, = (n— 1)cdi — Z Zh % + Zhw e (2.12)

n(n —1)R=n(n—1)c+ |h|* - n2H2, (2.13)

where R is the normalized scalar curvature.
Define the first and the second covariant derivatives of hi;, say h. ik and h,z] K>
by

S hgpen =g+ ey + > Wyni — > hwga,  (214)
k k k 8
D B = Ay + 3 SR gumi + 3 B + D hnme = 3 hopa-
l m m m Jé]

(2.15)
We obtain the Codazzi equation by straightforward computations
ik = N (2.16)
It follows that the Ricci identities hold
Wk — hS = D W Rt + D % Rt + D 1 Ragia- (2.17)
m m B

The Laplacian of hf; is defined by Ahf, = 3 hey,. From (2.17), for any
k

a,n+1<a<n+ p, we obtain

AR =" hiys + Y B Rmijk + Y W Rkt + Y b Ragje. (2.18)
k k,m k,m k.0

In the case when the mean curvature vector £ has no zero, we know that £/H is
a normal vector field defined globally on M". We define |u|? and |7|? by

= (st = Hop)?, = Y D ()2, (2.19)

1,7 a>n+1 4,5

respectively. Then |u|? and |7|? are functions defined on M" globally, which do
not depend on the choice of the orthonormal frame {ey,...,e,}. We have

|h|? = nH? + |uf* + |72, (2.20)

Since the normalized mean curvature vector field is parallel, we choose e,11 =
¢/H. Then

(e — Z W L e = Z e =0 (a>n+2). (2.21)

i
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From (2.8), (2.11), (2.18) and (2.21), by direct calculation we get (see [11] )

%A|h!2 = > (hy)? Zh”“ (nH)ij + ne(|h> — nH?) (2.22)
ijk,a
—nHZtr H Hn+1 +Ztr (H Hﬂ)]
a,B
+ Y  N(HoHg — HgH,),
a,B

where H,, denotes the matrix (hg;) for all a, N(A) = tr(AA") for any matrix
A= (aij).

We need the following lemma

Lemma 2.1 ([17]). Let A, B be symmetric n X n matrices satisfying AB =
BA and trA =trB =0. Then

n —

2
vn(n—1)

and the equality holds if and only if (n — 1) of the eigenvalues xz; of B and the
corresponding eigenvalues y; of A satisfy |z;| = (trB*)Y/2/\/n(n — 1), xixj > 0,

yi = (trA2)1/2/\/n(n —1).

3. Proof of Theorem

trA2B| < (trA?)(trB?)'/2, (2.23)

For a C2-function f defined on M™, we define its gradient and Hessian (f;;)
by df = Z fiwi, Z fijw; = dfi + Z:f]w]Z Let T = ZTULUZ ®@wj be a symmetric

tensor on M™ deﬁned by T;; = nH 0ij — h”“. Followmg Cheng-Yau [18], we
introduce an operator [J associated to T’ actlng on f by

12 12
Since M™ is compact, the operator [J is self-adjoint (see [18]) if and only if

[©@ngdo= [ r@g)ae
M

M

where f and g are any smooth functions on M™.
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By a simple calculation and from (2.13), we obtain

O(nH) =Y (nHé;; — b5 (nH)s (3.2)
2
1 n
:§A(n2H2) —n?|VH|? — Z i (nH )
2y}

_ 1 1 2 2 2 n+1
=— 5n(n — DAR+ SAh* —n?|VH| Z R (nH),,

Set ¢7; = h{; — ftrH “§;; and consider the symmetric tensor ¢ = Z Pijwiwjeq.

7]7
We can easily know that ¢ is traceless and

N(®,) = N(Hqa) — *(tl"H ) ‘¢|2 ZN |h|2 - nH27 (3-3)

where @, denotes the matrix (¢f}).
Since the normalized mean curvature vector field is parallel, choosing e,,4+1 =
¢/H, from (2.21), we infer that

d)ZJrl _thrl H5Z]a d)zj _h%a(a2n+2)a
N(®,41) = N(Hpy1) —nH?, N(®,) = N(H,),(a>n+2), (3.4)

tr(Hpy1)® = tr(®py1)® + 3HN(®p11) + nH.

From (2.22), (3.3) and (3.4), we have

1
AN = Z (hS)? + Zh”“ nH)i; +n(c — H?)|¢|? (3.5)
1,5,k
—nHZtr P2 @nﬂ )+ > [tr(@a®s)]%
7/6
Since we choose e,11 = &/H, we have wynr1 = 0 for all a. Consequently,
Ront1jk = 0, from (2.11), we have Zh;;h;";jl Zha hiH that is, HoHpy1 =

H,.1H,. Thus ®,®,+1 = ®,11P,. Slnce the matrlces ®, and P, are trace-
less, by Lemma 2.1, we have

n—2
tr( Qe Pnt1) < ———|p|lg]? < ——=|9I’, (3.6)
Z Vn ( ) vn(n—1)
where the following
ul> < [p? = nH? =[] (3.7)
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is used. By the Cauchy—Schwarz inequality, we have
1
D [t (2a®p))? Z 2> Zip|t. (3.8)
a,fB p
From (3.5), (3.6) and (3.8), we have

1

§A\h\2 > > (hg) +Zh”+1 (nH); (3.9)
i,5,k,

2 . 2 n(n —2) } 2
bl e =t~ S Z i+ 7o)
From (3.2) and (3.9), we have

O(nH) > — %n(n “1)AR+ (VA = n2VH]) (3.10)

lofne i - SE=Z ol Liofy

Proof of Theorem 1.2. Since M" is compact and the operator [ is
self-adjoint, by |Vh|? > n?|VH|? and Stokes formula, we have

0> / 62 {ne - szn_)> o+ TP (31D
= / 612 Par(0])dv
J

where Py (|6]) = (e — H?) = S22 H|9| + Jlof.
Considering the quadratic form Q(u,t) = %uQ - %ut — 2 and by the

orthogonal transformation

51

{(1+\/n— Du+ (1 —+vn—1)t},
{WVn—1-=1Du+ (vVn—1+1)t},

)
I
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we have
1.1 (n —2)? 2
Q(u,t) = %{[E(n+2\/n -1)+ it (n—2vn—1)u
1 -1 (n —2)? -
—-2(1— 5)(71 —2)ut + [g(n —2vn—1)— il (n+2vn —1)t*}

= s LevATT -+ (n—2)°

5 — + (n +2v/n — 1)](@* + %)

]

+21 [( +1)dvn — 1+ 57;2; ]a2—21n(1—;)(n—2)2af
z—%[p@m_nn(jjgﬂmzm)

+(1_;)(n—2>](a2+52>+2171[<113+1)4\/m+2( )2]a2

=—[(1+;) nn_1+(1—1)"_1+ (n — 27

+ [0+ ;)2\/71 W )

1.vn—1 I.n—1 (n—2)?2
2—[(1+];) - +(1—§) - +2n ~—|(a

where @2 + 2 = u? + 2.
Take u = |¢|,t = /nH, then

- 1. vn—1 1ln—1 (n—2)?
PH(‘¢|)_nc+Q(u,t)znc—[(l—l-];) - +(1—];) - +2n\/nf

From (3.11) and the assumption of Theorem 1.2, we have

vn—1 I.n—1 (n—2)?
n S 5) n +2n\/n—1

JIhf?.

J|h|*}dv > 0. (3.12)

0>/\<;5| {nc— 1—1—1)

Therefore, we see that

1.vn—1 Iln—1 (n—2)>2
L R e -

This implies that either |¢|?> = 0 or M™ is totally umbilical, or

1.vn—1 I.n—1 (n—2)?
nc—[(l—i—;) - —i—(l—;) - +2n —

JIh[?} = 0.

JIh* = 0.
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In the latter case, we infer that the equalities hold in (3.12), (3.11), (3.7) and
(2.23) of Lemma 2.1. If the equality holds in (3.7), we have |u|?> = |h|? — nH?,
this implies that |7| = 0. Since e, is parallel on the normal bundle 7+ (M™)
of M™, by using the method of B.Y. Chen [19] or Yau [20], we know that M"
lies in a totally geodesic submanifold ST (c) of Sy P (c). If the equality holds in
N(@nt1) _ |yl
\/n(n—l) \/n(n—l) ’
or equal to the negative of this last expression, where \;d;; = h%“. It follows
that M™ has at most two distinct constant principle curvatures. We conclude
that M™ is totally umbilical from the compactness of M™. This completes the
proof of Theorem 1.2.

Lemma 2.1, then (n —1) of the numbers \; — H are equal to

From [21], we have the following:

Proposition 3.1. Let M" be an n-dimensional space-like submanifold in an
(n+ p)-dimensional de Sitter space Sy (c). If the scalar curvature n(n —1)R is
constant and R < ¢, then we have

|Vh|*> > n?|VH|?.
We may also prove the following:

Proposition 3.2. Let M" be an n-dimensional space-like submanifold in an
(n + p)-dimensional de Sitter space Sy *(c). If the scalar curvature n(n —1)R is
proportional to the mean curvature H of M™, that is, there exists a constant k
such that n(n — 1)R = kH, then we have

|Vh|?> > n?|VH|?.

Proof. For a fixed a, we choose an orthonormal frame field {e;} at each
point on M™ so that h{; = Af*0;;. Then we have |n2 =Y (hf‘j)2 # 0. In fact, if
Z'7j7a
|h|? = 3> (A%)? = 0 at a point of M™, then A¢ = 0 for all 4 and « at this point.
7,00
This implies H = 0 and R = 0 at this point. From (2.13), we have n(n—1)c = 0.
This is impossible. From (2.13) and n(n — 1)R = kH, we have

EViH = =20 HVH + 2> hiihe,,

Jka
k o (64 (634 (e}
(5 +n*H)}VH|* = Z(Z hi; kji)2 < Z(hij)2 Z ( ijk)2 = |h?|Vh|*.
% j,kyol ’I:,j,Oé i:jzkza
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Thus, we have

k 1
(VP [V HP? 2[(5 + 0 H) =0V H P
(k)2 3 2 1
=|— -1 H|"— > 0.

The proof of Proposition 3.2 is completed.

From Theorem 1.2, Proposition 3.1 and Proposition 3.2, we can easily see
that Corollary 1.4 and Corollary 1.5 are true.

4. Some Related Results for Complete Cases

In this section, we study the complete space-like submanifolds in a de Sitter
space Sy *P(c) with parallel normalized mean curvature vector field. We obtain
the following:

Theorem 4.1. Let M™ be an n-dimensional (n > 3) complete space-like
submanifold with constant scalar curvature n(n — 1)R in an (n + p)-dimensional
de Sitter space S’ngp(c). Suppose that the normalized mean curvature vector field
is parallel and the mean curvature H obtains its supremum on M"™. If R < ¢ and

vn—1
n

l)n—1+ (n —2)?
pn 2nvn — 1

then M™ is totally umbilical, or M™ is isometric to a hyperbolic cylinder H' (sinhr)x
S"=L(coshr).

+ (1

W2§mﬂ6+;) !

Theorem 4.2. Let M™ be an n-dimensional (n > 3) complete space-like
submanifold in an (n + p)-dimensional de Sitter space S’g“’(c). Suppose that
the normalized mean curvature vector field is parallel and the mean curvature H
obtains its supremum on M™. If there exists a constant k such that n(n —1)R =

kH and

Iln—1 (n—2)?
+(1_§) n 2nyv/n — 1

then M™ is totally umbilical, or M™ is isometric to a hyperbolic cylinder H' (sinhr)
xS™L(coshr).

vn—1 l

2 1
A" < ne/l(1+ p)

We prove the following Lemma:
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Lemma 4.1. Let M™ be an n-dimensional space-like submanifold in a de
Sitter space Sy P (c). Then the following properties hold:

(i) if R < ¢, then the operator O defined by (3.1) is elliptic;

(73) if n(n — 1)R = kH and H > 0, then the operator L = O+ (k/2n)A is
elliptic.

Proof. (i) Choosing a local orthonormal frame field {ei,...,e,} such that
h?jﬂ = \idij, we get Of = > (nH — \;) fi. Since R < ¢, from (2.13), we have

|h|? < n?H?. If there is one i such that nH — \; < 0, then n?H? < \? < |h|2.
This is a contradiction. Thus, we have nH — A; > 0 for any ¢ and the operator
[ is elliptic.

(7i) For a fixed a, we choose a local orthonormal frame field {ej,...,e,} at
each point on M™ so that h; = A}d;;. From H > 0, nH = Z A+ and Z hg: =

forn+2<a<n+pon M" we have for any i:

(nH — N\ 4k /2n) = Z AP A (4.1)

j
+ (1/2)[2()\5‘)2 —n?H? 4+ n(n —1)c]/(nH)

>3 e
+](1/2)[Z A2 ZA"“ +n(n —1)c/(nH)
=[>_ A?“f - N A?”)
- j(1 /2)>° )\?“)\?“jJr (1/2)n(n — 1)c](nH)™?

I#]

=205 a2 A

l#j
)\”“ Z)\”“ (1/2)n(n — 1)c|(nH) ™!

:[Z()\;‘“) +(1/2) > AN 4 (1/2)n(n — 1)d] (nH) !

J#i I#]
1,j#i

=1/2)D A2+ QMY+ n(n— 1)d(nH) ! > 0.
j#i J#

Thus, L is an elliptic operator. The proof of Lemma 4.1 is completed.
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From (3.10) and the proof of Theorem 1.2, we have

O(nH) > — én(n _ AR+ ([VA[2 = n2|VH]) (4.2)

9 1.vn—1 Iln—1 (n—2)3
FloHne =0+ ) — =+ - )= =+ 5, ==

Proof of Theorem 4.1. Since the scalar curvature n(n — 1)R is constant
and R < ¢, from Proposition 3.1, (4.2) and the assumption of Theorem 4.1, we
have

JIh[?}.

O(nH) > [¢]*{nc — [(1+;)m+(1_ 1)”— 1, (-2

2
h|?} > 0.
n P n 2n\/n—1]| "tz

(4.3)

Since H obtains its supremum on M™ and [ is elliptic, we see that H is constant.
Thus, from (4.3), we get

1.vVn—1 I.n—1 (n—2)?
2 2
—[(1+- +(1-- + h?} = 0.
o ne [+ YT (1 ) STy
It follows that |¢|? = 0, and M™ is totally umbilical, or
1 vn—1 l.n—1 —2)?
nc—[(l—i—;) n —i—(l—f)n (n—2) ||n)? = 0.

_|_
n P n 2nv/n — 1

In the latter case, we know that the equalities hold in (4.3), (4.2), (3.7) and
(2.23) of Lemma 2.1. By the same method as in the proof of Theorem 1.2, we see
that M™ lies in a totally geodesic submanifold ST (c) of Sp*?(c) and has two
distinct constant principle curvatures. Therefore, we know that M™ is isometric
to a hyperbolic cylinder H!(sinhr) x S"!(coshr) from the congruence theorem
in [22]. This completes the proof of Theorem 4.1.

Proof of Theorem 4.2. Applying the operator L = O+ (k/2n)A to nH
and by Proposition 3.2, (4.2) and the assumption of Theorem 4.2, we have

L(nH) =0(nH) + %A(nH) =0(nH)+ %n(n —1)AR (4.4)
1.vn—1 Il.n—1 (n—2)?
SloPne— (14 DY - Pty 2y >0

Since the normalized mean curvature vector field is parallel and H # 0, from
(2.10) it follows that H > 0. From Lemma 4.1, we know that L is elliptic as H
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obtains its supremum on M"™, we can see that H is constant. Thus, from (4.4),
we get

1.vn—1 1.n—1 n — 2)2
o2 ne — 1+ 1) ra-h =2 n2y <o,
p n pon 2nvn — 1
It follows that |¢|?> = 0, and M™ is totally umbilical, or
1.v/n—1 1.n—1 —2)2
ne— [+ HYEL g o hynoly o2 e
p n p.n 2nvn — 1

By the same method as in the proof of Theorem 4.1, we see that Theorem 4.2 is
true.

If c=1and p =1, we can easily see that there holds the following:

Corollary 4.1. Let M™ be an n-dimensional (n > 3) complete space-like
hypersurface with constant scalar curvature n(n — 1)R in an (n+ 1)-dimensional
de Sitter space S?H(l). Suppose that the mean curvature H obtains its supremum

on M". If R <1 and
|h|? < 2v/n —1,
then M™ is totally umbilical, or M™ is isometric to a hyperbolic cylinder H' (sinh r)x

S™=1(coshr).

Corollary 4.2. Let M™ be an n-dimensional (n > 3) compact space-like
hypersurface in an (n+ 1)-dimensional de Sitter space ST (1). Suppose that the
mean curvature H obtains its supremum on M™. If there exists a constant k such

that n(n — 1)R = kH and
h]> <2vn—1,

then M™ is totally umbilical, or M™ is isometric to a hyperbolic cylinder H'(sinhr)x
S"~Y(coshr).
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