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We give a characterization of the n-dimensional (n > 3) hyperbolic cylin-
ders in a Lorentzian space form. We show that the hyperbolic cylinders
are the only complete space-like hypersurfaces in an (n + 1)-dimensional
Lorentzian space form M} (c) with non-zero constant mean curvature H
whose two distinct principal curvatures A and p satisfy inf(A — p)? > 0 for
c<0orinf(A—u)? >0, H? > ¢, for ¢ > 0, where \ is of multiplicity n — 1
and p of multiplicity 1 and A < pu.
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1. Introduction

By an (n + 1)-dimensional Lorentzian space form M (c) we mean a Min-
kowski space R?H, a de Sitter space S{LH(C) or an anti-de Sitter space H {LH(C),
according to ¢ > 0, ¢ = 0 or ¢ < 0, respectively. That is, a Lorentzian space form
M () is a complete simply connected (n+ 1)-dimensional Lorentzian manifold
with constant curvature c. A hypersurface in a Lorentzian manifold is said to be
space-like if the induced metric on the hypersurface is positive definite.
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In connection with the negative settlement of the Bernstein problem due to
Calabi [1] and Cheng-Yau [2], Choquet-Bruhat et al. [3] proved the following
theorem:

Theorem 1.1 ([3]). Let M be a complete space-like hypersurface in an (n+1)-
dimensional Lorentzian space form M{‘H(c), ¢ > 0. If M is maximal, then it is
totally geodesic.

T. Ishihara [4] also proved the following well-known result:

Theorem 1.2 ([4]). Let M be an n-dimensional (n > 2) complete mazximal
space-like hypersurface in anti-de Sitter space H {“H(—l), then

S <n, (1.1)

and S =n if and only if M = H™(—2) x H" " (—-2-),(1 <m < n—1), where

m n—m
S denotes the square of the norm of the second fundamental form of M.
Recently, L. Cao and G. Wei [5] gave a new characterization of hyperbolic
cylinders in anti-de Sitter space H"*!(—1) as follows:

Theorem 1.3 ([5]). Let M be an n-dimensional (n > 3) complete mazimal
space-like hypersurface with two distinct principal curvatures X and u in anti-de
Sitter space HP ™1 (—1). If inf(A — p)? > 0, then M = H™(=2) x H" (=),
(I1<m<n-1).

As a generalization of Theorem 1.1, the complete space-like hypersurfaces
with constant mean curvature in a Lorentz manifold were studied by many math-
ematicians, see, for instance, ([6-12]). We should note that two types of the
well-known standard models of complete space-like hypersurfaces with non-zero
constant mean curvature in an (n+1)-dimensional Lorentzian space form M (c)
are the totally umbilical space-like hypersurfaces and the following product man-
ifolds:

1 1 1

H*(c1) x 8" F(cg) in ST (e), (= + — = =,¢1 <0,c9 >0),
C1 Cc2 C

H*(c1) x R™™% in R'™ (¢; <0,¢=cy =0),
1 1 1
H*(c1) x H" *(¢cz) in H™(¢),(— 4+ — = =, ¢1 < 0,¢2 < 0),

C1 C2 C
where k = 1,...,n—1. These three product hypersurfaces are respectively called
the hyperbolic cylinders in ST (¢), RT™ or H""!(¢). From U-H. Ki et al. [9], we
know that the hyperbolic cylinder H'(c1) x S"~!(c2) in S} (c) has two distinct
principal curvatures y/c — c¢; with multiplicity 1 and /c — co with multiplicity
n — 1; the hyperbolic cylinder H'(c;) x R*~! in R?H has two distinct principal
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curvatures \/—cj with multiplicity 1 and 0 with multiplicity n — 1; the hyperbolic
cylinder H'(e;) x H" (cz) in H7™'(c) has two distinct principal curvatures
+./¢ — ¢ with multiplicity 1 and F+/¢ — ¢ with multiplicity n — 1. The square
of the norm of the second fundamental form satisfies (1.3).

U-H. Ki et al. [9] proved that

Theorem 1.4 ([9]). Let M be a complete space-like hypersurface with con-
stant mean curvature in an (n+ 1)-dimensional Lorentzian space form M (c).
If one of the following properties holds

(1) e<oO,

(2) ¢>0,n >3 and n?H? > 4(n — 1)c,

(3) ¢>0,n=2and H? > c,
then

S< —net n3H? +n(n72)
=TT S T 2t 1)

where S denotes the square of the norm of the second fundamental form of M.

V/n2H* — 4(n — 1)cH?, (1.2)

As an application to Theorem 1.4, the authors of [9] gave a characterization
of hyperbolic cylinders of a Lorentzian space form M{Hl(c) as follows:

Theorem 1.5 ([9]). The hyperbolic cylinders are the only complete space-
like hypersurfaces of Mf“(c) with non-zero mean curvature H and such that the
square of the norm of the second fundamental form satisfies

n3H? n(n — 2)

S =-nc+ 3n—1) + 2 =1) V/n2H* — 4(n — 1)cH?2. (1.3)

About the same time, R. Aiyama [13] obtained a characterization of hyper-
bolic cylinders of a Lorentzian 3-space form M3 (c) as follows:

Theorem 1.6 ([13]). The hyperbolic cylinders are the only complete space-
like surfaces in M3 (c) with non-zero constant mean curvature whose principal
curvatures A\ and p satisfy inf(\ — )% > 0.

It is natural for us to pose the following problem:

Problem 1.1. Are the hyperbolic cylinders the only complete space-like hyper-
surfaces in an (n+1)-dimensional Lorentzian space form M (c) with non-zero
constant mean curvature and two distinct principal curvatures A and p satisfying

inf(A — p)? > 07
We should note that for ¢ < 0, L. Cao and G. Wei [5] posed the same problem
as above, but they did not solve it. So the problem is still open.

In this paper, we will give a characterization of the hyperbolic cylinders of
(n41)-dimensional Lorentzian space form M (c), which implies that the above
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Problem 1.1 can be solved affirmatively for ¢ < 0. For ¢ > 0, we should note that
the condition H? > c is necessary. We state our result as follows:

Main Theorem. Let M be an n-dimensional (n > 3) complete space-like
hypersurface in an (n+1)-dimensional Lorentzian space form Mf“(c) with non-
zero constant mean curvature and two distinct principal curvatures \ and p of
multiplicities n — 1 and 1 and A < p. Then:

(1) For ¢ =0, if inf(\ — u)? > 0, then M is the hyperbolic cylinder H'(c1) X
R ' where ¢; < 0;

(2) For ¢ <0, if inf(\ — u)? > 0, then M is the hyperbolic cylinder H'(c1) X
H" Y(c), where % + é = %, c1 <0, e <0

(3) Forc > 0, ifinf(A—p)? > 0 and H? > ¢, then M is the hyperbolic cylinder
H'(c1) x 8" Y(ca), where é + é =1 ¢<0,e>0.

Remark 1.1. For the case n = 2, this Main Theorem was proved by R.
Aiyama [13](see Theorem 1.6).

2. Preliminaries

Let M be an n-dimensional space-like hypersurface in an (n 4 1)-dimensional
Lorentzian space form M{""!(¢). We choose a local field of the semi-Riemannian
orthonormal frames {ei,...,en,y1} in M1 (c) such that at each point of M,
{e1,...,en} span the tangent space of M and form an othonormal frame there.
We use the following convention on the range of indices:

1<ABC,....<n+1;, 1<ijk,....,<n.

Let {w1,...,wnt1} be the dual frame field so that the semi-Riemannian metric of
M{LH(C) is given by ds? = Zw? —wiﬂ = ZeAwi, where ¢; = 1 and €41 = —1.
i A

The structure equations of Mj"*!(c) are given by

dwa + Z epwap ANwp =0, wap+wpa =0, (2.1)

B
dwap + Z ecwac Nwep = QaB, (2.2)

C
where 1
Qap = —3 Z K pcpwe Awp, (2.3)
Cc.D

Kapcp = €a€pc(dacdpp — 0apdBC). (2.4)

If we restrict these forms to M, we have

Wn+1 = 0. (25)
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Cartan’s Lemma implies that
Wniti = Y hijws,  hij = hyi.
J

The structure equations of M are

dwi—i—Zwij Nwj =0, wij +wj; =0,
J

1
dwij + Z Wik N Wkj = —5 Z Rijriwr A wi,
k k.l
Rijrt = c(0idji — 6udjn) — (hirhji — hahj),
where R;ji; are the components of the curvature tensor of M, and
h = Z hijwi Q wj
,J

is the second fundamental form of M.
From the above equation, we have

nin—1)(R—c¢) =8 —n?H?,

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

where n(n — 1)R is the scalar curvature of M, H is the mean curvature, and
S=> h?j is the square of the norm of the second fundamental form of M.
2

The Codazzi equations are
hiji = hikj,
where the covariant derivative of h;; is defined by

Z hijrwy = dh;; — Z P wmi — Z Rimwmg -
k m m

The second covariant derivative of h;; is defined by

D hiwwr = dhijr = Y hmjrwmi = Y himk@mj = > hijmWmk-
l m m m

Then we have the following Ricci identities

hijit = hijie = > Panj Bkt + Y _ him Bt
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In a neighbourhood of a point z of M, we may choose orthonormal frame field
{e1,...,en} such that h;; = X\;0;; at . We introduce the operator ¢ given by

(6X,Y) = (hX,Y) — H(X,Y). (2.16)

Putting ¢ = Z¢zng ® wj, where ¢;; = h;j; — Hé;j, we can easily see that ¢ is
7]
traceless, that the basis {e1,...,e,} also diagonalizes ¢ at x with eigenvalues

Wi = \; — H, and that

|¢’2 Z,Uz Z —/\j)QZS—nHQ.

7.7

Therefore, we know that |¢|? = 0 if and only if M is totally umbilical. We shall
prove the following Lemma:

Lemma 2.1. Let M be an n-dimensional space-like hypersurface in an (n+1)-
dimensional Lorentzian space form M{LH(C) with constant mean curvature and

two distinct principal curvatures A and p of multiplicities n—1 and 1 and A < p.
Then

n(n —2)H
n(n—1)

Proof We firstly need the following result due to [14] and [15] : Let
1, 2, - - -, i be Teal numbers such that > p; = 0 and Y p? = (2%, where 3 =

SOl = (VP + 9 {I6f - Bl +nlc—HD).  (217)

const > 0, then
n—2
n(n —1)

n—2

_ - 3 2.18
e B (2.18)

By k<
i

and equality holds in the right-hand(left-hand) side if and only if (n — 1) of the

pts are non-positive and equal ((n — 1) of the ps are non-negative and equal).

Now we put p; = A\; — H, then > p; = 0 and > p? = |¢[%. Since M has

(2 7
two distinct principal curvatures A and p of multiplicities n — 1 and 1, without

loss of generality, we may assume \; = -+ = A\y_1 = A\, 4 = A, where \; for
1=1,2,...,n are the principal curvatures of M. Therefore, we know that
(n—DX+pu=nH, S=(n—1\+u° (2.19)
Since we assume that A < p, from (2.19), we have n(A — H) = A — u < 0.
Therefore, we know that pu; = -+ = p,1 = A — H < 0. We infer that the
equality holds in the right-hand side of (2.18), that is,
n—2
Zuz = —————|¢P. (2.20)

vn(n—1)
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From [8] or [10], we have the well-known Simons’ formula of Lorentzian version
as follows

SAGR = (V6P + (161 —nHer® +nle— HIOP. (221)

From (2.20) and (2.21), we see that Lemma 2.1 is true.
The following generalized maximum principle will be important in the sequel.

Proposition 2.1 ([16, 17]). Let M be a complete Riemannian manifold with
Ricci curvature bounded from below and f a C?-function which is bounded from
below on M. Then there is a point sequence xj in M such that

lim f(xr) =inf(f), lm |Vf(zg) =0, lim inf Af(zg)>0.
k—o0 k—o0 k—o0
Now we state a proposition which can be proved by making use of the similar
method due to Otsuki [18].

Proposition 2.2. Let M be a hypersurface in an (n + 1)-dimensional
Lorentzian space form M{LH(C) such that the multiplicities of the principal cur-
vatures are constant. Then the distribution of the space of the principal vectors
corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal
curvature is constant on each integral submanifold of the corresponding distribu-
tion of the space of the principal vectors.

3. Proof of Main Theorem

We denote the integral submanifold through x € M™ corresponding to A by
M (z). Putting

d)\:Z)\,kwk, d#:Zu,kwk. (3.1)
k=1 k=1

From Proposition 2.2, we have

Mi=Xa=-=Xp1=0 on M !(z). (3.2)
From (2.19), we have
dp = —(n—1)dA\. (3.3)
Hence, we also have
fo1= 2= =fiyn_1=0 on M !(x). (3.4)
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From (2.13), we have

Z hijkwk = d>\15,] + ()\j — )\Z-)wz-j.
k

We infer that
hijr =0, forany k, if i#j, 1<i<n-—1 and 1<j<n-—1.

From (3.1), (3.2) and (3.5), we have for 1 < j <n—1,
n
d\N = d)\j = Z h]-jkwk
k=1
n—1
= Z hjjkwk + hjjnwn = A,y Wn-
k=1

Therefore, we have for 1 < j <n —1,
hjjk:O, lgkgn—l, and hjjnZ)\,n.

From (3.1), (3.4) and (3.5), we have

dp = dl\, = Z Ponkwi

k=1
n—1 n
= Z hnnkwk + hnnnwn = Hyi Wi = hyn W
k=1 =1

Hence, we obtain
Bk =0, 1<k<n-—1, and hpnn = lyp -

Now we prove the following Lemma:

(3.6)

(3.7)

(3.10)

Lemma 3.1. Let M be an n-dimensional space-like hypersurface in an (n+1)-
dimensional Lorentzian space form Mf’“(c) with a constant mean curvature and
two distinct principal curvatures X and p of multiplicities n — 1 and 1. Then

dn|o[?

2|12 _
VIgRE =

Vol
where ¢ is defined by (2.16).
Proof. From (2.19), we have

\¢|2 =S —nH?= n(n — 1))\2 —2n(n — 1)AH +n(n — 1)[—[2
=n(n—1)(\— H).

(3.11)

(3.12)
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Hence, from (3.2) we obtain

VISP =D (161%)% =D _[2n(n — 1)(A = H)AxJ? (3.13)
k k
=4n(n —1)*(\ — H)2(\n)2
Since ¢i; = hijj — Hd;j;, from (3.3), (3.6), (3.8) and (3.10), we have
|V¢)|2 |Vh|2 Z hz]k - Z h ik +3 Z hzyn + 32 hmn + h?mn (314)

7]7 7]k 1 7j 1
=3 Z h?zn + h?mn - (TL - 1)()‘ )2 + (:u,n)Q

= 3(” = DA+ (n = 1°(An)? = (n = 1) (n +2)(\n)*.
From (3.12), (3.13) and (3.14), we have

212 _ 2 2 2 |v¢|2
VIO = 4n"(n = )" = )" — 50 =5y
2 _ _ )2 2
_ dn*(n—1)(A— H) Vo2 = 4n|q§] |V¢\2

n+2
So, the proof of Lemma 3.1 is completed.

Proof of Main Theorem. Since we assume that inf(A — )% > 0, we have
(A —p)? > 0. Putting (A —p)? =k > 0, we have [n(A— H)]?> = (A —p)? =k > 0.
Therefore, we know that

n—1

6P = n(n—1)(A— H)? =

Kk >0,
n

that is, M is not umbilical. From Lemma 2.1 and Lemma 3.1, we have

o nt2 2)2 o n(n—2)H 2
\Y% - H .
Algl" = |¢|2| |07 + o {lof* — O] )|¢|+n(0 )} (3.15)
Since the Ricci curvature R;; > (n — 1) H and |¢]2 =n(n—1)(\— H)? =

%H > 0 are bounded from below, from Proposmon 2.1, we have that there is a
point sequence z; in M such that

Jim [62(2) = f(0),  Jim [V]6P(es)| =0, lim inf Alg(rg) > 0.
By (3.15), we have

n(n —2)H

Vvn(n—1)

inf |¢|*{inf |¢|* — inf |p| +n(c — H?)} > 0.
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Since inf |¢|? > 0, we have
n(n —2)H
n(n—1)

Since for ¢ > 0, H? > ¢ implies n? H? > 4(n — 1)c, we know that the discriminant
of (3.16) is non-negative for all c¢. From (3.16), we have

inf || < %, |l = 2)H — /a2 B2 — A 1)e), (3.17)

n
-1

inf || — inf || 4+ n(c — H?) > 0. (3.16)

or

[(n—2)H + \/n2H? — 4(n — 1)c]. (3.18)

1
inf |¢| > =
inf ] >

Assume that (3.17) holds, if ¢ < 0, we have inf |¢| < %\/g[(n—Q)H—nH] <0,
which contradicts inf |¢|? > 0; if ¢ > 0, since we assume that H? > ¢, we have
inf |¢] < %\/g[(n—Q)H— \/n2H? — 4(n — 1)c] < 0, this is also in contradiction
to inf |¢|? > 0. Therefore, we know that (3.18) holds, we have

1
(62 > ~—"—[(n—2)H + /n?H? —4(n— D)2,
4n—1
and this is equivalent to
3772
n°H n(n — 2)
S>— 2H* — 4(n — 1)cH?2.
> nc+2(n_1)+2(n_1)\/n (n—1)c

From Theorem 1.4, we have

n3H? nn—2)
S HY — 4(n — 1)cH2.
S= et o T T am o) Vn (n=1)e

By Theorem 1.5, we see that Main Theorem is true.
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