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We give a characterization of the n-dimensional (n ≥ 3) hyperbolic cylin-
ders in a Lorentzian space form. We show that the hyperbolic cylinders
are the only complete space-like hypersurfaces in an (n + 1)-dimensional
Lorentzian space form Mn+1

1 (c) with non-zero constant mean curvature H
whose two distinct principal curvatures λ and µ satisfy inf(λ − µ)2 > 0 for
c ≤ 0 or inf(λ− µ)2 > 0, H2 ≥ c, for c > 0, where λ is of multiplicity n− 1
and µ of multiplicity 1 and λ < µ.
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1. Introduction

By an (n + 1)-dimensional Lorentzian space form Mn+1
1 (c) we mean a Min-

kowski space Rn+1
1 , a de Sitter space Sn+1

1 (c) or an anti-de Sitter space Hn+1
1 (c),

according to c > 0, c = 0 or c < 0, respectively. That is, a Lorentzian space form
Mn+1

1 (c) is a complete simply connected (n+1)-dimensional Lorentzian manifold
with constant curvature c. A hypersurface in a Lorentzian manifold is said to be
space-like if the induced metric on the hypersurface is positive definite.
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In connection with the negative settlement of the Bernstein problem due to
Calabi [1] and Cheng-Yau [2], Choquet-Bruhat et al. [3] proved the following
theorem:

Theorem 1.1 ([3]). Let M be a complete space-like hypersurface in an (n+1)-
dimensional Lorentzian space form Mn+1

1 (c), c ≥ 0. If M is maximal, then it is
totally geodesic.

T. Ishihara [4] also proved the following well-known result:

Theorem 1.2 ([4]). Let M be an n-dimensional (n ≥ 2) complete maximal
space-like hypersurface in anti-de Sitter space Hn+1

1 (−1), then

S ≤ n, (1.1)

and S = n if and only if M = Hm(− n
m)×Hn−m(− n

n−m),(1 ≤ m ≤ n− 1), where
S denotes the square of the norm of the second fundamental form of M .

Recently, L. Cao and G. Wei [5] gave a new characterization of hyperbolic
cylinders in anti-de Sitter space Hn+1

1 (−1) as follows:

Theorem 1.3 ([5]). Let M be an n-dimensional (n ≥ 3) complete maximal
space-like hypersurface with two distinct principal curvatures λ and µ in anti-de
Sitter space Hn+1

1 (−1). If inf(λ−µ)2 > 0, then M = Hm(− n
m)×Hn−m(− n

n−m),
(1 ≤ m ≤ n− 1).

As a generalization of Theorem 1.1, the complete space-like hypersurfaces
with constant mean curvature in a Lorentz manifold were studied by many math-
ematicians, see, for instance, ([6–12]). We should note that two types of the
well-known standard models of complete space-like hypersurfaces with non-zero
constant mean curvature in an (n+1)-dimensional Lorentzian space form Mn+1

1 (c)
are the totally umbilical space-like hypersurfaces and the following product man-
ifolds:

Hk(c1)× Sn−k(c2) in Sn+1
1 (c), (

1
c1

+
1
c2

=
1
c
, c1 < 0, c2 > 0),

Hk(c1)×Rn−k in Rn+1
1 , (c1 < 0, c = c2 = 0),

Hk(c1)×Hn−k(c2) in Hn+1
1 (c), (

1
c1

+
1
c2

=
1
c
, c1 < 0, c2 < 0),

where k = 1, . . . , n−1. These three product hypersurfaces are respectively called
the hyperbolic cylinders in Sn+1

1 (c), Rn+1
1 or Hn+1

1 (c). From U-H. Ki et al. [9], we
know that the hyperbolic cylinder H1(c1)×Sn−1(c2) in Sn+1

1 (c) has two distinct
principal curvatures

√
c− c1 with multiplicity 1 and

√
c− c2 with multiplicity

n− 1; the hyperbolic cylinder H1(c1)×Rn−1 in Rn+1
1 has two distinct principal
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curvatures
√−c1 with multiplicity 1 and 0 with multiplicity n−1; the hyperbolic

cylinder H1(c1) × Hn−1(c2) in Hn+1
1 (c) has two distinct principal curvatures

±√c− c1 with multiplicity 1 and ∓√c− c2 with multiplicity n− 1. The square
of the norm of the second fundamental form satisfies (1.3).

U-H. Ki et al. [9] proved that

Theorem 1.4 ([9]). Let M be a complete space-like hypersurface with con-
stant mean curvature in an (n + 1)-dimensional Lorentzian space form Mn+1

1 (c).
If one of the following properties holds

(1) c ≤ 0,
(2) c > 0, n ≥ 3 and n2H2 ≥ 4(n− 1)c,
(3) c > 0, n = 2 and H2 > c,

then

S ≤ −nc +
n3H2

2(n− 1)
+

n(n− 2)
2(n− 1)

√
n2H4 − 4(n− 1)cH2, (1.2)

where S denotes the square of the norm of the second fundamental form of M .

As an application to Theorem 1.4, the authors of [9] gave a characterization
of hyperbolic cylinders of a Lorentzian space form Mn+1

1 (c) as follows:

Theorem 1.5 ([9]). The hyperbolic cylinders are the only complete space-
like hypersurfaces of Mn+1

1 (c) with non-zero mean curvature H and such that the
square of the norm of the second fundamental form satisfies

S = −nc +
n3H2

2(n− 1)
+

n(n− 2)
2(n− 1)

√
n2H4 − 4(n− 1)cH2. (1.3)

About the same time, R. Aiyama [13] obtained a characterization of hyper-
bolic cylinders of a Lorentzian 3-space form M3

1 (c) as follows:

Theorem 1.6 ([13]). The hyperbolic cylinders are the only complete space-
like surfaces in M3

1 (c) with non-zero constant mean curvature whose principal
curvatures λ and µ satisfy inf(λ− µ)2 > 0.

It is natural for us to pose the following problem:

Problem 1.1. Are the hyperbolic cylinders the only complete space-like hyper-
surfaces in an (n+1)-dimensional Lorentzian space form Mn+1

1 (c) with non-zero
constant mean curvature and two distinct principal curvatures λ and µ satisfying
inf(λ− µ)2 > 0?

We should note that for c ≤ 0, L. Cao and G. Wei [5] posed the same problem
as above, but they did not solve it. So the problem is still open.

In this paper, we will give a characterization of the hyperbolic cylinders of
(n+1)-dimensional Lorentzian space form Mn+1

1 (c), which implies that the above
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Problem 1.1 can be solved affirmatively for c ≤ 0. For c > 0, we should note that
the condition H2 ≥ c is necessary. We state our result as follows:

Main Theorem. Let M be an n-dimensional (n ≥ 3) complete space-like
hypersurface in an (n+1)-dimensional Lorentzian space form Mn+1

1 (c) with non-
zero constant mean curvature and two distinct principal curvatures λ and µ of
multiplicities n− 1 and 1 and λ < µ. Then:

(1) For c = 0, if inf(λ− µ)2 > 0, then M is the hyperbolic cylinder H1(c1)×
Rn−1, where c1 < 0;

(2) For c < 0, if inf(λ− µ)2 > 0, then M is the hyperbolic cylinder H1(c1)×
Hn−1(c2), where 1

c1
+ 1

c2
= 1

c , c1 < 0, c2 < 0;
(3) For c > 0, if inf(λ−µ)2 > 0 and H2 ≥ c, then M is the hyperbolic cylinder

H1(c1)× Sn−1(c2), where 1
c1

+ 1
c2

= 1
c , c1 < 0, c2 > 0.

R e m a r k 1.1. For the case n = 2, this Main Theorem was proved by R.
Aiyama [13](see Theorem 1.6).

2. Preliminaries

Let M be an n-dimensional space-like hypersurface in an (n+1)-dimensional
Lorentzian space form Mn+1

1 (c). We choose a local field of the semi-Riemannian
orthonormal frames {e1, . . . , en+1} in Mn+1

1 (c) such that at each point of M ,
{e1, . . . , en} span the tangent space of M and form an othonormal frame there.
We use the following convention on the range of indices:

1 ≤ A,B, C, . . . ,≤ n + 1; 1 ≤ i, j, k, . . . ,≤ n.

Let {ω1, . . . , ωn+1} be the dual frame field so that the semi-Riemannian metric of
Mn+1

1 (c) is given by ds̄2 =
∑
i

ω2
i −ω2

n+1 =
∑
A

εAω2
A, where εi = 1 and εn+1 = −1.

The structure equations of Mn+1
1 (c) are given by

dωA +
∑

B

εBωAB ∧ ωB = 0, ωAB + ωBA = 0, (2.1)

dωAB +
∑

C

εCωAC ∧ ωCB = ΩAB, (2.2)

where
ΩAB = −1

2

∑

C,D

KABCDωC ∧ ωD, (2.3)

KABCD = εAεBc(δACδBD − δADδBC). (2.4)

If we restrict these forms to M , we have

ωn+1 = 0. (2.5)
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Cartan’s Lemma implies that

ωn+1i =
∑

j

hijωj , hij = hji. (2.6)

The structure equations of M are

dωi +
∑

j

ωij ∧ ωj = 0, ωij + ωji = 0, (2.7)

dωij +
∑

k

ωik ∧ ωkj = −1
2

∑

k,l

Rijklωk ∧ ωl, (2.8)

Rijkl = c(δikδjl − δilδjk)− (hikhjl − hilhjk), (2.9)

where Rijkl are the components of the curvature tensor of M , and

h =
∑

i,j

hijωi ⊗ ωj (2.10)

is the second fundamental form of M .
From the above equation, we have

n(n− 1)(R− c) = S − n2H2, (2.11)

where n(n − 1)R is the scalar curvature of M, H is the mean curvature, and
S =

∑
i,j

h2
ij is the square of the norm of the second fundamental form of M .

The Codazzi equations are

hijk = hikj , (2.12)

where the covariant derivative of hij is defined by
∑

k

hijkωk = dhij −
∑
m

hmjωmi −
∑
m

himωmj . (2.13)

The second covariant derivative of hij is defined by
∑

l

hijklωl = dhijk −
∑
m

hmjkωmi −
∑
m

himkωmj −
∑
m

hijmωmk. (2.14)

Then we have the following Ricci identities

hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl. (2.15)
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In a neighbourhood of a point x of M , we may choose orthonormal frame field
{e1, . . . , en} such that hij = λiδij at x. We introduce the operator φ given by

〈φX, Y 〉 = 〈hX, Y 〉 −H〈X, Y 〉. (2.16)

Putting φ =
∑
i,j

φijωi ⊗ ωj , where φij = hij − Hδij , we can easily see that φ is

traceless, that the basis {e1, . . . , en} also diagonalizes φ at x with eigenvalues
µi = λi −H, and that

|φ|2 =
∑

i

µ2
i =

1
2n

∑

i,j

(λi − λj)2 = S − nH2.

Therefore, we know that |φ|2 ≡ 0 if and only if M is totally umbilical. We shall
prove the following Lemma:

Lemma 2.1. Let M be an n-dimensional space-like hypersurface in an (n+1)-
dimensional Lorentzian space form Mn+1

1 (c) with constant mean curvature and
two distinct principal curvatures λ and µ of multiplicities n−1 and 1 and λ < µ.
Then

1
2
∆|φ|2 = |∇φ|2 + |φ|2{|φ|2 − n(n− 2)H√

n(n− 1)
|φ|+ n(c−H2)}. (2.17)

P r o o f. We firstly need the following result due to [14] and [15] : Let
µ1, µ2, . . . , µn be real numbers such that

∑
i

µi = 0 and
∑
i

µ2
i = β2, where β =

const ≥ 0, then

− n− 2√
n(n− 1)

β3 ≤
∑

i

µ3
i ≤

n− 2√
n(n− 1)

β3, (2.18)

and equality holds in the right-hand(left-hand) side if and only if (n − 1) of the
µ′is are non-positive and equal ((n− 1) of the µ′is are non-negative and equal).

Now we put µi = λi − H, then
∑
i

µi = 0 and
∑
i

µ2
i = |φ|2. Since M has

two distinct principal curvatures λ and µ of multiplicities n − 1 and 1, without
loss of generality, we may assume λ1 = · · · = λn−1 = λ, µ = λn, where λi for
i = 1, 2, . . . , n are the principal curvatures of M . Therefore, we know that

(n− 1)λ + µ = nH, S = (n− 1)λ2 + µ2. (2.19)

Since we assume that λ < µ, from (2.19), we have n(λ − H) = λ − µ < 0.
Therefore, we know that µ1 = · · · = µn−1 = λ − H < 0. We infer that the
equality holds in the right-hand side of (2.18), that is,

∑

i

µ3
i =

n− 2√
n(n− 1)

|φ|3. (2.20)
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From [8] or [10], we have the well-known Simons’ formula of Lorentzian version
as follows

1
2
∆|φ|2 = |∇φ|2 + (|φ|2)2 − nHtrφ3 + n(c−H2)|φ|2. (2.21)

From (2.20) and (2.21), we see that Lemma 2.1 is true.
The following generalized maximum principle will be important in the sequel.

Proposition 2.1 ([16, 17]). Let M be a complete Riemannian manifold with
Ricci curvature bounded from below and f a C2-function which is bounded from
below on M . Then there is a point sequence xk in M such that

lim
k→∞

f(xk) = inf(f), lim
k→∞

|∇f(xk)| = 0, lim
k→∞

inf ∆f(xk) ≥ 0.

Now we state a proposition which can be proved by making use of the similar
method due to Otsuki [18].

Proposition 2.2. Let M be a hypersurface in an (n + 1)-dimensional
Lorentzian space form Mn+1

1 (c) such that the multiplicities of the principal cur-
vatures are constant. Then the distribution of the space of the principal vectors
corresponding to each principal curvature is completely integrable. In particular,
if the multiplicity of a principal curvature is greater than 1, then this principal
curvature is constant on each integral submanifold of the corresponding distribu-
tion of the space of the principal vectors.

3. Proof of Main Theorem

We denote the integral submanifold through x ∈ Mn corresponding to λ by
Mn−1

1 (x). Putting

dλ =
n∑

k=1

λ,k ωk, dµ =
n∑

k=1

µ,k ωk. (3.1)

From Proposition 2.2, we have

λ,1 = λ,2 = · · · = λ,n−1 = 0 on Mn−1
1 (x). (3.2)

From (2.19), we have
dµ = −(n− 1)dλ. (3.3)

Hence, we also have

µ,1 = µ,2 = · · · = µ,n−1 = 0 on Mn−1
1 (x). (3.4)
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From (2.13), we have
∑

k

hijkωk = dλiδij + (λj − λi)ωij . (3.5)

We infer that

hijk = 0, for any k, if i 6= j, 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1. (3.6)

From (3.1), (3.2) and (3.5), we have for 1 ≤ j ≤ n− 1,

dλ = dλj =
n∑

k=1

hjjkωk

=
n−1∑
k=1

hjjkωk + hjjnωn = λ,n ωn.
(3.7)

Therefore, we have for 1 ≤ j ≤ n− 1,

hjjk = 0, 1 ≤ k ≤ n− 1, and hjjn = λ,n . (3.8)

From (3.1), (3.4) and (3.5), we have

dµ = dλn =
n∑

k=1

hnnkωk

=
n−1∑
k=1

hnnkωk + hnnnωn =
n∑

i=1
µ,i ωi = µ,n ωn.

(3.9)

Hence, we obtain

hnnk = 0, 1 ≤ k ≤ n− 1, and hnnn = µ,n . (3.10)

Now we prove the following Lemma:

Lemma 3.1. Let M be an n-dimensional space-like hypersurface in an (n+1)-
dimensional Lorentzian space form Mn+1

1 (c) with a constant mean curvature and
two distinct principal curvatures λ and µ of multiplicities n− 1 and 1. Then

|∇|φ|2|2 =
4n|φ|2
n + 2

|∇φ|2, (3.11)

where φ is defined by (2.16).

P r o o f. From (2.19), we have

|φ|2 = S − nH2 = n(n− 1)λ2 − 2n(n− 1)λH + n(n− 1)H2 (3.12)

= n(n− 1)(λ−H)2.
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Hence, from (3.2) we obtain

|∇|φ|2|2 =
∑

k

(|φ|2,k)2 =
∑

k

[2n(n− 1)(λ−H)λ,k]2 (3.13)

= 4n2(n− 1)2(λ−H)2(λ,n)2.

Since φij = hij −Hδij , from (3.3), (3.6), (3.8) and (3.10), we have

|∇φ|2 = |∇h|2 =
∑

i,j,k

h2
ijk =

n−1∑

i,j,k=1

h2
ijk + 3

n−1∑

i,j=1

h2
ijn + 3

n−1∑

i=1

h2
inn + h2

nnn (3.14)

= 3
n−1∑

i=1

h2
iin + h2

nnn = 3(n− 1)(λ,n)2 + (µ,n)2

= 3(n− 1)(λ,n)2 + (n− 1)2(λ,n)2 = (n− 1)(n + 2)(λ,n)2.

From (3.12), (3.13) and (3.14), we have

|∇|φ|2|2 = 4n2(n− 1)2(λ−H)2
|∇φ|2

(n− 1)(n + 2)

=
4n2(n− 1)(λ−H)2

n + 2
|∇φ|2 =

4n|φ|2
n + 2

|∇φ|2.

So, the proof of Lemma 3.1 is completed.

P r o o f of Main Theorem. Since we assume that inf(λ− µ)2 > 0, we have
(λ−µ)2 > 0. Putting (λ−µ)2 = κ > 0, we have [n(λ−H)]2 = (λ−µ)2 = κ > 0.
Therefore, we know that

|φ|2 = n(n− 1)(λ−H)2 =
n− 1

n
κ > 0,

that is, M is not umbilical. From Lemma 2.1 and Lemma 3.1, we have

1
2
∆|φ|2 =

n + 2
4n|φ|2 |∇|φ|

2|2 + |φ|2{|φ|2 − n(n− 2)H√
n(n− 1)

|φ|+ n(c−H2)}. (3.15)

Since the Ricci curvature Rii ≥ (n− 1)c− n2H2

4 and |φ|2 = n(n− 1)(λ−H)2 =
n−1

n κ > 0 are bounded from below, from Proposition 2.1, we have that there is a
point sequence xk in M such that

lim
k→∞

|φ|2(xk) = inf(|φ|2), lim
k→∞

|∇|φ|2(xk)| = 0, lim
k→∞

inf ∆|φ|2(xk) ≥ 0.

By (3.15), we have

inf |φ|2{inf |φ|2 − n(n− 2)H√
n(n− 1)

inf |φ|+ n(c−H2)} ≥ 0.
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Since inf |φ|2 > 0, we have

inf |φ|2 − n(n− 2)H√
n(n− 1)

inf |φ|+ n(c−H2) ≥ 0. (3.16)

Since for c > 0, H2 ≥ c implies n2H2 ≥ 4(n−1)c, we know that the discriminant
of (3.16) is non-negative for all c. From (3.16), we have

inf |φ| ≤ 1
2

√
n

n− 1
[(n− 2)H −

√
n2H2 − 4(n− 1)c], (3.17)

or

inf |φ| ≥ 1
2

√
n

n− 1
[(n− 2)H +

√
n2H2 − 4(n− 1)c]. (3.18)

Assume that (3.17) holds, if c ≤ 0, we have inf |φ| ≤ 1
2

√
n

n−1 [(n−2)H−nH] < 0,

which contradicts inf |φ|2 > 0; if c > 0, since we assume that H2 ≥ c, we have
inf |φ| ≤ 1

2

√
n

n−1 [(n−2)H−
√

n2H2 − 4(n− 1)c] ≤ 0, this is also in contradiction

to inf |φ|2 > 0. Therefore, we know that (3.18) holds, we have

|φ|2 ≥ 1
4

n

n− 1
[(n− 2)H +

√
n2H2 − 4(n− 1)c]2,

and this is equivalent to

S ≥ −nc +
n3H2

2(n− 1)
+

n(n− 2)
2(n− 1)

√
n2H4 − 4(n− 1)cH2.

From Theorem 1.4, we have

S = −nc +
n3H2

2(n− 1)
+

n(n− 2)
2(n− 1)

√
n2H4 − 4(n− 1)cH2.

By Theorem 1.5, we see that Main Theorem is true.
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