An Example of Bianchi Transformation in E^{4}

V. Gorkavyy

Mathematics Division, B. Verkin Institute for Low Temperature Physics and Engineering National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkiv 61103, Ukraine E-mail: gorkaviy@ilt.kharkov.ua
Received March 2, 2011

We describe a particular class of pseudo-spherical surfaces in E^{4} which admit Bianchi transformations.

Key words: pseudo-spherical surface, Bianchi transformation, Beltrami surface.

Mathematics Subject Classification 2010: 53A07, 53B25.

Introduction

The aim of this note is to describe a particular class of two-dimensional pseudo-spherical surfaces, which admit the Bianchi transformation, in the fourdimensional Euclidean space.

Recall the classical definition of the Bianchi transformation, see [1, 2, 3]. Let F be a pseudo-spherical surface, i.e. a surface of the constant negative Gauss curvature $K \equiv-k^{2}$, in the three-dimensional Euclidean space E^{3}. Suppose that F is represented in E^{3} by a position-vector $r(\varphi, v)$ in terms of horocyclic coordinates (φ, v), i.e. the metric form of F reads $d s^{2}=\frac{1}{k^{2}} d \varphi^{2}+e^{2 \varphi} d v^{2}$. Consider a new surface F^{*} whose position vector is

$$
\begin{equation*}
r^{*}=r-\partial_{\varphi} r \tag{1}
\end{equation*}
$$

It is well known that F^{*} is pseudo-spherical and has the same Gauss curvature, $K \equiv-k^{2} ; F^{*}$ is called a Bianchi transform of F. Using different horocyclic coordinates and applying the Bianchi transformation, one can construct a one-parameter family of various pseudo-spherical surfaces from a given pseudospherical surface. Notice that the Bianchi transformation possesses some exceptional features in terms of geodesic congruences which may be used to suggest a synthetic definition of the Bianchi transformation equivalent to (1).
(C) V. Gorkavyy, 2012

A direct generalization of the classical theory of Bianchi transformations to the case of n-dimensional pseudo-spherical submanifolds in the $(2 n-1)$-dimensional Euclidean space was suggested and described by Yu. Aminov in [4], see also [1, 2, 5].

On the other hand, the question of how to extend the concept of the Bianchi transformation to the case of n-dimensional pseudo-spherical submanifolds in N dimensional Euclidean spaces with arbitrary $n \geq 2, N \geq 2 n$ remains unsolved. This open problem was supplied by Yu. Aminov and A. Sym in [6], and this is just what motivated our results in this note.

In the simplest non-trivial case of $n=2, N=4$, if one asks to extend the Bianchi transformation to the case of two-dimensional surfaces in the fourdimensional Euclidean space E^{4}, a reasonable way is to accept the same formula (1) in order to construct a new surface F^{*} from a given pseudo-spherical surface $F \subset E^{4}$. Naturally, F^{*} is called a Bianchi transform of F provided that F^{*} is pseudo-spherical. However, it turns out that generically F^{*} is not pseudospherical and thus a generic pseudo-spherical surface in E^{4} does not admit Bianchi transforms [6].

Pseudo-spherical surfaces in E^{4} admitting Bianchi transforms were described in [7] in terms of solutions of some particular system of partial differential equations $G C R$, which may be viewed as a generalization of the sine-Gordon equation. The description deals with the fundamental forms of surfaces. However, no parametric representations for such particular pseudo-spherical surfaces were derived and no one concrete example was presented. Our note is just aimed to remove this gap.

First, in Sec. 1 we recall the classical construction of the Bianchi trasformation for pseudo-spherical surfaces in E^{3}. Next, in Sec. 2 we describe a constructive method for producing a pseudo-spherical surface in E^{4} from a given pseudo-spherical surface in E^{3}, such surfaces in E^{4} will be referred to as stretched. It is proved that an arbitrary stretched pseudo-spherical surface in E^{4} admits a Bianchi transform and this Bianchi transform is stretched too. Relations between the stretched pseudo-spherical surfaces in E^{4} and the solutions of the mentioned $G C R$-system of $[7]$ are analyzed in Sec. 3. As consequence, it is shown that there exist pseudo-spherical surfaces in E^{4}, which are not stretched but admit Bianchi transforms (it should be quite interesting to find an explicit representation for these surfaces). Finally, in Sec. 4 we describe the stretched pseudo-spherical surfaces in E^{4} produced from the standard pseudo-sphere (Beltrami surface) in E^{3}.

1. Classical Theory of Bianchi Transformation

Let \tilde{F} be a regular two-dimensional surface of the constant negative Gauss curvature $K \equiv-k^{2}$ in E^{3}. Locally \tilde{F} is parameterized by the horocyclic coordinates (φ, v) so that its metric form reads $d \tilde{s}^{2}=\frac{1}{k^{2}} d \varphi^{2}+e^{2 \varphi} d v^{2}$. From the intrinsic point of view, the coordinate curves $v=$ const are parallel geodesics, whereas $\varphi=$ const are horocircles in \tilde{F}.

Generically, given a horocyclic coordinate system (φ, v), one can locally parameterize \tilde{F} by another local coordinate system (u, v) so that the coordinate curves $u=$ const and $v=$ const form a conjugate net in \tilde{F}. Then the metric form reads

$$
\begin{equation*}
d \tilde{s}^{2}=\frac{1}{k^{2}} d \varphi(u, v)^{2}+e^{2 \varphi(u, v)} d v^{2} \tag{2}
\end{equation*}
$$

whereas the second fundamental form is diagonalized, $\tilde{b}=\tilde{b}_{11} d u^{2}+\tilde{b}_{22} d v^{2}$. Applying the fundamental Codazzi equations, it is easy to show that

$$
\begin{equation*}
\tilde{b}_{11}=e^{-\varphi} \partial_{u} \varphi, \quad \tilde{b}_{22}=-e^{3 \varphi} \partial_{u} \varphi \tag{3}
\end{equation*}
$$

after some rescaling $u \rightarrow f(u)$. Moreover, the fundamental Gauss equation reads

$$
\begin{equation*}
\partial_{u u} e^{2 \varphi}+\partial_{v v} e^{-2 \varphi}+2 k^{2}=0 . \tag{4}
\end{equation*}
$$

Thus, generically any pseudo-spherical surface in E^{3} generates a solution of the nonlinear pde (4). In its turn, due to the classical Bonnet theorem, any solution of (4) generates via (2), (3) a pseudo-spherical surface in E^{3} parameterized by conjugate coordinates, whose one family of the coordinate curves is parallel geodesics.

Let $\rho(u, v)$ be the corresponding position vector of \tilde{F}. Consider a new surface \tilde{F}^{*} in E^{3} represented by the position vector

$$
\begin{equation*}
\rho^{*}=\rho-\partial_{\varphi} \rho=\rho-\frac{1}{\partial_{u} \varphi} \partial_{u} \rho . \tag{5}
\end{equation*}
$$

It is easy to get that the metric form of \tilde{F}^{*} reads $d \tilde{s}^{* 2}=e^{-2 \varphi} d u^{2}+\frac{1}{k^{2}} d \varphi^{2}$. Hence, if $\partial_{v} \varphi \neq 0$, then the surface \tilde{F}^{*} is regular and has the constant negative Gauss curvature $K=-k^{2}$. Thus, \tilde{F}^{*} is pseudo-spherical and it is called a Bianchi transform of \tilde{F}.

The described Bianchi transformation of the pseudo-spherical surfaces in E^{3} has a number of remarkable geometric properties [3]. From the analytical point of view, it corresponds to the involuting transformation $\varphi(u, v) \rightarrow \varphi^{*}(u, v)=$ $-\varphi(v, u)$ for the solutions of (4). Moreover, it may be interpreted as a particular transformation for the solutions of the sin-Gordon equation.

2. Stretched Pseudo-Spherical Surfaces and Bianchi Transformation

Now, view E^{3} as a horizontal hyperplane $x^{4}=0$ in E^{4} and hence consider the above surface \tilde{F} as a surface in E^{4}. Given $\tilde{F} \subset E^{3} \subset E^{4}$, define a new two-dimensional surface F in E^{4} by

$$
\begin{equation*}
r(u, v)=(\rho(u, v), A \varphi(u, v)+B), \tag{6}
\end{equation*}
$$

where $A \neq 0, B$ are constant. Because of (2), the metric form of F is

$$
\begin{equation*}
d s^{2}=d \tilde{s}^{2}+A^{2} d \varphi^{2}=\left(A^{2}+\frac{1}{k^{2}}\right) d \varphi^{2}+e^{2 \varphi(u, v)} d v^{2} \tag{7}
\end{equation*}
$$

It is easy to show that the Gauss curvature of F is $K=-\frac{k}{\sqrt{A^{2} k^{2}+1}}$. Hence F is pseudo-spherical, and the local coordinates (φ, v) in F are horocyclic. It should be natural to say that the pseudo-spherical surface $F \subset E^{4}$ is obtained by stretching the pseudo-spherical surface $\tilde{F} \subset E^{3} \subset E^{4}$. Thereby F is referred to as stretched, whereas \tilde{F} is called the base of F. Evidently, the stretched pseudospherical surfaces form a particular class of the pseudo-spherical surfaces in E^{4}.

Let us apply to F the transformation

$$
\begin{equation*}
r^{*}=r-\partial_{\varphi} r=r-\frac{1}{\partial_{u} \varphi} \partial_{u} r . \tag{8}
\end{equation*}
$$

The vector function r^{*} represents a new surface F^{*} in E^{4}.
Proposition 1. F^{*} is a stretched pseudo-spherical surface. Moreover, the base of F^{*} is the Bianchi transform \tilde{F}^{*} of the base \tilde{F} of F.

Proof. Due to (6), we have

$$
\begin{equation*}
r^{*}=\left(\rho-\frac{1}{\partial_{u} \varphi} \partial_{u} \rho, A \varphi+B-A\right) . \tag{9}
\end{equation*}
$$

In view of (5), $\rho^{*}=\rho-\frac{1}{\partial_{u} \varphi} \partial_{u} \rho$ represents exactly the Bianchi transform \tilde{F}^{*} of \tilde{F}. Moreover, the metric form of \tilde{F}^{*} is $d \tilde{s}^{* 2}=e^{-2 \varphi} d u^{2}+\frac{1}{k^{2}} d \varphi^{2}$, hence $\varphi^{*}(u, v)=$ $-\varphi(v, u)$. Therefore, (9) may be rewritten as follows:

$$
\begin{equation*}
r^{*}=\left(\rho^{*}, A^{*} \varphi^{*}+B^{*}\right), \tag{10}
\end{equation*}
$$

where $A^{*}=-A, B^{*}=B-A$. Comparing (6) with (10), one can easily conclude that F^{*} is a stretched pseudo-spherical surface whose base surface is \tilde{F}^{*}. Notice that the Gauss curvature of F^{*} is still the same, $K=-\frac{k}{\sqrt{A^{2} k^{2}+1}}$, q.e.d.

Thus, any stretched pseudo-spherical surface in E^{4} admits a Bianchi transform which is a stretched pseudo-spherical surface too. Besides, the Bianchi transformation of the stretched pseudo-spherical surfaces in E^{4} is generated by the classical Bianchi transformation of their base surfaces in E^{3}.

Remark. The same stretching procedure was applied in [8] to produce two-dimensional pseudo-spherical surfaces, which admit Bianchi transforms, in Riemannian products $M^{n} \times R^{1}$, where M^{n} is the sphere S^{n} or the Lobachevski space H^{n}. It turns out that a pseudo-spherical surface in $M^{3} \times R^{1}$ admits a Bianchi transform if and only if it is either a stretched surface or a hypersurface in a horizontal slice $M^{3} \times\left\{h_{0}\right\} \subset M^{3} \times R^{1}$. As we will see in the next section, this is not true for the case of $R^{3} \times R^{1}$, i.e. if $M^{3}=E^{3}$.

3. Stretched Pseudo-Spherical Surfaces and Solutions of the $G C R$-System

Pseudo-spherical surfaces in E^{4} admitting Bianchi transforms were described in [7]. Roughly speaking, a pseudo-spherical surface with $K \equiv-1$ in E^{4}, which is not a hypersurface in any hyperplane $E^{3} \subset E^{4}$, admits a Bianchi transform if and only if it can be parameterized in such a way that its fundamental forms read

$$
\begin{gather*}
d s^{2}=d \varphi^{2}+e^{2 \varphi} d v^{2} \tag{11}\\
I I^{1}=e^{-\varphi} \partial_{u} \varphi d u^{2}-e^{3 \varphi} \partial_{u} \varphi d v^{2}, \quad I I^{2}=e^{\varphi} P d v^{2}, \tag{12}\\
\mu_{12}=Q d u \tag{13}
\end{gather*}
$$

where the functions $\varphi(u, v), P(u, v)$ and $Q(u, v)$ satisfy the Gauss-Codazzi-Ricci equations

$$
\begin{gather*}
\partial_{u u} e^{2 \varphi}+\partial_{v v} e^{-2 \varphi}+2(P Q+1)=0, \tag{14}\\
\partial_{u} P-Q e^{2 \varphi} \partial_{u} \varphi=0, \tag{15}\\
\partial_{v} Q+P e^{-2 \varphi} \partial_{v} \varphi=0 \tag{16}
\end{gather*}
$$

and the regularity conditions

$$
\begin{equation*}
\partial_{u} \varphi \neq 0, \quad \partial_{v} \varphi \neq 0, \quad P \neq 0, \quad Q \neq 0 . \tag{17}
\end{equation*}
$$

Due to the classical Bonnet theorem, any solution $\{\varphi, P, Q\}$ of the $G C R$-system (14)-(17) generates a pseudo-spherical surface with $K \equiv-1$ in E^{4} which admits a Bianchi transform.

Since the stretched pseudo-spherical surfaces in E^{4} admit Bianchi transforms, they correspond to some particular solutions of (14)-(17).

Proposition 2. The stretched pseudo-spherical surface F in E^{4}, represented by (6) with $A=\frac{\sqrt{k^{2}-1}}{k}$, has the following fundamental forms:

$$
\begin{gather*}
d s^{2}=d \varphi^{2}+e^{2 \varphi} d v^{2} \tag{18}\\
I I^{1}=e^{-\varphi} \partial_{u} \varphi d u^{2}-e^{3 \varphi} \partial_{u} \varphi d v^{2}, \quad I I^{2}=e^{2 \varphi} \sqrt{k^{2}-1} d v^{2} \tag{19}\\
\mu_{12}=e^{-\varphi} \sqrt{k^{2}-1} d u \tag{20}
\end{gather*}
$$

Proof. Set $A=\frac{\sqrt{k^{2}-1}}{k}$ in (6). Then (7) implies (18).
Differentiate (6) and write the vectors tangent to F

$$
\begin{equation*}
\partial_{u} r=\left(\partial_{u} \rho, \frac{\sqrt{k^{2}-1}}{k} \partial_{u} \varphi\right), \quad \partial_{v} r=\left(\partial_{v} \rho, \frac{\sqrt{k^{2}-1}}{k} \partial_{v} \varphi\right) . \tag{21}
\end{equation*}
$$

The normal plane to $F \subset E^{4}$ is spanned by the following unit vectors:

$$
\begin{equation*}
N_{1}=(n, 0), \quad N_{2}=\left(-\frac{\sqrt{k^{2}-1}}{\partial_{u} \varphi} \partial_{u} \rho, \frac{1}{k}\right) \tag{22}
\end{equation*}
$$

where n is the unit vector normal to the base surface $\tilde{F} \subset E^{3} \subset E^{4}$. Differentiate (21) and find the second fundamental forms $I I^{\sigma}=\left\langle d^{2} r, N_{\sigma}\right\rangle$ of F with respect to the normal frame (22); this yields (19).

Finally, differentiate (22) and find $\mu_{12}=\left\langle d N_{1}, N_{2}\right\rangle$; this proves (20), q.e.d.
Comparing (18)-(20) with (11)-(13), we can see that the stretched pseudospherical surface F corresponds to the solution

$$
\begin{equation*}
\left\{\varphi, \quad P=\sqrt{k^{2}-1} e^{\varphi}, \quad Q=\sqrt{k^{2}-1} e^{-\varphi}\right\} \tag{23}
\end{equation*}
$$

whereas $\varphi(u, v)$ is determined by the base \tilde{F} and solves equation (11) which reduces to (4). This solution was presented in the formula (32) of [7], where one has to set $c_{1}=0, c_{2}=\sqrt{k^{2}-1}$.

Notice that (11), (12) has other solutions different from (23), see [7]. It means that there are pseudo-spherical surfaces in E^{4} which are neither stretched surfaces nor hypersurfaces in $E^{3} \subset E^{4}$ but admit Bianchi transforms.

4. An Example: Stretched Pseudo-Spheres in E^{4}

Let $\tilde{F} \subset E^{3}$ be a pseudo-sphere represented by the position vector

$$
\rho(\varphi, v)=\left(e^{\varphi} \cos v, e^{\varphi} \sin v, \Psi\right)
$$

where $\Psi(\varphi)$ satisfies $\left(\Psi^{\prime}\right)^{2}+e^{2 \varphi}=\frac{1}{k^{2}}$, hence

$$
\begin{equation*}
\Psi= \pm \frac{1}{k}\left(\sqrt{1-k^{2} e^{2 \varphi}}+\frac{1}{2} \ln \left(1-\sqrt{1-k^{2} e^{2 \varphi}}\right)-\frac{1}{2} \ln \left(1+\sqrt{1-k^{2} e^{2 \varphi}}\right)\right) \tag{24}
\end{equation*}
$$

The local coordinates (φ, v) in \tilde{F} are horospherical since $d \tilde{s}^{2}=\frac{1}{k^{2}} d \varphi^{2}+e^{2 \varphi} d v^{2}$. However, if we apply the Bianchi transformation (1), then the transformed surface \tilde{F}^{*} degenerates to a curve (the axis of rotation of \tilde{F}). So we need some other horocyclic coordinates in F. Such coordinates are given by

$$
\begin{equation*}
\varphi=-\ln \left(\frac{2 e^{-\hat{\varphi}}}{k^{2} \hat{v}^{2}+e^{-2 \hat{\varphi}}}\right), \quad v=\frac{2 \hat{v}}{k^{2} \hat{v}^{2}+e^{-2 \hat{\varphi}}} \tag{25}
\end{equation*}
$$

In fact, it is easy to verify that the metric form of \tilde{F} reads $d \tilde{s}^{2}=\frac{1}{k^{2}} d \hat{\varphi}^{2}+e^{2 \hat{\varphi}} d \hat{v}^{2}$, so the local coordinates $(\hat{\varphi}, \hat{v})$ in \tilde{F} are horocyclic.

Taking \tilde{F} as the base, a stretched pseudo-spherical surface F in E^{4} is represented by the position vector

$$
r(\hat{\varphi}, \hat{v})=\left(e^{\varphi} \cos v, e^{\varphi} \sin v, \Psi, A \hat{v}+B\right)
$$

where $\varphi(\hat{\varphi}, \hat{v}), v(\hat{\varphi}, \hat{v}), \Psi(\varphi(\hat{\varphi}, \hat{v}))$ are explicitly given by $(24),(25)$, and $A \neq 0, B$ are arbitrary constants. In terms of the original coordinates (φ, v), the stretched surface F is represented by

$$
r(\varphi, v)=\left(e^{\varphi} \cos v, e^{\varphi} \sin v, \Psi(\varphi), A \ln \left(\frac{1+v^{2} e^{2 \varphi} k^{2}}{2}\right)+B\right)
$$

This surface in E^{4} should be called a stretched pseudo-sphere (a stretched Beltrami surface). Applying the Bianchi transformation, one may obtain a new sequence of the stretched pseudo-spherical surfaces in E^{4}.

References

[1] Yu.A. Aminov, Geometry of Submanifolds. Gordon \& Breach Science Publ., Amsterdam, 2001.
[2] K. Tenenblat, Transformations of Manifolds and Applications to Differential Equations. Wiley, New York, 1998.
[3] Nonlinearity \& Geometry. Luigi Bianchi Days. (D. Wojcik and J. Cieslinski, Eds.), Polish Scientific Publishers PWN, Warsawa, 1998.
[4] Yu. Aminov, A Bianchi Transformation for a Domain of the Many-Dimensional Lobachevski Space. - Ukr. Geom. Sb. 21 (1978), 3-5. (Russian)
[5] L.A. Masaltsev, Pseudo-Spherical Congruence in $E^{2 n-1}$. - Mat. fiz., analiz, geom. 1 (1994), No. 3/4, 505-512. (Russian)
[6] Yu. Aminov and A. Sym, On Bianchi and Backlund Transformations of TwoDimensional Surfaces in E^{4}. - Math. Phys., Anal. Geom. 3 (2000), No. 1, 75-89.
[7] V.A. Gorkavyy, Bianchi Congruences for Surfaces in E^{4}. - Mat. Sb. 196 (2005), No. 10, 79-102. (Russian)
[8] V.A. Gorkavyy and O.M. Nevmerzhitska, An Analogue of the Bianchi Transformation for Two-Dimensional Surfaces in $S^{3} \times R^{1}$ and $H^{3} \times R^{1}$. In Proceedings of the International conference "Geometry in "large", topology and applications", dedicated to A.V. Pogorelov, "Acta", Kharkiv, 2010, 186-195.

