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Introduction

The aim of this note is to describe a particular class of two-dimensional
pseudo-spherical surfaces, which admit the Bianchi transformation, in the four-
dimensional Euclidean space.

Recall the classical definition of the Bianchi transformation, see [1, 2, 3]. Let
F be a pseudo-spherical surface, i.e. a surface of the constant negative Gauss
curvature K ≡ −k2, in the three-dimensional Euclidean space E3. Suppose
that F is represented in E3 by a position-vector r(ϕ, v) in terms of horocyclic
coordinates (ϕ, v), i.e. the metric form of F reads ds2 = 1

k2 dϕ2+e2ϕdv2. Consider
a new surface F ∗ whose position vector is

r∗ = r − ∂ϕr. (1)

It is well known that F ∗ is pseudo-spherical and has the same Gauss curva-
ture, K ≡ −k2; F ∗ is called a Bianchi transform of F . Using different horo-
cyclic coordinates and applying the Bianchi transformation, one can construct a
one-parameter family of various pseudo-spherical surfaces from a given pseudo-
spherical surface. Notice that the Bianchi transformation possesses some excep-
tional features in terms of geodesic congruences which may be used to suggest a
synthetic definition of the Bianchi transformation equivalent to (1).
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A direct generalization of the classical theory of Bianchi transformations to the
case of n-dimensional pseudo-spherical submanifolds in the (2n− 1)-dimensional
Euclidean space was suggested and described by Yu. Aminov in [4], see also
[1, 2, 5].

On the other hand, the question of how to extend the concept of the Bianchi
transformation to the case of n-dimensional pseudo-spherical submanifolds in N -
dimensional Euclidean spaces with arbitrary n ≥ 2, N ≥ 2n remains unsolved.
This open problem was supplied by Yu. Aminov and A. Sym in [6], and this is
just what motivated our results in this note.

In the simplest non-trivial case of n = 2, N = 4, if one asks to extend
the Bianchi transformation to the case of two-dimensional surfaces in the four-
dimensional Euclidean space E4, a reasonable way is to accept the same formula
(1) in order to construct a new surface F ∗ from a given pseudo-spherical surface
F ⊂ E4. Naturally, F ∗ is called a Bianchi transform of F provided that F ∗

is pseudo-spherical. However, it turns out that generically F ∗ is not pseudo-
spherical and thus a generic pseudo-spherical surface in E4 does not admit Bianchi
transforms [6].

Pseudo-spherical surfaces in E4 admitting Bianchi transforms were described
in [7] in terms of solutions of some particular system of partial differential equa-
tions GCR, which may be viewed as a generalization of the sine-Gordon equation.
The description deals with the fundamental forms of surfaces. However, no para-
metric representations for such particular pseudo-spherical surfaces were derived
and no one concrete example was presented. Our note is just aimed to remove
this gap.

First, in Sec. 1 we recall the classical construction of the Bianchi trasfor-
mation for pseudo-spherical surfaces in E3. Next, in Sec. 2 we describe a con-
structive method for producing a pseudo-spherical surface in E4 from a given
pseudo-spherical surface in E3, such surfaces in E4 will be referred to as stretched.
It is proved that an arbitrary stretched pseudo-spherical surface in E4 admits a
Bianchi transform and this Bianchi transform is stretched too. Relations between
the stretched pseudo-spherical surfaces in E4 and the solutions of the mentioned
GCR-system of [7] are analyzed in Sec. 3. As consequence, it is shown that there
exist pseudo-spherical surfaces in E4, which are not stretched but admit Bianchi
transforms (it should be quite interesting to find an explicit representation for
these surfaces). Finally, in Sec. 4 we describe the stretched pseudo-spherical sur-
faces in E4 produced from the standard pseudo-sphere (Beltrami surface) in E3.
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1. Classical Theory of Bianchi Transformation

Let F̃ be a regular two-dimensional surface of the constant negative Gauss
curvature K ≡ −k2 in E3. Locally F̃ is parameterized by the horocyclic coor-
dinates (ϕ, v) so that its metric form reads ds̃2 = 1

k2 dϕ2 + e2ϕdv2. From the
intrinsic point of view, the coordinate curves v = const are parallel geodesics,
whereas ϕ = const are horocircles in F̃ .

Generically, given a horocyclic coordinate system (ϕ, v), one can locally pa-
rameterize F̃ by another local coordinate system (u, v) so that the coordinate
curves u = const and v = const form a conjugate net in F̃ . Then the metric form
reads

ds̃2 =
1
k2

dϕ(u, v)2 + e2ϕ(u,v)dv2, (2)

whereas the second fundamental form is diagonalized, b̃ = b̃11du2 + b̃22dv2. Ap-
plying the fundamental Codazzi equations, it is easy to show that

b̃11 = e−ϕ∂uϕ, b̃22 = −e3ϕ∂uϕ (3)

after some rescaling u → f(u). Moreover, the fundamental Gauss equation reads

∂uue2ϕ + ∂vve
−2ϕ + 2k2 = 0. (4)

Thus, generically any pseudo-spherical surface in E3 generates a solution of the
nonlinear pde (4). In its turn, due to the classical Bonnet theorem, any solu-
tion of (4) generates via (2), (3) a pseudo-spherical surface in E3 parameterized
by conjugate coordinates, whose one family of the coordinate curves is parallel
geodesics.

Let ρ(u, v) be the corresponding position vector of F̃ . Consider a new surface
F̃ ∗ in E3 represented by the position vector

ρ∗ = ρ− ∂ϕρ = ρ− 1
∂uϕ

∂uρ. (5)

It is easy to get that the metric form of F̃ ∗ reads ds̃∗2 = e−2ϕdu2 + 1
k2 dϕ2. Hence,

if ∂vϕ 6= 0, then the surface F̃ ∗ is regular and has the constant negative Gauss
curvature K = −k2. Thus, F̃ ∗ is pseudo-spherical and it is called a Bianchi
transform of F̃ .

The described Bianchi transformation of the pseudo-spherical surfaces in E3

has a number of remarkable geometric properties [3]. From the analytical point
of view, it corresponds to the involuting transformation ϕ(u, v) → ϕ∗(u, v) =
−ϕ(v, u) for the solutions of (4). Moreover, it may be interpreted as a particular
transformation for the solutions of the sin-Gordon equation.
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2. Stretched Pseudo-Spherical Surfaces and Bianchi
Transformation

Now, view E3 as a horizontal hyperplane x4 = 0 in E4 and hence consider
the above surface F̃ as a surface in E4. Given F̃ ⊂ E3 ⊂ E4, define a new
two-dimensional surface F in E4 by

r(u, v) = (ρ(u, v), Aϕ(u, v) + B) , (6)

where A 6= 0, B are constant. Because of (2), the metric form of F is

ds2 = ds̃2 + A2dϕ2 =
(

A2 +
1
k2

)
dϕ2 + e2ϕ(u,v)dv2. (7)

It is easy to show that the Gauss curvature of F is K = − k√
A2k2 + 1

. Hence

F is pseudo-spherical, and the local coordinates (ϕ, v) in F are horocyclic. It
should be natural to say that the pseudo-spherical surface F ⊂ E4 is obtained by
stretching the pseudo-spherical surface F̃ ⊂ E3 ⊂ E4. Thereby F is referred to
as stretched, whereas F̃ is called the base of F . Evidently, the stretched pseudo-
spherical surfaces form a particular class of the pseudo-spherical surfaces in E4.

Let us apply to F the transformation

r∗ = r − ∂ϕr = r − 1
∂uϕ

∂ur. (8)

The vector function r∗ represents a new surface F ∗ in E4.

Proposition 1. F ∗ is a stretched pseudo-spherical surface. Moreover, the
base of F ∗ is the Bianchi transform F̃ ∗ of the base F̃ of F .

P r o o f. Due to (6), we have

r∗ =
(

ρ− 1
∂uϕ

∂uρ,Aϕ + B −A

)
. (9)

In view of (5), ρ∗ = ρ− 1
∂uϕ∂uρ represents exactly the Bianchi transform F̃ ∗ of F̃ .

Moreover, the metric form of F̃ ∗ is ds̃∗2 = e−2ϕdu2 + 1
k2 dϕ2, hence ϕ∗(u, v) =

−ϕ(v, u). Therefore, (9) may be rewritten as follows:

r∗ = (ρ∗, A∗ϕ∗ + B∗) , (10)

where A∗ = −A,B∗ = B −A. Comparing (6) with (10), one can easily conclude
that F ∗ is a stretched pseudo-spherical surface whose base surface is F̃ ∗. Notice

that the Gauss curvature of F ∗ is still the same, K = − k√
A2k2 + 1

, q.e.d.
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Thus, any stretched pseudo-spherical surface in E4 admits a Bianchi trans-
form which is a stretched pseudo-spherical surface too. Besides, the Bianchi
transformation of the stretched pseudo-spherical surfaces in E4 is generated by
the classical Bianchi transformation of their base surfaces in E3.

R e m a r k. The same stretching procedure was applied in [8] to produce
two-dimensional pseudo-spherical surfaces, which admit Bianchi transforms, in
Riemannian products Mn × R1, where Mn is the sphere Sn or the Lobachevski
space Hn. It turns out that a pseudo-spherical surface in M3 × R1 admits a
Bianchi transform if and only if it is either a stretched surface or a hypersurface
in a horizontal slice M3 × {h0} ⊂ M3 × R1. As we will see in the next section,
this is not true for the case of R3 ×R1, i.e. if M3 = E3.

3. Stretched Pseudo-Spherical Surfaces and Solutions of the
GCR-System

Pseudo-spherical surfaces in E4 admitting Bianchi transforms were described
in [7]. Roughly speaking, a pseudo-spherical surface with K ≡ −1 in E4, which
is not a hypersurface in any hyperplane E3 ⊂ E4, admits a Bianchi transform
if and only if it can be parameterized in such a way that its fundamental forms
read

ds2 = dϕ2 + e2ϕdv2, (11)

II1 = e−ϕ∂uϕdu2 − e3ϕ∂uϕdv2, II2 = eϕPdv2, (12)

µ12 = Qdu, (13)

where the functions ϕ(u, v), P (u, v) and Q(u, v) satisfy the Gauss–Codazzi–Ricci
equations

∂uue2ϕ + ∂vve
−2ϕ + 2(PQ + 1) = 0, (14)

∂uP −Qe2ϕ∂uϕ = 0, (15)

∂vQ + Pe−2ϕ∂vϕ = 0 (16)

and the regularity conditions

∂uϕ 6= 0, ∂vϕ 6= 0, P 6= 0, Q 6= 0. (17)

Due to the classical Bonnet theorem, any solution {ϕ, P, Q} of the GCR-system
(14)–(17) generates a pseudo-spherical surface with K ≡ −1 in E4 which admits
a Bianchi transform.

Since the stretched pseudo-spherical surfaces in E4 admit Bianchi transforms,
they correspond to some particular solutions of (14)–(17).
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Proposition 2. The stretched pseudo-spherical surface F in E4, represented
by (6) with A =

√
k2−1
k , has the following fundamental forms:

ds2 = dϕ2 + e2ϕdv2, (18)

II1 = e−ϕ∂uϕdu2 − e3ϕ∂uϕdv2, II2 = e2ϕ
√

k2 − 1 dv2, (19)

µ12 = e−ϕ
√

k2 − 1 du. (20)

P r o o f. Set A =
√

k2−1
k in (6). Then (7) implies (18).

Differentiate (6) and write the vectors tangent to F

∂ur =

(
∂uρ,

√
k2 − 1
k

∂uϕ

)
, ∂vr =

(
∂vρ,

√
k2 − 1
k

∂vϕ

)
. (21)

The normal plane to F ⊂ E4 is spanned by the following unit vectors:

N1 = (n, 0) , N2 =

(
−
√

k2 − 1
∂uϕ

∂uρ,
1
k

)
, (22)

where n is the unit vector normal to the base surface F̃ ⊂ E3 ⊂ E4. Differentiate
(21) and find the second fundamental forms IIσ = 〈d2r,Nσ〉 of F with respect
to the normal frame (22); this yields (19).

Finally, differentiate (22) and find µ12 = 〈dN1, N2〉; this proves (20), q.e.d.
Comparing (18)–(20) with (11)–(13), we can see that the stretched pseudo-

spherical surface F corresponds to the solution
{

ϕ, P =
√

k2 − 1eϕ, Q =
√

k2 − 1e−ϕ
}

, (23)

whereas ϕ(u, v) is determined by the base F̃ and solves equation (11) which
reduces to (4). This solution was presented in the formula (32) of [7], where one
has to set c1 = 0, c2 =

√
k2 − 1.

Notice that (11), (12) has other solutions different from (23), see [7]. It means
that there are pseudo-spherical surfaces in E4 which are neither stretched surfaces
nor hypersurfaces in E3 ⊂ E4 but admit Bianchi transforms.

4. An Example: Stretched Pseudo-Spheres in E4

Let F̃ ⊂ E3 be a pseudo-sphere represented by the position vector

ρ(ϕ, v) = (eϕ cos v, eϕ sin v, Ψ) ,
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where Ψ(ϕ) satisfies (Ψ′)2 + e2ϕ = 1
k2 , hence

Ψ = ±1
k

(√
1− k2e2ϕ +

1
2

ln(1−
√

1− k2e2ϕ)− 1
2

ln(1 +
√

1− k2e2ϕ)
)

. (24)

The local coordinates (ϕ, v) in F̃ are horospherical since ds̃2 = 1
k2 dϕ2 + e2ϕdv2.

However, if we apply the Bianchi transformation (1), then the transformed surface
F̃ ∗ degenerates to a curve (the axis of rotation of F̃ ). So we need some other
horocyclic coordinates in F . Such coordinates are given by

ϕ = − ln
(

2e−ϕ̂

k2v̂2 + e−2ϕ̂

)
, v =

2v̂

k2v̂2 + e−2ϕ̂
. (25)

In fact, it is easy to verify that the metric form of F̃ reads ds̃2 = 1
k2 dϕ̂2 + e2ϕ̂dv̂2,

so the local coordinates (ϕ̂, v̂) in F̃ are horocyclic.
Taking F̃ as the base, a stretched pseudo-spherical surface F in E4 is repre-

sented by the position vector

r(ϕ̂, v̂) = (eϕ cos v, eϕ sin v, Ψ, Av̂ + B) ,

where ϕ(ϕ̂, v̂), v(ϕ̂, v̂), Ψ(ϕ(ϕ̂, v̂)) are explicitly given by (24), (25), and A 6= 0, B
are arbitrary constants. In terms of the original coordinates (ϕ, v), the stretched
surface F is represented by

r(ϕ, v) =
(

eϕ cos v, eϕ sin v, Ψ(ϕ), A ln
(

1 + v2e2ϕk2

2

)
+ B

)
.

This surface in E4 should be called a stretched pseudo-sphere (a stretched
Beltrami surface). Applying the Bianchi transformation, one may obtain a new
sequence of the stretched pseudo-spherical surfaces in E4.
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