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1. Introduction

In [1], D.J. Kaup proved that the nonlinear system of equations
{

ητ = Φxx + β2Φxxxx − ε(Φxη)x

η = Φτ + 1
2εΦ2

x,

is completely integrable. The system describes the waves propagation in shallow
water. In [2], the complex finite-gap multiphase solutions expressed in terms of
the Riemann theta-functions are considered, the multi-soliton solutions are found
and the asymptotic behavior of these solutions is studied. In [3, 4] and [5, pp.
169–179], the real finite-gap regular solutions of Kaup system were studied.

First author partially supported by FEDER and Ministerio de Educación y Ciencia, Spain,
project MTM2010-15314.
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It is not difficult (see [2]) to verify that after transformations

η =
4β2

ε
(q + p2) +

1
ε
, Φτ =

4β2

ε
(q + 3p2) +

1
ε
, Φx = −4β

iε
p, t = iβτ ,

the system of Kaup equations takes a simpler form
{

pt = −6ppx − qx

qt = pxxx − 4qpx − 2pqx.

This system we will also call the Kaup system.
The Kaup system can be considered as a compatibility condition (see [2])

yxxt − ytxx ≡ [(qt − pxxx + 4qpx + 2pqx) + 2λ(pt + 6ppx + qx)]y = 0

for the system of the linear equations
{ −yxx + qy + 2λpy − λ2y = 0

yt + 2(p + λ)yx − pxy = 0.

The first of these equations is called the quadratic pencil of Sturm–Liouville
equations.

The inverse problem for the quadratic pencil of Sturm–Liouville equations in
the class of “rapidly decreasing” coefficients by scattering data on the half line
and whole line was solved in the works of M. Jaulent [6], M. Jaulent, I. Miodek
[7], M. Jaulent, C. Jean [8, 9], F.G. Maksudov, G.Sh. Guseinov [10], by the
Weyl–Titchmarsh function, in the work of V.A. Yurko [11], on the finite interval
by spectrum and normalization constants as well as by two spectra was studied
by M.G. Gasimov, G.Sh. Guseinov in [12], with periodical potential on the whole
line by G.Sh. Guseinov in [13–16], B.A. Babazhanov, A.B. Khasanov, A.B. Yakh-
shimuratov in [17] and A.B. Yakhshimuratov in [18].

In this paper, the method of the inverse spectral problem for the quadratic
pencil of Sturm–Liouville equations with periodic coefficients is used to integrate
the system of Kaup equations with a self-consistent source in the class of periodic
functions. We note that some nonlinear equations with a self-consistent source
in the class of periodic functions were studied in [19–21].

2. Problem Statement

We consider the system of Kaup equations with a self-consistent source

pt = −6ppx − qx +

∞∫

−∞
β(λ, t)s(π, λ, t)(ψ+ψ−)xdλ, (1)
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qt = pxxx − 4qpx − 2pqx

+2

∞∫

−∞
β(λ, t)s(π, λ, t){−pxψ+ψ− + (λ− 2p)(ψ+ψ−)x}dλ, (2)

in the class of real-valued π-periodic on the spatial variable x functions p = p(x, t)
and q = q(x, t) which satisfy the regularity of assumptions

p ∈ C3
x(t > 0) ∩ C1

t (t > 0) ∩ C(t ≥ 0), q ∈ C1(t > 0) ∩ C(t ≥ 0)

with the initial conditions

p(x, t)|t=0 = p0(x) , q(x, t)|t=0 = q0(x). (3)

Here p0 ∈ C3(R), q0 ∈ C2(R) are the given real-valued π-periodic functions such
that for any nontrivial function y ∈ W 2

2 [0, π] satisfying the equalities y′(0)ȳ(0)−
y′(π)ȳ(π) = 0 and (y, y) = 1, the following inequality holds:

(p0y, y)2 + (q0y, y) + (y′, y′) > 0,

where (· , ·) is a scalar product of the space L2(0, π). The last condition we will
call condition (A).

In the previous expressions, β(λ, t) is a given real-valued continuous function
having a uniform asymptotic behavior β(λ, t) = O(λ−2), λ → ±∞ and ψ± =
ψ±(x, λ, t) are the Floquet solutions (normalized by the condition ψ±(0, λ, t) = 1)
of the quadratic pencil of Sturm–Liouville equations

T (λ, t)y ≡ −y′′ + qy + 2λ py − λ 2y = 0 , x ∈ R. (4)

We denote by s(x, λ, t) the unique solution of equation (4) satisfying the initial
conditions s(0, λ, t) = 0, s′(0, λ, t) = 1.

The aim of this work is to develop a procedure for constructing the solution
(p(x, t), q(x, t), ψ+(x, λ, t), ψ−(x, λ, t)) of problem (1)–(4) by means of the inverse
spectral problem for the quadratic pencil of Sturm–Liouville equations (4).

We note that the Lax pair for system (1), (2) consists of equation (4) and the
equation

yt + 2(p + λ)yx − pxy + F (x, λ, t) = 0,

where

F (x, λ, t) =

∞∫

−∞

β(µ, t)s(π, µ, t)ψ+(x, µ, t)W{ψ−(x, µ, t), y(x, λ, t)}
λ− µ

dµ.

Here W{z(x), y(x)} = z(x)y′(x)− z′(x)y(x).
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The Floquet solutions for (4) are defined in a similar way as for the Sturm–
Liouville equation. Using the expression for the Floquet solutions, it is easy to
derive the identity

s(π, λ, t)ψ+(τ, λ, t)ψ−(τ, λ, t) = s(π, λ, t, τ), (5)

where s(x, λ, t, τ) is the solution of the quadratic pencil of Sturm–Liouville equa-
tions with coefficients p(x + τ, t) and q(x + τ, t) satisfying the initial conditions
s(0, λ, t, τ) = 0, s′(0, λ, t, τ) = 1. In particular, from equality (5) it follows that
the integrals in equations (1) and (2) are π-periodic on x, so we can speak about
periodic solutions of system (1), (2).

Equality (5) and asymptotic formulas (see [22])

s(π, λ, t, τ) = O(λ−1),
∂s(π, λ, t, τ)

∂τ
= O(λ−1), λ → ±∞,

provide a uniform convergence of the integrals in equations (1) and (2). Identity
(5) will also play the main role in Section 6.

The function ψ+(x, λ, t)ψ−(x, λ, t) has the pole of the first order at the zeros
λ = ξn(t), n ∈ Z\{0} of the function s(π, λ, t). Thus, we will understand the
expression

s(π, ξn(t), t)ψ+(x, ξn(t), t)ψ−(x, ξn(t), t)

as

s(π, ξn(t), t)ψ+(x, ξn(t), t)ψ−(x, ξn(t), t) = lim
λ→ξn(t)

s(π, λ, t)ψ+(x, λ, t)ψ−(x, λ, t).

3. Preliminaries

In this section, for the sake of completeness, we will give some information
about the theory of the inverse problem for the quadratic pencil of Sturm–
Liouville equations (see [13–16]).

We consider the quadratic pencil of Sturm–Liouville equations (4). The spec-
trum of problem (4) coincides with the set

σ(T ) =
{
λ ∈ C : Im∆(λ) = 0, ∆2(λ) ≤ 4

}
,

where ∆(λ) = c(π, λ, t) + s′(π, λ, t) is called a Lyapunov function or Hill dis-
criminant of the quadratic pencil (4) (see [4], [5, pp. 169–179]). Here c(x, λ, t)
is the solution of equation (4) which satisfies the initial conditions c(0, λ, t) = 1,
c′(0, λ, t) = 0. If q ∈ L2[0, π] and p ∈ W 1

2 [0, π] are the real-valued π-periodic
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functions satisfying condition (A), then the spectrum of problem (4) is real and
it coincides with the set

σ(T ) = {λ ∈ R| − 2 ≤ ∆(λ) ≤ 2} = R\
∞⋃

n=−∞
(λ2n−1, λ2n).

The intervals (λ2n−1, λ2n), n ∈ Z are called the gaps or lacunas. The numbering
is introduced such that λ−1 < 0 < λ0.

The numbers ξn = ξn(t) with the signs σn = σn(t) = sign{s′(π, ξn, t) −
c(π, ξn, t)}, n ∈ Z\{0} are called the spectral parameters of problem (4). Notice
that ξn coincides with the eigenvalues of the Dirichlet problem for equation (4).
Moreover, the inclusions ξn ∈ [λ2n−1, λ2n] and the equality

s(π, λ, t) = π
∞∏

06=k=−∞

ξk − λ

k
(6)

are fulfilled.
R e m a r k 1. If ξn = λ2n−1 or ξn = λ2n, then s′(π, ξn, t) − c(π, ξn, t) = 0.

For determinacy, in this case we will assume σn = 1.
The boundaries λn of the spectrum and the spectral parameters ξn, σn are

called the spectral data of problem (4). The determination of spectral data of
problem (4) is called a direct problem and conversely, the restoration of the
coefficients p and q of problem (4) by spectral data is called an inverse problem.

The spectrum of the quadratic pencil of Sturm–Liouville equations with the
coefficients p(x + τ, t) and q(x + τ, t) does not depend on the real parameter
τ , but the spectral parameters do. It is not difficult to prove that the spectral
parameters are π-periodic on τ . The spectral parameters satisfy the system of
Dubrovin differential equations

∂ξn

∂τ
= 2(−1)n−1sign(n)σn

√
(ξn − λ2n−1)(λ2n − ξn)hn(ξ), n ∈ Z\{0}, (7)

where

hn(ξ) = hn(. . . , ξ−1, ξ1, . . .)=

√√√√(ξn − λ−1)(ξn − λ0)
∏

k 6=n,0

(ξn − λ2k−1)(ξn − λ2k)
(ξn − ξk)2

.

The system of Dubrovin equations and the following first and second trace
formulas:

p(τ, t) =
λ−1 + λ0

2
+

∞∑

06=k=−∞

(
λ2k−1 + λ2k

2
− ξk

)
,
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q(τ, t) + 2p2(τ, t) =
(λ−1)2 + (λ0)2

2
+

∞∑

06=k=−∞

(
(λ2k−1)2 + (λ2k)2

2
− ξ2

k

)

provide the method for solving the inverse problem.

4. Main Result

The main result of the paper is included in the theorem below.

Theorem. Let (p(x, t), q(x, t), ψ+(x, λ, t), ψ−(x, λ, t)) be the solution of
problem (1)–(4). Then the spectrum of problem (4) does not depend on t, and the
spectral parameters ξn satisfy the analogue of the system of Dubrovin equations

∂ξn

∂t
= 2(−1)nσnsign(n)

√
(ξn − λ2n−1)(λ2n − ξn) gn(ξ)hn(ξ), n ∈ Z\{0}, (8)

where

gn(ξ) = gn(. . . , ξ−1, ξ1, . . .) = λ−1 + λ0 +
∞∑

06=k=−∞
(λ2k−1 + λ2k − 2ξk) + 2ξn

+

∞∫

−∞

β(λ, t)s(π, λ, t)
ξn − λ

dλ.

The sign σn = ±1 changes at each collision of the point ξn with the boundaries
of its gap [λ2n−1, λ2n]. Moreover, the following initial conditions are fulfilled :

ξn|t=0 = ξ0
n, σn|t=0 = σ0

n , n ∈ Z\{0}, (9)

where ξ0
n, σ0

n are the spectral parameters of the quadratic pencil of Sturm–Liouville
equations corresponding to the coefficients p0(x) and q0(x).

P r o o f. Denoting the sum of the last two addends in equations (1) and (2)
by G1(x, t) and G2(x, t), we rewrite the system of equations (1), (2) in the form

{
pt = −6ppx − qx + G1

qt = pxxx − 4qpx − 2pqx + G2.
(10)

Let yn(x, t) be the normalized eigenfunction of the Dirichlet problem for equa-
tion (4) corresponding to the eigenvalue ξn. It is easy to see that

yn(x, t) =
1

cn(t)
s(x, ξn(t), t), (11)

where

c2
n(t) =

π∫

0

s2(x, ξn(t), t)dx.
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Differentiating the identity

−(y′′n, yn) + (qyn, yn) + 2ξn(pyn, yn)− ξ2
n = 0

with respect to t, we get

−(ẏ′′n, yn)− (y′′n, ẏn) + (qtyn + qẏn, yn) + (qyn, ẏn)

+2ξ̇n(pyn, yn) + 2ξn(ptyn + pẏn, yn) + 2ξn(pyn, ẏn)− 2ξnξ̇n = 0 .

From the last equality we obtain
(−ẏ′′n + qẏn + 2ξnpẏn, yn

)
+

(−y′′n + qyn + 2ξnpyn, ẏn

)

+(qtyn + 2ξnptyn, yn) + 2ξ̇n(pyn, yn)− 2ξnξ̇n = 0,

2ξ̇n[ξn − (pyn, yn)] = (qtyn + 2ξnptyn, yn) ,

that is,

2ξ̇n


ξn −

π∫

0

py2
ndx


 =

π∫

0

(qt + 2ξnpt)y2
ndx. (12)

Now, substituting expressions (10) into formula (12), we deduce the equality

2ξ̇n


ξn −

π∫

0

py2
ndx


 =

π∫

0

pxxxy2
ndx−

π∫

0

(2p + 2ξn)y2
nqxdx

−
π∫

0

(4q + 12ξnp)y2
npxdx +

π∫

0

(G2 + 2ξnG1)y2
ndx. (13)

Integrating the first two integrals in the right-hand side of (13) by parts and using
the Dirichlet conditions, we obtain the identities

π∫

0

pxxxy2
ndx =

π∫

0

(2(y′n)2 + 2yny′′n)pxdx, (14)

π∫

0

(2py2
n + 2ξny2

n)qxdx = −
π∫

0

(2pxy2
n + 4pyny′n + 4ξnyny′n)qdx. (15)

Substituting (14) and (15) into (13), we deduce the equality

2ξ̇n


ξn −

π∫

0

py2
ndx



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=

π∫

0

[2px(y′n)2 + 2pxyny′′n − 12ξnppxy2
n + (−2pxyn + 4py′n + 4ξny′n)qyn]dx

+

π∫

0

(G2 + 2ξnG1)y2
ndx. (16)

Using the identity
qyn = ξ2

nyn + y′′n − 2ξnpyn,

we can rewrite the first integral in the right-hand side of (16) in the form

I1 ≡
π∫

0

{(2px(y′n)2 + 4py′ny′′n)− (2ξ2
npxy2

n + 4ξ2
npyny′n)

−(8ξnppxy2
n + 8ξnp2yny′n)}dx +

π∫

0

[4ξ3
nyny′n + 4ξny′ny′′n]dx.

Hence, calculating the last integrals, we find that

I1 = 2(p(0, t) + ξn)[(y′n(π, t))2 − (y′n(0, t))2]. (17)

Now we calculate the last integral in (16)

I2 ≡
π∫

0

(G2 + 2ξnG1)y2
ndx =

∞∫

−∞
β(λ, t)s(π, λ, t)J(λ, t)dλ, (18)

where

J(λ, t) ≡ −2

π∫

0

pxy2
nψ+ψ−dx + 2

π∫

0

(ξn + λ− 2p)y2
n(ψ+ψ−)xdx.

It is not difficult to verify that

J(λ, t) = −2

π∫

0

pxy2
n ψ+ψ− dx +

π∫

0

(ξn + λ− 2p)y2
n (ψ′+ψ− + ψ+ψ′−)dx

−
π∫

0

[−2pxy2
n + 2(ξn + λ− 2p)yny′n] ψ+ψ− dx
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=

π∫

0

(ξn + λ− 2p)ynψ−(ynψ′+ − y′nψ+)dx

+

π∫

0

(ξn + λ− 2p)ynψ+(ynψ′− − y′nψ−)dx. (19)

Using the identity

(ξn + λ− 2p)ynψ± =
(ynψ′± − y′nψ±)′

ξn − λ
,

from (19) we can deduce that

J(λ, t) =
1

ξn − λ
[(y′n(π, t))2 − (y′n(0, t))2]. (20)

Substituting (20) into (18), we obtain

I2 =





∞∫

−∞

β(λ, t)s(π, λ, t)
ξn − λ

dλ



[(y′n(π, t))2 − (y′n(0, t))2]. (21)

Hence, by means of expressions (16), (17) and (21), we may conclude that

2ξ̇n


ξn −

π∫

0

py2
ndx


 = [2p(0, t) + 2ξn][(y′n(π, t))2 − (y′n(0, t))2]

+





∞∫

−∞

β(λ, t)s(π, λ, t)
ξn − λ

dλ



[(y′n(π, t))2 − (y′n(0, t))2]. (22)

From the identity (see [16], p. 56)

2

π∫

0

[λ− p(x, t)]s2(x, λ, t)dx = s′(π, λ, t)
∂s(π, λ, t)

∂λ
− s(π, λ, t)

∂s′(π, λ, t)
∂λ

we find

2ξn(t)c2
n(t)− 2

π∫

0

p(x, t)s2(x, ξn(t), t)dx = s′(π, ξn(t), t)
∂s(π, ξn(t), t)

∂λ
. (23)
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Substituting expression (11) into equality (22), we have

2ξ̇n(t)


ξn(t)c2

n(t)−
π∫

0

ps2(x, ξn(t), t)dx




= 2[p(0, t) + ξn(t)][s′2(π, ξn(t), t)− 1]

+





∞∫

−∞

β(λ, t)s(π, λ, t)
ξn − λ

dλ



[s′2(π, ξn(t), t)− 1],

and using identity (23,) we get

ξ̇n(t)
∂s(x, ξn(t), t)

∂λ
= 2[p(0, t) + ξn(t)]

(
s′(π, ξn(t), t)− 1

s′(x, ξn(t), t)

)

+





∞∫

−∞

β(λ, t)s(π, λ, t)
ξn − λ

dλ





(
s′(π, ξn(t), t)− 1

s′(x, ξn(t), t)

)
. (24)

Now, substituting the values x = π and λ = ξn(t) into the identity

c(x, λ, t)s′(x, λ, t)− c′(x, λ, t)s(x, λ, t) = 1,

we find that
c(π, ξn(t), t) =

1
s′(π, ξn(t), t)

. (25)

According to (25) and the identity

[c(π, λ, t)− s′(π, λ, t)]2 = (∆2(λ)− 4)− 4c′(π, λ, t)s(π, λ, t),

we obtain the equality

s′(π, ξn(t), t)− 1
s′(π, ξn(t), t)

= σn

√
∆2(ξn(t))− 4. (26)

Using (6), (26) and the expansion

∆2(λ)− 4 = −4π2(λ− λ−1)(λ− λ0)
∞∏

0 6=k=−∞

(λ− λ2k−1)(λ− λ2k)
k2

,

we deduce
s′(π, ξn(t), t)− 1

s′(x,ξn(t),t)

∂s(π,ξn(t),t)
∂λ
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= 2(−1)nσnsign(n)
√

(ξn − λ2n−1)(λ2n − ξn) hn(ξ). (27)

Here we also used the equality

sign



−

π

n

∏

k 6=n,0

ξk − ξn

k



 = (−1)nsign(n).

From (24), (27) and the first trace formula we conclude (8).
We notice that if instead of Dirichlet boundary conditions we consider pe-

riodic or anti-periodic boundary value conditions, then equation (22) remains
λ̇n(t) = 0, n ∈ Z. Hence, the spectrum of problem (4) does not depend on the
parameter t, and the theorem is proved.

5. Solvability of the Cauchy Problem (8), (9)

In the case when β(λ, t) does not depend on t, we study the existence and
uniqueness of the solution of the Cauchy problem (8), (9). By following [23,
Chapter 9], we do the substitution

ξn = λ2n−1 + (λ2n − λ2n−1) sin2 xn(t), n ∈ Z\{0}. (28)

We note that when the variable ξn passes through the endpoint of a band gap,
either σn or the product sinxn(t) cos xn(t) changes the sign. If we choose the
initial conditions

xn(0) = x0
n = arcsin

√
ξ0
n − λ2n−1

λ2n − λ2n−1
, n ∈ Z\{0}, (29)

then σn(t)sign{sinxn(t) cos xn(t)} = σn(0). After substituting (28), the system
(8) takes the form

dxn

dt
= Hn(. . . , x−1, x1, . . .), n ∈ Z\{0}, (30)

where Hn(. . . , x−1, x1, . . .) = (−1)nσn(0)sign(n)gn(ξ)hn(ξ). To study the solv-
ability of the Cauchy problem (30), (29), we consider the Banach space K of the
sequences {x ∈ K : x = (. . . , x−1, x1, . . .), xn ∈ R} with the norm

‖x‖ =
∞∑

06=n=−∞
(λ2n − λ2n−1)|xn|.

We put H(x) = (. . . , H−1(x), H1(x), . . .). Then the system of equations (30)
can be rewritten as one equation in the Banach space K

dx

dt
= H(x), (31)
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and initial conditions (29) can be rewritten in the form

x(t)
∣∣
t=0 = x0 , x0 ∈ K. (32)

From the conditions p0(x) ∈ C3(R) and q0(x) ∈ C2(R) there follow the
asymptotics (see [16])

λ2n−1 = n + c0 +
c1

n
+

c2

n2
+

c3

n3
+

ε−n
n3

, λ2n = n + c0 +
c1

n
+

c2

n2
+

c3

n3
+

ε+
n

n3
, (33)

where ck, k = 0, 1, 2, 3 are constants, and {ε±n } ∈ l2. Consequently, taking into
consideration that ξn ∈ [λ2n−1, λ2n], we get that inf

k 6=n,0
|ξn − ξk| ≥ a > 0. Using

these facts, we deduce the estimates

|gn(ξ)| ≤ C1|n|,
∣∣∣∣
∂gn(ξ)
∂ξm

∣∣∣∣ ≤ C2,

C3|n| ≤ |hn(ξ)| ≤ C4|n|,
∣∣∣∣
∂hn(ξ)
∂ξm

∣∣∣∣ ≤ C5|n|,

where the constants Ck, k = 1, 2, 3, 4, 5 are positive and do not depend on n
and m.

Next, for the derivatives of the functions fn(ξ) = gn(ξ)hn(ξ) we obtain the
estimate ∣∣∣∣

∂fn(ξ)
∂ξm

∣∣∣∣ ≤ Cn2,

where the constant C > 0 does not depend on n and m. By using this estimate
and asymptotics (33), the Lipchitz condition can be easily proved

‖H(x)−H(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ K,

where the constant L > 0 does not depend on x and y. Thus the solution of the
Cauchy problem (31), (32), and hence of the Cauchy problem (30), (29), exists
and it is unique for all t > 0.

6. Corollaries and Remarks

In this section we give some conclusions concerning the main result proved in
the previous section.

Corollary 1. If instead of p(x, t) and q(x, t) we consider the functions
p(x+ τ, t) and q(x+ τ, t), then, as seen from the previous section, the eigenvalues
of the periodic and antiperiodic problems do not depend on the parameters τ and
t. However, the eigenvalues ξn of the Dirichlet problem and the signs σn depend
on τ and t: ξn = ξn(τ, t), σn = σn(τ, t) = ±1.
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Corollary 2. The theorem gives a method for solving problem (1)–(4). First
we find the spectral data λn, n ∈ Z, ξ0

n(τ), σ0
n(τ), n ∈ Z\{0} of the quadratic

pencil of Sturm–Liouvelle equations corresponding to the coefficients p0(x + τ)
and q0(x+τ). Then we solve the Cauchy problem ξn(τ, t)|t=0 =ξ0

n(τ), σn(τ, t)|t=0

= σ0
n(τ), n ∈ Z\{0} for Dubrovin system (8). Finally, by using the formulas of

the first and second traces, we get the expressions of p(τ, t) and q(τ, t). After
that the Floquet solutions ψ±(x, λ, t) of equation (4) can be found easily.

R e m a r k 2. We show that the constructed functions p(τ, t), q(τ, t) satisfy
system (1), (2). For this we use the system of Dubrovin equations (7) and the
following trace formula (see [16], pp. 96–97):

−3
4
pττ (τ, t) + 4p3(τ, t) + 3p(τ, t)q(τ, t)

=
(λ−1)3 + (λ0)3

2
+

∞∑

06=k=−∞

(
(λ2k−1)3 + (λ2k)3

2
− ξ3

k

)
. (34)

From the system of Dubrovin equations (7) and (8) we have

∂ξk

∂t
= −



2p(τ, t) + 2ξk +

∞∫

−∞

β(λ, t)s(π, λ, t, τ)
ξk − λ

dλ





∂ξk

∂τ
, k ∈ Z\{0}. (35)

From the first trace formula and equalities (35) we can find

pt = −
∞∑

06=k=−∞

∂ξk

∂t
=2p

∞∑

0 6=k=−∞

∂ξk

∂τ
+ 2

∞∑

0 6=k=−∞
ξk

∂ξk

∂τ

+

∞∫

−∞
β(λ, t)





∞∑

0 6=k=−∞

s(π, λ, t, τ)
ξk − λ

∂ξk

∂τ



dλ. (36)

Differentiating the first and the second trace formulas with respect to τ, we obtain

∞∑

06=k=−∞

∂ξk

∂τ
= −pτ , 2

∞∑

0 6=k=−∞
ξk

∂ξk

∂τ
= −4ppτ − qτ . (37)

Using these equalities and identity (6), from (36) we deduce

pt = −6ppτ − qτ +

∞∫

−∞
β(λ, t)

∂s(π, λ, t, τ)
∂τ

dλ. (38)
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Taking into account equality (5), from (38) we obtain equation (1). Differentiat-
ing trace formula (34) with respect to t, we get

qt = −4ppt − 2
∞∑

0 6=k=−∞
ξk

∂ξk

∂t

= −4ppt + 4p
∞∑

0 6=k=−∞
ξk

∂ξk

∂τ
+ 4

∞∑

06=k=−∞
ξ2
k

∂ξk

∂τ

+2

∞∫

−∞
β(λ, t)





∞∑

0 6=k=−∞

ξks(π, λ, t, τ)
ξk − λ

∂ξk

∂τ



dλ.

From (34), (37), (6) and the last formula, we find

qt = −4ppt + 2p(−4ppτ − qτ ) + (pτττ − 16p2pτ − 4pτq − 4pqτ )

+2

∞∫

−∞
β(λ, t)

{
s(π, λ, t, τ)(−pτ ) + λ

∂s(π, λ, t, τ)
∂τ

}
dλ.

Substituting expression (38) into the last formula and taking into account equality
(5), we obtain equation (2).

Corollary 3. If the number of zones is finite, that is, there are two nonne-
gative integer numbers N and M such that λ2k−1 = λ2k = ξk for all k > N and
k < −M , then system (8) has the form

∂ξn

∂t
= 2(−1)nσn(τ, t)sign(n)

√
(ξn − λ2n−1)(λ2n − ξn)

×
√√√√√(ξn − λ−1)(ξn − λ0)

N∏
k=−M,
k 6=n,0

(ξn − λ2k−1)(ξn − λ2k)
(ξn − ξk)2

×


λ−1 + λ0 +

N∑

06=k=−M

(λ2k−1 + λ2k − 2ξk) + 2ξn

+

∞∫

−∞

β(λ, t)s(π, λ, t, τ)
ξn − λ

dλ



, n = −M, . . . , −1, 1, . . . , N.
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Corollary 4. In [17], there was proved the theorem which states that the
lengths of the gaps of the quadratic pencil of Sturm–Liouvelle equations with
π-periodic real-valued coefficients decrease exponentially if and only if the co-
efficients are analytic. From this theorem we conclude that if p0(x) and q0(x)
are real analytical functions, then the lengths of the gaps corresponding to these
coefficients decrease exponentially. For the coefficients p(x, t) and q(x, t) there
correspond the same gaps. Thus the solutions of problem (1)–(4), p(x, t) and
q(x, t), are real analytical functions on x.

Corollary 5. In [18], an analogue of Borg’s inverse theorem was proved: the
number π

2 is a period of the coefficients of the quadratic pencil of Sturm–Liouvelle
equations with π-periodic real-valued coefficients if and only if all eigenvalues of
antiperiodic problem are double. From this theorem we conclude that if the func-
tions p0(x) and q0(x) have the period π

2 , then all eigenvalues of antiperiodic prob-
lem corresponding to these coefficients are double. For the coefficients p(x, t) and
q(x, t) there correspond the same eigenvalues with the same multiplicities. Thus
the solutions p(x, t) and q(x, t) of problem (1)–(4) are the π

2 -periodic functions
on x.
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