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In the paper, the solvability of one nonlinear boundary-value problem
arising in kinetic theory of gases is studied. We prove the existence of global
solvability of a boundary-value problem in the Sobolev space W 1

∞(R+). The
limit of the solution is found by using some a’priori estimations. For the
case of power nonlinearity, the uniqueness of the solution in a certain class
of functions is proved. Some examples illustrating the obtained results are
given.
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1. Introduction. Statement of the Problem

The paper is devoted to the following nonlinear boundary-value problem:

±s
∂ϕ±(x, s)

∂x
+ ϕ±(x, s) = G(U(x)), x > 0, s > 0, (1)

ϕ+(0, s) = G1




∞∫

0

Q(s, p)ϕ−(0, p)dp


 , (2)
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ϕ−(x, s) = o
(
e

x
s

)
, x → +∞, (3)

where

U(x) =
1√
π

∞∫

0

e−p2
[ϕ+(x, p) + ϕ−(x, p)]dp. (4)

The functions G and G1 describe the nonlinear dependence in the right-hand side
of integro-differential equation (1) and the nonlinear dependence of boundary
condition (2), respectively. The function Q(s, p) describes the general law of
reflection and possesses the substochasticity property

Q(s, p) ≥ 0, (s, p) ∈ R+ × R+,

∞∫

0

Q(s, p)dp ≤ 1. (5)

Boundary-value problem (1)–(4) can be derived from the Boltzmann equation
within the framework of one model suggested in [5] and it has important appli-
cations in kinetic theory of gases (see [1–6] and references therein). By means of
equations (1), (4) with boundary value conditions (2), (3), the flow of a gas with
average mass velocity U(x) in a half space x > 0 bounded by the plate wall x = 0
is described.

Problem (1)–(4) in a standard way can be reduced to the nonlinear integral
equation

U(x) = µ(x,U) +

∞∫

0

K(x− t)G(U(t))dt, (6)

where

µ(x,U) =
1√
π

∞∫

0

e−
x
s e−s2

G1



∞∫

0

Q(s, p)dp

∞∫

0

e
− t

p G(U(t))
dt

p


 ds, (7)

K(x) =
1√
π

∞∫

0

e−
|x|
s e−s2 ds

s
. (8)

In the linear case, where G(x) ≡ x, G1(x) ≡ x, the investigation of the problem
(1)–(4) was carried out in a number of works (see [1, 6] and references therein).

In all the papers mentioned, the average mass velocity possesses asymptotics
O(x) when x tends to +∞.

In the case of the linear law of reflection (i.e., where G1(x) ≡ x), in [5], by
imposing some natural conditions on the function G, it was shown that there
exists qualitative difference between the solutions for the linear (G(x) ≡ x) and
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nonlinear cases. In the linear case, the solution has a linear growth away from
the wall, while in the nonlinear case it has a bounded solution with the finite
limit at infinity.

In the present paper, the question of solvability of nonlinear integral equation
(6) is considered. Under certain conditions imposed on the functions G,G1 (see
below), the existence of a positive bounded solution of equation (6) is proved. The
limit of the solution at infinity representing isothermal sliding coefficient is found.
In the case of power nonlinearity (i.e., where G(x) = xα), the uniqueness of the
solution in a certain class of functions is proved. Some examples of nonlinearity
illustrating the obtained results are given.

2. Basic Results

Let G0(z) be a real measurable function defined on the set (−∞, +∞) and
satisfying the following conditions:

a) The numbers η and ξ are assumed to be the first positive roots of the
equations G0(z) = z and G0(z) = 2z, respectively, and besides 2ξ < η,

b) G0 ∈ C[0, η], G0 ↑ on the interval [ξ, η].
Here are the examples of the above function:

1) G0(z) = zp; 0 < p < 1, ξ =
(

1
2

) 1
1−p

; η = 1, (9)

2) G0(z) = ez−1, ξ ≈ 0, 2, η = 1. (10)

Below, assuming that the initial function G(z) is the local majorant for the
function G0(z), η is a fixed point for the function G1(z), and imposing some
natural conditions on the functions G and G1, we will prove global solvability of
equation (6) in the space of essentially bounded functions.

Moreover, by using special a’priori estimations, the limit of the solution at
infinity will be found. In one important particular case, where G(z) = zp, 0 <
p < 1

2 and the function G1 additionally satisfies the Lipschitz condition

|G1(z1)−G1(z2)| ≤ α|z1 − z2|, α ∈ (0; 1], z1; z2 ∈
[(

1
2

) 1
1−p

, 1

]
, (11)

the uniqueness of the solutions in a certain class of functions will be proved.
The following results are true:

Theorem 1. Let the functions G(s) and G1(z) satisfy the following condi-
tions:

i1) G(z) ≥ G0(z), z ∈ [ξ, η], G(η) = G1(η) = η, (12)
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i2) G,G1 ↑ on the interval [ξ, η] and G1(z) ≥ 0, z ∈ [ξ, η], G;G1 ∈ C[0; η]
(13)

and the function Q(s, p) satisfy condition (5).
Then equation (6) has a positive essentially bounded solution U(x), and be-

sides
lim

x→∞U(x) = η. (14)

Theorem 2. Let G(z) = zp; p ∈ (
0, 1

2

)
, and the function G1 satisfy the

conditions of Theorem 1 and condition (11). Then equation (6) has a unique
solution in the following class of measurable functions:

P = {f(x) :
(

1
2

) 1
1−p

≤ f(x) ≤ 1, x ∈ (0, +∞)}.

3. Proof of the Main Results

P r o o f of Theorem 1. With the help of equation (6), we consider the
auxiliary Hammerstein type nonlinear integral equation

ϕ(x) =

∞∫

0

K(x− t)G0(ϕ(t))dt, x > 0, (15)

with respect to an unknown measurable real function ϕ(x), where kernel K is
given by formula (8).

From (8), it follows that

K(−x) = K(x), x ≥ 0 and

+∞∫

−∞
K(x)dx = 1. (16)

In [4], not only the existence of positive solution ϕ(x) for equations (15), (16)
was proved, but also the following properties were established:

lim
x→∞ϕ(x) = η; ϕ(x) ≥ ξ, x ≥ 0. (17)

Let us consider the iteration for basic equation (6) taking into account (7),

Un+1(x) =
1√
π

∞∫

0

e−s2
e−

x
s G1




∞∫

0

Q(s, p)
dp

p

∞∫

0

e
− t

p G(Un(t))dt


 ds

+

∞∫

0

K(x− t)G(Un(t))dt,

(18)
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U0(x) = ϕ(x), n = 0; 1; 2; . . . , x ≥ 0. (19)

Due to monotony of the functions G and G1 on the interval [ξ, η], it is easy to
check that
a) Un(x) ↑ in n,
b) the functions Un(x) are measurable on the set R+; n = 0; 1; 2, . . . .

Below we prove that

Un(x) ≤ η, n = 0; 1; 2, . . . . (20)

In fact, in the case n = 0, inequality (20) is obvious because of U0(x) = ϕ(x), ϕ(x) ↑
on R+ and lim

x→∞ϕ(x) = η.

We assume that inequality (20) takes place for some n ∈ N. Then in view of
(12) and (5), from (18) we get

Un+1(x) ≤ 1√
π

∞∫

0

e−s2
e−

x
s G1


η

∞∫

0

Q(s, p)dp


 ds + η

∞∫

0

K(x− t)dt

≤ 1√
π

∞∫

0

e−s2
e−

x
s G1(η)ds + η

x∫

−∞
K(y)dy

= η


 1√

π

∞∫

0

e−s2
e−

x
s ds +

x∫

−∞
K(y)dy


 ≡ J.

It is easy to verify that

∞∫

x

K(y)dy =
1√
π

∞∫

0

e−s2
e−

x
s ds,

therefore J = η, and hence Un+1 ≤ η.
Thus, the sequence of measurable functions {Un(x)}∞n=0 has a pointwise limit

as n → +∞. By B. Levi’s theorem, the function U(x) = lim
n→∞Un(x) satisfies

equation (6). From (18)–(20), it also follows that

ϕ(x) ≤ U(x) ≤ η, x ∈ R+. (21)

As lim
x→∞ϕ(x) = η, then in view of (21), we immediately get

lim
x→∞U(x) = η. (22)

The theorem is proved.
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P r o o f of Theorem 2. We assume the opposite. Let equation (6) have two
solutions from P. We denote their difference by ∆U = U1−U2; U j ∈ P, j = 1, 2.
Then from (6), taking into account (11) and G(z) = zp, p ∈ (

0, 1
2

)
, we have

∆U(x) =
1√
π

∞∫

0

e−s2
e−

x
s

×

G1




∞∫

0

Q(s, p)

∞∫

0

e
− t

p G(U1(t))
dtdp

p


−G1




∞∫

0

Q(s, p)

∞∫

0

e
− t

p G(U2(t))
dtdp

p





 ds

+

∞∫

0

K(x− t)
[
G(U1(t))−G(U2(t))

]
dt. (23)

By the Lagrange theorem, it is easy to verity that

if
(

1
2

) 1
1−p

≤ x1, x2 ∈ 1, then |xp
1 − xp

2| ≤ 2p |x1 − x2|. (24)

Using (24) and (5), from (23) we obtain

|∆U(x)| ≤ α√
π

∞∫

0

e−s2
e−

x
s

∞∫

0

Q(s, p)

∞∫

0

e
− t

p |G(U1(t))−G(U2(t))|1
p

dtdpds

+

∞∫

0

K(x− t)|G(U1(t))−G(U2(t))|dt

≤

 α√

π
2p

∞∫

0

e−s2
e−

x
s

∞∫

0

Q(s, p)dpds + 2p

x∫

−∞
K(y)dy


 sup

t≥0
|U1(t)− U2(t)|

≤

2pα

∞∫

x

K(y)dy + 2p

x∫

−∞
K(y)dy


 sup

t≥0
|∆U(t)| ≤ 2p sup

t≥0
|∆U(t)|.

Hence,
(1− 2p) sup

t≥0
|∆U(t)| ≤ 0. (25)

As p ∈ (
0, 1

2

)
, then due to (25) we obtain that ∆U(t) = 0 almost everywhere on

(0;+∞), therefore U1(t) = U2(t) almost everywhere on (0; +∞). The theorem is
proved.
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E x a m p l e s. As the function G(z) can be chosen, for the examples of
the functions G0 see (9) and (10). However, we also give an example different
from G0,

G(z) = G0(z) +
η

π

sin2 G0(z)π
η

.

Here are the examples of the functions G1(z):

a) G1(z) = ez−1; η = 1; α = 1,

b) G1(z) = η − βG̃(η − z); β ∈

0, min


1;

1
max

ξ≤z≤η
G̃′(z)





 ,

where G̃(η) = η, G̃ ↑ on [ξ, η], max
ξ≤z≤η

G̃′(z) < +∞, G̃(z) ≥ 0, z ∈ [ξ, η].

For example, if G̃(z) = z2, then η = 1 and G1(z) = 1− β(1− z)2, β ∈ (0, 1
2 ].

R e m a r k. It should be noted that the solution of initial boundary value
problem (1)–(4) belongs to the space W 1∞(R+) in x.

Thus, from (1)–(3), we get

ϕ+(x, s) = C(s)e−
x
s +

x∫

0

e−
(x−t)

s G(U(t))
dt

s
, (26)

ϕ−(x, s) =

∞∫

x

e−
(t−x)

s G(U(t))
dt

s
, (27)

where

C(s) = G1




∞∫

0

Q(s, p)
dp

p

∞∫

0

e
− t

p G(U(t))dt


 .

As U ∈ L∞(0, +∞), then from (26), (27) it follows that for each fixed s ∈ (0, +∞),

ϕ±(x, s) ∈ W 1
∞(R+).
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