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these results is the abstract Landauer—Biittiker formula.
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1. Introduction

The aim of the present paper is to analyze the fermion current going through
a quantum dot as a function of: (1) the electro-chemical potentials on leads
and (2) the contact with the external photon reservoir. Although the latter
is the canonical JC-interaction, the coupling of the JC model with leads needs
certain precautions if we want to remain in the framework of one-particle quantum
mechanical Hamiltonian approach and the scattering theory. To this end we
proposed a new Jaynes—Cummings-leads (JCL)-model [9]. It makes it possible
to create a photon flux into the resonator by the fermion current through the
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dot, i.e., it describes a light-emitting device, as well as to transform the external
photon flux into the current of fermions which corresponds to a quantum dot
light-absorbing device.

We discuss the construction of our JCL-model in Secs. 2.1-2.5. For sim-
plicity, for the leads Hamiltonian we choose the one-particle discrete Schrodinger
operators with constant (electric) potentials of each of the leads. In Sec. 2.5, we
show that our model fits into the framework of trace-class scattering. In Sec. 2.5,
we verify the important property that the coupled Hamiltonian has no singular
continuous spectrum. Our main tool for analyzing different currents is an ab-
stract Landauer—Biittiker-type formula applied in Secs. 3.1 and 3.2 to the case
of the JCL-model. It allows us to calculate the outgoing flux of photons induced
by electric current through leads. This corresponds to a light-emitting device.
We also found out that the pumping of the JCL quantum dot by the photon flux
from the resonator may induce the current of fermions into leads. This reversing
imitates a quantum light-absorbing cell device. These are the main properties of
our model and the main application of the Landauer—Bittiker-type formula of
Secs. 3.1 and 3.2. They are presented in Secs. 4 and 5, where we distinguish the
contact-induced and the photon-induced fermion currents.

To describe the results of Secs. 4 and 5, we should note that in our setup
the sample Hamiltonian is a two-level quantum dot decoupled from the one-mode
photon resonator. Then the unperturbed Hamiltonian Hy can be described as a
collection of four totally decoupled subsystems: a sample, a resonator and two
leads. The perturbed Hamiltonian H is a fully coupled system and the feature of
our model is that it is totally (i.e., including the leads) embedded into the external
electromagnetic field of the resonator. Hence, each electron can be interpreted as
a fermion with internal harmonic degrees of freedom, or a Fermi-particle carrying
an individual photon cloud.

Similarly to the “Black Box” system-leads (SL)-model {Hgsr, Ho} [1, 2], it
turns out that the JCL-model also fits into the framework of the abstract Landauer—
Biittiker formula and, in particular, is a trace-class scattering system {H jcor =
H,Hgr}. The current in the SL-model is called the contact-induced current J§.
It was a subject of numerous papers, see, e.g., [1, 3] or [2]. Note that the current
J¢ occurs due to the difference of electro-chemical potentials between two leads,
but it may be zero even if this difference is not null [5, 6].

The fermion current of the JCL-model, which takes into account the effect of
the electron-photon interaction under the assumption that the leads are already
coupled, is called the photon-induced component Jflh of the total current. Up to
our knowledge, the present paper is the first one where it is studied rigorously.
We show that the total free-fermion current .J.; in the JCL-model decomposes
into a sum of the contact- and the photon-induced currents: Jg = JG + Jflh.
An extremal case is where the contact-induced current is zero, but the photon-
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induced component is not, c.f. Sec. 5.1. In this case, the flux of photons J,,
out of the quantum dot (sample) is also non-zero, i.e., the dot serves as a light
emitting device, c.f. Sec. 5.2. In general, J,;, # 0 only when the photon-induced
component is not zero, i.e. Jflh # 0.

It turns out that when choosing the parameters of the model in a suitable
manner, one gets either a photon emitting or a photon absorbing system. Hence
the JCL-model can be used either as a light emission device or as a light-cell.
The proofs of explicit formulas for the fermion and photon currents, Jg; , Jpp, are
the contents of Secs. 4 and 5.

Note that the JCL-model is called mirror symmetric if (roughly speaking)
one can interchange the left and the right leads and the JCL-model remains
unchanged. In Sec. 5, we discuss a surprising example of a mirror symmetric
JCL-model in which the free-fermion current is zero but the model is photon
emitting. This peculiarity is due to a specific choice of the photon-electron inter-
action which produces fermions with internal harmonic degrees of freedom.

2. Jaynes—Cummings Quantum Dot Coupled to Leads
2.1. Jaynes—Cummings model

The starting point for the construction of our JCL-model is the quantum
optics Jaynes—Cummings Hamiltonian Hjc. Its simplest version is a two-level
system (quantum dot) with the energy spacing € defined by the Hamiltonian hg
on the Hilbert space hs = C2, see, e.g., [7]. It is assumed that this system is
“open” and interacts with the one-mode w photon resonator with Hamiltonian
hPh.

Since mathematically hP" coincides with the quantum harmonic oscillator,
the Hilbert space of the resonator is the boson Fock space h?" = §(C) over C
and

PR = wb*h . (2.1)

Here b* and b are verifying the Canonical Commutation Relations (CCR) creation
and annihilation operators with the domains in F.(C) ~ ¢?(Np), here Ny =
{0,1,2,...}. Operator (2.1) is self-adjoint on its domain

dom(h?") = (ko, k1, ks, ...) € 2(Ng) : > n’lkn|* < 00
n€eNy

Note that the canonical basis {¢, := (0,0,...,k, = 1,0,...)}nen, in £2(Np)
consists of eigenvectors of the operator (2.1): hP"¢,, = nw ép,.
To model the two-level system with the energy spacing ¢, one fixes in C? two

1
ortho-normal vectors {eg, ey}, for example, e := (1) and e} := <0>, which
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are eigenvectors of the Hamiltonian hg with the eigenvalues {\§ = 0, \{ = ¢}.

To this end, we put
10

and we introduce two ladder operators:

ot = (8 (1)> and o = (? 8) . (2.3)

Then one gets hg = € 070~ as well as e = oted, e = 07 ¢? and 07 ¢ = 0.
g 1 0> €0 1 0

Thus, ef is the ground state of the Hamiltonian hg. Note that the non-interacting
Jaynes—Cummings Hamiltonian H@I  lives in the space H7¢ = hg @ h?' = C? @
§+(C) and it is defined as the matriz operator

+

H{C = hs & Iypn + Iyg @ WP . (2.4)

Here Iyyn denotes the identity operator in the Fock space hP" | whereas I hg Stays
for the identity matrix in the space bg.

With operators (2.3), the interaction Vg, between the quantum dot and pho-
tons (bosons) in the resonator is defined (in the rotating-wave approximation [7])
by the operator

Vap i=gsp (07 @b+o0~ @b"). (255)

Operators (2.4) and (2.5) define the Jaynes-Cummings model Hamiltonian
Hjc = H(‘)]C + Vsp (2.6)

which is self-adjoint operator on the common domain dom(Hg) N dom (V).
The standard interpretation of Hjc is that (2.6) describes an “open” two-level
system interacting with external one-mode electromagnetic field [7].

Since the one-mode resonator is able to absorb infinitely many bosons, this
interpretation sounds reasonable, but one can see that the spectrum o(H J C) of
the Jaynes—Cummings model is discrete. Note that the so-called number operator
Njc:=0to" ® Iypn + Iy ® b"b commutes with Hjc. Then, since for any n > 0,

9750 = {Coel ® pn + 1€ ® Ppn1}¢orec » 910 = {Coel ® do}eoec

are eigenspaces of the operator 9 ¢, which reduce H ¢, i.e., Hjo : i);{c — ﬁic.
Note also that $7¢ = D.>0 HJ¢ where each $7¢ is an invariant subspace of the
operator (2.6). Therefore, it has the representation

Hjo = @ HGY. (2.7)

neNg
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Here the operators H L(;g are the restrictions of Hj ¢ to .S’J;{C such that H f;g =

and
H%(Co 5 @ dn + (el @ dp1)
= [Conw + C1gspv/n] €5 @ b + [C1(e + (n — 1)w) + Cogspy/n) €f @ Gn_1 -

Hence the spectrum o(H c) = U,>0 U(Hgn)). By virtue of (2.8), the spectrum

(2.8)

O'(Hyg) is defined for n > 1 by the eigenvalues E(n) of the two-by-two matrix
.FAI((]@ acting on the coefficient space {(p, (1}:

TONES! et(n—Dw gsvn) (G G
e ((0) ( gsp/n nw Co () Q) "= (2:9)
Then (2.7) and (2.9) imply that the spectrum of the Jaynes-Cummings model
Hamiltonian Hjc is pure point:

o(Hye) = opp (Hye) = {0} U | {nw + %(s —w) e —w/a ggbn} .
neN

This property evidently persists for any system Hamiltonian hg with discrete
spectrum and linear interaction (2.5) with a finite mode photon resonator [7].

We resume the above observations concerning the Jaynes—Cummings model,
which is our starting point, by the following remarks:

(a) The standard Hamiltonian (2.6) instead of the fluz describes only the
oscillations of photons between the resonator and the quantum dot, i.e., the
system hg is not “open” enough.

(b) Since one of our aims is to model a light-emitting device, the system
hs needs an external source of energy to pump it into the dot further to be
transformed by interaction (2.5) into the outgoing photon current pumping the
resonator.

(¢) To reach this aim, we extend the standard Jaynes—Cummings model to
our JCL-model by attaching to the quantum dot hg (2.2) two leads which are (in-
finite) reservoirs of free fermions. Manipulating with electro-chemical potentials
of fermions in these reservoirs, we can force one of them to inject fermions in the
quantum dot, whereas another one to absorb the fermions out the quantum dot
with the same rate. This current of fermions throughout the dot would pump it
and produce the photon current according scenario (b).

(d) The most subtle point is to invent a leads-dot interaction Vg, which
ensures the above mechanism and which is simple enough that one should be able
to treat this JCL-model using our extension of the Landauer—Biittiker formalism.
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2.2. The JCL-model

First let us make some general remarks and formulate certain conditions
indispensable when one follows the modeling (d).

(1) Note that since the Landauer—Biittiker formalism [6] is essentially a scat-
tering theory on a contact between two subsystems, it is developed only on
a “one-particle” level. This allows us to study with this formalism only ideal
(non-interacting) many-body systems. This condition is imposed on many-body
fermion systems (electrons) in two leads. Thus, only direct interaction between
different components of the system, dot-photons Vg, and electron-dot Vg, is al-
lowed.

(2) It is well known that the fermion reservoirs are technically simpler to treat
than the boson ones [6]. Moreover, in the framework of our model it is also very
natural since we study the electric current although produced by “non-interacting
electrons”. So, below we will use fermions/electrons as synonymous.

(3) In spite of the precautions formulated above, the first difficulty in consid-
ering an ideal many-body system interacting with the quantized electromagnetic
field (photons) is an induced indirect interaction. If electrons are able to emit
and absorb photons, it is possible for one electron to emit a photon that an-
other electron absorbs, thus creating indirect photon-mediated electron-electron
interaction. This interaction makes impossible to develop the Landauer—Biittiker
formula, which requires non-interacting framework.

Assumption 2.1. To solve this difficulty, in our model we forbid the photon-
mediated interaction. To this end, we suppose that every electron (in the leads and
the dot) interacts with its own distinct copy of the electromagnetic field. So, we
constder electrons together with their individual photon clouds as non-interacting
“composed particles”. This allows us to apply the Landauer—Biittiker approach.
Formally it corresponds to the “one-electron” Hilbert space he @ hP*, where hP*
is the Hilbert space of the individual photon field. The fermion description of the
composed-particles h @bP" corresponds to the antisymmetric Fock space §_ (h% ®

b").

The composed-particle assumption 2.1 allows us to use the Landauer—Biittiker
formalism developed for ideal many-body fermion systems. Now we have come
closer to the formal description of our resonator.

Recall that the Hilbert space of the Jaynes—Cummings Hamiltonian with two
energy levels is 97¢ = C? ® §,(C). The boson Fock space is constructed from
a one-dimensional Hilbert space since we consider only photons of a single fixed
frequency. We model the electrons in the leads as free fermions living on a discrete
semi-infinite lattices. Thus,

b = *(N) & C* & £*(N) = b’ © hs @ by’ (2.10)
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is a one-particle Hilbert space for the electrons and the dot. Here, %, o € {I,7},
are Hilbert spaces of the left, respectively the right, lead, and hg = C? is a Hilbert
space of the quantum dot. We denote by {6}y and {65 }]1»:0 the canonical basis
consisting of individual lattice sites of b/, a € {I,7}, and of hg, respectively. With
the Hilbert space for photons, h?" = F, (C) ~ ¢*(Np), we define the Hilbert space
of the full system, i.e., the quantum dot with leads and with the photon field, as

9 =h"@p" = (PN) o C? o A(N) @ 2(N). (2.11)

Remark 2.2. Note that the structure of full space (2.11) takes into account
condition 2.1 and produces composed fermions via the last tensor product. It also
manifests that electrons in the dot as well as those in the leads are composed
of photons. This makes difference with the picture imposed by the Jaynes—
Cummings model, where only the dot is composed of photons:

H=LrN)aCre (N e A(N), £7¢=C?FN), (2.12)

see (2.4), (2.5) and (2.6), where $7¢ = hs ® hP". The next step is a choice of
interactions between the subsystems: dot-resonator-leads.

According to (2.10), the decoupled leads-dot Hamiltonian is the matrix ope-
rator

R0 0 u
h(e]l = 0 hg O on u=|ugs|, {ua € EZ(N)}QE{M.}, us € (CQ,
0 0 A i

where he! = —AP + v, with a constant potential bias v, € R, a € {I,r}, and hg
can be any self-adjoint two-by-two matrix with eigenvalues {)\OS A = /\g +e},
e > 0, and eigenvectors {ej, ey}, cf (2.2). Here, AP denotes the discrete Lapla-
cian on £2(N) with homogeneous Dirichlet boundary conditions given by

(APf)(@) = fla+1)=2f(@)+ flz—1), z€eN,
dom(AP) = {f e ?(Ny): f(0) := 0},
which is obviously a bounded self-adjoint operator. Notice that o(—AP) = [0, 4].
We define the lead-dot interaction for the coupling g € R by the matrix
operator acting in (2.10) as
Vel = Jel <75§>56q 0 <75'{>6IS ) (213)

where non-trivial off-diagonal entries are projection operators in the Hilbert space
(2.10) with the scalar product u,v + (u,v) for u,v € . Here, {55,067} is
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ortho-normal basis in h%, which in general may be different from {ef,e7'}. Thus
interaction (2.13) describes quantum tunneling between the leads and the dot via
the contact sites of the leads, which are supports of 6} and §7.

Then the Hamiltonian for the system of interacting leads and the dot is defined
as hl := h§' + v.. Here both hfl and h°! are bounded self-adjoint operators on
hel'

Recall that the photon Hamiltonian in the one-mode resonator is defined by
the operator h?" = wb*b with the domain in the Fock space § 1 (C) ~ 2(Np), (2.1).
We denote the canonical basis in £2(Ng) by {T,}nen,- Then for the spectrum of
hPh one obviously gets o(hP") = o, (hP") = Unen, 1nw}-

We introduce the following decoupled Hamiltonian Hy, which describes the
system where the leads are decoupled from the quantum dot and the electron
does not interact with the photon field:

Hy := H{' 4+ HP", (2.14)

where
Hg' = h§l @ Iy and  HP" := Iu @ WP,

The operator Hy is self-adjoint on dom(Ho) = dom(Iye ® hP™). Recall that hg
and hP" are self-adjoint operators. Hence, Hoel and H¢ are semi-bounded from
below, which yields that Hy is semi-bounded from below.

The interaction of photons and electrons in the quantum dot is given by the
coupling of dipole moment of electrons to the electromagnetic field in the rotating
wave approximation. Namely,

Von = i (- e0)ef @b+ (- ef)eff @07
for some coupling constant g,, € R. The total Hamiltonian is given by
H:=H + H" + V,j, = Hy + Vi + Vi, (2.15)

where H¢ .= h¢l @ Ihph and V := v ® Ihph.

Further we will call § = {H, Hp} the Jaynes—Cummings-leads system, in
short, the JCL-model, which we are going to analyze. In particular, we are
interested in electron and photon currents for this system. The analysis will be
based on the abstract Landauer-Biittiker formula, cf. [1, 6]. We note that the
Hamiltonian H is self-adjoint and bounded from below. Moreover, dom(H) =
dom(Hy), cf. Lemma 2.3 of [9].

2.3. Time reversible symmetric systems

A system described by the Hamiltonian H is called time reversible symmetric
if there is a conjugation I' defined on $ such that 'H = HT'. Recall that I' is a
conjugation if the conditions I'> = I and (I'f,T'g) = (f,g), f,g € § are satisfied.
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Let hP", n € Ny, be the subspace spanned by the eigenvector Y,, in h?*. We
set

O =08 @0, neNy, aellr} (2.16)
Notice that
9= P .
n€Ng,ae{l,r}

Definition 2.3. The JCL-model is called time reversible symmetric if there
is a conjugation I' acting on § such that H and Hy are time reversible symmetric
and the subspaces 9., n € No, a € {l,r}, reduce T.

Example 24. Let v¢ and v ! be the conjugations defined by

fa = fa = {foc( )}k€N7 foz6 Zlv OéG{l,T’},

fs(0)) ._ [ fs(0)
18 fs =18 (f <1>> = <f5(1)> |
We set v¢ := ’yl @’ys ® <. Further, we set
V=1 = {$(n)bner,, ¥ €.

We also set I' := 4% @ vP*. One can easily check that T' is a conjugation on
9 =b @ pet

and

Lemma 2.5. Let v¢, a € {S, l T}, and ,th be given by Example 2.4.

(i) If the conditions 'yfgleg = 60 and 'y = ¢ef are satisfied, then Hy is time
reversible symmetric with respect to T’ and moreover, the subspaces $y,,, n € Ny,
ae{l,r}, reduce I'.

(ii) If in addition the conditions v&85 = 6§ and vg o7 = 67 are satisfied, then
the JCL-model is time reversible symmetric.

Proof (i) Obviously we have

elhel — hel,ya’ a € {Z,T}, and ")/phhph hph ph

If ~¢ 60 = 60 and 75 ef = e are satisfied, then 7§ h = hgl’ygl, which yields

elhd hel e and hence THy = HoI'. Since v¢'p¢! = f)d and yP"hP" = hP" one
gets I'$),, = .?_)n , which shows that 9, reduces I'.

(ii) Notice that v/6¢ = 6§, a € {l,r}. Ifin addition the conditions ¢ 65 = &5
and 7§ '67 = 67 are satisfied, then Vg = vy is valid, which yields v/t =
helyel. Therefore, 'H = HT. Together with (i) this proves that the JCL-model
is time reversible symmetric. [
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Choosing

=) 4=() o-0). -5
60.—0, 61.—1, 0.—ﬁ1, 1-—% -1/’

one satisfies the conditions v¢e§ = €5 and vge} = ef as well as 7gd5 = 65 and

507 = o7
2.4. Mirror symmetric systems

A unitary operator U acting on §) is called a mirror symmetry if the conditions
Uf,)na = f.)na/a «, o € {l7 7’}, @ 7& O/a
are satisfied. In particular, this yields U$7¢ = /¢, §7¢ .= F)gl ® hPh,

Definition 2.6. The JCL-model is called mirror symmetric if there is a mirror
symmetry commuting with Hy and H.

One easily verifies that if Hy is mirror symmetric, then
H, ,U=UH,,, ne€Ny, o, e{l,r}, a#d,
where
H,, =ht ® Ippn + Iy & P = b 4w, neNy, a,dell,r}, a#d.

In particular, this yields that v, = v,. Moreover, one gets UHg = HgU, where
Hs = hg & Iypn + Ty @ hP".

Notice that if H and Hyp commute with the same mirror symmetry U, then
the operator H, := h ® Typn + Iger @ hPP also commutes with U, i.e., is mirror
symmetric.

Example 2.7 Let s ={H,Hy} be the JCL-model. Let v; = v, and let
es and ef as well as 63 and 87 be given by (2.3.). We set

ufed :=ef and ufel = —¢f (2.17)
as well as uP"Y,, = e Y,,, n € Ny. Obviously, Ug := u‘él @ uP" defines a
unitary operator on $7¢. A straightforward computation shows that UgHg =
HgUg and UgV), = VppUs. Furthermore, we set uf%(ﬁl := 0, and uff = (5%,
n € N, and

0 0 wug

l._
u =10 ud 0
utt 00

rl
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We have
fi < fs, (ug)*o5 > 4}
vau | fs | = | < fr, (W) > 65+ < f1, (uch)*oy > 67 | . (2.18)
fr < fs, (ug) o7 > o
Since 5 = %(eg +e7) and 67 = %(eg —e7), from (2.17) we get
(ug)*65 =67 and (uf)* oy = o5, (2.19)
Obviously we have
(uhy'sh =57 (ushysy = ol (2.20)

Inserting (2.19) and (2.20) into (2.18), we find

fl < fSa(Sig > 511
vau | fs | = | < fr 07 > 65+ < fi, 00 > 67 | . (2.21)
fr < fs,65 > 0f
Further, we have
fi < fs,éf > 5%
uog | fs | = | < f1,00 > 684+ < £, 07 > 65 | . (2.22)
fr < fs, 05 > of

Comparing (2.21) and (2.22), we get u®vy = vgue. Setting U := u® @ uP", one
immediately proves that UHy = HoU and UH = HU. Since U$,, = Sﬁnga, is
satisfied, § is mirror symmetric.

Notice that in addition Example 2.7 § is time reversible symmetric.

2.5. Spectral properties of H and spectral representation

In the following, our goal is to apply the Landauer—Biittiker formula to the
JCL-model. By £,(9), 1 < p < oo, we denote below the Schatten—von Neumann
ideals.

Proposition 2.8. ([9, Proposition 2.9]) If S = {H, Hy} is the JCL-model,
then (H +i)™t — (Ho + i)~ € £1(9). In particular, the absolutely continuous
parts H* and H{¢ are unitarily equivalent.

Thus, the JCL-model S = {H, Hy} is a £;-scattering system. Let us recall
that hel = —AP +v,, a € {I,r}, on bt = bl = (2(N).
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Lemma 2.9. ([9, Lemma 2.10]) Let o € {I,7}. We have o(h¢) = o4c(he) =
[V, 4 +va]. The normalized generalized eigenfunctions of h% are given by

oz, ) = 72 (1 — (—A+ 2 + v4)%/4) "1 sin (arccos((—A + 2 + va)/2)7)
forx € N, X € (v, 4 + vy).

From these two lemmas we obtain the following corollary that gives us the
spectral properties of Hy.

Proposition 2.10. ([9, Proposition 2.11]) Let S = {H,Hy} be the JCL-
model. Then o(Hy) = 04c(Ho) U opp(Hp), where

0ac(Ho) = U [v; + nw, v + 4 + nw] U [v, + nw, v, + 4 + nw]

n€eNg
and op,(H, ) UnGNo{)‘ +nw : j = 0,1}. The eigenvectors are given by
g(m,n) = e3> @ Tp, m = 0,1, n € Ng. The generalized eigenfunctions are
given by ga(, A, n) = ga(, A —nw) @ Ty for A € 04c(Ho), n € No, o € {1, 1}

For the convenience of the reader, we define here what we mean under a
spectral representation of the absolutely continuous part K3 of a self-adjoint
operator Ky on a separable Hilbert space . Let £ be an auxiliary separable
Hilbert space. We consider the Hilbert space L?(R,d),¥). By M, we define the
multiplication operator induced by the independent variable A in L?(R, d\, £). Let
® : R9(Ky) — L2(R, d\, £) be an isometry acting from R%¢(Kj) into L?(R, d\, £)
such that ®dom(K§¢) C dom(M) and

MBf = DKEf, f e dom(K).

Obviously, the orthogonal projection P := ®®* commutes with M, which yields
the existence of a measurable family { P(A )}AE]R such that (P f)(A) = P(A) f (\),
Foe L2R,AE). We set LR, d\EN) = PLX(R,\E), £0) = PO
I(KE) == {L*(R,d\, €(N)), M, ®} is called a spectral representation of Kg¢. If
{L%(R, d),£()\)), M, ®} is a spectral representation of K%, then K% is unitarily
equivalent Mg := M | L?(R,d),£()\)). Indeed, one has ®K°®* = M. The
function 3¢ (A) := dim(E(A)), A € R, is called the spectral multiplicity function
of K§¢. Notice that 0 < 3¢ (M) < oo for A € R.

For o € {I,7}, the generalized eigenfunctions of h¢ define the generalized
Fourier transforms by ¢ : he = h¢h¢(h¢!) — L?([va, va + 4]) and

(@5 fa)N) = > galz, N falz), fo €bE.

z€Np

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 3 361



H. Neidhardt, L. Wilhelm, and V.A. Zagrebnov

Setting
. C A€ |va,vq+4
b3 = st
0 XNeRN [va,vs + 4],

one easily verifies that TI(h%) = {L2(R,d\, b (N\)), M, ¢<'} is a spectral repre-

sentation of hgl = hg}v‘w, a = l,r, where we always assumed implicitly that
(6% fo)(N) = 0 for A € R\ [va, Vo +4]. Setting
bi*(A)
tN):= @ CC? NeR,
by' (V)

and introducing the map

el
[

¢?  phec (i) = & — LA(R,dA, h(N))
el

T

¢l f = (j;ﬁ) ,  Wwhere f:= (j:i) ,

we obtain a spectral representation II(hg"*) = {L2(R, dA, §< (X)), M, ¢} of the

el,ac

defined by

absolutely continuous part hy* = h{ @ h¢l of h§l. One easily verifies that
0< 52;()\) < 2 for A € R. Introducing
0
A= min{v, v} and A= max{v + 4, v, + 4}, (2.23)

one easily verifies that fzgl (A\) =0 for A € R\ [X¢, ., \éL . Notice, if v, + 4 < vy,
then
bI(\) — {(C, A€ [vp,vp + 4] U [, v + 4],
{0}, otherwise
which shows that hgl has a simple spectrum. In particular, it holds {ggl()\) =1
for A € [vy, v, + 4] U [v, v; + 4] and otherwise fzgl()\) = 0.
Let us introduce the Hilbert space b := [?(Ng, C?) = Dren, hns bn = C?,

n € Ny. Regarding bel()\ — nw) as a subspace of b, one regards

b == P 1.(A), (V) = 0"A—nw), XER, (2.24)

n€Ng

as a measurable family of subspaces in h. Notice that 0 < dim(h())) < oo, A € R.
We consider the Hilbert space L2(R,d\, h(\)).
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Furthermore, we introduce the isometric map ® : §(HZ¢) — L3(R,d\, h()\))

defined by
_ (?lfz(n))()\—W)>
2f)(N) = P : , AER,
@nw= o ((Wfr(n))(x—nw) ©

where

el h
@ (fl(n)> e @ bel,aC(hel) ® hph _ @ bl 2]1%
fr(n) 0 no )

neNy neNy neN \ he @ hph

where by = Den, hﬁh, and hﬁh is the subspace spanned by the eigenvectors
T, of hP". One easily verifies that ® is an isometry acting from $*(Hg) onto
L2(R, dA, b(N)).

Lemma 2.11. ([9, Lemma 2.12]) The triplet {L*(R,d\,bh(N)), M, ®} forms

a spectral representation of H3®, that is, I(HS®) = {L*(R,d\, h(N)), M, ®} such
el el

that 0 < &7 (A) < 2dpmax for A € R where dyax := )‘m""‘wﬂ and X and X%,

max
are given by (2.23).

In the following, we denote the orthogonal projection from h(\) onto b, (\) by
Pn(A), A € R, cf (2.24). Since h(\) = Den, hn(A), we have Iyn) = >-,en, Pu(N),
A € R. Further, we introduce the subspaces b, (A) := b (A—nw), A € R, n € Nj.
Notice that

(A= P baa(N), AER, neN,.
ae{l,r}
By P, (\), we denote the orthogonal projection from h(A) onto b, (A), A € R.
Obviously we have P,(A) = YXocpm Pra(A), A € R.

Since we have full information on the spectral properties of Hy, we can use it

to show that H has no singular continuous spectrum.

Proposition 2.12. ([9, Proposition 2.16]) The Hamiltonian H defined by
(2.15) has no singular continuous spectrum, that is, os.(H) = ().

Let Z be a bounded operator acting on $“(Hy) and commuting with H§¢.
Since Z commutes with H§¢, there is a measurable family {Z())}er of bounded
operators acting on h(\) such that Z is unitarily equivalent to the multiplication
operator induced by {Z(\)}aer in II(H{¢). We set

Zman,, (A) := P, (NZ(A) | b, (N, XER, m,n € Nog, «,sx € {l,r}.

Let Zpyon,, = Pn,ZP,,, where P, is the orthogonal projection from $ onto
the subspace $),,, C 9%(Hy), cf. (2.16). Therefore, the multiplication operator
induced by {Znn,, (A) }aer in II(H§C) is unitarily equivalent to Z,,

allse
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Since by Lemma 2.11 h(\) is a finite dimensional space, the operators Z(\)
are finite dimensional ones and we can introduce the quantity

Oman,, (N) =t0(Zmon, N Zman,. (A), AER, m,n € Nog, «,x € {l,r}.

Lemma 2.13. ([9, Lemma 2.14|) Let Hy be the self-adjoint operator defined
by (2.14) on $). Further, let Z be a bounded operator on H*(Hy) commuting with
H§e

(i) Let T be a conjugation on 9, cf. Sec. 2.53. If T' commutes with Hy and P,_,
n € No, a € {l,r}, and TZT = Z* holds, then opmn, () = On,m,(A), A € R.

(ii) Let U be a mirror symmetry on $). If U commutes with Hy and Z, then
Omany(A) = Omom_(A), NER, m,n € Ng, a,d’, 5,5 € {l,r}, a# ', »# 5.

3. Landauer—Biittiker Formula and Applications
3.1. Landauer—Biittiker formula

The abstract Landauer—Biittiker formula can be used to calculate flows in
devices. Usually one considers a pair § = {K, Ky} to be a self-adjoint operator
where the unperturbed Hamiltonian Ky describes a totally decoupled system,
which means that the inner system is closed and the leads are decoupled from
it, while the perturbed Hamiltonian K describes the system where the leads are
coupled to the inner system. An important ingredient is the system § = { K, Ky},
which is a complete scattering or even a trace class scattering system.

In [1], an abstract Landauer—Biittiker formula was derived in the framework
of a trace class scattering theory for semi-bounded self-adjoint operators which
allows us to reproduce the results of [8] and [4] rigorously. In [6], the results of
[1] were generalized to non-semi-bounded operators. Following [1], we consider a
trace class scattering system § = {K, Ko}. We recall that § = {K, Ky} is called
a trace class scattering system if the resolvent difference of K and Ky belongs to
the trace class. If § = {K, Ky} is a trace class scattering system, then the wave
operators Wi (K, Kj) exist and are complete. The scattering operator is defined
by S(K, Ko) := Wi (K, Ko)*W_(K, Kp). The main ingredients besides the trace
class scattering system § = { K, K} are the density and charge operators p and
Q, respectively.

Let Ky be a self-adjoint operator on the separable Hilbert space £. We call
p a density operator for Ky if p is a bounded non-negative self-adjoint operator
commuting with K. Since p commutes with Kj, one gets that p leaves invariant
the subspace £%¢(Kp). We set pac := p | R4(K)p), call p,e the ac-density part of p.

A bounded self-adjoint operator () commuting with K is called a charge. If
@ is a charge, then Q.. := Q | 8(Ky) is called its ac-charge part.

Let TI(K&°) = {L?(R,d\, €(\)), M, ®} be a spectral representation of Kg¢. If
p is a density operator, then there is a measurable family {p,c(\)}rer of bounded
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self-adjoint operators such that the multiplication operator
('Mpac -]/C\)()\) = pac()\) f<)\)7 -]? S dom(Mpac) = LQ(R7 dA?E()\))7

is unitarily equivalent to the ac-part pqc, that is, M,,. = ®paP*. In particular,
this yields that ess-sup \cgllpac(M)l|Beer) = llPacllBsec(iy))- In the following, we
call {pac(A)}rer the density matrix of pgc.

Similarly, one gets that if @) is a charge, then there is a measurable family
{Qac(A) }rer of bounded self-adjoint operators such that the multiplication ope-
rator

o~ ~

(M@ae )A) = Qac(A) f(A),
fedom(Que) = {f €L*R,d\EN) : Que(M) F (V) € L*(R,dX, E(N))},

is umitarily equivalent to Qgc, ie., Mg,, = PQ.P*. In particular,
ess-sup \cr||Qac(N)|| = [|Qacll- If @ is a charge, then the family {Quc(\)}arer
is called the charge matrix of the ac-part of Q.

Let s = {K, Ko} be a trace scattering system. By {S(\)} cr, we denote the
scattering matrix which corresponds to the scattering operator S(K, Ky) with
respect to the spectral representation II(K§¢). The operator T := S(K, Ky) —
P%(K)p) is called the transmission operator. By {T'(\)}cr, we denote the trans-
mission matrix which is related to the transmission operator. The scattering and
transmission matrices are related by S(A\) = Iy + T'(A) for a.e. A € R. Notice
that T'(\) belongs to the trace class a.e. A € R.

Theorem 3.1. ([6, Theorem 3.1]) Let S := {K, Ko} be a trace class scattering
system and let {S(X)}xer be the scattering matrix of S with respect to the spectral
representation IL(K§¢). Further, let p and Q be the density and the charge opera-
tors and let {pac(N) facr and {Quc(N)}acr be the density and the charge matrices
with respect to TI(K§°) of the ac-parts pac and Qqe, respectively. If (I + K2)p is
bounded, then the current JiQ admits the representation

Toa = % /tr(pac()‘)(Qac(/\) — 55 (M) Qac(N)S(N)))dA, (3.1)
R

where the integrand on the right-hand side and the current J[f’Q satisfy the fol-
lowing estimates:

[t (Pac(A) (Qac(A) = 5" (A)Qac(A)S(N)))] < 4Hpac(/\)HHT(/\)\m(eu))HQac(}\zH |
3.2
for a.e. A € R and

T3 ol < Coll(H +i)™! = (Ho + )| &, (s, (3.3)

where Cy 1= %H(l + H&)plls(ﬁ)l\Qll-
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In applications not every charge Q) is a bounded operator. We say the self-
adjoint operator () commuting with Ky is a p-tempered charge if Q(Hy—1)? is a
bounded operator for p € Ny. As above, we can introduce Qg := @ | dom(Q) N
R(Kp). It turns out that QFk,(A) is a bounded operator for any bounded
Borel set A. This yields that the corresponding charge matrix {Quc(A)}aer is
a measurable family of bounded self-adjoint operators such that the condition
ess-sup e (1 +A2)7P/2(|Quc(N)|| < oo is satisfied. Tt turns out that formula (3.1)
remains valid for p-tempered charges.

Corollary 3.2. (]9, Corollary 3.2]) Let the assumptions of Theorem 3.1 be
satisfied. If for some p € Ny the operator (Hy — i)P*2p is bounded and Q is
a p-tempered charge for Ky, then representation (3.1) and estimate (3.2) re-
main valid. Moreover, estimate (3.3) holds with Cy replaced by C, := Z||(1 +
H )P H2Pp| |QI + HE) P2

At first glance, formula (3.1) is not very similar to the original Landauer—
Biittiker formula of [4, 8]. To make the formula more convenient, we recall that
a standard application example for the Landauer—Biittiker formula is the so-
called black-box model, cf. [1]. In this case, the Hilbert space R is given by
R=Rs @D R, 2< N < o0, and Ko by Ko = Ks & @), Kj, 2 < N < oo.
The Hilbert space Kg is called the sample or dot and Kg is the sample or dot
Hamiltonian. The Hilbert spaces £&; are called reservoirs or leads and K; are
the reservoir or lead Hamiltonians. For simplicity, we assume that the reservoir
Hamiltonians K; are absolutely continuous and the sample Hamiltonian Kg has
a point spectrum. A typical choice for the density operator is

N
p=fs(Ks)®EP fi(K;),
j=1

where fg(-) and f;(-) are non-negative bounded Borel functions, and for the
charge,

N
Q = gs(Hs) & @ g;(Hj),
j=1

where gg(-) and g;(-) a bounded Borel functions. Making this choice, the Landauer—
Biittiker formula (3.1) takes the form

S 1 al
To@ = 5= 2. / (f5(A) = fe(A)gi (M) aje(A)dA, (3.4)

where 0j,(A) = tr(Tjp(A\)*Tjx(N), .,k = 1,...,N, A € R, are called the total
transmission probability from the reservoir k to the reservoir j, cf. [1]. We call it
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the cross-section of the scattering process going from the channel k to the channel
J at energy A € R. {Tji(\)}acr is called the transmission matrix from the channel
k to the channel j at energy A € R with respect to the spectral representation
II(K§°). We note that {Tj;(\)}aer corresponds to the transmission operator

T‘jk‘ = P]T(Ka KO)ka T(K7 KU) = S(K7 KO) - Pac(K0)7

acting from the reservoir k to the reservoir j, where T'(K, Kj) is called the trans-
mission operator. Let {T'(A)}aer be the transmission matrix. Following [1], the
current inQ given by (3.4) is directed from the reservoirs into the sample.

The quantity ||T'(\)|| g, = tr(T'(A\)*T' (X)) is well-defined and is called the cross-
section of the scattering system § at energy A € R. Notice that

N
o(A) = [TMle, = tr(TA)TN) = D ojx(A), AeR.

We point out that the channel cross-sections oj;(A) admit the property

N N
> oA =D ori(N), AER, (3.5)
j=1 j=1

which is a consequence of the unitarity of the scattering matrix. Moreover, if
there is a conjugation J such that KJ = JK and KyJ = JKj hold, that is, if
the scattering system S is time reversible symmetric, then we have even more,
namely, it holds o3 (\) = o1;(A), A € R.

Usually the Landauer-Biittiker formula (3.4) is used to calculate the electron
current entering the reservoir j from the sample. In this case one has to choose
Q= QEZ —ePj, where P; is the orthogonal projection form & onto £; and ¢ > 0
is the magnltude of the elementary charge. It is equivalent to choose g](/\) = —¢
and gr(A) = 0 for k # j, A € R. Doing so, we get that the Landauer—Bittiker
formula simplifies to

TS gt = - 2”21 R/ FiO) = )N

To restore the original Landauer-Biittiker formula, one sets fj(A) = f(A — pu;),
A € R, where p; is the chemical potential of the reservoir £, and f(-) is a
bounded non-negative Borel function called the distribution function. This gives
to the formula

p,@ﬁl 2; / SN = 15) = FA = ) o (A)dA. (3.6)
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In particular, one chooses

1

A) = A) = ——— AeR .
fA) == frp(N) T P>0 AER (3.7)
where frpp(-) is the so-called Fermi-Dirac distribution function. If we have only

two reservoirs and f(A) = frp(A), A € R, then

4

TS g = 5= [(frnO = ) = frp(\ = i) ()

R

One can easily check that .J i l < 0if p; > pp. It means that current is leaving the
left reservoir and is entering the right one, which is in accordance with physical
intuition.

Example 3.3. Notice that s. := {h, hg} is a £i-scattering system. The
Hamiltonian h¢ takes into account the effect of coupling of reservoirs or leads
b := I2(N) and b, := [*(N) to the sample hs = C2, which is also called the
quantum dot. The lead Hamiltonians are given by hgf = -AP 40, a=1r.
The sample or quantum dot Hamiltonian is given by hgl. The wave operators are
given by

wa(h hf') == s- lim eith™! g=ithi pac(pel). (3.8)

—00

The scattering operator is given by s. := wy (h®, h§!)*w_(h%, h§'). Let H(hgl’ac)
be the spectral representation of hgl’ac introduced in Sec. 2.5. If p° and ¢ are
the density and the charge operators for hﬁl, then the Landauer—Biittiker formula

takes the form

T = 5= [ 10 () (6 = 5e )"t 05.0))). (3.9)

where {s.(A\)}acr, {g°(N) }aer and {p(N\)}aer are the scattering, the charge and
the density matrices with respect to H(hgl’ac), respectively. The condition that
(hgh? + Ihez)pel is a bounded operator is superfluous because h§' is a bounded
operator. For the same reason, we have that every p-tempered charge ¢° is in
fact a charge, i.e., ¢® is a bounded self-adjoint operator.

The scattering system s, is a black-box model with the reservoirs hlel and h¢.
Choosing p? = fi(h?) & fs(hd) @ f-(hE), where fo(-), o = I, 7, are bounded
non-negative Borel functions and ¢* = g;(h{') ® gs(h) @ g,(h'), where ga(-),
a € {l,r}, are locally bounded Borel functions, then from (3.4) it follows that

Fgi =5 2 [(a) = £l gaoeNaN
a,%i{l,r}R
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where {o.(\)} er is the channel cross-section from left to right and vice versa.
Indeed, let {t.(\)}rer be the transition matrix which corresponds to the tran-
sition operator ¢, := s. — Ig. Obviously, one has t.(\) = sc(A) — Iyn), A € R.
Let {p(\)}recr be the matrix which corresponds to the orthogonal projection p¢
from h onto hel. Further, let t¢,(\) := pel(A)t.(N)pf and &, := pf(\)t.(\)p2.
Notice that both quantities are in fact scalar functions. Obviously, the channel
cross-sections of.(A) and o& () at energy A € R are given by o.(\) := of.(\) =
[ts. (V)2 = [t5,(V))? = (A) A € R. In particular, if g;(A\) =1 and g, = 0, then

T = 5 / L) = F(A)oe(A)dA, (3.10)
and qlel = plel. Following [1], J;il,q;l denotes the current entering the quantum

dot from the left lead.

3.2. Application to the JCL-model

Let $ = {H, Hy} be now the JCL-model. Further, let p and @ be a density
operator and a charge for Hy, respectively. Let us introduce the intermediate
scattering system . := {H, H.} where H, := hel @ Ihph + Ibel ® hPh = Hy + V.
The Hamiltonian H. describes the coupling of the leads to a quantum dot but
under the assumption that the photon interaction is not switched on.

Obviously, Sy, == {H, H.} and S, := {H., Hy} are £;-scattering systems. The
corresponding scattering operators are denoted by S,, and S, respectively. Let
us assume that II(H%) = {L?(R,d\, he(N)), M, ®.} is a spectral representation
of H?. The scattering matrix of the scattering system {H, H.} with respect
to II(HZ¢) is denoted by {Spn(A)} AR The scattering matrix of the scattering
system {H., Hy} with respect to II(H§¢) = {L*(R,d\, ho(\)), M, g} is denoted
by {Se(\) hack-

Since S, is a £;-scattering system, the wave operators W (H,., Hy) exist and
are complete, and since . W4 (H,, Hy)®{§ commute with M, there exist the mea-
surable families {W4 ()} er of isometries acting from ho(A) onto h.(A) for a.e.
A € R such that

(@Wa(He, Ho)®G [)(N) = We(N) F(N), AR, [ € L*(R,dX bo(N)).

The families {WW1(\)}rer are called the wave matrices.

A straightforward computation shows that §ph =W,y (He, Ho)*Spn W (H., Ho)
commutes with Hy. Hence, with respect to the spectral representation II(H{§¢),
the operator §ph is unitarily equivalent to a multiplication induced by a mea-
surable family {§ph (M) }aer of unitary operators in ho(A). A straightforward
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computation shows that

Spn(N) = W () Spa (N Wy (V) (3.11)
for a.e. A € R. Roughly speaking, {gph (M) }acr is the scattering matrix of Sy
with respect to the spectral representation II(H¢).

Furthermore, let

p¢ = W_(H., Ho)pW_(H., Ho)* (3.12)

and
Q° =W,y (H., Hy)QW,(H,, Hp)*. (3.13)

The operators p¢ and Q¢ are the density and the tempered charge operators for
the scattering system S,,. Indeed, one easily verifies that p¢ and Q° commute
with H.. Moreover, p¢ is non-negative. Furthermore, if () is a charge, then Q¢ is a
charge, too. If Q is a p-tempered charge and (Hg —4)P*2p is a bounded operator,
then one easily checks that Q° is a p-tempered charge and (H. — i)P*2p¢ is a
bounded operator. Finally, we note that the corresponding matrices {p5.(A)}rcr
and {Q%.(A\)}rer are related to the matrices {pac(A)}aer and {Quc(A)}rer by
pe(N) = Wo (N)pac NW- (V) and Q5. (A) = Wi (M) Que MW (A)* for a.e. X € R.

Proposition 3.4. (]9, Proposition 3.4|) Let § = {H, Hy} be the JCL-model.
Further, let p and Q be a density operator and a p-tempered charge for Hgy, re-

spectively. Moreover, let {Sc(A)}aer, {Pac(A) facr and {Quc(N)}rer be scattering,
density and charge matrices of S¢, pac and Qqc with respect to II(HG®). Further-

more, let {Spn(AN)facr, {Phe(N)Irer and {Q5.(N)}acr be scattering, density and
charge matrices of the scattering operator Sy, the density operator p., cf. (3.12),
and the charge operator QS., cf. (3.13), with respect to the spectral representation
(H2). If (Hy — )P 2p is a bounded operator, then the decomposition
s ph
Joo= Joo+ 50 (3.14)

holds, where

f0 = o [ PN (@) — SN Quel VSN,
R

T = o [N @) = SN QaeN Sy ()i,
R

Remark 3.5. (i) The current J , occurs due to the coupling of the leads
to the quantum dot and is therefore called the contact-induced current.

(ii) The current in}é occurs due to the interaction of photons with electrons
and is therefore called the photon-induced current. Notice that this current is
calculated under the assumption that the leads have already contacted to the
dot.

370 Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 3



A New Model of Quantum Dot Light Emitting-Absorbing Devices

Corollary 3.6. ([9, Corollary 3.6]) Let the assumptions of Proposition 3.4 be
satisfied. With respect to the spectral representation II(HG§®) of H§, the photon

induced current Jg’% can be represented by

T = % / t7( Pac(A) (Qac(A) — Spr(A)* Qac(N) Spn (X))dA, (3.15)
R

where the measurable families {§ph()\) trer and { pac(A) }rer are given by (3.11)
and

Pac(A) = Sc(N)pac(N)Sc(A)* N eR, (3.16)
respectively.

Remark 3.7. In the following, we call { pac(A) }aer, cf. (3.16), the photon
modified electron density matrix. Notice that { pac(A) }aer might be non-diagonal
even if the electron density matrix {pac(A)}aer is diagonal.

4. Analysis of Currents

In the following, we analyze the currents 50 and Jﬁ% under the assumption
that p and @ have the tensor product structure

p=p"@p" and Q=q"®¢™", (4.1)

where p¢ and pP* as well as ¢® and ¢P* are the density operators and the
(tempered) charges for hgl and hP"| respectively. Since pP* commutes with hP?,
which is discrete, the operator pP" has the form pP" = 37 . pP"(n)(-, Tn)Tn,
where pP"(n) are non-negative numbers. Similarly, ¢?* can be represented by
" =3 en, @ (n) (-, Tp) T, where g (n) are real numbers.

Lemma 4.1. ([9, Lemma 4.1]) Let S = {H, Hyo} be the JCL-model. Assume
that p # 0 and Q have the structure (4.1), where p¢ is a density operator and ¢
is a charge for hSl.

(i) The operator (Hy —1i)P*2p, p € Ny, is bounded if and only if the condition

sup PP (n)nP*t? < oo (4.2)
n€Ng

1s satisfied.

(ii) The charge Q is p-tempered if and only if

sup [¢""(n)|n"P < oo (4.3)
neN

1s valid.
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4.1. Contact-induced current

Let us recall that S, = {H,., Hy} is a £;-scattering system. Obvious computa-
tions show that W (H,, Hy) = wx(h®, h§) ® Iypn, where w (he, h) is given by
(3.8). Hence, Se = sc ® Igpn, where s¢ := wy (b, h§)*w_(he, h).

Proposition 4.2. (]9, Proposition 4.2]) Let S = {H, Hyo} be the JCL-model.
Assume that p and Q are given by (4.1), where p® and ¢ are the density and the
charge operators for hgl and pP* and ¢P" for WP, respectively. If for some p € Ny
the conditions (4.2) and (4.3) are satisfied, then the current Jg 5 is well-defined
and admits the representation Jj o = ’)/J;‘;l’qel, Y= Y oneN, q""(n)pP"(n), where
J;Cel’qel is given by (3.10). If tr(pP") =1 and ¢*" = Tyon, then JY o = J;;l’qel.
4.2. Photon-induced current

To calculate the current J" 5> We used representation (3.15). We set
Shin (V) = Pu(A) Spr (A) [ 0a(X), A €R,

where {gph (M) }aer is defined by (3.11) and P, () is the orthogonal projection
from h(A), cf. (2.24), onto b, (N) == h(\ — mw), A € R.

Proposition 4.3. (]9, Proposition 4.3]) Let S = {H, Hyo} be the JCL-model.
Assume that p and Q are given by (4.1), where p® and ¢ are the density and the
charge operators for he and pP" and ¢°" for hP", respectively. If for some p € Ny
the conditions (4.2) and (4.3) are satisfied, then the current Jf,”hQ is well-defined
and admits the representation

pQ_prh quh

meENy neNy

1 S .
x oo [[axtr (GO = mw) (g6 = ) — Spl (Vg6 — ) S5 (1))

where { peL()\) }aer is the photon-modified electron density cf. (3.16), which takes
the form
L) = s.(A\)p(N)se(N)*, A eR. (4.5)

Corollary 4.4. ([9, Corollary 4.4]) Let s = {H, Hy} be the JCL-model. As-
sume that p and Q are given by (4.1), where p and ¢° are the density and
the charge operators for h§ and pP" and ¢P* for hPh, respectively. If p® is an
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equilibrium state, i.e., p = fe(h&'), then

h h
To= 2. "M
m,n€Ng

X [ (PO = ) = P () = )

R
xtr (S, (A)*gh (X — nw) SEE (M) dA.

5. Electron and Photon Currents
5.1. Electron current

To calculate the electron current induced by the contacts and a photons con-
tact, we make the following choice throughout this section. We set

Qli=ql @, ¢ = —af and @ =Ip, ac{lry,  (5.1)

where p? denotes the orthogonal projection from h¢ onto he. By e > 0, we
denote the magnitude of the elementary charge. Since p¢ commutes with h¢,
one easily verifies that Q¢ commutes with Hy which shows that Q¢ is a charge.
Following [1], the flux related to Q¢ gives us the electron current Ji Q! entering

the lead « from the sample. Notice that ng = ¢P,, where P, is the orthogonal
projection from $ onto §, := h% ® hP". Since ¢P" = Iypn, the condition (4.3) is
immediately satisfied for any p > 0.

Let f(-) : R — R be a non-negative bounded measurable function. We set

pt=pi@pd@pl, pfl = f(hY —pa), ac{lr}, (5.2)
and p = p® ® pP". The chemical potential of the lead « is denoted by jiq. In
applications one sets f(A) := frp(A), A € R, where frp(\) is the so-called
Fermi-Dirac distribution given by (3.7). If § = oo, then frp(A) = xr_(A),
A € R. Notice that [p?, p¥] = 0. For pP", we choose the Gibbs state

1 h h 1
h . —pBh? — —BhPRY _
pp = E@ y Z—tr(e )—m
Hence, pP" = (1 — e*ﬂ“’)e*ﬁhph. If B = oo, then pP! := (-, T()Yo. Obviously,
tr(pP") = 1. We note that pP*(n) = (1 — e™P¥)e™% n € Ny, satisfies condition
(4.2) for any p > 0. Obviously, pg = p® @ pP" is a density operator for Hy.

Definition 5.1. Let S = {H, Hy} be the JCL-model. If Q := Q¢, where
¢ is given by (5.1), and p := pg := p® @ pP", where p® and pP* are given by

(5.3)

(5.2) and (5.3), then J¢ . = J° . is called the electron current entering the
p0,QE p0,Q%
lead o. The currents J;O 0cl and Jé’:@el are called the contact-induced and the

photon-induced electron currents.
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5.1.1. Contact-induced electron current. The following proposition
immediately follows from Proposition 4.2.

Proposition 5.2. Let S = {H,Hy} be the JCL-model. Then the contact-
induced electron current J;oQg“ a € {l,r}, is given by ;o,le = J;(él,qgl' In
particular, one has

Tpo.st = —i /(f()\ — o) — FON = p)oe(NdX, o, € {l,r}, a#x, (54)
R

where {o.(A\) }aer s the channel cross-section from left to right of the scattering
system s. = {h', h§'}, cf. Evample 3.3.

Proof. Since tr(pP?) = 1, it follows from Proposition 4.2 that P

J’ From (3.10), cf. Example 3.3, we find (5.4). [

T

If ;> p, and f(+) is decreasing, then J;O gt < 0. Hence the electron contact
7l

current goes from the left lead to the right one, which is in accordance with
physical intuition. In particular, this is valid for the Fermi—Dirac distribution.

Proposition 5.3. Let S = {H, Hy} be the JOL-model. Further, let p° and
PP be given by (5.2) and (5.3), respectively. If the charge QS is given by (5.1),
then the following holds:

(E) If i = pr, then Jo0a =0, a€ {l,r}.

(S) If vy > v, + 4, then JSO,QEZ =0, ae{l,r}, even if p # .
(C) If e = 65 and ef = 67, then S0 =0, a € {l,r}, even if p # pr.
Proof (E)If = pr, then f(A— ) = f(A — p). Applying formula

(5.4), we obtain 0.0t = 0-

(S) If vy > v, + 4, then h(e)l’ac has a simple spectrum. Hence the scattering
matrix {s.(\)}rer of the scattering system s, = {h¢ h§'} is a scalar function,
which immediately yields o.(A) = 0, A € R, which yields J;O g =0

(C) In this case, the Hamiltonian h* decomposes into a direct sum of two
Hamiltonians which do not interact. Hence the scattering matrix of {s.(A\)}rer
of the scattering system s. = {h® h¢'} is diagonal, which immediately yields

C —
Jpo’ Qe = 0. ]
5.1.2. Photon-induced electron current. To analyze (4.4) is hopeless
if we make no assumptions concerning p¢ and the scattering operator s.. The
simplest assumption is that p® and s. commute. In this case, we get p* ()\) =
Pl (N), X € R.
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Lemma 5.4. Let S = {H, Hy} be the JCL-model. Further, let p be given
by (5.2). If one of the cases (E), (S) or (C) of Proposition 5.3 is realized, then

el

p% and s, commute.

Proof If (E) holds, then p? = f(h§!), which yields [p%,s.] = 0. If (S)
is valid, then the scattering matrix {s.(\)} cr is a scalar function which shows
[p?,s.] = 0. Finally, if (C) is realized, then the scattering matrix {s.(\)}xcr is
diagonal. Since p¢ is given by (5.2), we get [p°, s.] = 0. [ |

We are going to calculate the current J” h see (4.4). Obviously we have

p0,Q8
Po(N) = Y pen, PLA — nw) and Iy = Bi(X) + Pr(A), A € R. We set

Pna(A) = Pa(A)Pn()‘) = Pn(/\)Poz()‘) = pgzl()‘ - nw)7 o€ {Z,T‘},

n € No, A € R. In the following, we use the notation fph N = Aph (A) = Tyenys

A € R, where {fph()\) taer is called the transition matrix, and {§ph()\) Faer 18
given by (3.11). We set

I (A) = PN Tph (NP, (A), A€R, a,x€{l,r}, kmeN,
and R R
aggmﬂ ()\):tr(T,f:m%()\)* T,ffm%()\)), AER, (5.5)

which is the cross-section between the channels k, and m,,.

Proposition 5.5. Let S = {H, Hy} be the JC L-model.
(i) If p commutes with the scattering operators s, and ¢, then

ph

JPO,QZl -
e ~
_ Z g/ (pph(n)f<)\ — o — nw) — pP(m) FN = pse — mw)) ngm%()\) d\.
m,neN
%G{l,r(}) R
(5.6)
(i) If in addition S = {H, Hy} is time reversible symmetric, then
ph
p0,Q¢
e ~
-2 5 /(pph(n)f(A ~ o = 10) = () fA — oy — mw)) GBE,, (N) d,
m,n€ENg ™ R
(5.7)

a,o € {l,r}, a # .
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Proof. (i) Let us assume that ¢* = D sec i} 9x(hS 1), Notice that
(X Z GNP\, AeR. (5.8)
se{l,r}
Inserting (5.8) into (4.4) and using ¢ = Tgpn, we get

e =3 ) Y S / AN Ga(A — mw) g\ — nw)

meNg n€Ng
ae{l,r} »e{l,r}

xtr (e (= mw) (PN = 1) G — S, (NP = nw) S, (1))

where for simplicity we have set ¢4(A) == f(A — o), A€ R, n € Ny, a € {l,r}.
Therefore, we have

JggQ - Z pph(")% /d)\ DA — nw) goe(A — nw)tr (piﬁ()\ - nw))
R

n€ENg

we{l,r}
1
= XX Py [N Galh - mw)glh - )
n€ENg meNy R

»xe{l,r} ae{l,r}
st (pEL () — muw) S, (VBN — ) 2 (Np (A —mw)) . (5.9)

Since the scattering matrix { 5P (\)}er is unitary, we have

L\ — nw) Z PO —nw) SP (N p N — mw) SER (\)pe (A — nw) (5.10)
meN,
ae%l,;)}

for n € Ny and s € {l,r}. Inserting (5.10) into (5.9), we find

Ta= Y X s [N 6= n)gh— )

neNg meNy R
we{l,r} ac{l,r}

xtr (LA — nw) S, (V) pE (A = mw) SER, ()PSO = ) )
1
S % Py [ dxoalh - mw)g. - nw)
2w
neNg meNy R
swe{l,r} ae{l,r}
xtr (pl(\ — muw) S () PEE = nw) SEE (WpE (A = mw)) .
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Using the notation (5.5), we find

To= Y X s [N 6h — n)gh = )3T, (N
R

neNg meNy
»wef{l,r} ac{l,r}

S Mg [ X alh— me)gah = n) 2, ().
neNg meNy Q R
we{l,r} ae{l,r}

By (3.5), we find

>ooah (A= > & (A, AeR
meNp meNg
ae{l,r} aef{lr}

Using that, we get

JpoQ
> / P! (1)) = 1) = " (m) o (A = 1)) (A = 1) G, (A) A,
mnENo
a,xe{l,r}

Setting go(A) = —e¢ and g,.(\) = 0, » # «, we obtain (5.6).
(i) A straightforward computation shows that

S [ (P FO = ) = P FO = ) 2, (V) A

n,meNo

= 3 [ (PO o= ) = ) F O o~ ) T, (V) A

n,meNy R

Since gP . (A) = oPh (), A € R, we get

MaNa NaMa

S [ (P £ =) = P FO = ) 2, (V) A

n,meNg g

. / (07" (1) N = o = nw) — PP () (A — o — m0)) G2 (N) A,
n,meNoR

which yields

> / (M) F O = pta = ) = (M) A = prog = mw) ) GBE,, (A) dX = 0,

n,meNo p

Using that, we get immediately representation (5.7) from (5.6). [
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Corollary 5.6. Let s = {H, Hy} be the JCL-model.
(i) If the cases (E), (S) or (C) of Proposition 5.3 are realized, then (5.6)
holds.
(i) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hp}
is time reversible symmetric, then
h
J,:ZO,QSZ -

-3 = / (PP (M) FO = o = ) = ™ (m) (A = o = m) FEL, (),

m,n€Ng

(5.11)

n € No, a € {l,r}, where p:= p; = p, and o # /.
(iii) If the case (E) of Proposition 5.3 is realized and the system S = {H, Hy}

h
is time reversible as well as mirror symmetric, then Jp , = 0.

Qe
Proof. (i) The statement follows from Proposition 5.5(i) and Lemma 5.4.
(ii) By setting o = fto/, formula (5.7) reduces to (5.11).

(ii) If s = {H, Hp} is time reversible and mirror symmetric, we get from

Lemma 2.13 (ii) that aghm L (N) = Uﬁh,m (A), A€ R, n,m € Ny, a, &’ € {l,r},

a # . Using that, we get from (5.11) that

J%L,Qfl -
-y / (PP () FA = o= nw) — P (m) FOA = o — me)) 827, (\)dA.
m neNo
Interchanging m and n, we get
Jthel =
- / PHm) O — = mw) — () O — = nw)) 32 (VA

m nENo

Using that § is time reversible symmetric, we get from Lemma 2.13 (i) that

ph _
JPO’QEZ -
- / PR m) FO = = mw) = P (0) A — = nw)) G, (WA,
m nGNo
which shows that Jthel = —Jthel Hence, Jp 0.Qcl = 0. u

We note that by Proposition 5.3 the contact induced current is zero, i.e.,
J¢ Qe = 0. Hence, if S is time reversible and mirror symmetric, then the total

PO,
current is zero, i.e., JS =0.

7C)el
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Remark 57 Let the case (E) of Proposition 5.3 be realized, that is,
= pr. Moreover, we assume for simplicity that 0 =: v, < v := v;.

(i) If B = oo, then pP"(n) = don, n € Ng. From (5.6), we immediately get that
Jf: 27Qel = 0. That means, if the temperature is zero, then the photon-induced
electron current is zero.

(ii) The photon-induced electron current might be zero even if § < oo. Indeed,
let § = {H, Hp} be time reversible symmetric and let the case (E) be realized. If
w > v+ 4, then h(N) := h(A) = h (XA — nw), n € Ny. Hence one always has
n = m in formula (5.11), which immediately yields Jﬁ’ : Qo = 0.

(iii) The photo-induced electron current might be different from zero. In fact,
let § = {H, Hp} be time reversible symmetric and let v = 2 and w = 4, then

one gets that to calculate the Jg:Qel one has to take into account m = n + 1 in
7]

formula (5.11). Therefore we find

ph ¢

po,Qft _neN o
0

x/d)\(pph(n)f()\ — = ) =P D= - (D)) 3 ().
R

If pP" is given by (5.3) and f(A\) = frp()), cf. (3.7), then one easily verifies that

0

%pph(IE)fFD()\—}L—IL‘W)<O, :L'a/%)\ER'

Hence pP"(n)frp(XA — p — nw) is decreasing in n € Ny for A\, u € R, which
yields (pph(n)f()\ —p—nw)—pPPn+ D fAN—p— (n+ 1)w)) > 0. Therefore,

Jf: : o <0, which means that the photon-induced current leaves the left-hand side
7]

. . h L ~ph
and enters the right-hand side. In fact, J;)o,Qfl = 0 implies that aﬁl (n+1), (A =0
for n € Ng and A € R, which means that there is no scattering from the left-hand

side to the right-hand one and vice versa, which can be excluded generically.

5.2. Photon current

The photon current is related to the charge
Q=Q" =-I.u®n,

where n = dI'(1) = b*b is the photon number operator on h?" = F., (C), which
is self-adjoint and commutes with AP". It follows that QP" is also self-adjoint
and commutes with Hp. It is not bounded, but since dom(n) = dom(hP"), it is
immediately obvious that QP"(Hy + 6)~! is bounded, whence n is a tempered
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charge. Its charge matrix with respect to the spectral representation II(H§¢) of
Lemma 2.11 is given by

Qe (V) = — P nPu(N).

n€eNg

We recall that P,(\) is the orthogonal projection form h()) onto b, (A) = h (X —
nw), A € R. We are going to calculate the photon current or, as it is also called,
the photon production rate.

5.2.1. Contact-induced photon current. The following proposition is in
accordance with physical intuition.

Proposition 5.8. Let S = {H, Hy} be the JCL-model. Then oo.0n = 0

Proof Wenote that ¢.(\) = Iger(n), A € R. Inserting this into (3.9), we
get J;C = 0. Applying Proposition 4.2, we prove J;O orh = 0. n

elvqel

The result reflects the fact that the lead contact does not contribute to the
photon current which is plausible.

5.2.2. Photon current. From Proposition 5.8 we get that only the photon-

induced photon current JZ; : Qrh contributes to the photon current J;O Qi Since
S _ qph ph :
JpO,QPh = Jpo,QP’” we call meQph simply the photon current.

Using the notation TE" (X) := P,(\) fph (A) T YA —mw), A € R, m,n € N,
we set

TP (A) = TPh (N)se(A—mw), AER, m,n e Ny (5.12)
and N N

Tna ) = P VTN THE(A = mw), A€ER, (5.13)
m,n € Ny, a,5c € {l,r}, as well as 6B | (\) := tr(f}jjjma ()\)*T}fi‘ma()\)), A eR.

Proposition 5.9. Let S = {H, Hy} be the JCL-model.
(i) Then

1 ~
Phom = 3 (n—m)p ()5 / FON= pio — mw) (WA (5.14)
m,neN
a,xe{l,v?} R

(ii) If p* commutes with s., then

Jthph = Y (n- m)pph(m);ﬂ/f()\ — fto —mw) GE" L (N)dA.  (5.15)

PO,
m,neNg R
a,xe{l,r}
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(iii) If p° commutes with s. and S = {H, Hy} is time reversible symmetric,
then

Joh = — [ dx
po-Q m nGNo,n>m /
se,ae{l,r}
x (n=m) (P (m) FA = pra = mw) = p" () f\ = pioe = ) ) G, (),

(5.16)
where o € {l,r} and o/ # «a.
Proof. (i) From (4.4), we get

1
ph _ h ~el (y
S = E np(m) o /dA tr (pac()\ mw)
R

m,n€ENp
X (PN — SEh (A)gih(A — nw) S, (V)
Hence,

T o == > mp(m)

meENy

X — / tr (FELO = mw) (Pa(N) = 52 (0" Pr(X) S22, (0) ) ) d

+ Y m) / tr (FEL(A — mw) SEA (A Pa(N) 8B, (0) ) dA.
mn;No

Using the relation P,(A) = Ipn) — 2Znengmen Pn(A), A € R, we get

Jph —

po,QPY
1 S o
- 3wty R/ tr (L — me) (52" Pa() SE (1)) ) dA
m#n

b3 ) [ (B mw) SEO)T PAO) SO )
R

m,neNy
m#n

Since Ty (A) = Spn (A) — Iny, A € R, we find

ph —
Po,Qph_
= 3 m— )5 [ (B = ) TR T )
2
m,nENp R
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Using (4.5) and definition (5.12), one gets

ph _
Jpo Qrh

= 3 - m) o / tr (pEL(A — ma)TEL ()T (V) dA.

m,neNg

Since pcl = pf! @ pel, where p is given by (5.2), we find

ph _
po,QP T
1
= X e ) [ SO o= s (T2 () TR, (V) dA
™
m,neEN
a,ueil,g} R

where (5.13) is used. Using o2" . (\) = tr( ,{’ e ( )*Tph . (X)), we prove (5.14).
(ii) If peL commutes with s, then Pk (N) = pel (M), A € R, which yields that
one can replace 68" (\) by 2" (), A €R. Therefore (5.15) holds.
(iii) Obviously we “have

Flhan= X =m ) [T pa—mw) 5, ()N

m,n€Ng,n>m
a,ee{l,r}

R
1 ~
Y e m)pm) o / FON= pto — mw) 2 (A)dA. (5.17)
m,nENp,n<m T R
a,xe{l,r}
Moreover, a straightforward computation shows that

S m ) [ FO= e — )52, ()
R

m,n€ENg,n<m

a,>2e{l,r}
1
- > ) [ SO = ) B, (VA
m,n€ENg,n>m i R
a,xe{l,r}

Since S = {H, Hy} is time reversible symmetric, we find

S e m ) [ FO - e = )58, (A
R

m,nENpg,n<m
a,ee{l,r}

= Y (m—n)n) /f/\ foe —nw)Gh(NdA. (5.18)
m,nENg,n>m

a,ee{l,r}

Inserting (5.18) into (5.17), we obtain (5.16). [
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Corollary 5.10. Let S = {H, Hy} be the JCL-model and let f = frp. If case
(E) of Proposz'tion 5.3 is realized and S = {H, Hy} is time reversible symmetric,
then Jp 0.0Ph > 0.

Proof Wesetpu:=pu = pur. One has

> 0. [ ]

for n > m. From (5.16), we get Jp o =

Remark 5.11. Let us comment the results. If Jph > 0, then the system

0,QP"
S is called light emitting. Similarly, if Jp 0.0%h <0, then we call it light absorbing.

Of course, if S is light emitting and absorblng, then Jp h o.Qrh = 0.
(i) If B = oo, then pP"(m) = Som, m € No. Insertmg this into (5.14), we get

T o = /f A — 1) o (A)dA > 0.

Hence S is light emitting.

(ii) Let us show that S might be light emitting even if 8 < co. We consider
the case (E) of Proposition 5.3. If § is time reversible symmetric, then it follows
from Corollary 5.10 that the system is light emitting.

If the system S is time reversible and mirror symmetric, then Jp . = 0,

Qe
a € {l,r}, by Corollary 5.6 (iii). Since J5, 0« = 0 by Proposition 5 3 we get
that J5 @ = 0 but the photon current is larger than zero. Thus our JCL-model

is hght emlttmg by a zero total electron current J° po.Qsl”
Let v, =0, vy = 2 and w = 4. Hence § is not mirror symmetric. Then we

get from Remark 5.7 (iii) that Jthel = —Jph@el < 0. Hence there is an electron

current from the left to the right lead Notice that by Proposition 5.3, J Qe = = 0.

Hence, J5 0,05 <0. ¢

(iii) To realize a light absorbing situation, we consider the case (S) of Propo-

sition 5.3 and assume that S is time reversible symmetric. Notice that by Lemma
5.4, s, commutes with p®. We make the choice

v =0, vyu=>4, w=uv, w=0, p=w=uy.

It turns out that with respect to representation (5.16) one has only m =n — 1,
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» =r and a = [. Hence,

< (=D FO— (= D) = ()0 = (n+ D)) 37 (V).
Since f(A) = frp(\), we find

Pl =1 f(A = (n—Dw) = g (n) f(A = (n + Dw)
=" (= 1fA = (n=1w)f(A = (n+ 1)w)
x (1 POmH1) _ = 4 (Ol

or

P = 1) f(A = (n = Dw) = p"(n) F(A = (n + 1)w)
=" (n=1)f(A— (n— Dw)f\— (n+ Dw)(1 — e ) (1 — PA7wn)y,
Since A —nw > 0, we find pP*(n — 1) f(A — (n—1)w) — pP"(n) f(A = (n+ 1)w) <0,
which yields Jp Qph <0.

To calculate Jp 0.Qe17
yields

we use formula (5.7). Setting o = [, we get o/ = r, which

P07 e Z /d)\

m nENO

x (PP () FON = iy = mw) = PP () FON = = mw) ) Gh0, (A

One checks that 35”6 (A) =0and 2% (X\) =0 for m#n+1, n € N. Hence,

h ¢
J;’O’Q = %% R/ d\
X (pph(n)f(A — pr —nw) — P — 1) fA = — (n+ 1>w)) Aﬁﬁnﬂ) (A)

Since p, = w and p; = 0, we find

Z - /f (n+ Dw)p(n — (1 - e )8 | (A)dr<0.

POv

Hence there is a current going from left to right induced by photons. We recall
that JC el — O
pO:Ql
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