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Institut de Mathématiques de Marseille - UMR 7373

CMI - Technopôle Château-Gombert
39, rue F. Joliot Curie, 13453 Marseille Cedex 13, France

E-mail: Valentin.Zagrebnov@univ-amu.fr

Received December 12, 2013, revised April 4, 2014
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these results is the abstract Landauer–Büttiker formula.

Key words: Landauer–Büttiker formula, Jaynes–Cummings model, cou-
pling to leads, light emission.

Mathematics Subject Classification 2010: 47A40, 47A55, 81Q37, 81V80.

Dedicated to the memory of Pierre Duclos

1. Introduction

The aim of the present paper is to analyze the fermion current going through
a quantum dot as a function of: (1) the electro-chemical potentials on leads
and (2) the contact with the external photon reservoir. Although the latter
is the canonical JC-interaction, the coupling of the JC model with leads needs
certain precautions if we want to remain in the framework of one-particle quantum
mechanical Hamiltonian approach and the scattering theory. To this end we
proposed a new Jaynes–Cummings-leads (JCL)-model [9]. It makes it possible
to create a photon flux into the resonator by the fermion current through the
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dot, i.e., it describes a light-emitting device, as well as to transform the external
photon flux into the current of fermions which corresponds to a quantum dot
light-absorbing device.

We discuss the construction of our JCL-model in Secs. 2.1–2.5. For sim-
plicity, for the leads Hamiltonian we choose the one-particle discrete Schrödinger
operators with constant (electric) potentials of each of the leads. In Sec. 2.5, we
show that our model fits into the framework of trace-class scattering. In Sec. 2.5,
we verify the important property that the coupled Hamiltonian has no singular
continuous spectrum. Our main tool for analyzing different currents is an ab-
stract Landauer–Büttiker-type formula applied in Secs. 3.1 and 3.2 to the case
of the JCL-model. It allows us to calculate the outgoing flux of photons induced
by electric current through leads. This corresponds to a light-emitting device.
We also found out that the pumping of the JCL quantum dot by the photon flux
from the resonator may induce the current of fermions into leads. This reversing
imitates a quantum light-absorbing cell device. These are the main properties of
our model and the main application of the Landauer–Büttiker-type formula of
Secs. 3.1 and 3.2. They are presented in Secs. 4 and 5, where we distinguish the
contact-induced and the photon-induced fermion currents.

To describe the results of Secs. 4 and 5, we should note that in our setup
the sample Hamiltonian is a two-level quantum dot decoupled from the one-mode
photon resonator. Then the unperturbed Hamiltonian H0 can be described as a
collection of four totally decoupled subsystems: a sample, a resonator and two
leads. The perturbed Hamiltonian H is a fully coupled system and the feature of
our model is that it is totally (i.e., including the leads) embedded into the external
electromagnetic field of the resonator. Hence, each electron can be interpreted as
a fermion with internal harmonic degrees of freedom, or a Fermi-particle carrying
an individual photon cloud.

Similarly to the “Black Box” system-leads (SL)-model {HSL,H0} [1, 2], it
turns out that the JCL-model also fits into the framework of the abstract Landauer–
Büttiker formula and, in particular, is a trace-class scattering system {HJCL =
H,HSL}. The current in the SL-model is called the contact-induced current Jcel.
It was a subject of numerous papers, see, e.g., [1, 3] or [2]. Note that the current
Jcel occurs due to the difference of electro-chemical potentials between two leads,
but it may be zero even if this difference is not null [5, 6].

The fermion current of the JCL-model, which takes into account the effect of
the electron-photon interaction under the assumption that the leads are already
coupled, is called the photon-induced component Jphel of the total current. Up to
our knowledge, the present paper is the first one where it is studied rigorously.
We show that the total free-fermion current Jel in the JCL-model decomposes
into a sum of the contact- and the photon-induced currents: Jel := Jcel + Jphel .
An extremal case is where the contact-induced current is zero, but the photon-
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induced component is not, c.f. Sec. 5.1. In this case, the flux of photons Jph
out of the quantum dot (sample) is also non-zero, i.e., the dot serves as a light
emitting device, c.f. Sec. 5.2. In general, Jph 6= 0 only when the photon-induced
component is not zero, i.e. Jphel 6= 0.

It turns out that when choosing the parameters of the model in a suitable
manner, one gets either a photon emitting or a photon absorbing system. Hence
the JCL-model can be used either as a light emission device or as a light-cell.
The proofs of explicit formulas for the fermion and photon currents, Jel , Jph, are
the contents of Secs. 4 and 5.

Note that the JCL-model is called mirror symmetric if (roughly speaking)
one can interchange the left and the right leads and the JCL-model remains
unchanged. In Sec. 5, we discuss a surprising example of a mirror symmetric
JCL-model in which the free-fermion current is zero but the model is photon
emitting. This peculiarity is due to a specific choice of the photon-electron inter-
action which produces fermions with internal harmonic degrees of freedom.

2. Jaynes–Cummings Quantum Dot Coupled to Leads
2.1. Jaynes–Cummings model

The starting point for the construction of our JCL-model is the quantum
optics Jaynes–Cummings Hamiltonian HJC . Its simplest version is a two-level
system (quantum dot) with the energy spacing ε defined by the Hamiltonian hS
on the Hilbert space hS = C2, see, e.g., [7]. It is assumed that this system is
“open” and interacts with the one-mode ω photon resonator with Hamiltonian
hph.

Since mathematically hph coincides with the quantum harmonic oscillator,
the Hilbert space of the resonator is the boson Fock space hph = F+(C) over C
and

hph = ω b∗b . (2.1)
Here b∗ and b are verifying the Canonical Commutation Relations (CCR) creation
and annihilation operators with the domains in F+(C) ' `2(N0), here N0 =
{0, 1, 2, . . .}. Operator (2.1) is self-adjoint on its domain

dom(hph) =



(k0, k1, k2, . . .) ∈ `2(N0) :

∑

n∈N0

n2|kn|2 <∞


 .

Note that the canonical basis {φn := (0, 0, . . . , kn = 1, 0, . . .)}n∈N0 in `2(N0)
consists of eigenvectors of the operator (2.1): hphφn = nω φn.

To model the two-level system with the energy spacing ε, one fixes in C2 two

ortho-normal vectors {eS0 , eS1 }, for example, eS0 :=
(

0
1

)
and eS1 :=

(
1
0

)
, which
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are eigenvectors of the Hamiltonian hS with the eigenvalues {λS0 = 0, λS1 = ε}.
To this end, we put

hS := ε

(
1 0
0 0

)
, (2.2)

and we introduce two ladder operators:

σ+ :=
(

0 1
0 0

)
and σ− :=

(
0 0
1 0

)
. (2.3)

Then one gets hS = ε σ+σ− as well as eS1 = σ+eS0 , eS0 = σ−eS1 and σ−eS0 = 0.
Thus, eS0 is the ground state of the Hamiltonian hS . Note that the non-interacting
Jaynes–Cummings Hamiltonian HJC

0 lives in the space HJC = hS ⊗ hph = C2 ⊗
F+(C) and it is defined as the matrix operator

HJC
0 := hS ⊗ Ihph + IhS ⊗ hph . (2.4)

Here Ihph denotes the identity operator in the Fock space hph, whereas IhS stays
for the identity matrix in the space hS .

With operators (2.3), the interaction VSb between the quantum dot and pho-
tons (bosons) in the resonator is defined (in the rotating-wave approximation [7])
by the operator

VSb := gSb (σ+ ⊗ b+ σ− ⊗ b∗) . (2.5)

Operators (2.4) and (2.5) define the Jaynes-Cummings model Hamiltonian

HJC := HJC
0 + VSb , (2.6)

which is self-adjoint operator on the common domain dom(HJC
0 ) ∩ dom(VSb).

The standard interpretation of HJC is that (2.6) describes an “open” two-level
system interacting with external one-mode electromagnetic field [7].

Since the one-mode resonator is able to absorb infinitely many bosons, this
interpretation sounds reasonable, but one can see that the spectrum σ(HJC) of
the Jaynes–Cummings model is discrete. Note that the so-called number operator
NJC := σ+σ−⊗ Ihph + IhS ⊗ b∗b commutes with HJC . Then, since for any n ≥ 0,

HJC
n>0 := {ζ0e

S
0 ⊗ φn + ζ1e

S
1 ⊗ φn−1}ζ0,1∈C , HJC

n=0 := {ζ0e
S
0 ⊗ φ0}ζ0∈C

are eigenspaces of the operator NJC , which reduce HJC , i.e., HJC : HJC
n → HJC

n .
Note also that HJC = ⊕

n≥0 HJC
n , where each HJC

n is an invariant subspace of the
operator (2.6). Therefore, it has the representation

HJC =
⊕

n∈N0

H
(n)
JC . (2.7)
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Here the operators H(n)
JC are the restrictions of HJC to HJC

n such that H(0)
JC = 0

and

H
(n)
JC (ζ0 e

S
0 ⊗ φn + ζ1 e

S
1 ⊗ φn−1)

= [ζ0nω + ζ1gSb
√
n] eS0 ⊗ φn + [ζ1(ε+ (n− 1)ω) + ζ0gSb

√
n] eS1 ⊗ φn−1 .

(2.8)

Hence the spectrum σ(HJC) = ⋃
n≥0 σ(H(n)

JC ). By virtue of (2.8), the spectrum
σ(H(n)

JC ) is defined for n ≥ 1 by the eigenvalues E(n) of the two-by-two matrix
Ĥ

(n)
JC acting on the coefficient space {ζ0, ζ1}:

Ĥ
(n)
JC

(
ζ1
ζ0

)
=
(
ε+ (n− 1)ω gSb

√
n

gSb
√
n nω

)(
ζ1
ζ0

)
= E(n)

(
ζ1
ζ0

)
, n ≥ 1. (2.9)

Then (2.7) and (2.9) imply that the spectrum of the Jaynes–Cummings model
Hamiltonian HJC is pure point:

σ(HJC) = σp.p.(HJC) = {0} ∪
⋃

n∈N

{
nω + 1

2(ε− ω)±
√

(ε− ω)2/4 + g2
Sbn

}
.

This property evidently persists for any system Hamiltonian hS with discrete
spectrum and linear interaction (2.5) with a finite mode photon resonator [7].

We resume the above observations concerning the Jaynes–Cummings model,
which is our starting point, by the following remarks:

(a) The standard Hamiltonian (2.6) instead of the flux describes only the
oscillations of photons between the resonator and the quantum dot, i.e., the
system hS is not “open” enough.

(b) Since one of our aims is to model a light-emitting device, the system
hS needs an external source of energy to pump it into the dot further to be
transformed by interaction (2.5) into the outgoing photon current pumping the
resonator.

(c) To reach this aim, we extend the standard Jaynes–Cummings model to
our JCL-model by attaching to the quantum dot hS (2.2) two leads which are (in-
finite) reservoirs of free fermions. Manipulating with electro-chemical potentials
of fermions in these reservoirs, we can force one of them to inject fermions in the
quantum dot, whereas another one to absorb the fermions out the quantum dot
with the same rate. This current of fermions throughout the dot would pump it
and produce the photon current according scenario (b).

(d) The most subtle point is to invent a leads-dot interaction VlS , which
ensures the above mechanism and which is simple enough that one should be able
to treat this JCL-model using our extension of the Landauer–Büttiker formalism.
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2.2. The JCL-model

First let us make some general remarks and formulate certain conditions
indispensable when one follows the modeling (d).

(1) Note that since the Landauer–Büttiker formalism [6] is essentially a scat-
tering theory on a contact between two subsystems, it is developed only on
a “one-particle” level. This allows us to study with this formalism only ideal
(non-interacting) many-body systems. This condition is imposed on many-body
fermion systems (electrons) in two leads. Thus, only direct interaction between
different components of the system, dot-photons VSb and electron-dot VlS , is al-
lowed.

(2) It is well known that the fermion reservoirs are technically simpler to treat
than the boson ones [6]. Moreover, in the framework of our model it is also very
natural since we study the electric current although produced by “non-interacting
electrons”. So, below we will use fermions/electrons as synonymous.

(3) In spite of the precautions formulated above, the first difficulty in consid-
ering an ideal many-body system interacting with the quantized electromagnetic
field (photons) is an induced indirect interaction. If electrons are able to emit
and absorb photons, it is possible for one electron to emit a photon that an-
other electron absorbs, thus creating indirect photon-mediated electron-electron
interaction. This interaction makes impossible to develop the Landauer–Büttiker
formula, which requires non-interacting framework.

Assumption 2.1. To solve this difficulty, in our model we forbid the photon-
mediated interaction. To this end, we suppose that every electron (in the leads and
the dot) interacts with its own distinct copy of the electromagnetic field. So, we
consider electrons together with their individual photon clouds as non-interacting
“composed particles”. This allows us to apply the Landauer–Büttiker approach.
Formally it corresponds to the “one-electron” Hilbert space hel ⊗ hph, where hph

is the Hilbert space of the individual photon field. The fermion description of the
composed-particles hel⊗hph corresponds to the antisymmetric Fock space F−(hel⊗
hph).

The composed-particle assumption 2.1 allows us to use the Landauer–Büttiker
formalism developed for ideal many-body fermion systems. Now we have come
closer to the formal description of our resonator.

Recall that the Hilbert space of the Jaynes–Cummings Hamiltonian with two
energy levels is HJC = C2 ⊗ F+(C). The boson Fock space is constructed from
a one-dimensional Hilbert space since we consider only photons of a single fixed
frequency. We model the electrons in the leads as free fermions living on a discrete
semi-infinite lattices. Thus,

hel = `2(N)⊕ C2 ⊕ `2(N) = hell ⊕ hS ⊕ helr (2.10)
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is a one-particle Hilbert space for the electrons and the dot. Here, helα , α ∈ {l, r},
are Hilbert spaces of the left, respectively the right, lead, and hS = C2 is a Hilbert
space of the quantum dot. We denote by {δαn}n∈N and {δSn}1j=0 the canonical basis
consisting of individual lattice sites of helα , α ∈ {l, r}, and of hS , respectively. With
the Hilbert space for photons, hph = F+(C) ' `2(N0), we define the Hilbert space
of the full system, i.e., the quantum dot with leads and with the photon field, as

H = hel ⊗ hph =
(
`2(N)⊕ C2 ⊕ `2(N)

)⊗ `2(N0). (2.11)

R e m a r k 2.2. Note that the structure of full space (2.11) takes into account
condition 2.1 and produces composed fermions via the last tensor product. It also
manifests that electrons in the dot as well as those in the leads are composed
of photons. This makes difference with the picture imposed by the Jaynes–
Cummings model, where only the dot is composed of photons:

H = `2(N)⊕ C2 ⊗ `2(N0)⊕ `2(N), HJC = C2 ⊗ `2(N0), (2.12)

see (2.4), (2.5) and (2.6), where HJC = hS ⊗ hph. The next step is a choice of
interactions between the subsystems: dot-resonator-leads.

According to (2.10), the decoupled leads-dot Hamiltonian is the matrix ope-
rator

hel0 =



hell 0 0
0 hS 0
0 0 helr


 on u =



ul
uS
ur


 , {uα ∈ `2(N)}α∈{l,r}, uS ∈ C2,

where helα = −∆D + vα with a constant potential bias vα ∈ R, α ∈ {l, r}, and hS
can be any self-adjoint two-by-two matrix with eigenvalues {λS0 , λS1 := λS0 + ε},
ε > 0, and eigenvectors {eS0 , eS1 }, cf (2.2). Here, ∆D denotes the discrete Lapla-
cian on `2(N) with homogeneous Dirichlet boundary conditions given by

(∆Df)(x) := f(x+ 1)− 2f(x) + f(x− 1), x ∈ N,
dom(∆D) := {f ∈ `2(N0) : f(0) := 0},

which is obviously a bounded self-adjoint operator. Notice that σ(−∆D) = [0, 4].
We define the lead-dot interaction for the coupling gel ∈ R by the matrix

operator acting in (2.10) as

vel = gel




0 〈·, δS0 〉δl1 0
〈·, δl1〉δS0 0 〈·, δr1〉δS1

0 〈·, δS1 〉δr1 0


 , (2.13)

where non-trivial off-diagonal entries are projection operators in the Hilbert space
(2.10) with the scalar product u, v 7→ 〈u, v〉 for u, v ∈ hel. Here, {δS0 , δS1 } is
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ortho-normal basis in helS , which in general may be different from {eS0 , eS1 }. Thus
interaction (2.13) describes quantum tunneling between the leads and the dot via
the contact sites of the leads, which are supports of δl1 and δr1.

Then the Hamiltonian for the system of interacting leads and the dot is defined
as hel := hel0 + vel. Here both hel0 and hel are bounded self-adjoint operators on
hel.

Recall that the photon Hamiltonian in the one-mode resonator is defined by
the operator hph = ωb∗b with the domain in the Fock space F+(C) ' `2(N0), (2.1).
We denote the canonical basis in `2(N0) by {Υn}n∈N0 . Then for the spectrum of
hph, one obviously gets σ(hph) = σpp(hph) = ⋃

n∈N0{nω}.
We introduce the following decoupled Hamiltonian H0, which describes the

system where the leads are decoupled from the quantum dot and the electron
does not interact with the photon field:

H0 := Hel
0 +Hph, (2.14)

where
Hel

0 := hel0 ⊗ Ihph and Hph := Ihel ⊗ hph.
The operator H0 is self-adjoint on dom(H0) = dom(Ihel ⊗ hph). Recall that hel0
and hph are self-adjoint operators. Hence, Hel

0 and Hel are semi-bounded from
below, which yields that H0 is semi-bounded from below.

The interaction of photons and electrons in the quantum dot is given by the
coupling of dipole moment of electrons to the electromagnetic field in the rotating
wave approximation. Namely,

Vph = gph
(
(·, eS0 )eS1 ⊗ b+ (·, eS1 )eS0 ⊗ b∗

)

for some coupling constant gph ∈ R. The total Hamiltonian is given by

H := Hel +Hph + Vph = H0 + Vel + Vph, (2.15)

where Hel := hel ⊗ Ihph and Vel := vel ⊗ Ihph .
Further we will call S = {H,H0} the Jaynes–Cummings-leads system, in

short, the JCL-model, which we are going to analyze. In particular, we are
interested in electron and photon currents for this system. The analysis will be
based on the abstract Landauer–Büttiker formula, cf. [1, 6]. We note that the
Hamiltonian H is self-adjoint and bounded from below. Moreover, dom(H) =
dom(H0), cf. Lemma 2.3 of [9].

2.3. Time reversible symmetric systems

A system described by the Hamiltonian H is called time reversible symmetric
if there is a conjugation Γ defined on H such that ΓH = HΓ. Recall that Γ is a
conjugation if the conditions Γ2 = I and (Γf,Γg) = (f, g), f, g ∈ H are satisfied.
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Let hphn , n ∈ N0, be the subspace spanned by the eigenvector Υn in hph. We
set

Hnα := helα ⊗ hphn , n ∈ N0, α ∈ {l, r}. (2.16)

Notice that
H =

⊕

n∈N0,α∈{l,r}
Hnα .

Definition 2.3. The JCL-model is called time reversible symmetric if there
is a conjugation Γ acting on H such that H and H0 are time reversible symmetric
and the subspaces Hnα, n ∈ N0, α ∈ {l, r}, reduce Γ.

E x a m p l e 2.4. Let γelα and γelS be the conjugations defined by

γelα fα := fα := {fα(k)}k∈N, fα ∈ helα , α ∈ {l, r},

and
γelS fS = γelS

(
fS(0)
fS(1)

)
:=
(
fS(0)
fS(1)

)
.

We set γel := γell ⊕ γelS ⊕ γelr . Further, we set

γphψ := ψ = {ψ(n)}n∈N0 , ψ ∈ hph.

We also set Γ := γel ⊗ γph. One can easily check that Γ is a conjugation on
H = hel ⊗ hph.

Lemma 2.5. Let γelα , α ∈ {S, l, r}, and γph be given by Example 2.4.
(i) If the conditions γelS eS0 = eS0 and γelS eS1 = eS1 are satisfied, then H0 is time

reversible symmetric with respect to Γ and, moreover, the subspaces Hnα, n ∈ N0,
α ∈ {l, r}, reduce Γ.

(ii) If in addition the conditions γelS δS0 = δS0 and γelS δS1 = δS1 are satisfied, then
the JCL-model is time reversible symmetric.

P r o o f. (i) Obviously we have

γelα h
el
α = helαγ

el
α , α ∈ {l, r}, and γphhph = hphγph.

If γelS eS0 = eS0 and γelS e
S
1 = eS1 are satisfied, then γelS h

el
S = helS γ

el
S , which yields

γelhel0 = hel0 γ
el, and hence ΓH0 = H0Γ. Since γelhelα = helα and γphhph = hph, one

gets ΓHnα = Hnα , which shows that Hnα reduces Γ.
(ii) Notice that γelα δα1 = δα1 , α ∈ {l, r}. If in addition the conditions γelS δS0 = δS0

and γelS δ
S
1 = δS1 are satisfied, then γelvel = velγ

el is valid, which yields γelhel =
helγel. Therefore, ΓH = HΓ. Together with (i) this proves that the JCL-model
is time reversible symmetric.
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Choosing

eS0 :=
(

1
0

)
, eS1 :=

(
0
1

)
, δS0 := 1√

2

(
1
1

)
, δS1 := 1√

2

(
1
−1

)
,

one satisfies the conditions γelS eS0 = eS0 and γelS e
S
1 = eS1 as well as γelS δS0 = δS0 and

γelS δ
S
1 = δS1 .

2.4. Mirror symmetric systems

A unitary operator U acting on H is called a mirror symmetry if the conditions

UHnα = Hnα′ , α, α′ ∈ {l, r}, α 6= α′,

are satisfied. In particular, this yields UHJC = HJC , HJC := helS ⊗ hph.

Definition 2.6. The JCL-model is called mirror symmetric if there is a mirror
symmetry commuting with H0 and H.

One easily verifies that if H0 is mirror symmetric, then

Hnα′U = UHnα , n ∈ N0, α, α′ ∈ {l, r}, α 6= α′,

where

Hnα := helα ⊗ Ihphn + Ihelα ⊗ hphn = helα + nω, n ∈ N0, α, α′ ∈ {l, r}, α 6= α′.

In particular, this yields that vα = vα′ . Moreover, one gets UHS = HSU , where
HS := helS ⊗ Ihph + Ihel ⊗ hph.

Notice that if H and H0 commute with the same mirror symmetry U , then
the operator Hc := hel ⊗ Ihph + Ihel ⊗ hph also commutes with U , i.e., is mirror
symmetric.

E x a m p l e 2.7. Let S = {H,H0} be the JCL-model. Let vl = vr and let
eS0 and eS1 as well as δS0 and δS1 be given by (2.3.). We set

uelS e
S
0 := eS0 and uelS e

S
1 = −eS1 (2.17)

as well as uphΥn = e−inπΥn, n ∈ N0. Obviously, US := uelS ⊗ uph defines a
unitary operator on HJC . A straightforward computation shows that USHS =
HSUS and USVph = VphUS . Furthermore, we set uelrlδln := δrn and uellrδ

r
n = δln,

n ∈ N, and

uel :=




0 0 uellr
0 uelS 0
uelrl 0 0


 .
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We have

vel u
el



fl
fS
fr


 =




< fS , (uelS )∗δS0 > δl1
< fr, (uellr)∗δl1 > δS0 + < fl, (uelrl)∗δr1 > δS1

< fS , (uelS )∗δS1 > δr1


 . (2.18)

Since δS0 := 1√
2(eS0 + eS1 ) and δS1 := 1√

2(eS0 − eS1 ), from (2.17) we get

(uelS )∗δS0 = δS1 and (uelS )∗δS1 = δS0 . (2.19)

Obviously we have
(uellr)∗δl1 = δr1 (uelrl)∗δr1 = δl1. (2.20)

Inserting (2.19) and (2.20) into (2.18), we find

vel u
el



fl
fS
fr


 =




< fS , δ
S
1 > δl1

< fr, δ
r
1 > δS0 + < fl, δ

l
1 > δS1

< fS , δ
S
0 > δr1


 . (2.21)

Further, we have

uelvel



fl
fS
fr


 =




< fS , δ
S
1 > δl1

< fl, δ
l
1 > δS1 + < fr, δ

r
1 > δS0

< fs, δ
S
0 > δr1


 . (2.22)

Comparing (2.21) and (2.22), we get uelvel = velu
el. Setting U := uel ⊗ uph, one

immediately proves that UH0 = H0U and UH = HU . Since UHnα = Hnga′ is
satisfied, S is mirror symmetric.

Notice that in addition Example 2.7 S is time reversible symmetric.

2.5. Spectral properties of H and spectral representation

In the following, our goal is to apply the Landauer–Büttiker formula to the
JCL-model. By Lp(H), 1 ≤ p ≤ ∞, we denote below the Schatten–von Neumann
ideals.

Proposition 2.8. ([9, Proposition 2.9]) If S = {H,H0} is the JCL-model,
then (H + i)−1 − (H0 + i)−1 ∈ L1(H). In particular, the absolutely continuous
parts Hac and Hac

0 are unitarily equivalent.

Thus, the JCL-model S = {H,H0} is a L1-scattering system. Let us recall
that helα = −∆D + vα, α ∈ {l, r}, on hell = helr = `2(N).
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Lemma 2.9. ([9, Lemma 2.10]) Let α ∈ {l, r}. We have σ(helα ) = σac(helα ) =
[vα, 4 + vα]. The normalized generalized eigenfunctions of helα are given by

gα(x, λ) = π−
1
2 (1− (−λ+ 2 + vα)2/4)−

1
4 sin

(
arccos((−λ+ 2 + vα)/2)x

)

for x ∈ N, λ ∈ (vα, 4 + vα).

From these two lemmas we obtain the following corollary that gives us the
spectral properties of H0.

Proposition 2.10. ([9, Proposition 2.11]) Let S = {H,H0} be the JCL-
model. Then σ(H0) = σac(H0) ∪ σpp(H0), where

σac(H0) =
⋃

n∈N0

[vl + nω, vl + 4 + nω] ∪ [vr + nω, vr + 4 + nω]

and σpp(H0) = ⋃
n∈N0{λSj + nω : j = 0, 1}. The eigenvectors are given by

g̃(m,n) = eSm ⊗ Υn, m = 0, 1, n ∈ N0. The generalized eigenfunctions are
given by g̃α(·, λ, n) = gα(·, λ− nω)⊗Υn for λ ∈ σac(H0), n ∈ N0, α ∈ {l, r}.

For the convenience of the reader, we define here what we mean under a
spectral representation of the absolutely continuous part Kac

0 of a self-adjoint
operator K0 on a separable Hilbert space k. Let k be an auxiliary separable
Hilbert space. We consider the Hilbert space L2(R, dλ, k). By M, we define the
multiplication operator induced by the independent variable λ in L2(R, dλ, k). Let
Φ : Kac(K0) −→ L2(R, dλ, k) be an isometry acting from Kac(K0) into L2(R, dλ, k)
such that Φdom(Kac

0 ) ⊆ dom(M) and

MΦf = ΦKac
0 f, f ∈ dom(Kac

0 ).

Obviously, the orthogonal projection P := ΦΦ∗ commutes with M, which yields
the existence of a measurable family {P (λ)}λ∈R such that (P f̂ )(λ) = P (λ) f̂ (λ),
f̂ ∈ L2(R, λ, k). We set L2(R, dλ, k(λ)) := PL2(R, λ, k), k(λ) := P (λ)k.
Π(Kac

0 ) := {L2(R, dλ, k(λ)),M,Φ} is called a spectral representation of Kac
0 . If

{L2(R, dλ, k(λ)),M,Φ} is a spectral representation of Kac, then Kac is unitarily
equivalent M0 := M ¹ L2(R, dλ, k(λ)). Indeed, one has ΦKac

0 Φ∗ = M0. The
function ξacK0(λ) := dim(k(λ)), λ ∈ R, is called the spectral multiplicity function
of Kac

0 . Notice that 0 ≤ ξacK0(λ) ≤ ∞ for λ ∈ R.
For α ∈ {l, r}, the generalized eigenfunctions of helα define the generalized

Fourier transforms by φelα : helα = hel,acα (helα )→ L2([vα, vα + 4]) and

(φelα fα)(λ) =
∑

x∈N0

gα(x, λ)fα(x), fα ∈ helα .
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Setting

helα (λ) :=
{
C λ ∈ [vα, vα + 4]
0 λ ∈ R \ [vα, vα + 4],

one easily verifies that Π(helα ) = {L2(R, dλ, helα (λ)),M, φelα} is a spectral repre-
sentation of helα = hel,acα , α = l, r, where we always assumed implicitly that
(φelα fα)(λ) = 0 for λ ∈ R \ [vα, vα + 4]. Setting

hel(λ) :=
hell (λ)
⊕

helr (λ)
⊆ C2, λ ∈ R,

and introducing the map

φel : hel,ac(hel0 ) =
hell
⊕
helr

−→ L2(R, dλ, hel(λ))

defined by

φelf :=
(
φell fl
φelr fr

)
, where f :=

(
fl
fr

)
,

we obtain a spectral representation Π(hel,ac0 ) = {L2(R, dλ, hel(λ)),M, φel} of the
absolutely continuous part hel,ac0 = hell ⊕ helr of hel0 . One easily verifies that
0 ≤ ξac

hel0
(λ) ≤ 2 for λ ∈ R. Introducing

λelmin := min{vl, vr} and λelmax := max{vl + 4, vr + 4}, (2.23)

one easily verifies that ξac
hel0

(λ) = 0 for λ ∈ R \ [λelmin, λ
el
max]. Notice, if vr + 4 ≤ vl,

then

hel(λ) =
{
C, λ ∈ [vr, vr + 4] ∪ [vl, vl + 4],
{0}, otherwise

which shows that hel0 has a simple spectrum. In particular, it holds ξac
hel0

(λ) = 1
for λ ∈ [vr, vr + 4] ∪ [vl, vl + 4] and otherwise ξac

hel0
(λ) = 0.

Let us introduce the Hilbert space h := l2(N0,C2) = ⊕
n∈N0 hn, hn := C2,

n ∈ N0. Regarding hel(λ− nω) as a subspace of hn, one regards

h(λ) :=
⊕

n∈N0

hn(λ), hn(λ) := hel(λ− nω), λ ∈ R, (2.24)

as a measurable family of subspaces in h. Notice that 0 ≤ dim(h(λ)) <∞, λ ∈ R.
We consider the Hilbert space L2(R, dλ, h(λ)).
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Furthermore, we introduce the isometric map Φ : H(Hac
0 ) −→ L2(R, dλ, h(λ))

defined by

(Φf)(λ) =
⊕

n∈N0

(
(φell fl(n))(λ− nω)
(φelr fr(n))(λ− nω)

)
, λ ∈ R,

where
⊕

n∈N0

(
fl(n)
fr(n)

)
∈
⊕

n∈N0

hel,ac(hel0 )⊗ hphn =
⊕

n∈N




hell ⊗ hphn
⊕

helr ⊗ hphn


 ,

where hph = ⊕
n∈N0 hphn , and hphn is the subspace spanned by the eigenvectors

Υn of hph. One easily verifies that Φ is an isometry acting from Hac(Hac
0 ) onto

L2(R, dλ, h(λ)).

Lemma 2.11. ([9, Lemma 2.12]) The triplet {L2(R, dλ, h(λ)),M,Φ} forms
a spectral representation of Hac

0 , that is, Π(Hac
0 ) = {L2(R, dλ, h(λ)),M,Φ} such

that 0 ≤ ξacH0(λ) ≤ 2dmax for λ ∈ R where dmax := λelmax−λelmin
ω and λelmax and λelmin

are given by (2.23).

In the following, we denote the orthogonal projection from h(λ) onto hn(λ) by
Pn(λ), λ ∈ R, cf (2.24). Since h(λ) = ⊕

n∈N0 hn(λ), we have Ih(λ) = ∑
n∈N0 Pn(λ),

λ ∈ R. Further, we introduce the subspaces hnα(λ) := helα (λ−nω), λ ∈ R, n ∈ N0.
Notice that

hn(λ) =
⊕

α∈{l,r}
hnα(λ), λ ∈ R, n ∈ N0.

By Pnα(λ), we denote the orthogonal projection from h(λ) onto hnα(λ), λ ∈ R.
Obviously we have Pn(λ) = ∑

α∈{l,r} Pnα(λ), λ ∈ R.
Since we have full information on the spectral properties of H0, we can use it

to show that H has no singular continuous spectrum.

Proposition 2.12. ([9, Proposition 2.16]) The Hamiltonian H defined by
(2.15) has no singular continuous spectrum, that is, σsc(H) = ∅.

Let Z be a bounded operator acting on Hac(H0) and commuting with Hac
0 .

Since Z commutes with Hac
0 , there is a measurable family {Z(λ)}λ∈R of bounded

operators acting on h(λ) such that Z is unitarily equivalent to the multiplication
operator induced by {Z(λ)}λ∈R in Π(Hac

0 ). We set

Zmαnκ (λ) := Pmα(λ)Z(λ) ¹ hnκ (λ), λ ∈ R, m, n ∈ N0, α,κ ∈ {l, r}.

Let Zmαnκ := PmαZPnκ , where Pmα is the orthogonal projection from H onto
the subspace Hmα ⊆ Hac(H0), cf. (2.16). Therefore, the multiplication operator
induced by {Zmαnκ (λ)}λ∈R in Π(Hac

0 ) is unitarily equivalent to Zmαnκ .
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Since by Lemma 2.11 h(λ) is a finite dimensional space, the operators Z(λ)
are finite dimensional ones and we can introduce the quantity

σmαnκ (λ) = tr(Zmαnκ (λ)∗Zmαnκ (λ)), λ ∈ R, m, n ∈ N0, α,κ ∈ {l, r}.
Lemma 2.13. ([9, Lemma 2.14]) Let H0 be the self-adjoint operator defined

by (2.14) on H. Further, let Z be a bounded operator on Hac(H0) commuting with
Hac

0
(i) Let Γ be a conjugation on H, cf. Sec. 2.3. If Γ commutes with H0 and Pnα,

n ∈ N0, α ∈ {l, r}, and ΓZΓ = Z∗ holds, then σmαnκ (λ) = σnκmα(λ), λ ∈ R.
(ii) Let U be a mirror symmetry on H. If U commutes with H0 and Z, then

σmαnκ (λ) = σmα′nκ′ (λ), λ ∈ R, m,n ∈ N0, α, α′,κ,κ′ ∈ {l, r}, α 6= α′, κ 6= κ′.

3. Landauer–Büttiker Formula and Applications
3.1. Landauer–Büttiker formula

The abstract Landauer–Büttiker formula can be used to calculate flows in
devices. Usually one considers a pair S = {K,K0} to be a self-adjoint operator
where the unperturbed Hamiltonian K0 describes a totally decoupled system,
which means that the inner system is closed and the leads are decoupled from
it, while the perturbed Hamiltonian K describes the system where the leads are
coupled to the inner system. An important ingredient is the system S = {K,K0},
which is a complete scattering or even a trace class scattering system.

In [1], an abstract Landauer–Büttiker formula was derived in the framework
of a trace class scattering theory for semi-bounded self-adjoint operators which
allows us to reproduce the results of [8] and [4] rigorously. In [6], the results of
[1] were generalized to non-semi-bounded operators. Following [1], we consider a
trace class scattering system S = {K,K0}. We recall that S = {K,K0} is called
a trace class scattering system if the resolvent difference of K and K0 belongs to
the trace class. If S = {K,K0} is a trace class scattering system, then the wave
operators W±(K,K0) exist and are complete. The scattering operator is defined
by S(K,K0) := W+(K,K0)∗W−(K,K0). The main ingredients besides the trace
class scattering system S = {K,K0} are the density and charge operators ρ and
Q, respectively.

Let K0 be a self-adjoint operator on the separable Hilbert space k. We call
ρ a density operator for K0 if ρ is a bounded non-negative self-adjoint operator
commuting with K0. Since ρ commutes with K0, one gets that ρ leaves invariant
the subspace kac(K0). We set ρac := ρ ¹ Kac(K0), call ρac the ac-density part of ρ.

A bounded self-adjoint operator Q commuting with K0 is called a charge. If
Q is a charge, then Qac := Q ¹ Kac(K0) is called its ac-charge part.

Let Π(Kac
0 ) = {L2(R, dλ, k(λ)),M,Φ} be a spectral representation of Kac

0 . If
ρ is a density operator, then there is a measurable family {ρac(λ)}λ∈R of bounded
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self-adjoint operators such that the multiplication operator

(Mρac f̂ )(λ) := ρac(λ) f̂ (λ), f̂ ∈ dom(Mρac) := L2(R, dλ, k(λ)),

is unitarily equivalent to the ac-part ρac, that is, Mρac = ΦρacΦ∗. In particular,
this yields that ess-sup λ∈R‖ρac(λ)‖B(k(λ) = ‖ρac‖B(Kac(K0)). In the following, we
call {ρac(λ)}λ∈R the density matrix of ρac.

Similarly, one gets that if Q is a charge, then there is a measurable family
{Qac(λ)}λ∈R of bounded self-adjoint operators such that the multiplication ope-
rator

(MQac f̂ )(λ) := Qac(λ) f̂ (λ),
f̂ ∈ dom(Qac) := {f ∈ L2(R, dλ, k(λ)) : Qac(λ) f̂ (λ) ∈ L2(R, dλ, k(λ))},

is unitarily equivalent to Qac, i.e., MQac = ΦQacΦ∗. In particular,
ess-sup λ∈R‖Qac(λ)‖ = ‖Qac‖. If Q is a charge, then the family {Qac(λ)}λ∈R
is called the charge matrix of the ac-part of Q.

Let S = {K,K0} be a trace scattering system. By {S(λ)}λ∈R, we denote the
scattering matrix which corresponds to the scattering operator S(K,K0) with
respect to the spectral representation Π(Kac

0 ). The operator T := S(K,K0) −
P ac(K0) is called the transmission operator. By {T (λ)}λ∈R, we denote the trans-
mission matrix which is related to the transmission operator. The scattering and
transmission matrices are related by S(λ) = Ik(λ) + T (λ) for a.e. λ ∈ R. Notice
that T (λ) belongs to the trace class a.e. λ ∈ R.

Theorem 3.1. ([6, Theorem 3.1]) Let S := {K,K0} be a trace class scattering
system and let {S(λ)}λ∈R be the scattering matrix of S with respect to the spectral
representation Π(Kac

0 ). Further, let ρ and Q be the density and the charge opera-
tors and let {ρac(λ)}λ∈R and {Qac(λ)}λ∈R be the density and the charge matrices
with respect to Π(Kac

0 ) of the ac-parts ρac and Qac, respectively. If (I +K2
0 )ρ is

bounded, then the current JS
ρ,Q admits the representation

JS
ρ,Q = 1

2π

∫

R

tr
(
ρac(λ)(Qac(λ)− S∗(λ)Qac(λ)S(λ))

)
dλ, (3.1)

where the integrand on the right-hand side and the current JS
ρ,Q satisfy the fol-

lowing estimates:

|tr (ρac(λ)(Qac(λ)− S∗(λ)Qac(λ)S(λ)))| ≤ 4‖ρac(λ)‖‖T (λ)‖L1(k(λ))‖Qac(λ)‖
(3.2)

for a.e. λ ∈ R and

|JS
ρ,Q| ≤ C0‖(H + i)−1 − (H0 + i)−1‖L1(K), (3.3)

where C0 := 2
π‖(1 +H2

0 )ρ‖L(K)||Q||.
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In applications not every charge Q is a bounded operator. We say the self-
adjoint operator Q commuting with K0 is a p-tempered charge if Q(H0− i)−p is a
bounded operator for p ∈ N0. As above, we can introduce Qac := Q ¹ dom(Q) ∩
Kac(K0). It turns out that QEK0(∆) is a bounded operator for any bounded
Borel set ∆. This yields that the corresponding charge matrix {Qac(λ)}λ∈R is
a measurable family of bounded self-adjoint operators such that the condition
ess-sup λ∈R(1 +λ2)−p/2‖Qac(λ)‖ <∞ is satisfied. It turns out that formula (3.1)
remains valid for p-tempered charges.

Corollary 3.2. ([9, Corollary 3.2]) Let the assumptions of Theorem 3.1 be
satisfied. If for some p ∈ N0 the operator (H0 − i)p+2ρ is bounded and Q is
a p-tempered charge for K0, then representation (3.1) and estimate (3.2) re-
main valid. Moreover, estimate (3.3) holds with C0 replaced by Cp := 2

π‖(1 +
H2

0 )p+2/2ρ‖ ‖Q(I +H2
0 )−p/2‖.

At first glance, formula (3.1) is not very similar to the original Landauer–
Büttiker formula of [4, 8]. To make the formula more convenient, we recall that
a standard application example for the Landauer–Büttiker formula is the so-
called black-box model, cf. [1]. In this case, the Hilbert space K is given by
K = KS ⊕

⊕N
j=1 Kj , 2 ≤ N < ∞, and K0 by K0 = KS ⊕

⊕N
j=1Kj , 2 ≤ N < ∞.

The Hilbert space KS is called the sample or dot and KS is the sample or dot
Hamiltonian. The Hilbert spaces Kj are called reservoirs or leads and Kj are
the reservoir or lead Hamiltonians. For simplicity, we assume that the reservoir
Hamiltonians Kj are absolutely continuous and the sample Hamiltonian KS has
a point spectrum. A typical choice for the density operator is

ρ = fS(KS)⊕
N⊕

j=1
fj(Kj),

where fS(·) and fj(·) are non-negative bounded Borel functions, and for the
charge,

Q = gS(Hs)⊕
N⊕

j=1
gj(Hj),

where gS(·) and gj(·) a bounded Borel functions. Making this choice, the Landauer–
Büttiker formula (3.1) takes the form

JS
ρ,Q = 1

2π

N∑

j,k=1

∫

R

(fj(λ)− fk(λ))gj(λ)σjk(λ)dλ, (3.4)

where σjk(λ) := tr(Tjk(λ)∗Tjk(λ)), j, k = 1, . . . , N , λ ∈ R, are called the total
transmission probability from the reservoir k to the reservoir j, cf. [1]. We call it
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the cross-section of the scattering process going from the channel k to the channel
j at energy λ ∈ R. {Tjk(λ)}λ∈R is called the transmission matrix from the channel
k to the channel j at energy λ ∈ R with respect to the spectral representation
Π(Kac

0 ). We note that {Tjk(λ)}λ∈R corresponds to the transmission operator

Tjk := PjT (K,K0)Pk, T (K,K0) := S(K,K0)− P ac(K0),

acting from the reservoir k to the reservoir j, where T (K,K0) is called the trans-
mission operator. Let {T (λ)}λ∈R be the transmission matrix. Following [1], the
current JS

ρ,Q given by (3.4) is directed from the reservoirs into the sample.
The quantity ‖T (λ)‖L2 = tr(T (λ)∗T (λ)) is well-defined and is called the cross-

section of the scattering system S at energy λ ∈ R. Notice that

σ(λ) = ‖T (λ)‖L2 = tr(T (λ)∗T (λ)) =
N∑

j,k=1
σjk(λ), λ ∈ R.

We point out that the channel cross-sections σjk(λ) admit the property

N∑

j=1
σjk(λ) =

N∑

j=1
σkj(λ), λ ∈ R, (3.5)

which is a consequence of the unitarity of the scattering matrix. Moreover, if
there is a conjugation J such that KJ = JK and K0J = JK0 hold, that is, if
the scattering system S is time reversible symmetric, then we have even more,
namely, it holds σjk(λ) = σkj(λ), λ ∈ R.

Usually the Landauer–Büttiker formula (3.4) is used to calculate the electron
current entering the reservoir j from the sample. In this case one has to choose
Q := Qelj := −ePj , where Pj is the orthogonal projection form K onto Kj and e > 0
is the magnitude of the elementary charge. It is equivalent to choose gj(λ) = −e

and gk(λ) = 0 for k 6= j, λ ∈ R. Doing so, we get that the Landauer–Büttiker
formula simplifies to

JS
ρ,Qelj

= − e

2π

N∑

k=1

∫

R

(fj(λ)− fk(λ))σjk(λ)dλ.

To restore the original Landauer–Büttiker formula, one sets fj(λ) = f(λ − µj),
λ ∈ R, where µj is the chemical potential of the reservoir Kj , and f(·) is a
bounded non-negative Borel function called the distribution function. This gives
to the formula

JS
ρ,Qelj

= − e

2π

N∑

k=1

∫

R

(f(λ− µj)− f(λ− µk))σjk(λ)dλ. (3.6)
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In particular, one chooses

f(λ) := fFD(λ) := 1
1 + eβλ

, β > 0, λ ∈ R, (3.7)

where fFD(·) is the so-called Fermi–Dirac distribution function. If we have only
two reservoirs and f(λ) = fFD(λ), λ ∈ R, then

JS
ρ,Qel

l

= − e

2π

∫

R

(fFD(λ− µl)− fFD(λ− µr))σlr(λ)dλ.

One can easily check that JS
ρ,Ql
≤ 0 if µl ≥ µr. It means that current is leaving the

left reservoir and is entering the right one, which is in accordance with physical
intuition.

E x a m p l e 3.3. Notice that sc := {hel, hel0 } is a L1-scattering system. The
Hamiltonian hel takes into account the effect of coupling of reservoirs or leads
hl := l2(N) and hr := l2(N) to the sample hS = C2, which is also called the
quantum dot. The lead Hamiltonians are given by helα = −∆D + vα, α = l, r.
The sample or quantum dot Hamiltonian is given by helS . The wave operators are
given by

w±(hel, hel0 ) := s- lim
t→∞ e

ithele−ith
el
0 P ac(hel0 ). (3.8)

The scattering operator is given by sc := w+(hel, hel0 )∗w−(hel, hel0 ). Let Π(hel,ac0 )
be the spectral representation of hel,ac0 introduced in Sec. 2.5. If ρel and qel are
the density and the charge operators for hel0 , then the Landauer–Büttiker formula
takes the form

J sc
ρel,qel

= 1
2π

∫

R

tr
(
ρelac(λ)

(
qelac − sc(λ)∗qelac(λ)sc(λ)

))
, (3.9)

where {sc(λ)}λ∈R, {qel(λ)}λ∈R and {ρel(λ)}λ∈R are the scattering, the charge and
the density matrices with respect to Π(hel,ac0 ), respectively. The condition that
((hel0 )2 + Ihel)ρel is a bounded operator is superfluous because hel0 is a bounded
operator. For the same reason, we have that every p-tempered charge qel is in
fact a charge, i.e., qel is a bounded self-adjoint operator.

The scattering system sc is a black-box model with the reservoirs hell and helr .
Choosing ρel = fl(hel) ⊕ fS(helS ) ⊕ fr(helr ), where fα(·), α = l, r, are bounded
non-negative Borel functions and qel = gl(hell ) ⊕ gS(helS ) ⊕ gr(helr ), where gα(·),
α ∈ {l, r}, are locally bounded Borel functions, then from (3.4) it follows that

J sc
ρel,qel

= 1
2π

∑

α,κ∈{l,r}
α 6=κ

∫

R

(fα(λ)− fκ(λ))gα(λ)σc(λ)dλ,
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where {σc(λ)}λ∈R is the channel cross-section from left to right and vice versa.
Indeed, let {tc(λ)}λ∈R be the transition matrix which corresponds to the tran-
sition operator tc := sc − Ihel . Obviously, one has tc(λ) = sc(λ) − Ih(λ), λ ∈ R.
Let {pelα (λ)}λ∈R be the matrix which corresponds to the orthogonal projection pelα
from hel onto helα . Further, let tcrl(λ) := pelr (λ)tc(λ)pell and tclr := pell (λ)tc(λ)pelr .
Notice that both quantities are in fact scalar functions. Obviously, the channel
cross-sections σclr(λ) and σcrl(λ) at energy λ ∈ R are given by σc(λ) := σclr(λ) =
|tclr(λ)|2 = |tcrl(λ)|2 = σcrl(λ), λ ∈ R. In particular, if gl(λ) = 1 and gr = 0, then

J sc
ρel,qel

l

= 1
2π

∫

R

(fl(λ)− fr(λ))σc(λ)dλ, (3.10)

and qell := pell . Following [1], J sc
ρel,qell

denotes the current entering the quantum
dot from the left lead.

3.2. Application to the JCL-model

Let S = {H,H0} be now the JCL-model. Further, let ρ and Q be a density
operator and a charge for H0, respectively. Let us introduce the intermediate
scattering system Sc := {H,Hc} where Hc := hel ⊗ Ihph + Ihel ⊗ hph = H0 + Vel.
The Hamiltonian Hc describes the coupling of the leads to a quantum dot but
under the assumption that the photon interaction is not switched on.

Obviously, Sph := {H,Hc} and Sc := {Hc,H0} are L1-scattering systems. The
corresponding scattering operators are denoted by Sph and Sc, respectively. Let
us assume that Π(Hac

c ) = {L2(R, dλ, hc(λ)),M,Φc} is a spectral representation
of Hac

c . The scattering matrix of the scattering system {H,Hc} with respect
to Π(Hac

c ) is denoted by {Sph(λ)}λ∈R. The scattering matrix of the scattering
system {Hc,H0} with respect to Π(Hac

0 ) = {L2(R, dλ, h0(λ)),M,Φ0} is denoted
by {Sc(λ)}λ∈R.

Since Sc is a L1-scattering system, the wave operators W±(Hc, H0) exist and
are complete, and since ΦcW±(Hc,H0)Φ∗0 commute withM, there exist the mea-
surable families {W±(λ)}λ∈R of isometries acting from h0(λ) onto hc(λ) for a.e.
λ ∈ R such that

(ΦcW±(Hc,H0)Φ∗0 f̂ )(λ) = W±(λ) f̂ (λ), λ ∈ R, f̂ ∈ L2(R, dλ, h0(λ)).

The families {W±(λ)}λ∈R are called the wave matrices.
A straightforward computation shows that Ŝph := W+(Hc,H0)∗SphW+(Hc,H0)
commutes with H0. Hence, with respect to the spectral representation Π(Hac

0 ),
the operator Ŝph is unitarily equivalent to a multiplication induced by a mea-
surable family { Ŝph (λ)}λ∈R of unitary operators in h0(λ). A straightforward
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computation shows that

Ŝph(λ) = W+(λ)∗Sph(λ)W+(λ) (3.11)

for a.e. λ ∈ R. Roughly speaking, { Ŝph (λ)}λ∈R is the scattering matrix of Sph
with respect to the spectral representation Π(Hac

0 ).
Furthermore, let

ρc := W−(Hc,H0)ρW−(Hc,H0)∗ (3.12)

and
Qc := W+(Hc,H0)QW+(Hc,H0)∗. (3.13)

The operators ρc and Qc are the density and the tempered charge operators for
the scattering system Sph. Indeed, one easily verifies that ρc and Qc commute
with Hc. Moreover, ρc is non-negative. Furthermore, if Q is a charge, then Qc is a
charge, too. If Q is a p-tempered charge and (H0− i)p+2ρ is a bounded operator,
then one easily checks that Qc is a p-tempered charge and (Hc − i)p+2ρc is a
bounded operator. Finally, we note that the corresponding matrices {ρcac(λ)}λ∈R
and {Qcac(λ)}λ∈R are related to the matrices {ρac(λ)}λ∈R and {Qac(λ)}λ∈R by
ρcac(λ) = W−(λ)ρac(λ)W−(λ)∗ and Qcac(λ) = W+(λ)Qac(λ)W+(λ)∗ for a.e. λ ∈ R.

Proposition 3.4. ([9, Proposition 3.4]) Let S = {H,H0} be the JCL-model.
Further, let ρ and Q be a density operator and a p-tempered charge for H0, re-
spectively. Moreover, let {Sc(λ)}λ∈R, {ρac(λ)}λ∈R and {Qac(λ)}λ∈R be scattering,
density and charge matrices of Sc, ρac and Qac with respect to Π(Hac

0 ). Further-
more, let {Sph(λ)}λ∈R, {ρcac(λ)}λ∈R and {Qcac(λ)}λ∈R be scattering, density and
charge matrices of the scattering operator Sph, the density operator ρcac, cf. (3.12),
and the charge operator Qcac, cf. (3.13), with respect to the spectral representation
Π(Hac

c ). If (H0 − i)p+2ρ is a bounded operator, then the decomposition

JS
ρ,Q = Jcρ,Q + Jphρ,Q (3.14)

holds, where

Jcρ,Q := 1
2π

∫

R

tr(ρac(λ)(Qac(λ)− Sc(λ)∗Qac(λ)Sc(λ)))dλ,

Jphρ,Q := 1
2π

∫

R

tr(ρcac(λ)(Qcac(λ)− Sph(λ)∗Qcac(λ)Sph(λ)))dλ.

R e m a r k 3.5. (i) The current Jcρ,Q occurs due to the coupling of the leads
to the quantum dot and is therefore called the contact-induced current.

(ii) The current Jphρ,Q occurs due to the interaction of photons with electrons
and is therefore called the photon-induced current. Notice that this current is
calculated under the assumption that the leads have already contacted to the
dot.
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Corollary 3.6. ([9, Corollary 3.6]) Let the assumptions of Proposition 3.4 be
satisfied. With respect to the spectral representation Π(Hac

0 ) of Hac
0 , the photon

induced current Jphρ,Q can be represented by

Jphρ,Q := 1
2π

∫

R

tr( ρ̂ac(λ) (Qac(λ)− Ŝph(λ)∗Qac(λ) Ŝph (λ)))dλ, (3.15)

where the measurable families { Ŝph(λ) }λ∈R and { ρ̂ac(λ) }λ∈R are given by (3.11)
and

ρ̂ac(λ) := Sc(λ)ρac(λ)Sc(λ)∗ λ ∈ R, (3.16)

respectively.

R e m a r k 3.7. In the following, we call { ρ̂ac(λ) }λ∈R, cf. (3.16), the photon
modified electron density matrix. Notice that { ρ̂ac(λ) }λ∈R might be non-diagonal
even if the electron density matrix {ρac(λ)}λ∈R is diagonal.

4. Analysis of Currents
In the following, we analyze the currents Jcρ,Q and Jphρ,Q under the assumption

that ρ and Q have the tensor product structure

ρ = ρel ⊗ ρph and Q = qel ⊗ qph, (4.1)

where ρel and ρph as well as qel and qph are the density operators and the
(tempered) charges for hel0 and hph, respectively. Since ρph commutes with hph,
which is discrete, the operator ρph has the form ρph = ∑

n∈N0 ρ
ph(n)(·,Υn)Υn,

where ρph(n) are non-negative numbers. Similarly, qph can be represented by
qph = ∑

n∈N0 q
ph(n)(·,Υn)Υn, where qph(n) are real numbers.

Lemma 4.1. ([9, Lemma 4.1]) Let S = {H,H0} be the JCL-model. Assume
that ρ 6= 0 and Q have the structure (4.1), where ρel is a density operator and qel
is a charge for hel0 .

(i) The operator (H0 − i)p+2ρ, p ∈ N0, is bounded if and only if the condition

sup
n∈N0

ρph(n)np+2 <∞ (4.2)

is satisfied.
(ii) The charge Q is p-tempered if and only if

sup
n∈N
|qph(n)|n−p <∞ (4.3)

is valid.
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4.1. Contact-induced current

Let us recall that Sc = {Hc, H0} is a L1-scattering system. Obvious computa-
tions show that W±(Hc,H0) = w±(hel, hel0 )⊗ Ihph , where w±(hel, hel0 ) is given by
(3.8). Hence, Sc = sc ⊗ Ihph , where sc := w+(helc , hel0 )∗w−(helc , hel0 ).

Proposition 4.2. ([9, Proposition 4.2]) Let S = {H,H0} be the JCL-model.
Assume that ρ and Q are given by (4.1), where ρel and qel are the density and the
charge operators for hel0 and ρph and qph for hph, respectively. If for some p ∈ N0
the conditions (4.2) and (4.3) are satisfied, then the current Jcρ,Q is well-defined
and admits the representation Jcρ,Q = γJ sc

ρel,qel
, γ := ∑

n∈N0 q
ph(n)ρph(n), where

J sc
ρel,qel

is given by (3.10). If tr(ρph) = 1 and qph = Ihph, then Jcρ,Q = J sc
ρel,qel

.

4.2. Photon-induced current

To calculate the current Jphρ,Q, we used representation (3.15). We set

Ŝphmn (λ) := Pm(λ) Ŝph (λ) ¹ hn(λ), λ ∈ R,

where { Ŝph (λ)}λ∈R is defined by (3.11) and Pm(λ) is the orthogonal projection
from h(λ), cf. (2.24), onto hm(λ) := hel(λ−mω), λ ∈ R.

Proposition 4.3. ([9, Proposition 4.3]) Let S = {H,H0} be the JCL-model.
Assume that ρ and Q are given by (4.1), where ρel and qel are the density and the
charge operators for hel0 and ρph and qph for hph, respectively. If for some p ∈ N0
the conditions (4.2) and (4.3) are satisfied, then the current Jphρ,Q is well-defined
and admits the representation

Jphρ,Q =
∑

m∈N0

ρph(m)
∑

n∈N0

qph(n)

× 1
2π

∫

R

dλ tr
(
ρ̂elac(λ−mω)

(
qelac(λ− nω)δmn − Ŝphnm (λ)∗qelac(λ− nω) Ŝphnm (λ)

))
,

(4.4)

where { ρ̂elac(λ) }λ∈R is the photon-modified electron density cf. (3.16), which takes
the form

ρ̂elac(λ) = sc(λ)ρel(λ)sc(λ)∗, λ ∈ R. (4.5)

Corollary 4.4. ([9, Corollary 4.4]) Let S = {H,H0} be the JCL-model. As-
sume that ρ and Q are given by (4.1), where ρel and qel are the density and
the charge operators for hel0 and ρph and qph for hph, respectively. If ρel is an
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equilibrium state, i.e., ρel = fel(hel0 ), then

Jphρ,Q =
∑

m,n∈N0

qph(n)

× 1
2π

∫

R

(
ρph(n)fel(λ− nω)− ρph(m)fel(λ−mω)

)

×tr
(
Ŝphnm (λ)∗qelac(λ− nω) Ŝphnm (λ)

)
dλ.

5. Electron and Photon Currents
5.1. Electron current

To calculate the electron current induced by the contacts and a photons con-
tact, we make the following choice throughout this section. We set

Qelα := qelα ⊗ qph, qelα := −epelα and qph := Ihph , α ∈ {l, r}, (5.1)

where pelα denotes the orthogonal projection from hel onto helα . By e > 0, we
denote the magnitude of the elementary charge. Since pelα commutes with helα ,
one easily verifies that Qelα commutes with H0 which shows that Qelα is a charge.
Following [1], the flux related to Qelα gives us the electron current JS

ρ,Qelα
entering

the lead α from the sample. Notice that Qelα = ePα, where Pα is the orthogonal
projection from H onto Hα := helα ⊗ hph. Since qph = Ihph , the condition (4.3) is
immediately satisfied for any p ≥ 0.

Let f(·) : R −→ R be a non-negative bounded measurable function. We set

ρel = ρell ⊕ ρelS ⊕ ρelr , ρelα := f(helα − µα), α ∈ {l, r}, (5.2)

and ρ = ρel ⊗ ρph. The chemical potential of the lead α is denoted by µα. In
applications one sets f(λ) := fFD(λ), λ ∈ R, where fFD(λ) is the so-called
Fermi–Dirac distribution given by (3.7). If β = ∞, then fFD(λ) := χR−(λ),
λ ∈ R. Notice that [ρel, pel] = 0. For ρph, we choose the Gibbs state

ρph := 1
Z
e−βh

ph
, Z = tr(e−βhph) = 1

1− e−βω . (5.3)

Hence, ρph = (1 − e−βω)e−βhph . If β = ∞, then ρph := (·,Υ0)Υ0. Obviously,
tr(ρph) = 1. We note that ρph(n) = (1− e−βω)e−nβω, n ∈ N0, satisfies condition
(4.2) for any p ≥ 0. Obviously, ρ0 = ρel ⊗ ρph is a density operator for H0.

Definition 5.1. Let S = {H,H0} be the JCL-model. If Q := Qelα , where
Qelα is given by (5.1), and ρ := ρ0 := ρel ⊗ ρph, where ρel and ρph are given by
(5.2) and (5.3), then Jel

ρ0,Qelα
:= JS

ρ0,Qelα
is called the electron current entering the

lead α. The currents Jc
ρ0,Qelα

and Jph
ρ0,Qelα

are called the contact-induced and the
photon-induced electron currents.

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 3 373



H. Neidhardt, L. Wilhelm, and V.A. Zagrebnov

5.1.1. Contact-induced electron current. The following proposition
immediately follows from Proposition 4.2.

Proposition 5.2. Let S = {H,H0} be the JCL-model. Then the contact-
induced electron current Jc

ρ0,Qelα
, α ∈ {l, r}, is given by Jc

ρ0,Qelα
= J sc

ρel,qelα
. In

particular, one has

Jcρ0,Qelα
= − e

2π

∫

R

(f(λ− µα)− f(λ− µκ)σc(λ)dλ, α,κ ∈ {l, r}, α 6= κ, (5.4)

where {σc(λ)}λ∈R is the channel cross-section from left to right of the scattering
system sc = {hel, hel0 }, cf. Example 3.3.

P r o o f. Since tr(ρph) = 1, it follows from Proposition 4.2 that Jc
ρ0,Qelα

=
J sc
ρel,qelα

. From (3.10), cf. Example 3.3, we find (5.4).

If µl > µr and f(·) is decreasing, then Jc
ρ0,Qell

< 0. Hence the electron contact
current goes from the left lead to the right one, which is in accordance with
physical intuition. In particular, this is valid for the Fermi–Dirac distribution.

Proposition 5.3. Let S = {H,H0} be the JCL-model. Further, let ρel and
ρph be given by (5.2) and (5.3), respectively. If the charge Qelα is given by (5.1),
then the following holds:

(E) If µl = µr, then Jc
ρ0,Qelα

= 0, α ∈ {l, r}.
(S) If vl ≥ vr + 4, then Jc

ρ0,Qelα
= 0, α ∈ {l, r}, even if µl 6= µl.

(C) If eS0 = δS0 and eS1 = δS1 , then Jc
ρ0,Qelα

= 0, α ∈ {l, r}, even if µl 6= µr.

P r o o f. (E) If µl = µr, then f(λ − µl) = f(λ − µr). Applying formula
(5.4), we obtain Jc

ρ0,Qelα
= 0.

(S) If vl ≥ vr + 4, then hel,ac0 has a simple spectrum. Hence the scattering
matrix {sc(λ)}λ∈R of the scattering system sc = {hel, hel0 } is a scalar function,
which immediately yields σc(λ) = 0, λ ∈ R, which yields Jc

ρ0,Qelα
= 0.

(C) In this case, the Hamiltonian hel decomposes into a direct sum of two
Hamiltonians which do not interact. Hence the scattering matrix of {sc(λ)}λ∈R
of the scattering system sc = {hel, hel0 } is diagonal, which immediately yields
Jc
ρ0,Qelα

= 0.

5.1.2. Photon-induced electron current. To analyze (4.4) is hopeless
if we make no assumptions concerning ρel and the scattering operator sc. The
simplest assumption is that ρel and sc commute. In this case, we get ρ̂el (λ) =
ρel(λ), λ ∈ R.
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Lemma 5.4. Let S = {H,H0} be the JCL-model. Further, let ρel be given
by (5.2). If one of the cases (E), (S) or (C) of Proposition 5.3 is realized, then
ρel and sc commute.

P r o o f. If (E) holds, then ρel = f(hel0 ), which yields [ρel, sc] = 0. If (S)
is valid, then the scattering matrix {sc(λ)}λ∈R is a scalar function which shows
[ρel, sc] = 0. Finally, if (C) is realized, then the scattering matrix {sc(λ)}λ∈R is
diagonal. Since ρel is given by (5.2), we get [ρel, sc] = 0.

We are going to calculate the current Jph
ρ0,Qelα

, see (4.4). Obviously we have
Pα(λ) = ∑

n∈N0 p
el
α (λ− nω) and Ih(λ) = Pl(λ) + Pr(λ), λ ∈ R. We set

Pnα(λ) := Pα(λ)Pn(λ) = Pn(λ)Pα(λ) = pelα (λ− nω), α ∈ {l, r},

n ∈ N0, λ ∈ R. In the following, we use the notation T̂ph (λ) = Ŝph (λ) − Ih(λ),
λ ∈ R, where { T̂ph(λ) }λ∈R is called the transition matrix, and { Ŝph(λ) }λ∈R is
given by (3.11). We set

T̂ phkαmκ (λ) := Pkα(λ) T̂ph (λ)Pmκ (λ), λ ∈ R, α,κ ∈ {l, r}, k,m ∈ N0,

and
σ̂phkαmκ (λ) = tr( T̂ phkαmκ (λ)∗ T̂ phkαmκ (λ) ), λ ∈ R, (5.5)

which is the cross-section between the channels kα and mκ.

Proposition 5.5. Let S = {H,H0} be the JCL-model.
(i) If ρel commutes with the scattering operators sc and qel, then

Jph
ρ0,Qelα

=

−
∑

m,n∈N0
κ∈{l,r}

e

2π

∫

R

(
ρph(n)f(λ− µα − nω)− ρph(m)f(λ− µκ −mω)

)
σ̂phnαmκ (λ) dλ.

(5.6)

(ii) If in addition S = {H,H0} is time reversible symmetric, then

Jph
ρ0,Qelα

=

−
∑

m,n∈N0

e

2π

∫

R

(
ρph(n)f(λ− µα − nω)− ρph(m)f(λ− µα′ −mω)

)
σ̂phnαmα′ (λ) dλ,

(5.7)

α, α′ ∈ {l, r}, α 6= α′.
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P r o o f. (i) Let us assume that qel = ∑
κ∈{l,r} gκ(helκ ). Notice that

qelac(λ) =
∑

κ∈{l,r}
gκ(λ)pelκ (λ), λ ∈ R. (5.8)

Inserting (5.8) into (4.4) and using qph = Ihph , we get

Jphρ0,Q
=

∑

m∈N0
α∈{l,r}

ρph(m)
∑

n∈N0
κ∈{l,r}

1
2π

∫

R

dλ φα(λ−mω)gκ(λ− nω)

×tr
(
pelα (λ−mω)

(
pelκ (λ− nω)δmn − Ŝphnm (λ)∗pelκ (λ− nω) Ŝphnm (λ)

))
,

where for simplicity we have set φα(λ) := f(λ − µα), λ ∈ R, n ∈ N0, α ∈ {l, r}.
Therefore, we have

Jphρ0,Q
=

∑

n∈N0
κ∈{l,r}

ρph(n) 1
2π

∫

R

dλ φκ(λ− nω)gκ(λ− nω)tr
(
pelκ (λ− nω)

)

−
∑

n∈N0
κ∈{l,r}

∑

m∈N0
α∈{l,r}

ρph(m) 1
2π

∫

R

dλ φα(λ−mω)gκ(λ− nω)

×tr
(
pelα (λ−mω) Ŝphnm (λ)∗pelκ (λ− nω) Ŝphnm (λ)pelα (λ−mω)

)
. (5.9)

Since the scattering matrix { Ŝph (λ)}λ∈R is unitary, we have

pelκ (λ− nω) =
∑

m∈N0
α∈{l,r}

pelκ (λ− nω) Ŝphmn (λ)∗pelα (λ−mω) Ŝphmn (λ)pelκ (λ− nω) (5.10)

for n ∈ N0 and κ ∈ {l, r}. Inserting (5.10) into (5.9), we find

Jphρ0,Q
=

∑

n∈N0
κ∈{l,r}

∑

m∈N0
α∈{l,r}

ρph(n) 1
2π

∫

R

dλ φκ(λ− nω)gκ(λ− nω)

×tr
(
pelκ (λ− nω) Ŝphnm (λ)∗pelα (λ−mω) Ŝphmn (λ)pelκ (λ− nω)

)

−
∑

n∈N0
κ∈{l,r}

∑

m∈N0
α∈{l,r}

ρph(m) 1
2π

∫

R

dλ φα(λ−mω)gκ(λ− nω)

×tr
(
pelα (λ−mω) Ŝphnm (λ)∗pelκ (λ− nω) Ŝphnm (λ)pelα (λ−mω)

)
.

376 Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 3



A New Model of Quantum Dot Light Emitting-Absorbing Devices

Using the notation (5.5), we find

Jphρ0,Q
=

∑

n∈N0
κ∈{l,r}

∑

m∈N0
α∈{l,r}

ρph(n) 1
2π

∫

R

dλ φκ(λ− nω)gκ(λ− nω) σ̂phmαnκ (λ)

−
∑

n∈N0
κ∈{l,r}

∑

m∈N0
α∈{l,r}

ρph(m) 1
2π

∫

R

dλ φα(λ−mω)gκ(λ− nω) σ̂phnκmα(λ) .

By (3.5), we find
∑

m∈N0
α∈{l,r}

σ̂phmαnκ (λ) =
∑

m∈N0
α∈{l,r}

σ̂phnκmα(λ) , λ ∈ R.

Using that, we get

Jphρ0,Q
=

∑

m,n∈N0
α,κ∈{l,r}

1
2π

∫

R

(
ρph(n)φκ(λ− nω)−ρph(m)φα(λ−mω)

)
gκ(λ− nω) σ̂phnκmα(λ) dλ.

Setting gα(λ) = −e and gκ(λ) ≡ 0, κ 6= α, we obtain (5.6).
(ii) A straightforward computation shows that
∑

n,m∈N0

∫

R

(
ρph(n)f(λ− µα − nω)− ρph(m)f(λ− µα −mω)

)
σ̂phnαmα(λ) dλ

=
∑

n,m∈N0

∫

R

(
ρph(m)f(λ− µα −mω)− ρph(n)f(λ− µα − nω)

)
σ̂phmαnα(λ) dλ.

Since σphmαnα(λ) = σphnαmα(λ), λ ∈ R, we get
∑

n,m∈N0

∫

R

(
ρph(n)f(λ− µα − nω)− ρph(m)f(λ− µα −mω)

)
σ̂phnαmα(λ) dλ

= −
∑

n,m∈N0

∫

R

(
ρph(n)f(λ− µα − nω)− ρph(m)f(λ− µα −mω)

)
σ̂phnαmα(λ) dλ,

which yields
∑

n,m∈N0

∫

R

(
ρph(n)f(λ− µα − nω)− ρph(m)f(λ− µα −mω)

)
σ̂phnαmα(λ) dλ = 0.

Using that, we get immediately representation (5.7) from (5.6).
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Corollary 5.6. Let S = {H,H0} be the JCL-model.
(i) If the cases (E), (S) or (C) of Proposition 5.3 are realized, then (5.6)

holds.
(ii) If the case (E) of Proposition 5.3 is realized and the system S = {H,H0}

is time reversible symmetric, then

Jph
ρ0,Qelα

=

−
∑

m,n∈N0

e

2π

∫

R

(ρph(n)f(λ− µ− nω)− ρph(m)f(λ− µ−mω)) σ̂phnαmα′ (λ)dλ,

(5.11)

n ∈ N0, α ∈ {l, r}, where µ := µl = µr and α 6= α′.
(iii) If the case (E) of Proposition 5.3 is realized and the system S = {H,H0}

is time reversible as well as mirror symmetric, then Jph
ρ0,Qelα

= 0.

P r o o f. (i) The statement follows from Proposition 5.5(i) and Lemma 5.4.
(ii) By setting µα = µα′ , formula (5.7) reduces to (5.11).
(iii) If S = {H,H0} is time reversible and mirror symmetric, we get from

Lemma 2.13 (ii) that σ̂phnαmα′ (λ) = σ̂phnα′mα (λ), λ ∈ R, n,m ∈ N0, α, α′ ∈ {l, r},
α 6= α′. Using that, we get from (5.11) that

Jph
ρ0,Qelα

=

−
∑

m,n∈N0

e

2π

∫

R

(ρph(n)f(λ− µ− nω)− ρph(m)f(λ− µ−mω)) σ̂phnα′mα (λ)dλ.

Interchanging m and n, we get

Jph
ρ0,Qelα

=

−
∑

m,n∈N0

e

2π

∫

R

(ρph(m)f(λ− µ−mω)− ρph(n)f(λ− µ− nω)) σ̂phmα′nα (λ)dλ.

Using that S is time reversible symmetric, we get from Lemma 2.13 (i) that

Jph
ρ0,Qelα

=

−
∑

m,n∈N0

e

2π

∫

R

(ρph(m)f(λ− µ−mω)− ρph(n)f(λ− µ− nω)) σ̂phnαmα′ (λ)dλ,

which shows that Jph
ρ0,Qelα

= −Jph
ρ0,Qelα

. Hence, Jph
ρ0,Qelα

= 0.

We note that by Proposition 5.3 the contact induced current is zero, i.e.,
Jc
ρ0,Qelα

= 0. Hence, if S is time reversible and mirror symmetric, then the total
current is zero, i.e., JS

ρ0,Qelα
= 0.
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R e m a r k 5.7. Let the case (E) of Proposition 5.3 be realized, that is,
µl = µr. Moreover, we assume for simplicity that 0 =: vr ≤ v := vl.

(i) If β =∞, then ρph(n) = δ0n, n ∈ N0. From (5.6), we immediately get that
Jph
ρel,Qelα

= 0. That means, if the temperature is zero, then the photon-induced
electron current is zero.

(ii) The photon-induced electron current might be zero even if β <∞. Indeed,
let S = {H,H0} be time reversible symmetric and let the case (E) be realized. If
ω ≥ v + 4, then hel(λ) := heln (λ) = hel(λ − nω), n ∈ N0. Hence one always has
n = m in formula (5.11), which immediately yields Jph

ρ0,Qelα
= 0.

(iii) The photo-induced electron current might be different from zero. In fact,
let S = {H,H0} be time reversible symmetric and let v = 2 and ω = 4, then
one gets that to calculate the Jph

ρ0,Qell
one has to take into account m = n + 1 in

formula (5.11). Therefore we find

Jph
ρ0,Qell

= −
∑

n∈N0

e

2π

×
∫

R

dλ
(
ρph(n)f(λ− µ− nω)−ρph(n+ 1)f(λ− µ− (n+ 1)ω)

)
σ̂phnl (n+1)r (λ).

If ρph is given by (5.3) and f(λ) = fFD(λ), cf. (3.7), then one easily verifies that

∂

∂x
ρph(x)fFD(λ− µ− xω) < 0, x, µ, λ ∈ R.

Hence ρph(n)fFD(λ − µ − nω) is decreasing in n ∈ N0 for λ, µ ∈ R, which
yields

(
ρph(n)f(λ− µ− nω)− ρph(n+ 1)f(λ− µ− (n+ 1)ω)

)
≥ 0. Therefore,

Jph
ρ0,Qell

≤ 0, which means that the photon-induced current leaves the left-hand side

and enters the right-hand side. In fact, Jph
ρ0,Qell

= 0 implies that σ̂phnl (n+1)r (λ) = 0
for n ∈ N0 and λ ∈ R, which means that there is no scattering from the left-hand
side to the right-hand one and vice versa, which can be excluded generically.

5.2. Photon current

The photon current is related to the charge

Q := Qph = −Ihel ⊗ n,

where n = dΓ(1) = b∗b is the photon number operator on hph = F+(C), which
is self-adjoint and commutes with hph. It follows that Qph is also self-adjoint
and commutes with H0. It is not bounded, but since dom(n) = dom(hph), it is
immediately obvious that Qph(H0 + θ)−1 is bounded, whence n is a tempered
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charge. Its charge matrix with respect to the spectral representation Π(Hac
0 ) of

Lemma 2.11 is given by

Qphac (λ) = −
⊕

n∈N0

nPn(λ).

We recall that Pn(λ) is the orthogonal projection form h(λ) onto hn(λ) = hel(λ−
nω), λ ∈ R. We are going to calculate the photon current or, as it is also called,
the photon production rate.

5.2.1. Contact-induced photon current. The following proposition is in
accordance with physical intuition.

Proposition 5.8. Let S = {H,H0} be the JCL-model. Then Jc
ρ0,Qph

= 0.

P r o o f. We note that qelac(λ) = Ihel(λ), λ ∈ R. Inserting this into (3.9), we
get J sc

ρel,qel
= 0. Applying Proposition 4.2, we prove Jc

ρ0,Qph
= 0.

The result reflects the fact that the lead contact does not contribute to the
photon current which is plausible.

5.2.2. Photon current. From Proposition 5.8 we get that only the photon-
induced photon current Jph

ρ0,Qph
contributes to the photon current JS

ρ0,Qph
. Since

JS
ρ0,Qph

= Jph
ρ0,Qph

, we call Jph
ρ0,Qph

simply the photon current.
Using the notation T̂ phnm (λ) := Pn(λ) T̂ph (λ) ¹ hel(λ−mω), λ ∈ R, m,n ∈ N0,

we set
T̃ phnm(λ) = T̂ phnm (λ)sc(λ−mω), λ ∈ R, m, n ∈ N0 (5.12)

and
T̃ phnκmα(λ) := Pnκ (λ)T̃ phnm(λ) ¹ helα (λ−mω), λ ∈ R, (5.13)

m,n ∈ N0, α,κ ∈ {l, r}, as well as σ̃phnκmα(λ) := tr(T̃ phnκmα(λ)∗T̃ phnκmα(λ)), λ ∈ R.

Proposition 5.9. Let S = {H,H0} be the JCL-model.
(i) Then

Jph
ρ0,Qph

=
∑

m,n∈N0
α,κ∈{l,r}

(n−m)ρph(m) 1
2π

∫

R

f(λ− µα −mω)σ̃phnκmα(λ)dλ. (5.14)

(ii) If ρel commutes with sc, then

Jph
ρ0,Qph

=
∑

m,n∈N0
α,κ∈{l,r}

(n−m)ρph(m) 1
2π

∫

R

f(λ− µα −mω) σ̂phnκmα (λ)dλ. (5.15)
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(iii) If ρel commutes with sc and S = {H,H0} is time reversible symmetric,
then

Jph
ρ0,Qph

=
∑

m,n∈N0,n>m
κ,α∈{l,r}

1
2π

∫

R

dλ

× (n−m)
(
ρph(m)f(λ− µα −mω)− ρph(n)f(λ− µκ − nω)

)
σ̂phnκmα (λ),

(5.16)

where α′ ∈ {l, r} and α′ 6= α.

P r o o f. (i) From (4.4), we get

Jph
ρ0,Qph

=−
∑

m,n∈N0

nρph(m) 1
2π

∫

R

dλ tr
(
ρ̂elac(λ−mω)

×
(
Pn(λ)δmn − Ŝphnm (λ)∗qelac(λ− nω) Ŝphnm (λ)

))
.

Hence,

Jph
ρ0,Qph

= −
∑

m∈N0

mρph(m)

× 1
2π

∫

R

tr
(
ρ̂elac(λ−mω)

(
Pm(λ)− Ŝphmm(λ)∗ Pm(λ) Ŝphmm(λ)

))
dλ

+
∑

m,n∈N0
m6=n

nρph(m) 1
2π

∫

R

tr
(
ρ̂elac(λ−mω) Ŝphnm(λ)∗ Pn(λ) Ŝphnm(λ)

)
dλ.

Using the relation Pm(λ) = Ih(λ) −
∑
n∈N0,m6=n Pn(λ), λ ∈ R, we get

Jph
ρ0,Qph

=

−
∑

m,n∈N0
m6=n

mρph(m) 1
2π

∫

R

tr
(
ρ̂elac(λ−mω)

(
Ŝphnm(λ)∗ Pn(λ) Ŝphnm(λ)

))
dλ

+
∑

m,n∈N0
m6=n

nρph(m) 1
2π

∫

R

tr
(
ρ̂elac(λ−mω) Ŝphnm(λ)∗ Pn(λ) Ŝphnm(λ)

)
dλ.

Since T̂ph (λ) = Ŝph (λ)− Ih(λ), λ ∈ R, we find

Jph
ρ0,Qph

=

−
∑

m,n∈N0

(m− n)ρph(m) 1
2π

∫

R

tr
(
ρ̂elac(λ−mω) T̂ phnm(λ)∗ T̂ phnm(λ)

)
dλ.
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Using (4.5) and definition (5.12), one gets

Jph
ρ0,Qph

=

−
∑

m,n∈N0

(m− n)ρph(m) 1
2π

∫

R

tr
(
ρelac(λ−mω)T̃ phnm(λ)∗T̃ phnm(λ)

)
dλ .

Since ρelac = ρell ⊕ ρelr , where ρelα is given by (5.2), we find

Jph
ρ0,Qph

=

−
∑

m,n∈N0
α,κ∈{l,r}

(m− n)ρph(m) 1
2π

∫

R

f(λ− µα −mω)tr
(
T̃ phnκmα(λ)∗T̃ phnκmα(λ)

)
dλ

where (5.13) is used. Using σ̃phnκmα(λ) = tr(T̃ phnκmα(λ)∗T̃ phnκmα(λ)), we prove (5.14).
(ii) If ρelac commutes with sc, then ρ̂elac (λ) = ρelac(λ), λ ∈ R, which yields that

one can replace σ̃phnκmα(λ) by σ̂phnκmα (λ), λ ∈ R. Therefore (5.15) holds.
(iii) Obviously we have

Jph
ρ0,Qph

=
∑

m,n∈N0,n>m
α,κ∈{l,r}

(n−m)ρph(m) 1
2π

∫

R

f(λ− µα −mω) σ̂phnκmα (λ)dλ

+
∑

m,n∈N0,n<m
α,κ∈{l,r}

(n−m)ρph(m) 1
2π

∫

R

f(λ− µα −mω) σ̂phnκmα (λ)dλ . (5.17)

Moreover, a straightforward computation shows that
∑

m,n∈N0,n<m
α,κ∈{l,r}

(n−m)ρph(m) 1
2π

∫

R

f(λ− µα −mω) σ̂phnκmα (λ)dλ

=
∑

m,n∈N0,n>m
α,κ∈{l,r}

(m− n)ρph(n) 1
2π

∫

R

f(λ− µκ − nω) σ̂phmαnκ (λ)dλ.

Since S = {H,H0} is time reversible symmetric, we find
∑

m,n∈N0,n<m
α,κ∈{l,r}

(n−m)ρph(m) 1
2π

∫

R

f(λ− µα −mω) σ̂phmαnκ (λ)dλ

=
∑

m,n∈N0,n>m
α,κ∈{l,r}

(m− n)ρph(n) 1
2π

∫

R

f(λ− µκ − nω) σ̂phnκmα (λ)dλ. (5.18)

Inserting (5.18) into (5.17), we obtain (5.16).
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Corollary 5.10. Let S = {H,H0} be the JCL-model and let f = fFD. If case
(E) of Proposition 5.3 is realized and S = {H,H0} is time reversible symmetric,
then Jph

ρ0,Qph
≥ 0.

P r o o f. We set µ := µl = µr. One has

ρph(m)f(λ− µ−mω)− ρph(n)f(λ− µ− nω)
= e−mβω(1− e−(n−m)βω)fFD(λ− µ−mω)fFD(λ− µ− nω) ≥ 0

for n > m. From (5.16), we get Jph
ρ0,Qph

≥ 0.

R e m a r k 5.11. Let us comment the results. If Jph
ρ0,Qph

≥ 0, then the system
S is called light emitting. Similarly, if Jph

ρ0,Qph
≤ 0, then we call it light absorbing.

Of course, if S is light emitting and absorbing, then Jph
ρ0,Qph

= 0.
(i) If β =∞, then ρph(m) = δ0m, m ∈ N0. Inserting this into (5.14), we get

Jph
ρ0,Qph

=
∑

n∈N0
α,κ∈{l,r}

n
1

2π

∫

R

f(λ− µα)σ̃phnκ0α(λ)dλ ≥ 0.

Hence S is light emitting.
(ii) Let us show that S might be light emitting even if β < ∞. We consider

the case (E) of Proposition 5.3. If S is time reversible symmetric, then it follows
from Corollary 5.10 that the system is light emitting.

If the system S is time reversible and mirror symmetric, then Jph
ρ0,Qelα

= 0,
α ∈ {l, r}, by Corollary 5.6 (iii). Since Jc

ρ0,Qel
= 0 by Proposition 5.3, we get

that JS
ρ0,Qelα

= 0 but the photon current is larger than zero. Thus our JCL-model
is light emitting by a zero total electron current JS

ρ0,Qelα
.

Let vr = 0, vl = 2 and ω = 4. Hence S is not mirror symmetric. Then we
get from Remark 5.7 (iii) that Jph

ρ0,Qell
= −Jph

ρ0,Qelr
≤ 0. Hence there is an electron

current from the left to the right lead. Notice that by Proposition 5.3, Jc
ρ0,Qell

= 0.
Hence, JS

ρ0,Qell
≤ 0.

(iii) To realize a light absorbing situation, we consider the case (S) of Propo-
sition 5.3 and assume that S is time reversible symmetric. Notice that by Lemma
5.4, sc commutes with ρel. We make the choice

vr = 0, vl ≥ 4, ω = vl, µl = 0, µr = ω = vl.

It turns out that with respect to representation (5.16) one has only m = n − 1,

Journal of Mathematical Physics, Analysis, Geometry, 2014, vol. 10, No. 3 383



H. Neidhardt, L. Wilhelm, and V.A. Zagrebnov

κ = r and α = l. Hence,

Jph
ρ0,Qph

=
∑

n∈N

1
2π

∫

R

dλ

×
(
ρph(n− 1)f(λ− (n− 1)ω)− ρph(n)f(λ− (n+ 1)ω)

)
σ̂phnl(n−1)r (λ).

Since f(λ) = fFD(λ), we find

ρph(n− 1)f(λ− (n− 1)ω)− ρph(n)f(λ− (n+ 1)ω)
= ρph(n− 1)f(λ− (n− 1)ω)f(λ− (n+ 1)ω)
×
(
1 + eβ(λ−(n+1)ω) − e−βω(1 + eβ(λ−ω(n−1)))

)

or

ρph(n− 1)f(λ− (n− 1)ω)− ρph(n)f(λ− (n+ 1)ω)
= ρph(n− 1)f(λ− (n− 1)ω)f(λ− (n+ 1)ω)(1− e−βω)(1− eβ(λ−ωn)).

Since λ−nω ≥ 0, we find ρph(n− 1)f(λ− (n− 1)ω)− ρph(n)f(λ− (n+ 1)ω) ≤ 0,
which yields Jph

ρ0,Qph
≤ 0.

To calculate Jph
ρ0,Qell

, we use formula (5.7). Setting α = l, we get α′ = r, which
yields

Jph
ρ0,Qell

= −
∑

m,n∈N0

e

2π

∫

R

dλ

×
(
ρph(n)f(λ− µr − nω)− ρph(m)f(λ− µl −mω)

)
σ̂phnlmr(λ) .

One checks that σ̂ph0l0r(λ) = 0 and σ̂phnlmr(λ) = 0 for m 6= n+ 1, n ∈ N. Hence,

Jph
ρ0,Qell

= −
∑

n∈N

e

2π

∫

R

dλ

×
(
ρph(n)f(λ− µr − nω)− ρph(n− 1)f(λ− µl − (n+ 1)ω)

)
σ̂phnl(n+1)r(λ) .

Since µr = ω and µl = 0, we find

Jph
ρ0,Qell

= −
∑

n∈N

n

2π

∫

R

f(λ− (n+ 1)ω)ρph(n− 1)(1− e−βω) σ̂phnl(n+1)r(λ) dλ ≤ 0.

Hence there is a current going from left to right induced by photons. We recall
that Jc

ρ0,Qell
= 0.
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