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1. Introduction

As is well known from [1, 5], an approach based on Lax’s idea to write the
initial nonlinear equation in the form L'(x) = i[L(x), A(x)], where L, A are some
differential operators, is the main method of integration of nonlinear equations.
It is established that if the Lax pair {L, A} is found for a nonlinear equation,
then this equation can be ’integrated’.

In this paper, we study the system of equations

%(Uz—k)\’y(a:)):i[a(x),ag—i—)\’y(aj)], V0) =+, zel0l, AeC, (L1)
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which is equivalent to the special system of the Lax-type equations

la(z),~v(z)] =0, z€][0,1],
v () = i[a(x),09], =z €][0,1], (1.2)
v(0) =~F

where a(z) is a spectral matrix measure, (), o2, 7" are selfadjoint n xn matrices,
and
a(z) > 0, tra(z) =1, x € [0,1]. (1.3)

System (1.2) appears in the construction of triangular models for commutative
systems of non-selfadjoint bounded operators.

The purpose of this paper is to describe and study all the pairs of matrix
functions {a(x),v(z)}, the solutions of system (1.2) (when n = 4), for the given
selfadjoint m x m matrices v+ and oy such that

~v(z) € AC([0,1]; C™*™), a(x) € L*([0,1];C™*™), (1.4)

and (1.3) takes place.

In [7], general qualities of the solutions of system (1.2) for the case n = 3 are
obtained and the descriptions of all solutions of this system for different cases are
given. The idea of paper [7] is used in this paper. This idea lies in the fact that in
the case when 4t (and so (z) also) has a simple spectrum, a(z) is a polynomial
of y(z) of no higher degree than n — 1 (with scalar coefficients depending on ).

When n = 4 and the matrices o2, ¥ have a simple spectrum, the explicit
form of the solution in terms of elliptic functions is obtained (see Theorem 2.2
and Corollary 2.3). In Example 2.4, the solutions expressed by trigonometric
functions are found.

When studying cubic dependency of a(x) from ~(xz) (n = 4), the explicit
form of the solution is also expressed in terms of special (elliptic) functions (see
Theorem 3.2 and Corollary 3.3).

2. Description of the Solutions of System (1.2)
Proposition 2.1. Let
oy = diag(by,...,by), Y = aios+ aol +iC, (2.1)
where a1,y € R, the matriz C = (Cjk)?,kzl = —C" and cj; = 0 when j €

{1,...,n}.

Further, let ko, k1, ko € LY[0,1] be real functions. Then the pair {a(-),v(-)},
where a(x) = ra(x)y(2)? + k1(2)7(2) + Ko(x), = € [0,1] and ¥(-) = (Vjr()) s
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is the solution of system (1.2) if and only if the equalities

Vi) =, se{l,...,n}, (2.2)
vir(z) = iei(bj—bk)(K1(I)+(7fj+%€+k)1(2(x))yjk(x)7 j#k, (2.3)
hold as x € [0,1], where

Ki(a) = [ mi(tde, j e {12} (2.4)

0

and the functions y;i(-), j # k, satisfy the system

Vale) = (= b)ra(a) & wn@nla), w1 5#k,

- Ik 2.5
yki(x) = —yp(z), z€[0,1], j#k, (25)

yix(0) =cjp, J# k.

Besides, if cjr € R, j # k, every solution of system (2.5) is real.

P roof. Since a(xz) commutes with v(z), then system (1.2) has the form

{wx) = il (@)y(2)? + m(@h(@), 02, x € [0,1], 26)

v(0) =~

By Lemma 3.12 from [7], in view of the diagonal form of o9, (2.23) is true for
every solution of system (2.6). Taking this into account, system (2.6) takes the
form

YVip(x)  =i(bj — by)(k1(2) + ko () (V45 + Vi)
+i(bj — bx)ra(7) ; Yis(@)vsk(z), = €[0,1], Jj#k,

s#7,k
’ij(x) = 7]19(33)7 T € [Ovl]a j 75 ka
Yjk(0) =k, JFk.

We search the solution of this system in the form of (2.24). In view of (2.1),
v = aubj + ag, j € {1,...,n}, holds. Therefore formula (2.24) becomes

(2.7)

vir(x) = iBj(2)/ Ep(x)yp(z), Ej(z) = e Frl@t(onbf2a0)ka(@) (9 g)

After substituting formula (2.8) into system (2.7), it is easy to check that it is
equivalent to (2.5).
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Now let the matrix C' be real. We are to prove that every solution of sys-
tem (2.5) is real. Let {y;i(-)};2r be some (complex-valued) solution of sys-
tem (2.5). Let

wi(-) = Reyn(), () :=Imyu(), j#k. (2.9)

By separating the imaginary part from the equations of problem (2.5) and taking
into account that c;, € R, j # k, we obtain the following system on the functions

OMOE

Ve = (b — bj)ka(x) 30 (uskvjs + ujsvs), = €[0,1], j#k,
ik (2.10)
System (2.10) is a Cauchy problem for the system of linear ordinary differential

equations with zero initial data. Therefore, by the uniqueness theorem, v;(-) = 0,
J # k, which signifies the reality of the solution {y;x(-)} 2k-

Theorem 2.2. Let n = 4,

by < by < by <bs, by+by=bs+ by, (2.11)
bg — b2 b4 - b2
= = . 2.12
e (212)
Further, let
Cik € R, Cjk = —Ckj, j, ke {1, 2, 3,4}, (2.13)
ar >0, ke{23,4}, (2.14)
c23 = \/az-c13, Ca4 = —y/ag-cu, c31=0. (2.15)
Next suppose
ba — by b — by
= = 2.16
63 b3—b1’ 4 b4—b17 ( )
C14 2
a:=—, [:= 03+ G, (2.17)
C13
/ d
U
F(y) = / , (2.18)
) u\/¢ly + B(u? — cy)
p = /(b —b1)(b3 — ba), (2.19)
v(a) = F~" (pKa(z)), (2.20)
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where F71(-) is the function inverse to the function F(-). Let (y,ys) C R be
the largest by inclusion interval containing the number c13, and the inequality

o+ By —cl3) >0, yy <y<uyg, (2.21)

be true. Further, let ko, k1k2 € LY0,1] be real functions and the functions Ki(z),
Ky (x) be given by the equalities K;(x) := [ w;(t)dt, j = 1,2, and

F(yy) < pKa(z) < F(yd), z€]0,0). (2.22)

Then the pair {a(-),v()}, where a(z) = ka(x)y(x)?+ k1 (2)y(z)+kKo(x), € [0,1],
is the solution of system (1.2) if and only if the equalities
V() = 75 de{l...,n} (2.23)
() = sl IIEOGERIRE)y @), Gk, (229)

hold as x € [0,1], where the functions y;i, j # k are given by

yia(x) = \Jehy + B2(z) — chy). (2.25)
y13(z) = v(z), (2.26)
y14(z) = av(x), (2.27)
ya3(x) = Vazv(z), (2.28)
yoa(z) = —y/ag av(x), (2.29)
ysa(z) =0, (2.30)
yri(x) = yjr(x), 1<j<k<A4 (2.31)

P r o o f. First check that the set {y12(-), y13(*), y14(), y23(-), y24(-), y34(*) }
is the solution of system (2.5). Inequality (2.22) implies that the function v(-),
given by formula (2.20), is correctly defined on the segment [0, ], besides, v(z) €
(Y5 ,ya ), « € [0,1). Therefore the equality

F(v(z)) = pKa(z), «€][0,1],
is true. Differentiating it, we obtain
V' (2)F'(v(z)) = pra(z), =z €[0,1].
Hence, taking into account (2.18), (2.25), (2.26), (2.28), we obtain

Vis(@) = v/ (2) = praf@)u(@)y/cdy + B2 (@) — )

= pra(x)o(z)y2(z (2.32)
=~ F(@a()yn(o)
= (bg — bl)HQ(x)y12($)y23($), S [O,Z]. (2.33)
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Note that accordingly to (2.11), the equality agay = 1 is true. Therefore,

JJas(by — b
3i/;j3)—06:5(1)1—573)—172—53—54—51,

and in virtue of (2.26), (2.27), (2.33),(2.28), (2.29), we have

Z/i4($) = 013//13(»’3) = a(bs — b1)k2(z)y12(7)y23 ()

- VOB a0
= (b4 — bl)/ﬁg(x)ylg(x)y24(x), S [O,l]. (2.34)

Then we have

Yo3(7) = Vazyiz(x) = az (b3 — b1)ra(2)y12()y23(x)
= a3(bs — b1)r2(2)y12(z)y13(7)
= (b3 — b2)ka(z)y12(x)y13(x), = €[0,1], (2.35)

You(2) = —/auvi4(x) = —\/ag (bs — b1)ka(2)y12(2)y24()
= ay(bs — b1)k2(2)y12(7)y14()
)1

(b4 — bz)lﬁz( ( )y14(:r), WS [0, l] (2.36)
From (2.25) and (2.32), we obtain
Bvu(x
viola) = D g w)d(a), e (o, (237
yi2(v)
Further, taking into account (2.26)-(2.29), we have
y13(2)yo3(z) + y1a(z)ya(x) = (Vaz — Vaga?)v?(z), =z €]0,1]. (2.38)
Note that in virtue of (2.11) the equality
p= /(b3 —ba)(bs — br1) = \/(bs — b2)(bs — b1) (2.39)
is true. Therefore, since by < by < b3, then
bo—b
pB = p(B3 + B1a®) = /(b3 — b2) (b3 — bn) bz - bi
by — b
+\/b4—b2)(b4—b1>b 1a2

B bz — by \/54—52 2
= bl)(\/bg—bl b b

= (by — b1) (Vs (2.40)
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Now the relations (2.37)-(2.40) yield

Y12(x) = (b2 — b1)r2(2) (y13(2)y23(2) + y1a(@)y2a(@)), = € [0,1]. (2.41)
Since azay = 1, then in virtue of (2.26)—(2.30),

(bg — b3)ka () (y13(x)y14(z) + y23(x)y24(2))
= (ba — bg)r2(z)(Y13(2)y14(2) — VVaz yi3(z)y/as y14(z))
=0=yz(z). (242)
Now the equalities (2.41), (2.33), (2.34), (2.35), (2.36), (2.42) imply that the

functions y12, ¥13, Y14, Y23, Y24, Y34 satisfy the equations of system (2.5). Further,
since c12 > 0, then

y13(0) = v(0) = F~1(pK5(0)) = F71(0) = ¢13, (2.43)
y12(0) = \/cly + B(v2(0) — ¢f3) = 1z, (2.44)
y14(0) = aw(0) = % 13 = C14, (2.45)
y23(0) = Vaz y13(0) = J/az c13 = c23, (2.46)
Y24(0) = —v/ag y14(0) = —y/as c14 = ca4, (2.47)
Y34(0) =0 =c34 (2.48)

Thus the functions y12(+), y13(+), y14(), y23(), y24(+), y34(+) satisfy also the initial
data of system (2.5). General uniqueness theorems for the initial problem imply
that this system has the unique solution on [0, ].

We will show the way of finding expressions for yxs(-), k,s € 1,...,n (2.25)
— (2.31) as solutions of the corresponding system of differential equations (2.5).
Let now the functions y12(-), 13(-), y14(-) y23(-), voa(-), y3a(-) € AC|0,1] sat-
isfy problem (2.5). Multiply equation (2.33) by (b3 — b2)yi3(x) and equation
(2.35) by (b3 —b1)y23(x). After summarizing the results, we arrive at the relation
Yos(2)y23(z) — asyis(z)yiz(z) = 0, integrating which we obtain

Yo3(x) = 033 + a3(y%3(93) - 6%3)- (2.49)

Taking into account (2.15), we have (2.28). Following the same procedure with
(2.34) and (2.36), we get yos(z) = \/c3; + au(y3,(z) — c3,). After using (2.15),
we obtain

You () = —y/as yr1a(). (2.50)

Use (2.49) and (2.50) for the equations (2.33) and (2.34) to get
y13(x) = k2 (2) (b3 — b1)y12(2)v/az yi3(2), (2.51)
y1a(x) = r2(2)(bs — b1)yr2(2)V/as yra(z). (2.52)
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Express ra(z)yi2(x) from (2.51) and taking into account (2.39) equate the ob-
tained relations

Vis(®)  vhale)
v13(@)  y1a(a)’ (2.53)

Thus (2.53) yields
c
y1a(w) = ﬁ yi3(z) = ayis(z). (2.54)

Thus the correctness of equality (2.27) is confirmed. After substituting it into (2.50),
the correctness of (2.29) is also confirmed. By using the obtained results, we
transform the equations (2.41) and (2.33), subject to (2.40),

Yia(x) = ka() (b2 — b)yis(2) (Vas — o ay)

= ra()pByis(x); (2.55)
yis(z) = ra(x)pyra(z)yis. (2.56)

Whence we obtain that , ,
?J12(517) _ 3/13(33) (2.57)

y13(z) 3 B y12(z)

via(x) = \ /ey + By () — ). (2.58)

Thus (2.25) takes place. Substituting the obtained expressions for yi2(x) (2.25)
and yo3(x) (2.28) into the equation for yj4(z) (2.33), we obtain

vis(x) = ma(@)pyra()y[y + Bl (x) — ), (2.59)

or, using the notation (2.19),

Yis(@) .
Ya(@) Vs + @) — ) 2(2). (2.60)

It is easy to see that (2.60), subject to notation (2.18), becomes (2.26).

Corollary 2.3.  In the conditions of Theorem 2 suppose cio = 0 which
determines the form of the matriz C' in (2.1) in the following way:

0 0 ci3 cua

0 0 C23 Co4
ciz ¢33 0 O
cig ¢4 0 O

iC =
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Then for the functions yi2(-),y13(:) the following representations take place:

yi2(x) = clgﬁtan(z(x)), 6 >0, (2.61)

B c13
ylg(SL’) = 7COS(Z(.%’)) , ﬂ > 0, (2.62)
ylz(l‘) = 013\/5, ﬁ < 0, (2.63)
yis(z) = 0, (2.64)
yio(x) = ei3y/Bth(z(x)), B <0, (2.65)

B c13
yi3(z) = 7ch(z(m)) , 8<0, (2.66)

where

2(x) = c13py/BKs(x). (2.67)

P r o o f. Consider the case 5 > 0. The definition of the function F(-) and
formula (2.26) imply that

y13(z)
Kole) = Fln(@) = 7 [ — (2.68)
z) = F(y13(2)) = —= . .
e v VB u\/u? — iy
C13
Then (2.68) has the form
. C13 7T
—c rhoKs(x) = arcsin - —.
15V0 2(7) y13(x) 2
Using notation (2.67), we obtain
. . . c13 T
— sin(z(z)) = sin [ arcsin - —
(et =sin (arsin | 585 - )
. ( . ) T ( . ) T
= sin | arcsin cos — — cos | arcsin sin —
y13(x) 2 Y13() 2
-, ]1—= 6%3
y%;;(x)
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Suppose z(x) is such that sin(z(x)) and cos(z(x)) are positive, then we ob-
tain (2.62). Substituting (2.62) into (2.25)—(2.30), we will come to the form
of (2.61) for yi2(+) and to the corresponding expressions for the functions y4(+),
y23(), y24(+), y3a(")-

In the case 3 < 0, in virtue of inequality (2.21), we obtain that y%5(x)—c?; < 0.

Thus,
y13(x)
1 du

ﬂ/m'

pKs(z) = F(yi3(z)) = (2.69)

Whence it follows that

Yy13(7)

(@) =In (x/c%3 —u? +613>

or

2(x)

2y — y35(z) = yis(x) exp ) —eys.

As a result of transformations, we have
y13(x) <y13(x)(exp*2z(‘”) +1) — 2exp #@) 013) =0,

i.e., either y13(z) = 0, which results in the solutions of (2.63)—(2.64), or yi3(x) =

2
s , which corresponds to the solutions in the forms of (2.65)
expz(l”) + eXp*Z(I)
and (2.66).
Example 2.4. Let
0 0 21 i 00 0 O
0 0 V2 —V2i 0b 0
+ _
=2 —vai o0 o0 |0 2T oo o o 070 R0
—i V2 0 0 00 0 —b

Then the pair {a(z),v(x)}, where a(z) = 7?(x), is the solution of system (1.2) if
and only if

0 V2 tg(2br) 08(22b1:) cos(12b:r)
—V/2 tg(2bx) 0 v2 — V2
2 (x) = , /s cos(2bx) cos(2bx) . (2.71)
Toos(h) oos(Zh) '
! V2 0 0

~ cos(2bx) cos(2bx)
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3. Case of Cubic Dependency of a(x) from ~(z)
Remind the statement proved in [7].
Theorem 3.1. Let
v =diag(lhiln,, ... 1 1,,), ni-+...n.=n, (3.1)

where lq, ..., 1. are different real numbers.
Then for every solution {a(-),v(-)} of system (1.2) there exists a unique uni-
tary matriz function U € AC([0,1]; C™*™) such that

V(z) =Ue)y U (x), =e[0,l],  U(0) =1, (32)
and the matriz function C(-) := —iU~Y()U'(-) is self-adjoint and has the zero
block diagonal relative to the decomposition C* = C™ @ ... H C™ . Besides,

a(z) = U@A@U*@), v €0, (3.3)

where

A() = diag(Ai (), ..., Ar() = A*(),
A; € LY([0,1;C™ %), je{l,...,r}.

Moreover, for B(z) := U*(z)o2U(z),

[C(x),7"] = [A(2),B(2)], =€[0,1], (3.6)
B'(z) = i[B(x),C(x)], z€]0,]], B(0)=o9 (3.7)
take place.
Conversely, if for the self-adjoint matriz functions
A,C e LY([0,1;C™™), B e AC(]0,1];C™*"™), (3.8)

(3.4), (3.5), (3.6), (3.7) take place, and U € AC(]0,1]; C™*™) is the solution of
the initial problem

U'(z) = iU(z)C(z), z€[0,l], U0 =1, (3.9)
then U(z) is unitary for every z € [0,1],
B(z) = U*(2)osU(z), € [0,1], (3.10)
and the pair {a(-),7()}, given by (3.2), (3.3), is the solution of system (1.2).

Theorem provides the following step-by-step procedure [7] for finding all the
solutions of system (1.2):
1. Choose an orthonormal basis in C", in which the matrix v has the diagonal
form (3.1).
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2. Choose an arbitrary matrix function A(-) satisfying conditions (3.4)—(3.5).

3. Solve the Cauchy problem for the nonlinear system of ordinary differen-
tial equations on the matrix B obtained from (3.6), (3.7) in the previous
remark.

4. If it has the global solution on the segment [0,!], then we calculate the
matrix C(z) by the formula

Cir(x) = (I — 1)~ (A (@) Bji(z) — Bjr(x)Ax()),
x €[00, g ke{l,....,r}, j#k, (3.11)

supposing that its diagonal blocks are equal to zero.

5. Find U(+) as a unique solution of the Cauchy problem (3.9) for the system
of linear ordinary differential equations.

6. Finally, we obtain the solution {a(-),y(-)} of system (1.2) by the formu-
las (3.2), (3.3).

Using Theorem 3.1, we will show how to find the explicit form of the matrix B(x)
for the case n = 4 and a(x) = k(x)y3(x), where k(z) is a real function such that
k € L0,1].

Theorem 3.2. Letn =4, A\,..., s be different real numbers such that A3
and Ay are between A\ and As,
vt =diag(\i, ..., M),
o2 = (O oy = B, Bjx >0, Bjx € Ras j #k,
b = Bix; + fo, j € {T,4},
C(z) = (Cjk(x))?,k:p besides c¢;; =0,
a(z) = w(z)y*(z),

where a(x) is a matriz function and k(z) € LY[0,1] is a real function, z € [0,1],
and the matriz B is such that B(x) = (bjk(az))jkzl = B*(z) as j # k.

Let further
[Ao — A Ao — A1 .
o C— =34 3.12
Qj /\j_)\lyﬁj )\j_/\I’j 5 %y ( )

o= \/(/\4 — )\1)(>\2 — )\4) ()\1 + Ay + )\4) (3.13)

V(A3 = A1) Az = A3) (M + Az + Ag)’
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2a
) = Jﬂ%z  Bal? — By — Bal, [([j’lg) - 1] NCEr)
Yy
F(y) = / t@j(tt)' (3.15)
B13

Then the elements of the matriz B(x) from (3.10) are given by

L —iB(3A) [s(dt .
bjr(z) =iexp S yir(x), j #F, (3.16)

where the real functions y;i.(-) (j # k) are given by the equalities

yio(r) = Y(y13(z)), (3.17)
ylg(ﬂf) = F_l (\/()\3)\1)()\2)\3)/!6@)(%), (318)
0
B yi3()\*
yia(r) = Pua ( 513 ) , (3.19)
y2i(x) = ajyiiz), (5 =3,4), (3.20)
ysa(z) = 0, (3.21)
i () = (), (G #Fk). (3.22)

Here F~1(-) is a function inverse to the monotonously increasing function F(-).
Proof (3.6) yields the relation
cjk(z) = —k(z)djrbik(z), (3.23)

3_
where d;, = i = )\2 + AjAk + AZ. Substitute (3.23) into (3.7), then

L) = —in(@)djp(0) — b)bj(a) -

4
z) Y (dr — di)bju(2)bik(z), (3.24)
l:l,l;ék
where j # k, and djk(b(o) - b ) ﬁl( A3). Tt is easy to see that

i — dji = Nj + MM+ AT — AT = A= A7 = (A — ) (A + A + X)),
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Let bji(x) be given by (3.16). Then

4
() = k() (drr — dj)y;u(@)yie (@),
Yik L Kl 31 ) Y51\ T ) Y1k (3.25)

Yk (0) = Bjk-

Use the fact that y;(x) are real and y34(x) = 0. Then f34 = 0, y;r(x) = y;j(x),
as 1 < j < k <4, and the system has the form

Yo = k() (d13 — da3)y13y23 + k() (dia — daa)y14y24, (3.26)
Y13 = #(2)(d2s — di2)y12y23, (3.27)
Yo = K(x)(d12 — di3)y12u13, (3.28)
Y14 = K(x)(doa — di2)y12924, (3.29)
Yyo4 = K(x)(d12 — dia)y12y14- (3.30)
The condition y34(z) = 0 implies
0 = r(x)(dis — d14)y13y14 + (d23 — d24)y23Y04. (3.31)
It follows from (3.27) and (3.28) that
(d23 — da) (y33(x) — B33) = (daa — di3)(yis(2) — B3) (3.32)
or
(A3 — A1) (yas(2) — B33) = (A2 — A3) (yis(x) — B73). (3.33)
The restriction on \;, where j = 1,4, follows from the relation
(As = M)A35 = (A2 — As) BT, (3.34)

ie., (A3 — A1)(A2 — A3) > 0, thus A3 is between \; and \y. Therefore,

ya3(x) =4/ iz : ij y13(z). (3.35)

Analogously, (3.29) and (3.30) imply that

A2 — N\
A — A1

Yoa(x) = y14(z) (3.36)

if (\y — A1)B2, = (A2 — M\4)B3%, and thus )4 is between \; and \y. Taking into
account (3.12), we write equality (3.31) in the form

(M + A3 + Ay + agag(Ae + A3+ A\g)) yiz(x)y1a(x) = 0, (3.37)
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besides, ﬁgg = Oégﬂlg, 524 = Oé4ﬁ14. Thus ygj(l‘) = Oéjylj(.T) fOI“j = 3, 4. From (326),
(3.27), (3.29), we find

Y2 () — B2 = —B3(yis(x) — Bls) — Balyia(e) — Bia)- (3.38)
So the equations (3.27) and (3.29) become

y13 = K()(daz — di2)azyi2y1s; (3.39)
Y14 = K(x)(daa — di2)auyioyia. (3.40)

] das — dh2) Y dyy — d
Since@:%wﬁ,then denotinga:M

Yia a3 (daz —di2) Y13 (dog — di2)as
valent to (3.13)), we search yi4(x) (subject to the initial conditions) in the form
«

y14(z) = Pua <y1ﬁ31(:)) . Substitute

(which is equi-

y12(w) = P (y13(2)) (3.41)

into (3.38), where

Y(y13()) =

2 2 2 2 Y13() 2
ﬁ12 - 53(3/13(37) - /613) - ﬁ4ﬁ14 < ,313 ) —1). (3.42)

By using (3.39), we can find

vis(x) = k(@)Y (13(2))y1s(2).

Since F(y) is represented in the form (3.15), then

(@) = P | /Os = M) 0 = ha) / (1) dt
0

Thus, in the case n = 4 and cubic dependency of a(z) from 7(z), the elements
of the matrix B(z) are expressed in terms of elliptic functions.

Corollary 3.3. In the conditions of Theorem 3 we suppose A\ = —a, Ao = a,
A3 = —b, Ay = b, where a,b € R and the condition 0 < a < 3b is fulfilled,
1 3ab — a*
moreover, (333 = 2 B2 =2, B3 = 627;, then the solutions y;i(x) as j # k,
a2 —
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(3.17)—(3.20), are given by

yis(@) = sn(x(x) + N, K), (3.44)

(@) = sn(z(x)l—i- N, k)’ (345)

yas(x) = ksn(z(z)+ N, k), (3.46)

yaal) = ksn(z(xl) + N, k)’ (3.47)

where
2 _ Z%z +(2) 2a(a =) / w(t)dt, (3.48)
0
X
O/ T t2 T (3.49)
P roof. From (3.18), we obtain

(a —b)(a+Db) / k(t)dt = F(y13(x)). (3.50)

0

Applying (3.14), (3.15) and taking into account that under the given choice of
Aj, where j = 1,4, the value of & = —1 (which is evident from (3.13)), we have

y13(x)
Fl@) = [ o -

2 4a? 2
B13 \/ a4 t4+ ¢ T a

a? — b2 b+a
y13(z)
/a+ / _
\/a+b 2a 241
a b
y13(z)
a+b dt

(3.51)

2a '
a+b o
7z \/(1—t2)(1—a_bt>
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Now relation (3.50) can be expressed as

y13(z)

—i/2a(a —b) / w(t)dt = / dt , (3.52)
0 1
V2

\/(1—t2)<1—2fzt2>

i.e., taking into account (3.48),

y13(z)

dt
o) = [ (3.53)
/o VA=) 1 - k)
%
or
1
7 dt ) dt
z(x) —|—/ = . (3.54)
) V(1 —12) (1 - k2¢2) ) V(1T —12) (1 - k282)
In view of the notation and definition of elliptic functions, we have
y13() it
z(x)+ N = (3.55)

VA=) a-Re)

namely,

y13(x) = sn(z(x) + N, k). (3.56)
From (3.17) and (3.14), we obtain

ym(:c)_m (—2‘ asz\/u =2 (2(2) + N)(1 = Psn?(z(z) + N)))

_ 2a cen(z(z) + N, k)dn(z(z) + N, k)
B \/; sn(z(x) + N) - (3.57)

Substituting the values of \;, as j = 1,4, we have that az = k, and oy =
and then (3.20) implies that yo3(x) = asyi3(z) = ksn(z(z) + N, k) and ya4(z)

I

| =

ayia(e) = ksn(z(z) + N, k)~

Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 61



A.A. Lunyov and E.V. Oliynyk

1]

2]

62

References

V.Ye. Zaharov, S.V. Manakov, S.P. Novikov, and L.P. Pitayevsky, Soliton Theory.
Nauka, Moscow, 1980. (Russian)

V.A. Zolotarev, Spectral Analisys of Non-selfadjoint Commutative Operator Sys-
tems and Nonlinear Differential Equations. — Teor. Funktsij, Funkts. Analiz, i ih
pril. Kharkov, Resp. sb., 40 (1983), 68-71. (Russian)

V.A. Zolotarev, Time Cones and Functional Model on Riemann Surface. — Mat.
Sb. 181 (1990), No. 7, 965-994. (Russian)

V.A. Zolotarev, Analitical Methods of Spectral Representations of Non-selfadjoint
and Non-unitary Operators. KhNU, Kharkov, 2003. (Russian)

P.D. Lax, Integrals of Nonlinear Equations of Evolution and Solitary Waves. —
Commun. Pure Appl. Math. 21 (1968), 467-490.

M.S. Livsic and A.A. Yantsevich, Operator Colligations in Hilbert Spaces. Winston,
Washington, D. C. (distributed by Wiley, New York), 1979.

A.A. Lunyov and E.V. Oliynyk, On One Class of System of Lax-type Equations. —
UMYV 10 (2013), No. 4, 507-531. (Russian)

Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1



