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The dissipative Zakharov system which models the propagation of Lang-
muir waves in plasmas is considered on the interval [0, L]. We are interested
in the case of large ion acoustic speed λ. After the formal limiting tran-
sition λ → ∞ this system turns into the coupling system of the parabolic
and Schrödinger equations. We prove that this limit system has a solution
and generates a dissipative dynamical system possessing a global compact
attractor. Our main result is the upper semicontinuity of the attractor as
λ →∞.

Key words: dissipative dynamical system, dissipative Zakharov system,
global compact attractor.

Mathematics Subject Classification 2010: 35Q55; 35B40, 34G20.

Introduction

The description of the propagation of Langmuir waves in plasma by the system
of coupled equations { 1

λ2
ntt −∆

(
n + |E|2) = 0,

iEt + ∆E − nE = 0
(1)

was proposed by Zakharov in [12]. Here E : Rx×R+
t → C and n : Rx × R+

t → R.
The complex function E represents the slowly varying envelop of the highly oscil-
lating electric field, and n is the fluctuation of the ion density about its equilibrium
value. The parameter λ is proportional to the ion acoustic speed (see [12]).

In this paper we are interested in the one-dimensional dissipative case




εntt + nt −∆
(
n + |E|2) = f(x), x ∈ (0, L),

iEt + ∆E − nE + iγE = g(x), x ∈ (0, L),
nt(x, 0) = m0(x), n(x, 0) = n0(x), E(x, 0) = E0(x),

(2)
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where a positive damping parameter γ, the external forces f(x) and g(x) are
given. For simplicity, we denote ε = λ−2 and consider the case ε → 0. This
limit corresponds to the assumption that the plasma responds instantaneously to
variations in the electric field (see discussion in [9]).

Formally letting ε tend to 0, we obtain the system




nt −∆
(
n + |E|2) = f(x), x ∈ (0, L),

iEt + ∆E − nE + iγE = g(x), x ∈ (0, L),
n(x, 0) = n0(x), E(x, 0) = E0(x).

(3)

In the paper, we prove that the system (3) with Dirichlet boundary conditions has
the unique strong solution for every initial data in the corresponding energy space.
Moreover, this problem generates the dissipative dynamical system possessing the
compact global attractor A. Our main result is the proof of the convergence of
the attractors Aε for the system (2) to A as ε → 0.

The limit λ →∞ for the Zakharov problem (1) without dissipation for x ∈ Rd,
d ≤ 3, was studied in [9]. But this result concerns sufficiently smooth solutions
on the finite interval [0, T ].

A similar problem was studied in [1] for the system of Shrödinger and Klien–
Gordon equations with Yukawa coupling

{
β2ϕtt + βϕt −∆ϕ− |ψ|2 = f,
iψt + ∆ψ + ϕψ + iγψ = g

in the bounded domain Ω ⊂ Rn, n ≤ 3. The case β, γ → 0 was considered and the
convergence (on each finite time interval) of the corresponding solutions of this
system to those of the limit problem was proven. But this result was obtained
for the case where the ratio γ/β belongs to a fixed interval [1,M ].

The system (2) with Dirichlet boundary conditions was studied by Flahaut
in [4]. The author proved that this problem has a unique solution and generates
a dynamical system in the energetic spaces E1 ≡ L2 × H1

0 ×
(
H1

0

⋂
H2

)
and

E2 ≡ H1
0 ×

(
H1

0

⋂
H2

) × (
H1

0

⋂
H3

)
. Moreover, it was shown that there exists

a bounded absorbing set and a weak attractor for this system. This result was
improved by O. Goubet and I. Moise [5]. They proved the existence of the
(uniform) compact global attractor A2 ⊂ E2 for the Zakharov problem with
Dirichlet boundary conditions. This attractor A2 is also a global attractor in the
space E1. It means that the global attractor in E1 possesses additional spatial
smoothness.

The case of periodic boundary conditions for the system (2) was studied in
[7]. It was proven that the elements of the global attractor for the dissipative
Zakharov system with periodic boundary conditions are the analytic functions of
the spatial variable.
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Zakharov’s system with two spatial variables was studied in [2, 8]. The exis-
tence of the global attractor was shown under the conditions which hold in the
case of large enough γ or for the thin domain. Another interesting example of
the interaction of the wave and quantum dynamics is Schroedinger–Boussinesq
equtions (see [3] and references therein).

The paper is organized as follows. In Sec. 1, we obtain some ε-uniform
estimates for the solution of (2). In Sec. 2, we prove that the problem (3) has
a unique solution and generates the dissipative dynamical system possessing a
compact global attractor. In Sec. 3, we prove the convergence of the attractors
Aε to A as ε → 0.

1. The ε-Uniform Estimates

In this section we consider the problem (2) with Dirichlet boundary conditions

n(0, t) = n(L, t) = 0, E(0, t) = E(L, t) = 0. (4)

We recall that it was proven for every ε > 0 that the problem (2), (4) is well-
posed in the spaces E1 ≡ L2(Ω) × H1

0 (Ω) × (
H1

0 (Ω)
⋂

H2(Ω)
)

and E2 ≡ H1
0 (Ω)

× (
H1

0 (Ω)
⋂

H2(Ω)
)×(

H1
0 (Ω)

⋂
H3(Ω)

)
(see [4]). We also recall that this problem

generates the dissipative dynamical system in E1 possessing the global compact
attractor Aε ⊂ E2 (see [5]).

Our goal is to obtain the ε-uniform estimates. The proof is split into several
steps presented as separate lemmas. All of these lemmas contain a common part.
We consider a functional Wk(U(t)) which is equivalent to the square of the norm
of U(t) ≡ (nt(t), n(t), E(t)) in the corresponding phase space. Then we compute
the derivative of this functional on the trajectories and obtain the inequality of
the type

d
dt

Wk(U(t)) + ηkWk(U(t)) + C‖U(t)‖2 ≤ Rk(U(t)),

where ηk is a suitable constant which does not depend on ε. Then we estimate
the terms in Rk(t) and get

d
dt

Wk(U(t)) + ηkWk(U(t)) ≤ C.

Using the Gronwall lemma, we have

Wk(U(t)) ≤ Wk(U(0))e−ηkt + C(1− e−ηkt)/ηk,

which implies Wk(U(t)) ≤ C. Since Wk(U(t)) is equivalent to the ‖U(t)‖2, we
obtain the necessary estimates.
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To estimate the nonlinear terms in Rk(t), we have to recall two well-known
functional inequalities which will be useful for us. The first of them is the Agmon
inequality

‖u‖L∞ ≤ C‖u‖1/2‖∇u‖1/2, u ∈ H1(Ω), (5)

where ‖ . ‖ denotes the usual L2(Ω) norm. And the second one is the Gagliardo–
Nirenberg inequality

‖u‖L4 ≤ C‖u‖3/4‖∇u‖1/4, u ∈ H1(Ω). (6)

We note also that formally we consider Wk(UN (t)), where UN (t) is the Galerkin
approximation of U(t). Therefore, first we prove our estimates for UN (t) and then
pass to the limit as N →∞. However, for simplicity, we omit this procedure.

We start from the following.

Lemma 1.1. Suppose that ε belongs to [0, ε0], f ∈ L2(Ω), g ∈ H1(Ω) and let
(nt, n, E) be a solution of (2), (4) in E1. Then there exists κ0 such that

ε‖(−∆)−1/2nt(t)‖2 + ‖n(t)‖2 + ‖∇E(t)‖2 ≤ C1 + C2e
−κ0t, (7)

where Ci does not depend on ε and C1 does not depend on the initial data.

P r o o f. Testing (2) by E and taking the imaginary part of the result, we
get

d
dt
‖E(t)‖2 + 2γ‖E(t)‖2 = 2=(g, E).

Since
2=(g, E) ≤ 2‖E‖‖g‖ ≤ γ‖E‖2 +

1
γ
‖g‖2,

then the Gronwall lemma implies

‖E(t)‖2 ≤ ‖E0‖2 e−γt +
1
γ2
‖g‖2. (8)

Let us define the functional
W0(t) = ε‖nt‖2

−1 + ‖n‖2 + 2‖∇E‖2 + η0

{
2ε(nt, n)−1 + ‖n‖2

−1

}
−2(f, n)−1 + 4<(g, E) + 2(|E|2, n),

(9)

where ‖ . ‖−1 and (·, ·)−1 are ‖(−∆)−1/2 · ‖ and ((−∆)−1/2·, (−∆)−1/2·), respec-
tively, and the positive parameter η0 will be chosen later.
Since

d
dt

{
ε‖nt‖2

−1 + ‖n‖2 − 2(f, n)−1

}
= −2‖nt‖2

−1 − 2(nt, |E|2),
d
dt

{
2ε(nt, n)−1 + ‖n‖2

−1

}
= 2ε‖nt‖2

−1 − 2‖n‖2 − 2(n, |E|2) + 2(n, f)−1,

d
dt

{
2‖∇E‖2 + 4<(g, E) + 2(|E|2, n)

}
= 2(nt, |E|2)− 4γ‖∇E‖2

− 4γ(n, |E|2)− 4γ<(g, E),
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by addition we get

d
dt

W0(t) + 2(1− εη0)‖nt‖2
−1 + 2η0‖n‖2 + 4γ‖∇E‖2 = R0(t), (10)

where
R0(t) = 2η0(f, n)−1 − 2(η0 + 2γ)(|E|2, n)− 4γ<(g, E). (11)

We note that it follows from (6) and (8) that

‖E‖L4 ≤ C‖E‖3/4‖∇E‖1/4 ≤ (C1 + C2e
−γt)‖∇E‖1/4,

where C1 is independent of the initial data. Therefore,

|(n, |E|2)| ≤ C‖n‖‖E‖2
L4
≤ (C1 + C2e

−γt)‖n‖‖∇E‖1/2.

Taking into account this inequality, it is easy to see that

R0(t) ≤ C(1 + ‖n‖) + (C1 + C2e
−γt)‖n‖‖∇E‖1/2

≤ η0‖n‖2 + γ‖∇E‖2 + (C1 + C2e
−γt),

(12)

and
W0(t) ≥ ε

2
‖nt‖2

−1 +
1
2
‖n‖2 + ‖∇E‖2 − C1 − C2e

−γt,

W0(t) ≤ 3ε

2
‖nt‖2

−1 + 2‖n‖2 + 3‖∇E‖2 + C1 + C2e
−γt.

(13)

Substituting (12) into (10), we get

d
dt

W0(t) + 2(1− εη0)‖nt‖2
−1 + η0‖n‖2 + 3γ‖∇E‖2 ≤ C1 + C2e

−γt.

Now we put η0 = 1/(2ε0) and κ0 = min{ε0/4, γ}. Then, for sufficiently small ε0,
from (13) we obtain

2(1− εη0)‖nt‖2
−1 + η0‖n‖2 + 3γ‖∇E‖2 ≥ κ0W0(t)− C1 − C2e

−γt.

Thus,
d
dt

W0(t) + κ0W0(t) ≤ C1 + C2e
−γt.

Taking into account (13), we deduce (7) from the Gronwall lemma.

Lemma 1.2. Let ε belong to [0, ε0], f ∈ L2(Ω), g ∈ H1(Ω) and let (nt, n, E)
be a solution of (2), (4) in E1. Then there exists κ1 such that

ε‖nt(t)‖2 + ‖∇n(t)‖2 + ‖∆E(t)‖2 ≤ C1 + C2e
−κ1t, (14)

where Ci does not depend on ε and C1 is independent of the initial data.
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P r o o f. Let us consider the functional

W1(t) =
1
2

(
ε‖nt‖2 + ‖∇n‖2

)
+ ‖∆E‖2 − 2<(nE,∆E)− 2<(g,∆E)

−(n, f) + η1

{
ε(n, nt) +

1
2
‖n‖2

}
.

(15)

From the Agmon inequality (5) and (7) we obviously have ‖E(t)‖L∞ ≤ C1 +
C2e

−κ0t. Therefore,

|(nE,∆E)| ≤ ‖n‖‖E‖L∞‖∆E‖ ≤ (C1 + C2e
−κ0t)‖∆E‖,

|(g,∆E)| ≤ ‖g‖‖∆E‖ ≤ C‖∆E‖,
|(n, f)| ≤ ‖n‖‖f‖ ≤ C1 + C2e

−κ0t,

ε|(n, nt)| ≤ ε‖nt‖‖n‖ ≤ ε

4
‖nt‖2 + ε(C1 + C2e

−κ0t).

(16)

Using these inequalities, we get

W1(t) ≥ 1
4

(
ε‖nt‖2 + ‖∇n‖2

)
+

1
2
‖∆E‖2 − C1 − C2e

−κ0t,

W1(t) ≤ 3
4

(
ε‖nt‖2 + ‖∇n‖2

)
+

3
2
‖∆E‖2 + C1 + C2e

−κ0t.
(17)

It is easy to prove that

d
dt

(
1
2

(
ε‖nt‖2 + ‖∇n‖2

)− (n, f)
)

= −‖nt‖2 + (nt, ∆|E|2),
d
dt

(
ε(n, nt) +

1
2
‖n‖2

)
= ε‖nt‖2 − ‖∇n‖2 + (n,∆|E|2) + (n, f),

d
dt

(‖∆E‖2 − 2<(nE,∆E)− 2<(g,∆E)
)

= −2γ‖∆E‖2 − 2<(ntE,∆E) + R1,1(t),

where

R1,1(t) = 4γ<(nE,∆E)− 2=(n2E, ∆E) + 2γ<(g, ∆E) + 2=(ng,∆E). (18)

By using these relations, we obtain

d
dt

W1(t) + (1− εη1)‖nt‖2 + η1‖∇n‖2 + 2γ‖∆E‖2 = R1(t), (19)

where
R1(t) = 2(nt, |∇E|2) + η1(n,∆|E|2) + R1,1(t). (20)

Taking into account the Agmon inequality (5), the Gagliardo–Nirenberg inequal-
ity and the estimate (7), we get

‖n‖L∞ ≤ (C1 + C2e
−κ0t)‖∇n‖1/2, ‖∇E‖L∞ ≤ (C1 + C2e

−κ0t)‖∆E‖1/2,

‖n‖L4 ≤ (C1 + C2e
−κ0t)‖∇n‖1/4, ‖∇E‖L4 ≤ (C1 + C2e

−κ0t)‖∆E‖1/4.
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Using these relations, we estimate the terms in R1(t) as

|(nt, |∇E|2)| ≤ ‖nt‖‖∇E‖2
L4
≤ (C1 + C2e

−κ0t)‖nt‖‖∆E‖1/2,

|(n,∆|E|2)| ≤ 2‖∇n‖‖∇E‖‖E‖L∞ ≤ (C1 + C2e
−κ0t)‖∇n‖,

|(nE,∆E)| ≤ ‖n‖‖E‖L∞‖∆E‖ ≤ (C1 + C2e
−κ0t)‖∆E‖,

|(n2E, ∆E)| ≤ ‖n‖2
L4
‖E‖L∞‖∆E‖ ≤ (C1 + C2e

−κ0t)‖∇n‖1/2‖∆E‖,
|(g, ∆E)| ≤ ‖g‖‖∆E‖ ≤ C‖∆E‖,
|(ng,∆E)| ≤ ‖n‖‖g‖L∞‖∆E‖ ≤ (C1 + C2e

−κ0t)‖∆E‖.

Hence,

R1(t) ≤ 1
8
‖nt‖2 +

η1

4
‖∇n‖2 +

γ

2
‖∆E‖2 + C1 + C2e

−κ0t.

Substituting this inequality into (19), we get for η1 = 1/(8ε0)

d
dt

W1(t) +
3
4
‖nt‖2 +

3η1

4
‖∇n‖2 +

3γ

2
‖∆E‖2 ≤ C1 + C2e

−κ0t. (21)

We can see from (17) that for κ1 = min{ε0/8, γ/2} the following relation is true:

3
4
‖nt‖2 +

3η1

4
‖∇n‖2 +

3γ

2
‖∆E‖2 ≥ κ1W1(t)− C1 − C2e

−κ0t.

Thus, in view of (21), we have

d
dt

W1(t) + κ1W1(t) ≤ C1 + C2e
−κ0t.

From the Gronwall lemma and (17) we obtain the second uniform estimate (14).

Lemma 1.3. Let U(t) = (nt(t), n(t), E(t)) be a solution of the system (2) and
U(t) belong to the global attractor Aε. Then for f ∈ L2 (Ω), g ∈ H1 (Ω)

ε‖∇nt(t)‖2 + ‖∆n(t)‖2 + ‖∇∆E(t)‖2 ≤ C3, (22)

where C3 does not depend on ε.

P r o o f. Let us consider the functional

W2(t) =
1
2

(
ε‖∇nt(t)‖2 + ‖∆n(t)‖2

)
+ ‖∇∆E(t)‖2 + (∆n, f)

−2<(∇g,∇∆E) + 2<(∆n∆E, E)− 2(∆n, |∇E|2)
+η2

(
ε(∇nt,∇n) +

1
2
‖∇n‖2

)
,

(23)
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where η2 is a small parameter, which will be chosen later. Let us recall now that
from (14) we have that ‖∇n‖ ≤ C and ‖∆E‖ ≤ C. From the definition of the
functional W2(t) and from the inequalities

|(∆n, f)| ≤ ‖∇n‖‖∇f‖ ≤ C,
|(∇g,∇∆E)| ≤ ‖∇g‖‖∇∆E‖ ≤ C‖∇∆E‖,
|(∆n∆E, E)| ≤ ‖∆n‖‖∆E‖‖E‖L∞ ≤ C‖∆n‖,
|(∆n, |∇E|2)| ≤ ‖∆n‖‖∇E‖2

L4
≤ C‖∆n‖,

|(∇nt,∇n)| ≤ ‖∇nt‖‖∇n‖ ≤ C‖∇nt‖,

we obtain that the following estimates for W2(t) remain true:

W2(t) ≥ 1
4
‖∇nt‖2 +

1
2
‖∆n‖2 + ‖∇∆E‖2 − C

W2(t) ≤ 3
4
‖∇nt‖2 +

3
2
‖∆n‖2 + 3‖∇∆E‖2 + C.

(24)

By straightforward computation we have

d
dt

(
ε

2
‖∇nt(t)‖2 +

1
2
‖∆n(t)‖2 + (∆n, f)

)
= −‖∇nt‖2 − 2<(∆E∆nt, E)

− 2(|∇E|2, ∆nt),

d
dt

(
ε(∇nt,∇n) +

1
2
‖∇n‖2

)
= ε‖∇nt‖2 − ‖∆n‖2 − (∆n,∆|E|2) + (∆n, f).

Taking into account that the second equation of (2) implies that Et = i∆E
−inE − γE − ig, one can obtain

d
dt

(‖∇∆E(t)‖2 − 2<(∇g,∇∆E) + 2<(∆n∆E,E)− 2(∆n, |∇E|2))

= −2γ‖∇∆E‖2 + 2<(∆nt∆E,E) + R2(t),

where

R2,1(t) = 4<(∇nt∆E,∇E)− 2γ<(E∇n + n∇E,∇∆E) + 2γ<(∇g,∇∆E)
−2=(n∇∆E, E∇n + n∇E)− 2γ<(n∇∆E,∇E)− 2=(n∇∆E, g)
+6=(∇n∆E,∇∆E)− 6γ<(∇E∇n, ∆E)− 6=(∇n∆E,∇g)
+2<(∆n∆E, Et)− 6=(∇n∆E, E∇n + n∇E).

(25)
From these equalities we can conclude that

d
dt

W2(t) + (1− η2ε)‖∇nt‖2 + η2‖∆n‖2 + 2γ‖∇∆E‖2 = R2(t), (26)
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where
R2(t) = R2,1 − 2(|∇E|2, ∆nt)− η2(∆|E|2 − f, ∆n).

Put η2 = 1/(4ε0) and κ2 = min {ε0/2, γ}. Then (24) and (26) imply that

d
dt

W2(t) + κ2W2(t) +
1
4
‖∇nt‖2 +

η2

2
‖∆n‖2 + γ‖∇∆E‖2 ≤ C + R2(t). (27)

Now we estimate the terms in the r.h.s. of (27). In these estimates we use the
Agmon inequality (5), (14) and the inequality ‖Et‖ ≤ ‖∆E‖ + ‖n‖‖E‖L∞ +
γ‖E‖+ ‖g‖ ≤ C,

|(∇nt∆E,∇E)| ≤ ‖∇nt‖‖∆E‖‖∇E‖L∞ ≤ C‖∇nt‖,
|(E∇n + n∇E,∇∆E)| ≤ ‖∇∆E‖(‖E‖L∞‖∇n‖+ ‖∇E‖‖n‖L∞) ≤ C‖∇∆E‖,
|(∇g,∇∆E)| ≤ ‖∇g‖‖∇∆E‖ ≤ C‖∇∆E‖,
|(n∇∆E, E∇n + n∇E)| ≤ ‖∇∆E‖‖n‖L∞(‖E‖L∞‖∇n‖+ ‖∇E‖‖n‖L∞)

≤ C‖∇∆E‖,
|(n∇∆E,∇E)| ≤ ‖∇∆E‖‖n‖L∞‖∇E‖ ≤ C‖∇∆E‖,
|(n∇∆E, g)| ≤ ‖∇∆E‖‖n‖L∞‖g‖ ≤ C‖∇∆E‖,
|(∇n∆E, E∇n + n∇E)| ≤ ‖∇n‖L∞‖∆E‖(‖E‖L∞‖∇n‖+ ‖∇E‖‖n‖L∞)

≤ C‖∆n‖1/2,
|(∇E∇n,∆E)| ≤ ‖∇E‖L∞‖∇n‖‖∆E‖ ≤ C,

|(∇n∆E,∇g)| ≤ ‖∆E‖‖∇n‖L∞‖∇g‖ ≤ C‖∆n‖1/2,

|(∆n∆E, Et)| ≤ ‖∆n‖‖∆E‖L∞‖Et‖ ≤ C‖∆n‖‖∇∆E‖1/2.

Substituting these inequalities in (27), we obtain

d
dt

W2(t) + κ2W2(t) +
1
4
‖∇nt‖2 +

η2

2
‖∆n‖2 + γ‖∇∆E‖2

≤ C
(
1 + ‖∇nt‖+ ‖∆n‖1/2 + ‖∆n‖+ ‖∇∆E‖+ ‖∆n‖‖∇∆E‖1/2

)
. (28)

Hence,
d
dt

W2(t) + κ2W2(t) ≤ C.

Thus we get (22) from the Gronwall lemma and (24).

Lemma 1.4. Let U(t) = (nt(t), n(t), E(t)) be a solution of the system (2) and
U(t) belong to the global attractor Aε. Then

ε‖ntt(t)‖2 + ‖∇nt(t)‖2 + ‖∆Et(t)‖2 ≤ C4, (29)

where C4 does not depend on ε.
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P r o o f. Let us denote m = nt and u = Et. Now we differentiate the system
(2) with respect to t:

{
mt −∆m− 2<(∆(uE)) = 0,
iut + ∆u− nu−mE + iγu = 0.

(30)

Consider the functional

W3(t) =
1
2

(
ε‖mt‖2 + ‖∇m‖2

)
+ ‖∆u‖2 − 2<(mE,∆u)

+η3

(
ε(mt,m) +

1
2
‖m‖2

)
,

(31)

where η3 = 1/(4ε0). We note that it follows from (22) and the first equation of
(2) that ‖∇u‖ ≤ C. Therefore,

|(mE,∆u)| ≤ ‖∇u‖(‖E‖L∞‖∇m‖+ ‖m‖L∞‖∇E‖) ≤ C‖∇m‖.
Then we conclude that

1
4

(
ε‖mt‖2 + ‖∇m‖2

)
+

1
2
‖∆u‖2−C ≤ W3(t) ≤ ε‖mt‖2 + ‖∇m‖2 + 2‖∆u‖2 + C.

(32)
By straightforward computation it is easy to see that

d
dt

W2(t) + (1− εη3)‖mt‖2 + η3‖∇m‖2 + 2γ‖∆u‖2 = R3(t), (33)

where

R3(t) = 2<(mtu,∆E) + 4<(mt∇u,∇E)− 2<(mEt, ∆u)
+2η3<(mu,∆E) + 4η3<(m∇u,∇E) + 2(η3 + γ)<(mE,∆u)
−2=(∆(nu),mE) + 2=(u∆n + 2∇n∇u,∆u).

(34)

For κ3 = min{1/2, γ}, from (32) and (33) we deduce that

d
dt

W3(t) + κ3W3(t) +
1
4
‖mt‖2 +

η3

2
‖∇m‖2 + γ‖∆u‖2 ≤ C + R2(t). (35)

Now we estimate the terms in the r.h.s. of (33) as follows:

|(mtu,∆E)| ≤ ‖mt‖‖∆E‖‖u‖L∞ ≤ C‖mt‖,
|(mt∇u,∇E)| ≤ ‖mt‖‖∇E‖L∞‖∇u‖ ≤ C‖mt‖,
|(mEt, ∆u)| ≤ ‖∇u‖(‖∇m‖‖Et‖L∞ + ‖∇Et‖‖m‖L∞) ≤ C‖∇m‖,
|(mu,∆E)| ≤ ‖m‖L∞‖u‖‖∆E‖ ≤ C‖∇m‖,
|<(m∇u,∇E)| ≤ ‖m‖‖∇u‖‖∇E‖L∞ ≤ C‖∇m‖,
|(∆(nu),mE)| ≤ ‖∇u‖‖n‖L∞(‖∇m‖‖E‖L∞ + ‖∇E‖‖m‖L∞)

+ ‖∇n‖‖u‖L∞(‖∇m‖‖E‖L∞ + ‖∇E‖‖m‖L∞) ≤ C‖∇m‖,
|(u∆n + 2∇n∇u,∆u)| ≤ ‖∆u‖(‖u‖L∞‖∆n‖+ 2‖∇n‖L∞‖∇u‖) ≤ C‖∆u‖.
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Therefore (35) implies that

d
dt

W3(t) + η3W3(t) ≤ C.

This relation, the Gronwall lemma and (32) yield (29).

2. The Limit Problem

This section is devoted to the investigation of the long time behavior of the
solution of the system (3), (4). We understand the solutions of this problem in
the sense of the following definition.

Definition 2.1. A pair (n;E) is said to be semi-strong to the problem (3),
(4) on [0, +∞) iff

(n;E) ∈ L∞
(
[0, +∞); H1

0 (Ω)×H1
0 (Ω)

⋂
H2(Ω) ≡ H

)
, (36)

(i) the first two relations in (3) are fulfilled in the sense of distributions, (ii) the
initial data hold.

We call this solution “semi-strong” because it is weak with respect to n and
strong with respect to E.

2.1. Existence and uniqueness of the solution

Our first result is the following theorem.

Theorem 2.1. Let the initial data (n0, E0) belong to H and the external forces
f(x) and g(x) belong to L2(Ω) and H1

0 (Ω). Then the system (3), (4) has a unique
semi-strong solution on R+.

2.1.1. Existence. The proof of the existence is based on the compactness
method. We define PN as a projector on the first N eigenvectors of the operator
−∆ with Dirichlet boundary conditions. Let us consider the approximation of
the system (3):





nN
t −∆

(
nN + PN |EN |2) = PNf(x), x ∈ (0, L),

iEN
t + ∆EN − PN (nNEN ) + iγEN = PNg(x), x ∈ (0, L),

nN (x, 0) = PNn0(x), EN (x, 0) = PNE0(x).
(37)

This system is a system of ordinary differential equations. Hence, there exists
the local (in time) solution

(
nN , EN

)
on [0, TN ]. We note that Lemma 1.1 and

Lemma 1.2 remain true for ε = 0. Then from (14) we get that (nN , EN ) ∈
L∞(R+,H). Hence, for any T > 0, we get that

(
nN , EN

)
belongs to a bounded
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set in L∞ ((0, T ),H). Then there exists a subsequence, still denoted by
(
nN , EN

)
,

such that there exists (n,E) ∈ L∞ ((0, T ),H) such that
(
nN , EN

) → (n,E) ,
which is weak-star in L∞ ((0, T ),H), as N →∞.

Let us prove that (n,E) satisfies (3). Since nN and EN belong to the
bounded sets in L∞

(
(0, T ),H1

)
and L∞

(
(0, T ),H2

)
, respectively, nN

t = ∆(nN

+PN |E|2) + PNf and EN
t = i∆EN − iPN (nNEN ) − γEN − iPNg belong to

L2

(
(0, T ),H−1

)
and L2 ((0, T ), L2). It follows from Aubin’s imbedding theorem

(see [10, Corollary 4]) that there exists a new subsequence
(
nN , EN

)
such that(

nN , EN
) → (n∗, E∗) strongly in C

(
0, T ; L2 ×H1

0

)
. It is easy to see that n∗ = n

and E∗ = E. Thus we can pass to the limit in the nonlinear terms.

2.1.2. Uniqueness. The uniqueness of the solution of (3) follows from the
next proposition.

Proposition 2.1. Suppose (n(1), E(1)) and (n(2), E(2)) are two solutions of (3)
in H with the initial data (n(1)

0 , E
(1)
0 ) and (n(2)

0 , E
(2)
0 ), respectively, which belong

to the ball of radius R in H. Then

‖∇n(t)‖2 + ‖∆E(t)‖2 ≤ CR

(‖∇n0‖2 + ‖∆E0‖2
)
etCR , (38)

where n = n(1) − n(2), E = E(1) − E(2), n0 = n
(1)
0 − n

(2)
0 and E0 = E

(1)
0 −E

(2)
0 .

P r o o f. First, we prove the estimate (38) for Galerkin’s approximations.
Then, passing to the limit, we obtain (38) for the solutions of (3).

For simplicity, we omit index N of the number of Galerkin’s approximations.
Since the initial data belong to the ball of radius R in H, then there exists a

constant CR such that

‖∇n(t)‖2 + ‖∆E(t)‖2 ≤ CR. (39)

It is obvious that (n,E) is a solution of
{

nt −∆n = ∆(E(1)E + EE(2)),
iEt + ∆E + iγE = n(1)E + nE(2).

(40)

We note that the second equation from (40) implies

∃c1,R > 0, c1,R‖∆E‖ ≤ ‖Et‖+ ‖n‖+ ‖E‖,
∃c2,R > 0, ‖Et‖ ≤ c2,R(‖E‖+ ‖n‖+ ‖∆E‖). (41)

Let us rewrite now the second equation from (40) in the form

iEt + ∆E = −iγE + n(1)E + nE(2).
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Taking into account that

d
dt

(‖E‖2 + ‖∇E‖2
)

= 2=(iEt + ∆E, E −∆E),

we get

d
dt

(‖E‖2 + ‖∇E‖2
)

+ 2γ
(‖E‖2 + ‖∇E‖2

)
= 2=(n(1)E + nE(2), E −∆E)

≤ (‖E(2)‖L∞‖n‖+ ‖E‖L∞‖∇n(1)‖+ ‖∇n‖‖E(2)‖L∞ + ‖n‖L∞‖∇E(2)‖)‖∇E‖
≤ CR

{‖∇E‖2 + ‖∇n‖2
}

.
(42)

Now we differentiate the second equation in (40) with respect to t:

iEtt + ∆Et = −iγEt + n
(1)
t E(1) + n(1)E

(1)
t − n

(2)
t E(2) − n(2)E

(2)
t .

Then

d
dt
‖Et(t)‖2 + 2γ‖Et(t)‖2 = 2=(n(1)

t E + ntE
(2) + nE

(2)
t , Et)

≤
(
‖n(1)

t ‖‖E‖L∞ + ‖nt‖‖E(2)‖L∞ + ‖n‖L∞‖E(2)
t ‖

)
‖Et‖

≤ CR

(‖nt‖‖Et‖+ ‖∇n‖2 + ‖Et‖2 + ‖∇E‖2
)
.

(43)

The first equation in (40) and the first inequality in (41) imply that

d
dt
‖∇n(t)‖2 + 2‖nt(t)‖2 = 2

(
∆(E(1)E + EE(2)), nt

)

≤ CR (‖∇E‖+ ‖Et‖+ ‖∇n‖) ‖nt‖.
(44)

Adding (42), (43) and (44), we get

d
dt

(‖∇n(t)‖2 + ‖E(t)‖2 + ‖∇E(t)‖2 + ‖Et‖2
)

+ 2‖nt(t)‖2

≤ CR (‖∇E‖+ ‖Et‖+ ‖∇n‖) ‖nt‖+ CR

(‖∇n‖2 + ‖Et‖2 + ‖∇E‖2
)

≤ 2‖nt(t)‖2 + CR

(‖∇n‖2 + ‖E‖2 + ‖∇E‖2 + ‖Et‖2
)
.

From the Gronwall lemma we have

‖∇n(t)‖2 + ‖E(t)‖2 + ‖∇E(t)‖2 + ‖Et(t)‖2

≤ (‖∇n(0)‖2 + ‖E(0)‖2 + ‖∇E(0)‖2 + ‖Et(0)‖2
)
etCR . (45)

Taking into account (41), we can deduce that

‖∇n(t)‖2 + ‖E(t)‖2 + ‖∇E(t)‖2 + ‖Et(t)‖2 ≥ 1
2
‖∇n(t)‖2 + CR‖∆E(t)‖2,

‖∇n(0)‖2 + ‖E(0)‖2 + ‖∇E(0)‖2 + ‖Et(0)‖2 ≤ CR

(‖∇n0‖2 + ‖∆E0‖2
)
.

Thus, substituting these inequalities in (45), we obtain (38).
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2.1.3. Construction of the evolution operator for the limit system.
Let us rewrite the first equation from (3) as

nt −∆n = f + ∆|E|2.

Taking into account that the r.h.s. of the equation belongs to L∞ (R+, L2), we can
derive that n ∈ C

(
R+,H1

0

)
. In the same way, by rewriting the second equation

from (3) as the linear Schrödinger equation and using the result of Lions and
Magenes [6], we obtain that E ∈ C(R+,H1

0

⋂
H2).

We note that since Lemma 1.2 remains true for ε = 0, then the following
proposition holds.

Proposition 2.2. The problem (3) generates the dissipative dynamical system
S(t) : (n0, E0) ∈ H → (n(t), E(t)) ∈ H.

2.2. Existence of the Global Attractor for the limit system

Our goal is the proof the following result concerning the existence of the
compact global attractor in H.

Theorem 2.2. Let f(x) and g(x) be the functions from L2(Ω) and H1
0 (Ω).

Then the problem (3) generates the dynamical system possessing a compact global
attractor A ∈ H.

The proof of the existence of the global attractor is based on the well-known
theorem of the general theory of dynamical systems (see, for instance, [11, The-
orem I.1.1]). We construct a decomposition of the evolution operator S(t) as
S1(t) + S2(t) with the properties required in Theorem, i.e.,

(1) S1(t) is uniformly compact in H for t large, i.e., for any bounded set B
there exists t0 such that the closure of

⋃
t≥t0

S1(t)B is a compact set in H.

(2) S2(t) : H → H is continuous for any t ≥ 0, and for any bounded set
B1 ⊂ H, the following relation holds:

sup
φ∈B1

‖S2(t)φ‖H → 0 as t →∞.

Decomposition. Consider the initial data (n0, E0) from the ball BR ⊂ H

centered at the origin. Proposition 2.2 states that there exists a bounded absorb-
ing set in H, denoted by B. Then there exists the time of dissipation t0 = t0 (B, R)
such that S(t)(n0, E0) ∈ B for ∀t ≥ t0. Thus,

‖∇n(t)‖2 + ‖∆E(t)‖2 ≤ C, ∀t ≥ t0. (46)

88 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1



The Singular Limit of the Dissipative Zakharov System

We set
E = PNE + QNE (47)

and we write y = PNE. Now we split the high frequency part of E as

QNE = Z + χ, (48)

and n:
n = p + q, (49)

where (p, Z) is a solution of the problem




pt −∆(p + |y + Z|2) = f,
iZt + ∆Z −QN (p(y + Z)) + iγZ = QNg,
p(t, x) = p(t, x + L), Z(t, x) = Z(t, x + L),
p(t0, x) = Z(t0, x) = 0.

(50)

Let us prove now the lemma below.

Lemma 2.1. There exists N0 ∈ N such that for any N > N0 the system (50)
admits a unique solution belonging to QNVs = QNH. Moreover, for any N > N0

and t > t0,
‖∇p(t)‖2 + ‖∆Z‖2 ≤ R2

1. (51)

P r o o f. Let M > N be a positive number. If we substitute QN by
QM,N ≡ PM − PN in the system (50), then it is easy to see that (50) has a
unique solution in some interval (t0, t0 + TM,N ). If we prove the uniform bound
(51) in the interval (t0, t0 + TM,N ), then we can conclude that this solution can
be extended to the half-axes (t0, +∞). Then we send M → ∞ and obtain the
existence of the solution of (50) with property (51). It is easy to show (in the
same way as for the system (3)) that this solution is unique. Thus we need only to
prove the uniform estimate (51) for the solution on any interval of the existence.
To simplify notations below, we omit the subscript M .

We prove (51) in several steps. First, we prove that

‖p(t)‖2 + ‖∇Z‖2 ≤ R2
1. (52)

Then, using (52), we can start to prove (51).
Step 1. We consider the functional

J0(t) = ‖p‖2 + 2‖∇Z‖2 − 2(f, p)−1 + 4<(g, Z) + 2(p, |y + Z|2) + µ0‖p‖2
−1. (53)
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Taking into account (50), by straightforward computation we get

d
dt

(‖p‖2 − 2(f, p)−1) = −2‖pt‖2
−1 − 2(pt, |y + Z|2),

d
dt
‖p‖2

−1 = −2‖p‖2 + 2(f, p)−1 − 2(p, |y + Z|2),
d
dt

(‖∇Z‖2 + 2<(g, Z) + (p, |y + Z|2)) = −2γ‖∇Z‖2 + (pt, |y + Z|2)
+ 2<(p(y + Z), yt)− 2γ<(p(y + Z), Z)− 2γ<(g, Z).

Therefore,
d
dt

J0(t) + 2‖pt‖2
−1 + 2µ1‖p‖2 + 4γ‖∇Z‖2 = R4(t), (54)

where

R4(t) = 2µ0(f, p)−1 − 2µ0(p, |y + Z|2) + 4<(p(y + Z), yt)− 4γ<(p(y + Z)− g, Z).
(55)

Now we remark that for fixed N ∈ N and for every S1 > S2 ≥ 0,
{
‖PNϕ‖HS1 ≤ λ

(S1−S2)/2
N ‖PNϕ‖HS2 , ∀ϕ ∈ HS2 ,

‖QNϕ‖HS2 ≤ λ
−(S1−S2)/2
N+1 ‖QNϕ‖HS1 , ∀ϕ ∈ HS1 .

(56)

Then, from the Agmon inequality (5) and the Gagliardo–Nirenberg inequality (6)
for Z = QNZ, we get

‖Z‖L∞ ≤ Cλ
−1/4
N+1‖∇Z‖, ‖Z‖L4 ≤ Cλ

−3/8
N+1‖∇Z‖. (57)

Now, taking into account that y and yt belong to the bounded subset in H2(Ω)
and L2(Ω), respectively, and using (57), we get

|(f, p)−1| ≤ C‖p‖,
|(p, |y + Z|2)| ≤ ‖p‖‖y + Z‖2

L4
≤ C‖p‖(1 + λ

−3/8
N+1‖∇Z‖+ λ

−3/4
N+1‖∇Z‖2),

|(p(y + Z), yt)| ≤ ‖yt‖‖p‖‖y + Z‖L∞ ≤ C‖p‖(1 + λ
−1/4
N+1‖∇Z‖),

|(p(y + Z)− g, Z)| ≤ Cλ
−1/2
N+1‖∇Z‖+ ‖p‖‖y + Z‖L∞‖Z‖

≤ Cλ
−1/2
N+1‖∇Z‖+ Cλ

−1/2
N+1‖p‖‖∇Z‖(1 + ‖∇Z‖).

These estimates and (55) yield

|R4(t)| ≤ C‖p‖(1 + λ
−3/8
N+1‖∇Z‖+ λ

−3/4
N+1‖∇Z‖2) + Cλ

−1/2
N+1‖∇Z‖, (58)

and (53) implies that

1
2
(‖p‖2 + ‖∇Z‖2)− C − Cλ

−3/8
N+1 (‖p‖2 + ‖∇Z‖2)2 ≤ J0(t)

≤ 3
2
(‖p‖2 + ‖∇Z‖2) + C + Cλ

−3/8
N+1 (‖p‖2 + ‖∇Z‖2)2.

(59)
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Substituting (58) and (59) into (54), for some sufficiently small δ we get

d
dt

J0(t) + δJ0(t) ≤ C + Cλ
−3/8
N+1

(‖p(t)‖2 + ‖∇Z(t)‖2
)2

. (60)

Now, after integrating (60) on [t0, t], and using that J0(0) = 0, we have

‖p(t)‖2 + ‖∇Z(t)‖2 ≤ C1

{
1 + λ

−3/8
N+1

(‖p(t)‖2 + ‖∇Z(t)‖2
)2

+ λ
−3/8
N+1

t∫
t0

(‖p(τ)‖2 + ‖∇Z(τ)‖2
)2

eδ(τ−t)dτ

}
.

(61)

Set ϕ(t) = sup
t0≤τ≤t

{‖p(τ)‖2 + ‖∇Z(τ)‖2
}
. Hence, from (61) we get

ϕ(t) ≤ C2λ
−3/8
N+1ϕ(t)2 + C1.

Then the inequality F (ϕ(t)) ≥ 0 is true for the function F (ϕ(t)) = C2λ
−1/4
N+1ϕ(t)2

+C1 − ϕ(t). Let us notice that ϕ(t) is a continuous function, and ϕ(0) = 0.
Choosing again N large enough to provide 4C1C2λ

−3/8
N+1 < 1, we obtain that

ϕ(t) ≤ α1, where α1 is the first root of F . Thus (52) is obtained.
Step 2. Let us take now the real part of the inner product in L2 of the second

equation from (50) with 4∆Zt + 4iγ∆Z:

d
dt

(
2‖∆Z‖2 − 4<(g, ∆Z)

)
+4γ‖∆Z‖2−4<(p(y+Z), ∆Zt+γ∆Z) = 4γ<(g, ∆Z).

(62)
Taking into account that Zt = i∆Z − iQN (p(y + Z)) − γZ − iQNg, we can
transform the term <(p(y + Z), ∆Zt) as

<(p(y + Z)),∆Zt) =
d
dt
<(p(y + Z),∆Z)−<(pt(y + Z), ∆Z)−<(pyt, ∆Z)

−=(pQN (p(y + Z)), ∆Z)+ γ<(pZ, ∆Z)−=(pQNg, ∆Z).

Substituting this relation in (62), we obtain

d
dt

{
2‖∆Z‖2 − 4<(p(y + Z), ∆Z)− 4<(g, ∆Z)

}

+4γ‖∆Z‖2 + 4<(pt(y + Z), ∆Z) = R3(t),
(63)

where

R3(t) = 4γ<(g,∆Z)− 4=(pQN (p(y + Z)), ∆Z)− 4<(pyt, ∆Z)
+ 8γ<(pZ, ∆Z)− 4=(pQNg, ∆Z). (64)
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Now we multiply the first equation from (50) by 2pt + 2p. It is straightforward
to get

d
dt

{‖p‖2 + ‖∇p‖2 − 2(f, p)
}

+ 2‖pt‖2 + 2‖∇p‖2 − 4<(pt(y + Z), ∆Z) = R4(t),

(65)
where

R4(t) = 2(f, p) + 2(∆|y + Z|2, p) + 2(∆|y|2, pt) + 4(|∇Z|2, pt)
+4<(pt∆y, Z) + 8<(pt∇y,∇Z).

(66)

We set

J1(t) = ‖p‖2 +‖∇p‖2 +2‖∆Z‖2−4<(p(y +Z), ∆Z)−2(f, p)−4<(g,∆Z), (67)

and let µ1 > 0 be a positive parameter, small enough. Then we rewrite the sum
of (63) and (65) in the form

d
dt

J1(t) + µ1J1(t) + 2‖pt‖2 + 2‖∇p‖2 + 4γ‖∆Z‖2 = R3(t) + R4(t) + µ1J1(t).

(68)
From (56), the Agmon inequality (5) and the Gagliardo–Nirenberg inequality (6),
for Z = QNZ we get

{
‖Z‖L∞ ≤ Cλ

−3/4
N+1‖∆Z‖, ‖Z‖L4 ≤ Cλ

−7/8
N+1‖∆Z‖,

‖∇Z‖L∞ ≤ Cλ
−1/4
N+1‖∆Z‖, ‖∇Z‖L4 ≤ Cλ

−3/8
N+1‖∆Z‖. (69)

Now we can start to estimate the terms in the r.h.s. of (68). We estimate the
terms from R3(t) as follows:

|(g, ∆Z)| ≤ ‖g‖‖∆Z‖ ≤ C‖∆Z‖,
|(pQN (p(y + Z)),∆Z)| ≤ ‖p‖L∞‖p‖L4‖y + Z‖L4‖∆Z‖ ≤ C‖∇p‖3/4‖∆Z‖,
|(pyt, ∆Z)| ≤ ‖p‖L∞‖yt‖‖∆Z‖ ≤ C‖∆Z‖‖∇p‖1/2,
|(pZ, ∆Z)| ≤ ‖p‖‖Z‖L∞‖∆Z‖ ≤ C‖∆Z‖,
|(pQNg, ∆Z)| ≤ ‖p‖L∞‖g‖‖∆Z‖ ≤ C‖∆Z‖‖∇p‖1/2.

Then we estimate the terms from R4(t):

|(f, p)| ≤ ‖f‖‖p‖ ≤ C,
|(∆|y + Z|2, p)| ≤ 2(‖∆y + ∆Z‖‖y + Z‖L∞ + ‖∇y +∇Z‖2

L4
)‖p‖ ≤ C‖∆Z‖,

|(∆|y|2, pt)| ≤ 2(‖∆y‖‖y‖L∞ + ‖∇y‖2
L4

)‖pt‖ ≤ C‖pt‖,
|(|∇Z|2, pt)| ≤ ‖∇Z‖2

L4
‖pt‖ ≤ C‖pt‖‖∆Z‖1/2,

|(pt∆y, Z)| ≤ ‖pt‖‖∆y‖‖Z‖L∞ ≤ C‖pt‖,
|(pt∇y,∇Z)| ≤ ‖pt‖‖∇y‖L4‖∇Z‖L4 ≤ C‖pt‖‖∆Z‖1/4.
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These inequalities and (67) yield

1
2

(‖∇p‖2 + ‖∆Z‖2
)− C ≤ J1(t) ≤ 3

2
(‖∇p‖2 + ‖∆Z‖2

)
+ C, (70)

and (68) implies
d
dt

J1(t) + µ1J1(t) ≤ C.

Using the Gronwall lemma and (70), we obtain (51). This completes the proof of
Lemma 2.1.

Now we prove the additional estimate for ‖pt‖, which will be useful later.

Lemma 2.2. There exists N1 ∈ N such that for every fixed N > N1,

‖pt(t)‖ ≤ C(1 + λ
1/2
N ), t ≥ t0, (71)

where the constant C is independent of N .

P r o o f. As in the previous lemmas, we consider a functional J2(t) and com-
pute the derivative of this functional with respect to t. Since these calculations
are straightforward and similar to the previous one, we omit them. We get

d
dt

J2(t) = −2‖∇pt‖2 − 2‖∆p‖2 − 4γ‖∇∆Z‖2 + R5(t), (72)

where

J2(t) = ‖∆p‖2 + 2‖∇∆Z‖2 + 2(f, ∆p) + 4<(g, ∆2Z) + 4<(p(y + Z),∆2Z), (73)

and

R5(t) =− 2(f, ∆p)− 2(∆|y + Z|2,∆p) + 2(∇∆|y|2,∇pt) + 4<(∇∆y∇pt, Z)

+ 12<(∆y∇pt,∇Z) + 12<(∇y∇pt, ∆Z) + 4<(∇∆|Z|2,∇pt)

− 4<(pt∇y,∇∆Z) + 4<(ptZ, ∆2Z) + 4<(pyt, ∆2Z)− 4γ<(g, ∆2Z)

− 4γ<(p(y + Z), ∆2Z) + 4=(∇p∆Z,∇∆Z)− 4γ<(pZ,∆2Z)

+ 4=(pQN (p(y + Z)),∆2Z) + 4=(pQNg, ∆2Z). (74)

Note that (56) implies that for y = PNy and for Z = QNZ

‖∇∆y‖ ≤ Cλ
1/2
N ‖∆y‖ and ‖∆Z‖ ≤ Cλ

−1/2
N+1‖∇∆Z‖.

Taking into account this relation, (51), (69) and the Agmon inequality (5), it is
easy to prove that

|R5(t)| ≤C‖∆p‖+ C(1 + λ
1/2
N )(‖∇pt‖+ ‖∇∆Z‖)

+ Cλ
−1/2
N+1‖∇pt‖‖∇∆Z‖+ C‖∆p‖1/2‖∇∆Z‖, (75)

Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1 93



A.S. Shcherbina

and
1
2
‖∆p‖2 + ‖∇∆Z‖2 − C ≤ J2(t) ≤ 3

2
‖∆p‖2 + 3‖∇∆Z‖2 + C. (76)

Now, choosing sufficiently small µ2, from (72), (75) and (76) we obtain

d
dt

J2(t) + µ2J2(t) ≤ C(1 + λN ).

From the Gronwall lemma and (76) we have

1
2
‖∆p‖2 + ‖∇∆Z‖2 ≤ C(λN + 1).

Thus, taking into account this result, from the first equation of (50) we get (71).

Lemma 2.3. There exists N1 ∈ N such that for every fixed N > N1

‖∇q(t)‖2 + ‖∆χ(t)‖2 ≤ C4e
−µ2t, t ≥ t0, (77)

where C4 is a constant depending on the initial data uniformly for (n0, E0) ∈ BR.

P r o o f. As in the previous case, we split the proof into two steps. In the
first step we prove that there exists some N0 such that for N ≥ N0

‖q(t)‖2 + ‖∇χ(t)‖2 ≤ C3e
−µ2t, t ≥ t0. (78)

Then, taking into account (78), we prove (77).
It follows from (48) that q = n − p and χ = QNE − Z. Therefore, from (3)

and (50) we get that (q, χ) is a solution of




qt −∆q = ∆(|χ|2 + 2<((y + Z)χ)),
iχt + ∆χ−QN (pχ + qE) + iγχ = 0,
q(t, x) = q(t, x + L), χ(t, x) = χ(t, x + L),
q(t0, x) = QNn(t0, x), Z(t0, x) = QNE(t0, x).

(79)

Step I. Consider the functional

J2(t) = ‖q‖2
−1 + ‖q‖2 + 2‖∇χ‖2 + 4<(qE, χ)− 2(q, |χ|2). (80)

Since
d
dt

(‖q‖2
−1 + ‖q‖2

)
= −2‖qt‖2

−1 − 2‖q‖2 − 2(|χ|2, qt + q)

−4<((q + qt)(y + Z), χ),

and

d
dt

(‖∇χ‖2 + 2<(qE, χ)− (q, |χ|2)) = −2γ‖∇χ‖2 + 2γ(n, |χ|2)− (qt, |χ|2)
+2<(qtE + qEt, χ) + 2=(∇nχ,∇χ)
−2<(γχ + inχ,QN (pχ + qE)),
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we have
d
dt

J2(t) + 2‖q‖2
−1 + 2‖q‖2 + 4γ‖∇χ‖2 = R5(t), (81)

where

R5(t) = −2(q, |χ|2)− 4<(q(y + Z), χ) + 4γ(n, |χ|2) + 4<(qEt, χ)
+4=(∇nχ,∇χ)− 4<(γχ + inχ,QN (pχ + qE)).

(82)

We notice that from the Agmon inequality (5) and the Gagliardo–Nirenberg
inequality (6) for χ = QNχ and from (56) it follows that

‖χ‖L∞ ≤ Cλ
−1/4
N+1‖∇χ‖, ‖χ‖L4 ≤ Cλ

−3/8
N+1‖∇χ‖. (83)

Hence, taking into account (14), (51) and (83), we estimate the terms in (82) as

|(q, |χ|2)| ≤ ‖q‖‖χ‖‖χ‖L∞ ≤ Cλ
−1/4
N+1‖q‖‖∇χ‖,

|(q(y + Z), χ)| ≤ ‖q‖‖y + Z‖L∞‖χ‖ ≤ Cλ
−1/2
N+1‖q‖‖∇χ‖,

|(n, |χ|2)| ≤ ‖n‖L∞‖χ‖2 ≤ Cλ−1
N+1‖∇χ‖2,

|(qEt, χ)| ≤ ‖q‖‖Et‖‖χ‖L∞ ≤ Cλ
−1/4
N+1‖q‖‖∇χ‖,

|(∇nχ,∇χ)| ≤ ‖∇n‖‖χ‖L∞‖∇χ‖ ≤ Cλ
−1/4
N+1‖∇χ‖2,

|(χ + inχ,QN (pχ + qE))| ≤ ‖p‖L∞‖χ‖2 + ‖n‖L∞‖χ‖(‖p‖‖χ‖L∞ + ‖q‖‖E‖L∞)
≤ Cλ

−1/4
N+1‖∇χ‖(‖∇χ‖+ ‖q‖).

These estimates imply that there exists a sufficiently large number N0 such that
for all N ≥ N0 the functional J2(t) can be estimated as

1
2
(‖q‖2 + ‖∇χ‖2) ≤ J2(t) ≤ 3

2
(‖q‖2 + ‖∇χ‖2), (84)

and R5(t) can be estimated as

|R5(t)| ≤ ‖q‖2 + γ‖∇χ‖.
Substituting it into (80), for sufficiently small µ2 we get

d
dt

J2(t) + µ2J2(t) ≤ 0.

Thus, from the Gronwall lemma we obtain (78).
Step II. We set

J3(t) = ‖q‖2 + ‖∇q‖2 + 2‖∆χ‖2 − 4<(pχ + qE, ∆χ). (85)

Taking into account that

d
dt

(‖q‖2 + ‖∇q‖2
)

= −2‖qt‖2 − 2‖∇q‖2 + 4<(yqt, ∆χ) + 2(∆|χ|2, qt + q)

+4<(∆(Zχ) + ∆yχ + 2∇y · ∇χ, qt + q),
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d
dt
‖∆χ‖2−2<(pχ + qE, ∆χ) = −2γ‖χ‖2+2γ<(2pχ + qE,∆χ)−2<(yqt, ∆χ)

−2<(qEt,∆χ)− 2<(qt(Z + χ), ∆χ)
−2γ<(ptχ, ∆χ)− 2=(pQN (pχ + qE),∆χ),

we obtain
d
dt

J3(t) + 2‖qt‖2 + 2‖∇q‖2 + 4γ‖∆χ‖2 = R6(t), (86)

where

R6(t) = 2(∆|χ|2, qt + q) + 4<(∆(Zχ), qt + q) + 4<(∆yχ + 2∇y · ∇χ, qt + q)
+ 4γ<(2pχ + qE, ∆χ)− 4<(qt(Z + χ) + qEt, ∆χ)− 4γ<(ptχ,∆χ)
− 4=(pQN (pχ + qE), ∆χ).

(87)
We notice that from the Agmon inequality (5) and the Gagliardo–Nirenberg
inequality (6) for χ = QNχ and from (56) it follows that

{
‖χ‖L∞ ≤ Cλ

−3/4
N+1‖∆χ‖, ‖χ‖L4 ≤ Cλ

−7/8
N+1‖∆χ‖,

‖∇χ‖L∞ ≤ Cλ
−1/4
N+1‖∆χ‖, ‖∇χ‖L4 ≤ Cλ

−3/8
N+1‖∆χ‖. (88)

Using these relations, we have

|(pχ+qE, ∆χ)|≤‖∇χ‖(‖∇χ‖‖p‖L∞+‖χ‖L∞‖∇p‖+‖∇q‖‖E‖L∞+‖q‖L∞‖∇E‖)
≤ Cλ

−1/2
N+1‖∆χ‖(‖∆χ‖+ ‖∇q‖).

Therefore, from (85), for sufficiently large N we get

1
2

(‖∇q‖2 + ‖∆χ‖2
) ≤ J3(t) ≤ 3

2
(‖∇q‖2 + ‖∆χ‖2

)
. (89)

Then we can choose a small constant δ1 such that

δ1J1(t) ≤ ‖∇q‖2 + 2γ‖∆χ‖2.

Substituting this relation into (86), we obtain

d
dt

J1(t) + δ1J1(t) + 2‖qt‖2 + ‖∇q‖2 + 2γ‖∆χ‖2 ≤ R5(t). (90)

Now we estimate the terms of R5(t). In these estimations we use the Agmon
inequality (5), the Gagliardo–Nirenberg inequality (6), and the inequalities (88)

‖∇q‖2 + ‖∆χ‖2 ≤ C,
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which follows from q = n − p and χ = QNE − Z and estimates (14) for (n,E)
and (51) for (p, Z), respectively,

|(∆|χ|2, qt + q)| ≤ 2(‖qt‖+ ‖q‖)(‖∆χ‖‖χ‖L∞ + ‖∇χ‖2
L4

) ≤ Cλ
−1/4
N+1‖∆χ‖‖qt‖,

|(∆(Zχ), qt + q)|≤(‖qt‖+ ‖q‖)(‖∆χ‖‖Z‖L∞+ ‖∆Z‖‖χ‖L∞+ 2‖∇χ‖L4‖∇Z‖L4)
≤ Cλ

−3/4
N+1‖∆χ‖(‖qt‖+ ‖∇q‖),

|(∆yχ, qt + q)| ≤ ‖∆y‖‖χ‖L∞(‖qt‖+ ‖q‖) ≤ Cλ
−3/4
N+1‖∆χ‖(‖qt‖+ ‖∇q‖),

|(∇y · ∇χ, qt + q)| ≤ ‖∇y‖L4‖∇χ‖L4(‖qt‖+ ‖q‖) ≤ Cλ
−3/8
N+1‖∆χ‖(‖qt‖+ ‖∇q‖),

|(2pχ + qE, ∆χ)| ≤ 2‖p‖L∞‖χ‖‖∆χ‖+ (‖∇q‖‖E‖L∞ + ‖q‖L∞‖∇E‖)‖∇χ‖
≤ Cλ

−1/2
N+1 (‖∆χ‖+ ‖∇q‖)‖∆χ‖,

|(qt(Z + χ) + qEt, ∆χ)| ≤ (‖qt‖‖Z + χ‖L∞ + ‖q‖L∞‖Et‖)‖∆χ‖
≤ Cλ

−1/4
N+1 (‖qt‖+ ‖∇q‖)‖∆χ‖+ C‖q‖1/2‖∆χ‖,

|(pQN (pχ + qE), ∆χ)| ≤ ‖p‖2
L∞‖χ‖‖∆χ‖+ (‖∇q‖‖E‖L∞ + ‖q‖L∞‖∇E‖)‖∇χ‖

≤ Cλ
−1/2
N+1 (‖∆χ‖+ ‖∇q‖)‖∆χ‖.

Taking into account (71), the term (ptχ, ∆χ) can be estimated as

|(ptχ,∆χ)| ≤ ‖pt‖‖χ‖L∞‖∆χ‖ ≤ C(1 + λ
1/2
N )λ−3/2

N+1‖∆χ‖2.

These inequalities, (78), and (90), for sufficiently large N imply

d
dt

J1(t) + 2µ1J1(t) ≤ C(‖q‖+ ‖∇χ‖) ≤ Ce−tµ1 . (91)

Thus the Gronwall lemma and (89) conclude the proof of Lemma 2.3.
P r o o f of Theorem 2.2. Let N be fixed large enough as above (see

Lemma 2.1 and Lemma 2.3). Let

S(t)(n0, E0) = (n(t), E(t))

and t0 be defined as in Proposition 2.2. We now define

S1(t)(n0, E0) = (p(t), y(t) + Z(t)) and S2(t)(n0, E0) = (q(t), χ(t)).

At this stage, Lemma 2.1 and Lemma 2.3 allow us to apply Theorem I.1.1
from [11]. Hence, it is proven that S(t) possesses a compact global attractor A

in H.

3. Convergence of the Attractors

Theorem 3.1. Suppose that the conditions of Theorem 2.2 are fulfilled. Then

lim
ε→0

sup{distE1(y, A∗) : y ∈ Aε} = 0, (92)
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where Aε is the global attractor for the problem (2), and

A∗ =
{
(z0, z1, z2) : (z1, z2) ∈ A, z0 = ∆(z1 + |z2|2) + f

}

with A being the global attractor for the problem (3), distE1(y,A) being a distance
from the element y to the set A in the space E1.

P r o o f. It follows from (22) and (29) that there exists some constant R1

such that for an any bounded set B of the initial data there exists the moment
t0(B) such that

ε‖ntt(t)‖2+‖∇nt(t)‖2+‖∆n(t)‖2+‖∇∆E(t)‖2+‖∆Et(t)‖2 ≤ R2
1, t ≥ t0, ε ≤ ε0.

Since Aε is an invariant set, then for all complete trajectories in Aε this relation
implies

ε‖ntt(t)‖2 + ‖∇nt(t)‖2 + ‖∆n(t)‖2 + ‖∇∆E(t)‖2 + ‖∆Et(t)‖2 ≤ R2
1. (93)

It is evident that there exists an element yε = (mε
0, n

ε
0, E

ε
0) such that

distE1(yε, A
∗) = sup{distE1(y, A∗), y ∈ A}.

Let yε(t) = (nε
t (t), n

ε(t), Eε(t)) be a complete trajectory such that yε(0) = yε.
It follows from (93) that there exists the subsequence εk and the element y(t) =
(nt(t), n(t), E(t)) ∈ L∞(R,E1) such that yεk

(t) tends to y(t) as εk → 0 on any
interval [a, b] in the weakly∗ topology in L∞([a, b],E2). From Aubin’s imbedding
theorem (see [10, Corollary 4]) it follows that yεk

(t) tends to y(t) strongly in
C([a, b],E1). Taking to the limit in (2) as ε → 0 and using that ε‖nε

tt‖ → 0, we
get that y(t) is a bounded solution of the problem (3). Hence, y(t) belongs to A∗.
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