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The dissipative Zakharov system which models the propagation of Lang-
muir waves in plasmas is considered on the interval [0, L]. We are interested
in the case of large ion acoustic speed A. After the formal limiting tran-
sition A\ — oo this system turns into the coupling system of the parabolic
and Schrodinger equations. We prove that this limit system has a solution
and generates a dissipative dynamical system possessing a global compact
attractor. Our main result is the upper semicontinuity of the attractor as
A — o0.
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Introduction

The description of the propagation of Langmuir waves in plasma by the system
of coupled equations

1
32— A(n+IEP) =0, (1)
By + AE—nE =0

was proposed by Zakharov in [12]. Here E : R, x R — C and n: R, x R\ — R.
The complex function E represents the slowly varying envelop of the highly oscil-
lating electric field, and n is the fluctuation of the ion density about its equilibrium
value. The parameter A is proportional to the ion acoustic speed (see [12]).

In this paper we are interested in the one-dimensional dissipative case

eny +ne — A (n+|EP?) = f(x), z € (0,L),
iEy + AE —nE+ ivE = g(x), ze (0,L), (2)
ne(x,0) = mo(x), n(x,0) = no(x), E(x,0) = Ey(z),
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where a positive damping parameter 7, the external forces f(x) and g(x) are
given. For simplicity, we denote ¢ = A~2 and consider the case ¢ — 0. This
limit corresponds to the assumption that the plasma responds instantaneously to
variations in the electric field (see discussion in [9]).

Formally letting € tend to 0, we obtain the system

ne — A (n+|EP?) = f(z), x € (0,L),
iEy + AE —nE+ivE = g(z), z € (0,L), (3)
n(x,0) = no(x), E(x,0) = Ey(z).

In the paper, we prove that the system (3) with Dirichlet boundary conditions has
the unique strong solution for every initial data in the corresponding energy space.
Moreover, this problem generates the dissipative dynamical system possessing the
compact global attractor A. Our main result is the proof of the convergence of
the attractors A. for the system (2) to A as e — 0.

The limit A — oo for the Zakharov problem (1) without dissipation for z € R?,
d < 3, was studied in [9]. But this result concerns sufficiently smooth solutions
on the finite interval [0, 7).

A similar problem was studied in [1] for the system of Shrédinger and Klien—
Gordon equations with Yukawa coupling

{ BPou+ Bpr — Ap — Y2 = f,
i+ AY + oY +ivp =g

in the bounded domain 2 C R™, n < 3. The case 3,7 — 0 was considered and the
convergence (on each finite time interval) of the corresponding solutions of this
system to those of the limit problem was proven. But this result was obtained
for the case where the ratio /3 belongs to a fixed interval [1, M].

The system (2) with Dirichlet boundary conditions was studied by Flahaut
in [4]. The author proved that this problem has a unique solution and generates
a dynamical system in the energetic spaces & = Lo x H} x (H&ﬂH 2) and
& = H} x (Hy(H?) x (Hj (N H?). Moreover, it was shown that there exists
a bounded absorbing set and a weak attractor for this system. This result was
improved by O. Goubet and I. Moise [5]. They proved the existence of the
(uniform) compact global attractor Ay C &g for the Zakharov problem with
Dirichlet boundary conditions. This attractor As is also a global attractor in the
space €1. It means that the global attractor in €; possesses additional spatial
smoothness.

The case of periodic boundary conditions for the system (2) was studied in
[7]. It was proven that the elements of the global attractor for the dissipative
Zakharov system with periodic boundary conditions are the analytic functions of
the spatial variable.
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Zakharov’s system with two spatial variables was studied in [2, 8]. The exis-
tence of the global attractor was shown under the conditions which hold in the
case of large enough v or for the thin domain. Another interesting example of
the interaction of the wave and quantum dynamics is Schroedinger—Boussinesq
equtions (see [3] and references therein).

The paper is organized as follows. In Sec. 1, we obtain some e-uniform
estimates for the solution of (2). In Sec. 2, we prove that the problem (3) has
a unique solution and generates the dissipative dynamical system possessing a
compact global attractor. In Sec. 3, we prove the convergence of the attractors
A: to A ase — 0.

1. The e-Uniform Estimates

In this section we consider the problem (2) with Dirichlet boundary conditions
n(0,t) =n(L,t) =0, E(0,t)=FE(L,t)=0. (4)

We recall that it was proven for every ¢ > 0 that the problem (2), (4) is well-
posed in the spaces & = Lo(Q) x H}(Q) x (HJ(Q) N H?*(Q)) and &, = HJ(Q)
x (H3(Q) N H2(Q)) x (H5 () N H?(Q)) (see [4]). We also recall that this problem
generates the dissipative dynamical system in €; possessing the global compact
attractor A, C €y (see [5]).

Our goal is to obtain the e-uniform estimates. The proof is split into several
steps presented as separate lemmas. All of these lemmas contain a common part.
We consider a functional Wy (U (t)) which is equivalent to the square of the norm
of U(t) = (n(t),n(t), E(t)) in the corresponding phase space. Then we compute
the derivative of this functional on the trajectories and obtain the inequality of
the type

%Wk(U(t)) +mWi(U(1) + ClU®)|? < Re(U(t)),

where 7y, is a suitable constant which does not depend on €. Then we estimate
the terms in Ry (t) and get

SWUU ) + WU ) <

Using the Gronwall lemma, we have
Wi(U(t)) < Wi(U(0))e™ ™ + C(1—e™™) /n,

which implies Wy (U(t)) < C. Since Wi(U(t)) is equivalent to the ||U(t)]|?, we
obtain the necessary estimates.
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To estimate the nonlinear terms in Ry (t), we have to recall two well-known
functional inequalities which will be useful for us. The first of them is the Agmon
inequality

lullzo < Cllull?| V]2, w e H'(9), (5)

where || .|| denotes the usual Ly(€2) norm. And the second one is the Gagliardo—
Nirenberg inequality

lullza < Cllul V4, w € HY(Q). (6)

We note also that formally we consider Wy (Un (t)), where Uy (t) is the Galerkin
approximation of U(t). Therefore, first we prove our estimates for Uy (t) and then
pass to the limit as N — oco. However, for simplicity, we omit this procedure.

We start from the following.

Lemma 1.1. Suppose that € belongs to [0,¢q], f € La(Q), g € HY(Q) and let
(ng,n, E) be a solution of (2), (4) in E1. Then there exists ko such that

ell(=2)" ()P + [In(®)[]* + [VE®)|]* < C1 + Cae™", (7)
where C; does not depend on € and C does not depend on the initial data.

P r oo f. Testing (2) by F and taking the imaginary part of the result, we
get

d
aIIE(t)II2 + 29| E@)|* = 23(g, E).

Since 1
23(g, E) < 2||E|ll|gll < AIIE|* + ;HgHQ,

then the Gronwall lemma implies
_ 1
IE@)I? < [[Boll? e + ?HQH? (8)
Let us define the functional

Wo(t) = ellnl2y + lIn]l* + 2V E|* + no {2e(ne, n) -1 + |2, } ()
=2(f,n)-1 +4R(g, E) + 2(|E[*,n),

where || -1 and (-,-)-1 are [[(=A)7"2 - || and ((=A)~/% (=A)71/2), respec-
tively, and the positive parameter 79 will be chosen later.
Since

% {ellnell2y +[In]l* = 2(f,m) -1} = =2[nel|2y — 2(n, | E]?),

T {2e(ng,n)—1 + [Inl21 } = 2ellme]|2y = 2[|n)|* = 2(n, |E[?) + 2(n, f)-1,

3 CIVEI? +4R(g, B) +2(|E[?,n)} = 2(n, [E[*) = 49| VE|?
—4y(n, |E]?) — 44R(g, E),

78 Journal of Mathematical Physics, Analysis, Geometry, 2015, vol. 11, No. 1



The Singular Limit of the Dissipative Zakharov System

by addition we get

d
q o) +2(1 - eno)l|nel2y + 2m0/ln )| + 44| VE|? = Ro(t), (10)

where

Ro(t) = 2mo(f,n)-1 — 20110 + 27) (| E[*, n) — 4yR(g, E). (11)
We note that it follows from (6) and (8) that

|||z, < CIEIPIVE(Y* < (C1+ Coe )| VEIM,

where (] is independent of the initial data. Therefore,

|(n, [EI?)] < ClInllll EI1Z, < (C1+ Coe)lIn|IIVE]'2.

Taking into account this inequality, it is easy to see that

Rolt) < C(1+ In]) + (C1 + Coe™) ]| [V E||/2
< mollnl2 + Y IVEIP + (Cr + Coe ),

and
€ 1
Wo(t) > 5||ﬂt|!31 + 5||ﬂ||2 +||[VE|? = C1 — Cye™ ™,

3e
Wo(t) < gllntllﬂ +2[|n)]* + 3| VE|? 4+ C1 + Coe™".

Substituting (12) into (10), we get

d -
T Wo(t) +2(1 = eno) a2y + molin||* + 34(|VE|* < Cr + Coe™".

Now we put 9 = 1/(2¢¢) and ko = min{eo/4,~}. Then, for sufficiently small £,
from (13) we obtain

2(1 = eno)llnell2y +mollnll* + 3Y|VE|? = koWo(t) — C1 — Cae™ .
Thus,

d
aWo(t) + koWo(t) < Cy + Cae .

Taking into account (13), we deduce (7) from the Gronwall lemma.

Lemma 1.2. Let ¢ belong to [0,2¢], f € La(2), g € HY(Q) and let (ny,n, E)
be a solution of (2), (4) in €. Then there exists k1 such that

eln@)|? + V@) + [AE®)|]? < C1 + Cae™™1, (14)

where C; does not depend on € and C is independent of the initial data.
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P roof Let us consider the functional

1
Wi(t) = 5 (ellndl* +11Vnl®) + [AE]? = 2R(nE, AE) — 2R(g, AE)
1 (15)
~n. )+ {enm) + gl
From the Agmon inequality (5) and (7) we obviously have ||E(t)||z.. < C1 +
Cye~ "0t Therefore,

(nE, AE)| < [[n]|| Ell L. | AE] < (Ci + Cae™ 04| AE]],
(9, AB)| < |gll|AE| < C|AE], y
|(n, /)] < [Inl|[[ f]] < Cy + Cae="et, (16)

9

Using these inequalities, we get

1 1
Wi(t) > 1 (ellne]® + [Vnl?) + §||AE||2 — Cy — Cye "ot an
17
3 3
Wi(t) < 5l + 1Vnl?) + SIAB]? + Cr + Coeot

It is easy to prove that

d /1

& (3 Gl + 19012) = (1)) = el + o, 1B,

d 1

5 (etmm) Sl ) = elll? = (912 + (o, ALE) + (. ).

d
T ([AE|? — 2R(nE,AE) — 2R(g9, AE)) = —27||AE|?> — 2R(n¢E, AE) + Ry 1(t),
where
R11(t) = 4YR(nE, AE) — 23(n*E, AE) + 29R(g, AE) + 23(ng, AE).  (18)

By using these relations, we obtain

d
Vi) + (- en)|lnell® +ml[Vnl® + 27| AE[* = Ri (1), (19)

where
Rl(t) = 2(nt, |VE’2) + 771(71, A‘E‘Q) + Rl,l(t). (20)

Taking into account the Agmon inequality (5), the Gagliardo—Nirenberg inequal-
ity and the estimate (7), we get

Inl|Lo. < (C1+ Cae™™N)||Vnl|'/?, | VE|L., < (C1+ Coe ™) |AE'2,
Inllz, < (C1+ Cae™™)[Va |4, [[VE|L, < (C1+ Cae™™")|AE|MA.
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Using these relations, we estimate the terms in R;(¢) as

!VE\ )| < InllIVE|7, < (C1+ Cae™o)|Ine[[| A2,
n, AIE\ )| < 2| Val[VE|Ellz.. < (C) + Cac™h)[Vnl,
nE, AE)| < |[n]|| Ell L. |AE|| < (C1 + Cae™ ) AE],
n’E, AE)| < 112, I B Lo [AE] < (C1 + Cae™!) [ Va |2 AE],
9, AE)| <[lg[|AE[| < CIAE],
ng, AE)| < |nflllgllo [AE[ < (Cy + Coe ™| AE].

/\f\/\/\/\f\

Hence,
< 1 2., 2, 7 AE|2 —kot
Ra(t) < glinell + 2 Vn)? + TNAEI + €y + Coeot.
Substituting this inequality into (19), we get for n; = 1/(8¢)

d 3 3 3 k
W) + llnel? + ZE [ Vn]? + SHAE|? < O+ Coe ™! (21)

We can see from (17) that for k1 = min{eo/8,~/2} the following relation is true:

3m

3 3 .
linell? + =R IRl + FHAE|? 2 mWa(t) = C1 = Coe™™!

Thus, in view of (21), we have

d
&Wl( )+ kW1 (t) < Oy + Cye 0,

From the Gronwall lemma and (17) we obtain the second uniform estimate (14).

Lemma 1.3. Let U(t) = (n(t),n(t), E(t)) be a solution of the system (2) and
U(t) belong to the global attractor A.. Then for f € Ly (), g € H' (Q)

eV + |An(®)|* + [VAE®)|? < Cs, (22)
where C3 does not depend on €.

P roof. Let us consider the functional

Wa(t) = % (EllVre))1? + [[An(t)[?) + [VAE®)|? + (An, f)
Z9R(Vg, VAE) + 2R(AnAE, E) — 2(An, |[VE|?) (23)

1
e (T, ¥0) + 319012,
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where 75 is a small parameter, which will be chosen later. Let us recall now that
from (14) we have that |[Vn| < C and ||[AE|| < C. From the definition of the
functional Ws(t) and from the inequalities

|[(An, )l < IVallllVF] < C,

((Vg, VAE)| < |[Vg[[VAE| < C|[VAE],
((AnAE, E)| < [[An[[[AE|| B L. < C|An],
((An, [VE)| < | An]||VE|Z, < ClAn],
|((Vne, V)| < [[Vne[[[[Vnll < C[Vnd,

we obtain that the following estimates for W(t) remain true:
1 1
Wolt) 2 L[ml2 4 L An|? + |VAB|? -
3 3
Wa(t) < SIVal® + 5l An|? + 3| VAB|? + C.

By straightforward computation we have

d 1
& (GIVmOI + 11 + (An. ) = ~[Voil? - 2RAEAwm, E)

—2(|[VE|?, Any),

d 1
& (07 Tn) 4 SUI?) =Tl = anl? = A, AIBP) + (A, ),

Taking into account that the second equation of (2) implies that E; = iAE
—inkE —~vFE — ig, one can obtain

d
I ([IVAE(#)|? — 2R(Vg, VAE) + 2R(AnAE, E) — 2(An, |[VE|?))
= —27||VAE|]? + 2R(AnAE, E) + Ry(t),

where

Ry1(t) = 4AR(VmAE,VE)—-2yR(EVn+nVE,VAE) +29R(Vg,VAE)
—23(nVAE,EVn +nVE) - 2yR(nVAE,VE) — 23(nVAE, g)
+63(VRAE,VAE) — 6yR(VEVn, AE) — 63(VnAE, Vg)
+2R(AnRAE, Ey) — 63(VnAE, EVn +nVE).

(25)
From these equalities we can conclude that

d
V() + (- 1) [V + 1l An||? + 29[| VAE|? = Ra(t),  (26)
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where

Ry(t) = Roy — 2(|VE|?, Any) — ma(A|E|* — f, An).
Put 2 = 1/(4ep) and k2 = min{ep/2,v}. Then (24) and (26) imply that

d 1

S Welt) + raWa(t) + V]2 + 2 An|2 +1[VAE|? < O+ Ro(t).  (27)
Now we estimate the terms in the r.h.s. of (27). In these estimates we use the
Agmon inequality (5), (14) and the inequality ||E¢|| < ||AE] + |n|||E|lL.. +
WEN+llgll < €,

(Ve AE, VE)| < [V [| AE[[[VE] 1., < C[[Vnel],

(EVn +nVE,VAE)| < [VAE[/([E|lL.[[Vol + [VE[lnlL.) < CIVAE],

((Vg, VAE)| < |[Vy[[VAE| < C|[VAE],

((n"VAE, EVn +nVE)| < [VAE||[n[| L. (1Bl . Vol + [VE] 7]l .)
< C|[VAE],

(n"VAE, VE)| < |[VAE]|||n[|L.[IVE| < C|VAE],

(nVAE, g)| < [VAE[n]L.llgll < C[IVAE],

(VnAE, EVn +nVE)| < [VollL JJAE[([EllL. Vol + [VE[n] L)
< Cf|an|'2,

(VEVn, AE)| < [[VE|| L. [[Vr[||AE] < C,

(VRAE, V)| < |AE|||Vn L. [Vl < CllAn]'/2,

(ARAE, Ey)| < | An|||AE||L ||E < CllAn|[|VAE|'>.

Substituting these inequalities in (27), we obtain

d 1
SWa(t) + kaWa(t) + 7 Vnel? + 2| An|[? 4+ 9| VAE)?

<€ (1+ IVnell + 1 An] 2 + | An] + [VAB] + | An]| [TAB]Y2) . (28)

Hence,

d
aWQ(t) + FJQWQ(t) < (.

Thus we get (22) from the Gronwall lemma and (24).

Lemma 1.4. Let U(t) = (n(t),n(t), E(t)) be a solution of the system (2) and
U(t) belong to the global attractor A.. Then

ellnee(0)]* + Ve ()II* + |AE(B)[|* < Cu, (29)

where C4 does not depend on €.
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P roof. Let us denote m = n; and v = E;. Now we differentiate the system
(2) with respect to t:

my — Am — 2R(A(uE)) = 0, (30)
tug + Au — nu — mE + iyu = 0.
Consider the functional
1
W) = g (lmlP 4 ITml) 4 ol = 2RnEB0)
31

1
s+ (stmeam) + 5m?)

where n3 = 1/(4ep). We note that it follows from (22) and the first equation of
(2) that [|[Vu|| < C. Therefore,

[(mE, Au)| < [[Vul[(| Bl VM| + [Im][ L [[VE|) < C[[Vm].
Then we conclude that

1 1
1 CElmal® + 1Vm[*) + SllAul* = C < Ws(t) < ellme]|* + [ Vm]* + 2] Aul* + C.

(32)
By straightforward computation it is easy to see that
gW 1-— 2 Vm||? + 2v||Au|? = R (33)
3 V2(t) + (1= em)llmel” + nl| Vml[® + 27| Aul|” = Ra(t),

where
Rs3(t) = 2R(myu, AE) +4R(m;Vu, VE) — 2R(mE;, Au)
+2n3R(mu, AE) + dnsR(mVu, VE) + 2(n3 + v)R(mE, Au)  (34)
—23(A(nu), mE) 4+ 23 (uAn + 2VnVu, Au).
For k3 = min{1/2,~}, from (32) and (33) we deduce that
d
dt

Now we estimate the terms in the r.h.s. of (33) as follows:

1
Wi(#) + ks Wa(t) + llme|* + %IIVWII2 +llAu)? < C+ Ro(t).  (35)

(myu, AE)| < [[my[[[| AE]|[[ul| L., < Cllmqll,
(miVu, VE)| < [[me||[VE| o [Vul < Climell,
(mEy, Au)| < [|Vul[(|Vm[l[| Etll. + IVEl[lm]L.,) < CIVml,
(mu, AE)| < |Jml| L [[ul[AE| < C[[Vml],
R(mVu, VE)| < [[m||[|Vul[[[VE] L, < Cl[Vm]|,
(A(nu), mE)| < [|Vulll|n|lL. (V[ Bl L. + [VE]mL.)
+IVallllullL (V| El e + IVE[mL.,) < Cl[Vm],
[(uAn +2VnVu, Au)| < [[Au|(lull Lo, [An] + 2|V L. [[Vul) < Cl|Au].
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Therefore (35) implies that

d
aW:s(t) +n3Ws(t) < C.

This relation, the Gronwall lemma and (32) yield (29).

2. The Limit Problem

This section is devoted to the investigation of the long time behavior of the
solution of the system (3), (4). We understand the solutions of this problem in
the sense of the following definition.

Definition 2.1. A pair (n; E) is said to be semi-strong to the problem (3),
(4) on [0, +00) iff

(03 B) € Log ([0,+00); H(®) x H(Q)(HX(Q) = %) , (36)

(i) the first two relations in (3) are fulfilled in the sense of distributions, (ii) the
initial data hold.

We call this solution “semi-strong” because it is weak with respect to n and
strong with respect to E.

2.1. Existence and uniqueness of the solution

Our first result is the following theorem.

Theorem 2.1. Let the initial data (ng, Eo) belong to H and the external forces
f(z) and g(x) belong to La() and HE(Q). Then the system (3), (4) has a unique
semi-strong solution on RT.

2.1.1. Existence. The proof of the existence is based on the compactness
method. We define Py as a projector on the first N eigenvectors of the operator
—A with Dirichlet boundary conditions. Let us consider the approximation of
the system (3):

niV—A(nN—{—PN|EN|2):PNf(l'), QZ'E(O,L),
iBN + AEN — Pn(nNEN) +ivEN = Pyg(z), x € (0,L), (37)
nN(x,0) = Pyno(z), EN(x,0) = PyEy(x).

This system is a system of ordinary differential equations. Hence, there exists
the local (in time) solution (n’, EV) on [0,Tx]. We note that Lemma 1.1 and
Lemma 1.2 remain true for ¢ = 0. Then from (14) we get that (n", EN) ¢
Loo(RT,H). Hence, for any T' > 0, we get that (nN,EN) belongs to a bounded
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set in Loo ((0,T),3). Then there exists a subsequence, still denoted by (n¥, EY),
such that there exists (n,E) € L*®((0,T),H) such that (n"V,EN) — (n,E),
which is weak-star in L> ((0,7),H), as N — oo.

Let us prove that (n,F) satisfies (3). Since n’V and EV belong to the
bounded sets in Ly ((0,7), H') and L ((0,T), H?) , respectively, n)¥ = A(n¥
+Py|E]?) + Pyf and EY = iAEN — iPy(nVEN) — yEN — iPyg belong to
Ly ((0,T),H™") and Ly ((0,T), Ls). It follows from Aubin’s imbedding theorem
(see [10, Corollary 4]) that there exists a new subsequence (nN ,EN ) such that
(nN,EN) — (n*, E*) strongly in C (O,T; Ly x H&) It is easy to see that n* =n
and E* = E. Thus we can pass to the limit in the nonlinear terms.

2.1.2. Uniqueness. The uniqueness of the solution of (3) follows from the
next proposition.

Proposition 2.1. Suppose (n(* ) E( )Y and (n(2) E®) are two solutions of (3)

in H with the initial data (n((]1 ,E, ) and (n((] ,E((] )) respectively, which belong
to the ball of radius R in H. Then

IVn@)|® + IAE@®)|? < Cr (| Vnol* + | AE|1?) R, (38)

where n =nM) —n@ p=F1 _ @ pn,= n(()l) — n(() ) and Ey = E(l) — ESQ).

P r o o f. First, we prove the estimate (38) for Galerkin’s approximations.
Then, passing to the limit, we obtain (38) for the solutions of (3).

For simplicity, we omit index N of the number of Galerkin’s approximations.

Since the initial data belong to the ball of radius R in JH, then there exists a
constant C'g such that

IVa@)I* + [AE®)? < Ck. (39)

It is obvious that (n, E) is a solution of

ny — An = A(EWE + EE®), (40)
iE, + AE +ivE = n(WE + nE®,
We note that the second equation from (40) implies
Jerr >0, e AE| < [|E| + o] + [|E]], (41)

Jea,r >0, ||l < cor(I1E] + [[nll + [ AE]]).
Let us rewrite now the second equation from (40) in the form

iE,+ AE = —inE +nWE + nE®.
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Taking into account that

d
3 BI? + I VE|?) = 23(E, + AE, E — AE),

we get
d
7 UEIP+IVEN) +2v (B + IVE[?) = 23(nME +nE® E - AE)
< (B ol + 1B o VD) + [Vl B r + InllJVE@DIVE]
< Cr{IVE|P + [[Vn|*}

(42)
Now we differentiate the second equation in (40) with respect to t:

iBy + AE, = —iyE + nVED 4 nWEY — B p®) _ @)
Then
d
GBI+ 2 B@IP = 230 E +mE® 4 0B, Ey)

1 2
< (I 1B o + Il Bz + Il 1B ) 12l (43)
< Cr (eI B2l + V02 + 1) + VB

The first equation in (40) and the first inequality in (41) imply that

d . R
SNV + 2lin(0)|? = 2 (AEVE + FE®), n,)
< Cr(IVE| + 1Bl + [Vall) n]

(44)

Adding (42), (43) and (44), we get
d
— (IVa@® 12 +IE@IP + IVE®]? + 1 E:l1?) + 2[lne(8)]1?

< Cr(IVE] + 1E: ] + HanH) HnéH +Cr (HanHQ +2HEtH2 +IVE[?)

< 2llne()I* + Cr (IVnll? + [ EI? + [IVE|? + [ E]|?) -

From the Gronwall lemma we have
IVn@)|1? + |E@)* + [[VE@)|1? + | B ()]
< (IVn)|1? + IIEO)|1* + IVE(0)|? + || E(0)]]%) €'~ (45)

Taking into account (41), we can deduce that

V@I + 1E@I + [VEG? + | E@IP > S1Va@)l? + CrIAE®)?,
VRO + 1EO)* + [VEO)* + [ E(0)]* < Cr (IVnol* + [|AE|?)

N

Thus, substituting these inequalities in (45), we obtain (38).
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2.1.3. Construction of the evolution operator for the limit system.
Let us rewrite the first equation from (3) as

ng — An = f + A|E|?.

Taking into account that the r.h.s. of the equation belongs to L™ (R™, Ls), we can
derive that n € C (R+, H&) In the same way, by rewriting the second equation
from (3) as the linear Schrodinger equation and using the result of Lions and
Magenes [6], we obtain that E € C(RT, H} N H?).

We note that since Lemma 1.2 remains true for ¢ = 0, then the following
proposition holds.

Proposition 2.2. The problem (3) generates the dissipative dynamical system
S(t) : (no, Eo) € H — (n(t), E(t)) € H.

2.2. Existence of the Global Attractor for the limit system

Our goal is the proof the following result concerning the existence of the
compact global attractor in K.

Theorem 2.2. Let f(z) and g(x) be the functions from La(Q)) and Hi(Q).
Then the problem (3) generates the dynamical system possessing a compact global
attractor A € H.

The proof of the existence of the global attractor is based on the well-known
theorem of the general theory of dynamical systems (see, for instance, [11, The-
orem I.1.1]). We construct a decomposition of the evolution operator S(t) as
S1(t) + Sa(t) with the properties required in Theorem, i.e.,

(1) Si(t) is uniformly compact in I for ¢ large, i.e., for any bounded set B

there exists to such that the closure of |J Si(t)B is a compact set in H.
t>to
(2)  Sa(t) : H — X is continuous for any ¢t > 0, and for any bounded set

By C H, the following relation holds:

sup ||S2(t)¢||s¢ — 0 as t — oo.
¢pEB1

Decomposition. Consider the initial data (ng, Ey) from the ball B C H
centered at the origin. Proposition 2.2 states that there exists a bounded absorb-
ing set in H, denoted by B. Then there exists the time of dissipation ty = to (B, R)
such that S(t)(ng, Eg) € B for Vt > tg. Thus,

IVa@)|? +IAE@®|? < C, Yt >t (46)
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We set
E=PyE+QnE (47)

and we write y = Py E. Now we split the high frequency part of E as
and n:
n=p+aq, (49)
where (p, Z) is a solution of the problem
pe—Alp+y+2ZP°) = f,
iZi+AZ - Qnp(y + 2)) +ivZ = Qng,

p(t,x) =p(t,x+ L), Z(t,x) = Z(t,x + L),
p(to, ) = Z(to, z) = 0.

(50)

Let us prove now the lemma below.

Lemma 2.1. There exists Ny € N such that for any N > Ny the system (50)
admits a unique solution belonging to QnVs = QnIH. Moreover, for any N > Ny
and t > tg,

V()1 + |1AZ]* < RE. (51)

Proof Let M > N be a positive number. If we substitute Qy by
Qm,Nn = Py — Py in the system (50), then it is easy to see that (50) has a
unique solution in some interval (to,to + Tar,n). If we prove the uniform bound
(51) in the interval (to,to + T, n), then we can conclude that this solution can
be extended to the half-axes (tp,+00). Then we send M — oo and obtain the
existence of the solution of (50) with property (51). It is easy to show (in the
same way as for the system (3)) that this solution is unique. Thus we need only to
prove the uniform estimate (51) for the solution on any interval of the existence.
To simplify notations below, we omit the subscript M.

We prove (51) in several steps. First, we prove that

lp)|I* +IVZ]* < RE. (52)

Then, using (52), we can start to prove (51).
Step 1. We consider the functional

Jo(t) = [Ipl2 + 21V Z|12 = 2(f,p)—1 + 4R(g, Z) + 2(p, |y + Z|?) + pollpl%,. (53)
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Taking into account (50), by straightforward computation we get

d
&(lel2 —2(f,p)-1) = =2llpel® 1 — 2(pe, ly + Z|?),

d
al!?llﬂ = =2|[pll* +2(f.p)-1 = 2(p, ly + ZP),

d
— (IVZ]? +2R(9, 2) + (p, |y + Z]?)) = =27V Z|* + (pe [y + Z/?)
+2R(p(y + 2),y:) — 2vR(p(y + Z), Z) — 29R(g, Z).
Therefore,
d
&JO( )+ 2l[pel121 + 2ullpll? + 4V VZ|]? = Ra(t), (54)
where
Ry(t) = 2p0(f,p)—1 — 210(p, [y + Z1*) + 4R(p(y + 2), yt) — 4vR(p(y + Z) — g, Z).
(55)
Now we remark that for fixed N € N and for every S; > Sy > 0,
|Pyplls: <A SQS/QILPNQOHHSQ, Vo € H, (56)
QN el s < ANt Qnell s, Vo € HS

Then, from the Agmon inequality (5) and the Gagliardo—Nirenberg inequality (6)
for Z = QnZ, we get

1/4 3/8
1Z)10 < OV Z], 1201, < CAYE IV 2. (57)

Now, taking into account that y and y; belong to the bounded subset in H?(2)
and Lo(Q), respectively, and using (57), we get

(f.p)-1] < Clpll,

(. ly + ZP) < Ipllly + 212, < ClpllL + ALV 21+ AL 1V Z)2),
(py + 2), yt>| < welllpllly + Zlz.. < Clipl 1+ 23719 2]),
(ply +2) —9.2)| < cx&i?uvzu - HpHHy + 2|1 IZ]|

< ONLIVZ] + R Il ZIL + [V 2]).

These estimates and (55) yield
3/8 3/4 1/2
[Ra(t)] < ClIpll(1+ ANV ZI + 03IV 212 + O EIvz), (58)

and (53) implies that

1 —3/8

Pl +192I7) = C = EXSElP + IVZPR < Do)

3 3/8
< SUPIP + IV21%) + € + L (bl + [V 2122
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Substituting (58) and (59) into (54), for some sufficiently small 6 we get

S n(t) +50(0) < O+ O ()2 + 19 2(1)[2)°. (60)

Now, after integrating (60) on [to, t], and using that Jy(0) = 0, we have

lp@1* + IVZ(@®)]* < 1 {1 A (@2 + 1V Z(6)]12)?
(61)
EARE T ()2 + [V 2 2) 60 }

to

Set ¢(t) = sup {|lp(7)||*+ [VZ(7)||*}. Hence, from (61) we get

to<t<t

3/8
p(t) < CaAN{To(t) + O
Then the inequality F'(¢(t)) > 0 is true for the function F(p(t)) = C'Q/\]_VlJr/pr( t)?
+C1 — ¢(t). Let us notice that () is a continuous function, and ¢(0) = 0.
Choosing again N large enough to provide 4C1C3\ +/1 < 1, we obtain that
©(t) < ai, where o is the first root of F'. Thus (52) is obtained.

Step 2. Let us take now the real part of the inner product in Ly of the second
equation from (50) with 4AZ; + 4iyAZ:

% (2 AZ|2 - 4R(g, AZ)) + P AZ|2 —AR(p(y+ Z), AZi+yAZ) = 4y R(g, AZ).

(62)

Taking into account that Z; = iAZ — iQn(p(y + Z)) — vZ — iQng, we can
transform the term R(p(y + Z), AZ;) as

SRply + 2), A2) ~ R(pily + 2), AZ) — Ripys, AZ)

—S(PQn(p(y + 2)), AZ)+yR(pZ, AZ) = S(pQng, AZ).

R(p(y + 2)),AZ;) =

Substituting this relation in (62), we obtain

L {2)az]? — 4Ry + 2). A7) - 4R(g. A2))

(63)
A AZI + AR(pi(y + Z2), AZ) = Ry(b),
where
R3(t) =47R(9,AZ) — 4S(pQn (p(y + Z)), AZ) — 4R(py:, AZ)
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Now we multiply the first equation from (50) by 2p; + 2p. It is straightforward
to get

d
3 UPlI? + 1IVPI? = 2(F,p)} + 2llpe* + 20|V |* = 4R(pely + 2), AZ) = Ra(t),

where

Ri(t) = 2(f,p)+2(Aly+ Z%,p) + 2(Aly|*, pe) + 4(VZ|*, pr)
+HAR(pi Ay, Z) + 8R(p:Vy, VZ).

We set
Ji(t) = |Ipll® + I Vpl? + 2| AZ|* — AR(p(y + Z), AZ) — 2(f, p) — 4R(g, AZ), (67)

and let p1 > 0 be a positive parameter, small enough. Then we rewrite the sum
of (63) and (65) in the form

%Jl( t) + pnJi(t) + 2[pell* + 2/ Vpl® + 4y[|AZ[]* = R3(t) + Ra(t) + p Ji(t).

(68)
From (56), the Agmon inequality (5) and the Gagliardo—Nirenberg inequality (6),
for Z = QnZ we get

—3/4 —7/8
{ 12l < CAVHIAZY, 11211, < CAVEIAZ], (69)
IV2l., < ONEIAZI, V2112, < O3 1AZ]).

Now we can start to estimate the terms in the r.h.s. of (68). We estimate the
terms from R3(t) as follows:

(9; AZ)| < llglllAZ]| < CllAZ],

(0@ (p(y + 2)), AZ)| < |Ipllzlpllally + Z| L |AZ|| < CVpIP ) AZ],
|(pye, AZ)| < |Ipllzo el [AZ] < ClAZ]|[[ V]2,

((pZ, AZ)| < [Ipll| Z] .. 1AZ]] < CllAZ],

(pQng, AZ)| < |IpllzNlgllAZ] < ClAZ|[Vp]'2.

Then we estimate the terms from Ry(t):

(£ o)l < [If Pl < C

(Aly + Z%,p)| < 2(|| Ay + AZ|ly + Z|| .. + VY +VZ]2,)lpll < ClAZ],
[(Aly?, o)l < 2([AyllYlLe + IVYIZ) IRl < Cllpell,

(V212 p)| < IVZ|12, lIpe]l < Clipell|AZ]2,

(e Ay, Z2)| < el Ayll[| 2] Lo < Cllpell,

(0eVy, VZ) < el VYl IV Z L, < CllplIlAZ]M*.
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These inequalities and (67) yield

1
5 (VPP +[AZ|1") = C < (@) < 5 (IVeIP + AZI7) + €, (70)

N W

and (68) implies

d
ajl(t) +uJi(t) < C.

Using the Gronwall lemma and (70), we obtain (51). This completes the proof of
Lemma 2.1.
Now we prove the additional estimate for ||p;||, which will be useful later.

Lemma 2.2. There exists Ny € N such that for every fired N > Ny,
lpe(®)]] < COL+AY?). 12 fo, (71)
where the constant C' is independent of N.

P roof. Asin the previous lemmas, we consider a functional Jo(¢) and com-
pute the derivative of this functional with respect to t. Since these calculations
are straightforward and similar to the previous one, we omit them. We get

d
20 = =2 Vpe|® = 2| Apl|* — 49| VAZ|? + Rs(t), (72)

where
Ja(t) = | Ap[? + 2| VAZ|* + 2(f, Ap) + 4R(g, A*Z) + 4R (ply + Z), A*Z), (73)
and
Rs(t) = —2(f,Ap) — 2(Aly + Z|*, Ap) + 2(VAly|?, V) + 4R(VAYVp,, Z)
+ 12R(AYVps, VZ) + 12R(VyVps, AZ) + AR(VA|Z|?, Viy)
— AR(p:Vy, VAZ) + 4R(p: Z, A Z) + 4R (pyr, A*Z) — 4y R(g, A*Z)
— YR(p(y + Z), A*Z) + 4(VpAZ,VAZ) — 4yR(pZ, A*Z)
+AS(PQN (p(y + 2)), A*Z) + 4S(pQn g, A*Z). (74)
Note that (56) implies that for y = Pyy and for Z = QnZ

1/2 —1/2
IVAY|l < CAY* Ayl and |AZ]| < CAYLFIVAZ].

Taking into account this relation, (51), (69) and the Agmon inequality (5), it is
easy to prove that

|Rs(t)] < C||Ap| + C(1+ A ([Vpi]| + [IVAZ]])
+ ORIV AZ] + CllAp| 2V AZ, (75)
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and
1 3
SIAPI + [VAZ? = € < Do) < SApl2 +3|VAZP +C. (76)

Now, choosing sufficiently small g, from (72), (75) and (76) we obtain

d
aJQ(t) + poJa(t) < C(1+ An).

From the Gronwall lemma and (76) we have
1
SIAD[* +IVAZ]* < COw +1).
Thus, taking into account this result, from the first equation of (50) we get (71).

Lemma 2.3. There exists N1 € N such that for every fited N > N
IVa(@)|? + [Ax ()] < Cae™2*, ¢ > to, (77)
where Cy is a constant depending on the initial data uniformly for (ng, Eg) € Bg.

P r o of. Asin the previous case, we split the proof into two steps. In the
first step we prove that there exists some Ny such that for NV > Ny

lg@®I” + IVX(@®)]1? < Cse™2, ¢ > to. (78)

Then, taking into account (78), we prove (77).
It follows from (48) that ¢ = n —p and x = QN E — Z. Therefore, from (3)
and (50) we get that (g, x) is a solution of

a — Aq = A(Ix|* + 2R((y + 2)X)),

ixt + Ax — Qn(px +qE) +iyx =0, (79)
q(t,z) = q(t,x+ L), x(t,z) = x(t,z + L),

q(to, x) = Qnn(to,x), Z(to, ) = QnE(to, ).

Step I. Consider the functional

Jo(t) = llgl* 1 + llall? + 21 Vx| + 4R(¢E, x) — 2(q, Ix[*). (80)
Since d
7 UalZ+lial?) = =2lal2y = 20lgl* = 2(1x* ¢ + 9)
—4AR((¢ +a)(y + 2), x),
and
% (IVXI? 4+ 2R(E, x) = (¢; X)) = =291VXII* + 2v(n, [x?) = (@, [x]*)

F2R(q E + qE, x) + 23(Vny, V)
—2R(yx + inx, Qn (px + ¢F)),
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we have d
020 + 2l + 2llall* + 4 Vx| = Rs(2), (81)
where
Bs(t) = —2(q,]XP) — 4R(q(y + 2).3) +dy(n. x*) +4R(ELX) g

+4¥(Vnx, Vx) — 4R(yx + inx, Qn(px + ¢E)).

We notice that from the Agmon inequality (5) and the Gagliardo—Nirenberg
inequality (6) for x = Qnx and from (56) it follows that

1/4 3/8
Il < OXSENXIL Ixllzs < ORIV (83)

Hence, taking into account (14), (51) and (83), we estimate the terms in (82) as

(g, )] < llalllixlixllze < CARL lallIwxll,

(a(y + 2), ) < llalllly + ZllzoIxll < CARLE gl v x,

[(n, X)) < Il IXI? < CAR +1HVXH2

(a2, )] < lall Bellixl.. < CAN+1|rq||||vX||

(Vrx, V) < IVl oa V] < ORIV X2,

(¢ + inx, Que(ox + 48| < el 2+ Il I e + g1 L2o0)

— 4
< OV + llal)-

These estimates imply that there exists a sufficiently large number Ny such that
for all N > Ny the functional J(t) can be estimated as

%(Ilqll2+llvxll2)§ 2(8) < 2(lall? + IV, (84)

and R5(t) can be estimated as

|Rs(t)] < llall* + 7 Vxll-

Substituting it into (80), for sufficiently small ps we get

2

d
—J Jo(t) <0
T 2(t) + p2Ja(t) <

Thus, from the Gronwall lemma we obtain (78).
Step II. We set

J3(t) = lall* + [IVall* + 2] Ax|* — 4R(px + ¢E, Ax). (85)
Taking into account that
d
7 alP +1ValP?) = —2lla]* - 2/ Val* + 4R(ya, Ax) + 2(Ax* ¢ + q)

+HAR(A(ZX) + Ayx +2Vy - VX, ¢t + q),
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d
—AXIP=2R(px + ¢E,Ax) = —2v[Ix[|*+27R(2px + ¢B, Ax)—2R(yqs, AX)

dt
—2R(qE, Ax) — 2R(q(Z + x), Ax)
—29R(pex, Ax) — 23(pQn (px + ¢E), Ax),
we obtain

d
3+ 2]lql® + 2/ Vall* + 4v[| Ax|I* = Re(t), (86)

where

Re(t) = 2(AX ¢+ q) +4R(A(ZX), gt + @) + AR(AYX +2Vy - VX, ¢ + )
+4R(2px + ¢E, Ax) — 4R(q:(Z + X) + qEBi, Ax) — 4R (pex, Ax)
— 43(pQn (px + ¢E), Ax).
(87)
We notice that from the Agmon inequality (5) and the Gagliardo—Nirenberg
inequality (6) for x = Qnx and from (56) it follows that

—3/4 —7/8
{ Xl < ONIAXL IIxllzs < OO 18X, (58)

—1/4 —-3/8
19Xl < AR 19120 < CART 1A
Using these relations, we have

[(px+¢E, Ax)|< ”VX||(1||/2VX|| 12l Loe XN o VPRIV Ell Lo + Nl o [V END
< CAn L IAXIUAXI + [1Val)-

Therefore, from (85), for sufficiently large N we get

1 3
5 (Il + 1AXIP) < Js(e) < 5 (IValP + 1 AxP) (59)
Then we can choose a small constant §; such that
51J1(t) < | Vall* + 21| Ax|*.
Substituting this relation into (86), we obtain

d
/10 +0i(t) + 2lgel* + I Vall* + 27 AxI* < Rs(2). (90)

Now we estimate the terms of Rs(¢). In these estimations we use the Agmon
inequality (5), the Gagliardo—Nirenberg inequality (6), and the inequalities (88)

IVgll* + | AxII* < C,
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which follows from ¢ = n —p and x = QN E — Z and estimates (14) for (n, E)
and (51) for (p, Z), respectively,

(A2 g+ @)l < 2(1all + lalD (A pe + [VXI12,) < CARY 1A lge,

(AZX), a4+ O < (lae + 1D NAXI Z I 2o + IAZ X 2o + 219 X4 IV 2| 1)
< O IAXI (el + 17,

(Ayx, a: + 9)] < 1AYN o (laell + lal) < CARY 1A laell + 11V al)),

(Vy - V%@ + @) < 199l IV x|z, (gl + llal) < CARE A laell + 11Vl
|(2px + qE, Ax)| < 2||pll o [IXIAXI + (V| Ell e + llall e [VEIDIV X
< O UAX] + IVl Ax],
[(a(Z +x) + aEe, AX)| < (|l | Z + XL + gl I ED [ AXI]
< OAG L (laell + Vgl [ AXI + Clall Y21 Ax])
[(pQn (px + aB), Ax)| < Ipl7 _Ix[IAX] + (IVallll Bl e + lallz IVEIDIVXI]
< OAGL (A + IVl AxlI-
Taking into account (71), the term (p;x, Ax) can be estimated as

1/2 —-3/2
(e, AX)] < Ipellllxllos [AX] < C(1+ AN A

These inequalities, (78), and (90), for sufficiently large N imply

d
1)+ 2u 1 (8) < Cllgll + 1VXI) < Ce™ 1, (91)

Thus the Gronwall lemma and (89) conclude the proof of Lemma 2.3.

Proof of Theorem 2.2. Let N be fixed large enough as above (see
Lemma 2.1 and Lemma 2.3). Let

S(t)(no, Eo) = (n(t), E(t))
and ty be defined as in Proposition 2.2. We now define
S1(t)(no, Eo) = (p(t),y(t) + Z(t)) and Sa(t)(no, Eo) = (q(t), x(t))-

At this stage, Lemma 2.1 and Lemma 2.3 allow us to apply Theorem I.1.1
from [11]. Hence, it is proven that S(t) possesses a compact global attractor A
in .

3. Convergence of the Attractors

Theorem 3.1. Suppose that the conditions of Theorem 2.2 are fulfilled. Then

ﬁH(l) sup{diste, (y, A*): y € A} =0, (92)
E—
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where A is the global attractor for the problem (2), and
A* = {(20,21,22) : (21,22) € A, 20 = Az1 + |22*) + f}

with A being the global attractor for the problem (3), diste,(y, A) being a distance
from the element y to the set A in the space €.

P roof It follows from (22) and (29) that there exists some constant R;
such that for an any bounded set B of the initial data there exists the moment
to(B) such that

ellna I+ VO 1P+ An®) P+ VAE®) P+ | AEL)]* < BY, t > to, & < eo.

Since A is an invariant set, then for all complete trajectories in A, this relation
implies

llna )] + IV @I + |An@)|* + [VAE®)|* + [AE(]* < RE. (93)
It is evident that there exists an element y. = (mg, nj, E§) such that
diste, (ye, A*) = sup{diste, (y,A"), y € A}.

Let y:(t) = (nf(t),n°(t), E°(t)) be a complete trajectory such that y.(0) = ye.
It follows from (93) that there exists the subsequence €5 and the element y(t) =
(ne(t),n(t), E(t)) € Loo(R,E&1) such that y., (t) tends to y(t) as e — 0 on any
interval [a, b] in the weakly* topology in Lo ([a,b], E2). From Aubin’s imbedding
theorem (see [10, Corollary 4]) it follows that y., (t) tends to y(t) strongly in
C([a,b], €1). Taking to the limit in (2) as ¢ — 0 and using that ¢||ng|| — 0, we
get that y(¢) is a bounded solution of the problem (3). Hence, y(¢) belongs to A*.
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