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The subject of the paper is the generalization of the well-known result ob-
tained by M. S. Livs̆ic for the case of infinitely dimensional imaginary component
[1, 3].

Livs̆ic’s Theorem 1. Let A be an entirely non-selfadjoint [2, 3] operator in
a Hilbert space H such that

a) the spectrum of the operator A is concentrated at zero, σ(A) = {0};
b) A is dissipative, and its imaginary component is one-dimensional,

rankAI = 1.
Then the operator A is unitarily equivalent to the integration operator Ã,

(
Ãf

)
(x) = i

∫ l

x
f(t)dt, (1)

acting in the space L2
[0,l], where l 6= 0 is an eigenvalue of 2AI =

A−A∗

i
.
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In what follows, an analogue of this theorem is obtained for the case where
the imaginary component AI of the operator A is an operator with a simple
absolutely continuous spectrum, also a functional model of this class of operators
is constructed.

The generalization of the result of Livs̆ic is based on the study of the operator
of integration in the spaces of square summable functions on compacts in R2

+. It
is stated that the imaginary component of the operator of integration depends on
the choice of configuration of corresponding compacts. It can be non-dissipative,
can have lacunas in the spectrum, can have simple spectrum, etc.

The first result generalizing Livs̆ic’s Theorem 1 obtained in [7] is Theorem 5,
where the compact ΩL has a triangular form and is bounded by a smooth de-
creasing curve L and by the lines x = a, y = b. Since Theorems 2–5 of Sections
I, II are proved in [7], they are listed here without proofs. The development of
the scheme of the constructions of Sections I, II is given in Sections III–V. Thus,
for a non-dissipative operator with an imaginary component having a simple ab-
solutely continuous spectrum, an analogue of theorem of Livs̆ic (Theorem 7) is
obtained, where the compact ΩL is represented by conjugation of two triangular
domains. In Section V, Theorem 8 (an analogue of Livs̆ic’s theorem) is proved,
where the imaginary component of the dissipative operator is supposed to have a
lacuna in the absolutely continuous spectrum. The compact ΩL has a triangular
form, and the smooth curve L possesses constant values on some inner interval.
The proved Theorems 5, 7, 8 show wide possibilities for triangular models due to
the choices of a compact ΩL.

It turns out that the functional model for the given classes of operators can
be constructed in Hilbert spaces representing symbiosis of L2 spaces and Wiener–
Paley spaces of entire functions.

I. Consider a continuous curve L in R2
+,

L =
{

(x, y) : y = α(x) ∈ C1
[0,a]; α(0) = b, α(a) = 0

}
, (2)

generated by a smooth monotonically decreasing function α : [0, a] → C (0 < a,
b < ∞). Denote by ΩL a compact in R2

+ bounded by the curve L (2) and the
lines x = a, y = b. Define the Hilbert space L2

ΩL
formed by the complex-valued

square summable functions f : ΩL → C,

L2
ΩL

=





f :
∫∫

ΩL

|f(x, y)|2dxdy < ∞





. (3)
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Denote by Ã the linear bounded operator acting in L2
ΩL

(3):

(
Ãf

)
(x, y) def= i

a∫

x

f(t, y)dt. (4)

It is easy to see that

2
(
ÃIf

)
(x, y) = χΩL

a∫

α−1(y)

f(t, y)dt, (5)

where α−1(y) is a smooth monotonically decreasing function on [0, b] inverse to
α(x) (α−(α(x)) = x, ∀x ∈ [0, a]), and χΩL

is a characteristic function of the set
ΩL. Equality (5) implies that

G
def= ÃIL2

ΩL
=

{
fχΩL

∈ L2
ΩL

}
, (6)

where f : [0, b] → C is a complex-valued function of the variable y.
Specify the smooth non-negative monotonically increasing function

λ(y) def= a− α−1(y) (y ∈ [0, b]). (7)

Since
∫∫

ΩL

|f(y)χΩL
|2 dxdy =

b∫

0

|f(y)|2λ(y)dy,

the subspace G (6) is isomorphic to the weighted space

L2
(0,b)(λ(y)dy) def=



f :

b∫

0

|f(y)|2λ(y)dy < ∞


 . (8)

The mapping

U : G → L2
(0,b)(λ(y)dy); (Uf)(y)χΩL

def= f(y) (9)

defines the bi-unique correspondence between G (6) and L2
(0,b)(λ(y)dy). It is

obvious that U is unitary. Formula (5) yields that the operator σ̃ = U2AI |G U∗

in the space L2
(0,b)(λ(y)dy) acts as a multiplication by the function λ(y) (7),

(σ̃f) (y) def= λ(y)f(y), (10)
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where f ∈ L2
(0,b)(λ(y)dy). It is easy to see that the orthoprojector PG on the

subspace G (6) is given by

(PGf) (x, y) def=
χΩL

λ(y)

a∫

α−1(y)

f(t, y)dt. (11)

Map now the operator ϕ̃ from L2
ΩL

(3) onto L2
(0,b)(λ(y)dy) (8) by the formula

ϕ̃ = UPG, (12)

where PG is given in (11). As a result, we obtain that the family

∆̃ =
(
Ã, L2

ΩL
, ϕ̃, L2

(0,b)(λ(y)dy), σ̃
)

(13)

is a colligation [2, 3], where the operators Ã, ϕ̃ and σ̃ are given by (4), (12), and
(10), respectively.

Theorem 2. [7] The characteristic function S
∆̃

(z) [1–3] of the colligation ∆̃
(13) is a scalar operator in L2

(0,l)(λ(y)dy),

(S
∆̃

(z)f)(y) = e
iλ(y)

z f(y), (14)

where λ(y) is given by (7), and f(y) ∈ L2
(0,l)(λ(y)dy).

The proof of the theorem is given in [7].
O b s e r v a t i o n 1. The operator-function S

∆̃
(z) (14) commutes with the

operator σ̃ (10) for all z ∈ C (z 6= 0).

II. Consider a bounded selfadjoint operator B with a simple spectrum given in
a Hilbert space H. The spectrum of the operator B belongs to the interval [0, a].
Then, according to [6], the operator B is unitarily equivalent to the operator of
multiplication by the independent variable

(
B̂f

)
(λ) = λf(λ), f(λ) ∈ L2

(0,a)(dσ(λ), (15)

where σ(λ) = 〈Eλu, u〉 is a non-decreasing function on [0, a], Eλ is the resolution
of identity of B, and u ∈ H is the generating vector of the operator B. Suppose
that the measure dσ(λ) is absolutely continuous by the Lebesgue measure

dσ(λ) = m(λ)dλ, m(λ) = σ′(λ) ≥ 0. (16)

Definition 1. [7] An absolutely continuous measure dσ(λ), λ ∈ [0, a] from
(16) is said to have the AC0-property if

λ∫

0

dσ(t)
t

< ∞ (17)
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for all λ ∈ [0, a].
Condition (17) requires that the improper integral converge at zero. Define

the positive monotonically increasing function y(λ),

y(λ) def=

λ∫

0

dσ(t)
t

. (18)

O b s e r v a t i o n 2. ‘A priori’ we can assume that the function y(λ)
maps [0, a] onto [0, b], where b is the preassigned finite positive number. If y(λ):

[0, a] → [0, d] (d > 0), then, specifying the measure dσ1(λ) =
b

d
dσ(λ), b > 0,

and substituting f(λ) →
√

d

b
f(λ) in L2

(0,a)(dσ(λ)), we obtain the Hilbert space

L2
(0,a) (dσ1(λ)) isomorphic to L2

(0,a)(dσ(λ)). Besides, the function y1(λ) con-
structed by dσ1(λ) (20) already possesses the values belonging to [0, b]. This

procedure signifies the renormalization of the generating vector u →
√

b

d
u since

σ(λ) = 〈Eλu, u〉.
Denote by λ(y) the function inverse to y(λ) (18) (y(λ(y)) = y, ∀y). Since

dσ(λ) = λdy(λ), then the change of the variable λ → λ(y) transforms the space
L2

(0,a)(dσ(λ)) in L2
(0,b)(λ(y)dy), in which the operator B̂ (15) acts as a multipli-

cation by the function λ(y),
(
B̃f

)
(y) = λ(y)f(y), (19)

where f(y) ∈ L2
(0,b)(λ(t)dy).

Theorem 3. [7] Let B be a bounded selfadjoint operator with a simple spec-
trum in H, and the spectrum of B belongs to the segment [0, a]. If the spectral
measure σ(λ) of the operator B is absolutely continuous (16) and has the AC0-
property (17), then the operator B is unitarily equivalent to the operator of mul-
tiplication B̃ (19) by the smooth monotonically increasing function λ(y) (inverse
to y(λ) (18)) in L2

(0,b)(λ(y)dy), where the finite positive number b can be chosen
arbitrarily.

The following statement gives the description of the commutant of the ope-
rator B̂ (17).

Theorem 4. [7] An arbitrary linear operator Â in L2
(0,a)(dσ(λ)) commuting

with B̂ (15) is the multiplication operator
(
Âf

)
(λ) = a(λ)f(λ), (20)
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where f(λ) ∈ L2
(0,a)(dσ(λ)), and a(λ) is a complex-valued function from

L2
(0,a)(dσ(λ)), and ‖A‖ = ‖a(λ)‖L2

(0,a)
(dσ(λ)).

The proof of the theorem is given in [7].
The following statement generalizing the result of Livs̆ic’s Theorem 1 is true.

Theorem 5. [7] Let a linear bounded dissipative completely non-selfadjoint
operator A with spectrum at zero, σ(A) = {0}, be given in a Hilbert space H and

(1) let the operator 2AI restricted to H1 = AIH have a simple spectrum filling
the segment [0, a], 0 < a < ∞, and let its spectral function σ(λ) be absolutely
continuous (16) and have the AC0-property (17);

(2) for all z ∈ C, z 6= 0, let
[
PH1(A− zI)−1PH1 , AI

]
= 0 take place, where

PH1 is an orthoprojector on H1.
Then the operator A is unitarily equivalent to the integration operator Ã,

(
Ãf

)
(x, y) = i

a∫

x

f(t, y)dt, (21)

in the space L2
ΩL

(3), where the curve L (2) is given by the function α−1(y) =
a− λ(y) and λ(y) is inverse to the function y(λ) (18).

This theorem is proved in [7].
In Sections III–V we will use the constructions of Sections I, II.

III. Similarly to (2), consider the curve L in R2
+,

L =
{

(x, y) : y = α(x) ∈ C1
[0,c]; α(0) = b, α(c) = 0

}
, (22)

where α: [0, c] → C is a smooth monotonically decreasing function on [0, c], 0 < b,
c < ∞. Let a be a point lying between 0 and c, 0 < a < c. Denote by ΩL the
compact in R2

+ consisting of two linked components, ΩL = Ω1
L ∪ Ω2

L. Thus, Ω1
L

represents the domain bounded by the curve L and lines y = b, x = a; Ω2
L is

bounded, correspondingly, by the curve L and the lines y = 0, x = a. Define
the Hilbert space L2

ΩL
(3) for the given ΩL. Specify in L2

ΩL
the linear bounded

operator
(
Ãf

)
(x, y) def= i

a∫

x

f(t, y)dt, (23)

where f ∈ L2
ΩL

(3). Just as in the case of the operator Ã (4), it is easy to show
that for Ã (23)

2
(
ÃIf

)
(x, y) = χΩL

a∫

α−1(y)

f(t, y)dt (24)
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takes place, where χΩL
is the characteristic function of the set ΩL and α−1(y)

is the inverse function to α(x) (α−1(α(x)) = x ∀x ∈ [0, c]). Similarly to (6), we
have that

G
def= ÃIL2

ΩL
=

{
fχΩL

∈ L2
ΩL

}
, (25)

where f : [0, b] → C is a function of the variable y. Specify the smooth monoton-
ically increasing function

λ(y) def= a− α−1(y). (26)

Obviously, this function maps the segment [0, b] on [a − c, a], where λ(d) = 0,
d = y(a). Thus the function λ(y) on the segment [0, d] possesses the values from
[a− c, 0] and on [d, b], correspondingly, from [0, a].

Since

∫∫

ΩL

|f(y)χΩL
|2 dxdy =

b∫

d

|f(y)|2λ(y)dy +

d∫

0

|f(y)|2(−λ(y))dy

=

b∫

0

|f(y)|2|λ(y)|dy,

the subspace G (25) is isomorphic to the weighted space

L2
(0,b)(|λ(y)|dy) def=



f :

b∫

0

|f(y)|2|λ(y)|dy < ∞


 . (27)

The unitary correspondence between G (25) and L2
(0,b)(|λ(y)|dy) (27) is realized

by the map
U : G → L2

(0,b)(|λ(y)|dy); (Uf)(y)χΩL

def= f(y). (28)

The operator σ̃ = U2ÃIU
∗ in the space L2

(0,b)(|λ(y)|dy) acts by means of multi-
plication by the function λ(y) (26),

(σ̃f) (y) def= λ(y)f(y), (29)

where f ∈ L2
(0,b)(|λ(y)|dy). It is easy to show that the orthoprojector PG on the

subspace G (25) is equal to

(PGf)(x, y) def=
χΩL

λ(y)

a∫

α−1(y)

f(t, y)dt. (30)
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Specify the operator ϕ̃: LΩL
→ L2

(0,b)(|λ(y)|dy) by the formula

ϕ̃ = UPG, (31)

where PG is given by (30). Thus, the family

∆̃ =
(
Ã, L2

ΩL
, ϕ̃, L2

(0,b)(|λ(y)|dy), σ̃
)

(32)

is a colligation in which the operators Ã, ϕ̃, and σ̃ are given by (23), (31), and
(29), respectively.

Theorem 6. The characteristic function S
∆̃

(z) of the colligation ∆̃ (32) acts
in L2

(0,b)(|λ(y)|dy) as follows:

(S
∆̃

(z)f)(y) = e
iλ(y)

z f(y), (33)

where λ(y) is given by (26), and f ∈ L2
(0,b)(|λ(y)|dy).

The proof of Theorem 6 is similar to that of Theorem 2 [7].
As in the previous case, it is obvious that

S
∆̃

(z)σ̃ = σ̃S
∆̃

(z)

for all z ∈ C (z 6= 0).

IV. Analogously to the considerations of Section II, every bounded selfadjoint
operator B with simple spectrum such that σ(B) ⊂ [α, β] (−∞ < α < 0 < β <
∞) is unitarily equivalent to the operator B̂

(
B̂f(λ)

)
= λf(λ), (34),

where f(λ) ∈ L2
(α,β)(dσ(λ)). The spectral measure dσ(λ) is supposed to be

absolutely continuous (16).

Definition 2. An absolutely continuous measure dσ(λ) (λ ∈ [α, β]) (16) is
said to have the AC0-property if

λ∫

α

dσ(t)
|t| < ∞ (35)

for all λ ∈ [α, β].
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Similarly to (18), define the positive monotonically increasing function

y(λ) =

λ∫

α

dσ(t)
|t| (36)

mapping the segment [α, β] on [0, b] where 0 < b < ∞. Denote by λ(y) the
function inverse to y(λ) (36). From (36) we have that

λdy(λ) = dσ(λ) (λ ∈ [0, β]); −λdy(λ) = dσ(λ) (λ ∈ [α, 0]).

Therefore, after changing the variable λ → λ(y), we obtain that the space
L2

(α,β)(dσ(λ)) is isomorphic to the space L2
(0,b)(|λ(y)|dy), in which the operator B̂

acts as an operator of multiplication by the function λ(y),
(
B̃f

)
(y) = λ(y)f(y), (37)

where f(y) ∈ L2
(0,b)(|λ(y)|dy).

It is obvious that in this case the following analogue of Theorem 3 is true.
The considerations stated above allow us to formulate the statement of The-

orem 7 (similar to Theorem 6) without supposing that the initial operator A is
dissipative.

Theorem 7. Let A be a linear completely non-selfadjoint operator acting in
a Hilbert space H with spectrum at zero, σ(A) = {0}. Then

(1) the operator 2AI restricted on H1 = AIH has a simple spectrum filling the
segment [a − c, a] (0 < a < c < ∞), and its spectral function σ(λ) is absolutely
continuous (19) and has the AC0-property (35);

(2) for all z ∈ C (z 6= 0),
[
PH1(A− zI)−1PH1 , AI

]
= 0 takes place, where

PH1 is the orthoprojector on H1.
Hence the operator A is unitarily equivalent to the operator of integration Ã,

(
Ãf

)
(x, y) = i

a∫

x

f(t, y)dt, (38)

in the space L2
ΩL

(3), and the curve L (22) is given by the function α−1(y) =
a− λ(y), where λ(y) is the function inverse to y(λ) (36), λ(y) = y−1(λ).

P r o o f. As follows from the above considerations, there exists the unitary
operator U : H1 → L2

(0,b)(|λ(y)|dy) such that U2AI = B̃U , where B̃ is given by
(37). Construct the colligation

∆ =
(
A, H, UPH1 , L

2
(0,b)(|λ(y)|dy), B̃

)
,
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where PH1 is the orthoprojector on H1. Condition (2) of the theorem yields that
the characteristic function S∆(z) of the colligation ∆ commutes with the operator
B̃. Applying Theorem 4, we obtain that S∆(z) is the operator of multiplication
by the function exp

{
iz−1c(y)

}
in the space L2

(0,b)(|λ(y)|dy) in view of the known
form of the characteristic function if one takes into account that σ(A) = {0}. It
is easy to see that c(y) = λ(y) since lim

z→∞ iz (1− S∆(z)) = B̃.

Knowing λ(y), by using formula (26), we can construct the smooth decreasing
function α−1(y) mapping [0, b] onto [0, c], besides, if y(0) = d, 0 < d < b, then
x(d) = a. Using x(y), we specify the curve L (22) and construct the domain ΩL.
Next define the colligation ∆̃ (32), where L2

ΩL
is given by (3) and the operators

Ã, ϕ̃, and σ̃ are given by (23), (31), and (29), respectively. To conclude the
proof, it is left to note that the characteristic functions of the colligations ∆ and
∆̃ coincide in view of (33).

V. Consider a piecewise decreasing curve

L =
{

(x, y) : y = α(x) ∈ C1
[0,a3];α(0) = b2, α (a3) = 0;

α(x) = b1(∀x ∈ [a1, a2])} ,
(39)

where 0 < a1 < a2 < a3 (< ∞), 0 < b1 < b2 (< ∞), and the function α(x)
decreases monotonically on the intervals [0, a1] and [a2, a3]. In the same way as
in Section I, consider the compact ΩL in R2

+ bounded by the curve L (42) and the
lines x = a3, y = b2. Denote by L2

ΩL
(3) the Hilbert space of square summable

functions on the compact ΩL. In L2
ΩL

, set the operator Ã by formula (4). Then,
similarly to (5) (a = a3), we have

2
(
ÃIf

)
(x, y) = χΩL

a3∫

α−1(y)

f(t, y)dt,

where α−1: [0, b2] → R is a monotonically decreasing function

α−1(y) =
{

α−1
1 (y), y ∈ [b2, b1] ,

α−1
2 (y), y ∈ [0, b1] ,

(40)

where α−1
1 (α(x)) = x for all x ∈ [0, a1] and α−1

2 (α(x)) = x for all x ∈ [a2, a3].
One ought to consider ambiguity of the function α−1(y) at the point y = b1

as corresponding limits from the left for α−1
2 (y) ( from the right for α−1

1 (y))
as y → b1 − 0 (correspondingly, as y → b1 + 0). Similarly to (7), we define a
non-negative piecewise non-decreasing function

λ(y) = a3 − α−1(y) (y ∈ [0, b2]). (41)
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Using λ(y) (41), we define the space L2
(0,b)(λ(y)dy) (8) and the selfadjoint operator

σ̃ (10). In this case, the spectrum of the operator σ̃ consists of two disjoint sets
[0, a3 − a2] ∪ [a3 − a1, a3] and has a lacuna (a3 − a2, a3 − a1). As a result, we
obtain the operator colligation

∆̃ =
(
Ã, L2

ΩL
, ϕ̃, L2

(0,b)(λ(y)dy), σ̃
)

, (42)

where ϕ̃ and σ̃ are given by (11), (12) and (10), respectively.
Theorem 2 is true. However, in representation (14) for the characteristic func-

tion S
∆̃

(λ) of colligation (42), λ(y) is given by (41) and α−1(y), correspondingly,
by (40).

Repeating the considerations of Sections I, II, below we can get the analogue
of Theorem 5.

Theorem 8. Let A be a linear bounded dissipative completely non-selfadjoint
operator acting in a Hilbert space H with spectrum at zero, σ(A) = 0. Then

(1) the restriction of the operator 2AI on H1 = AIH is an operator with a
simple spectrum filling the set [0, a3 − a2] ∪ [a3 − a1, a3], 0 < a1 < a2 < a3 < ∞,
and its spectral function is absolutely continuous on this set and has the AC0-
property (20);

(2) for every z ∈ C, z 6= 0,
[
PH1(A− zI)−1PH1 , AI

]
= 0 takes place, where

PH1 is an orthoprojector on H1.
Then the operator A is unitarily equivalent to the operator Ã

(
Ãf

)
(x, y) = i

a3∫

x

f(t, y)dt (43)

in the space L2
ΩL

(3), where the curve L is given by (39) and α−1(y) by (41), λ(y)
being the inverse function of y(λ) (21).

VI. Let us turn to the construction of the functional model of the colligation
∆̃ (13). First, realize the Fourier transform by the variable x,

F (z, y) def= Fxf(x, y) =
1√
2π

a∫

α−1(y)

eizxf(x, y)dx. (44)

The function F (z, y) (44) is an entire function of exponential type by the vari-
able z, the adjoint indicator diagram of which coincides with the segment of the
imaginary axis (iα−1(y), ia) [4]. As a result, we obtain the Hilbert space formed
by the linear manifold of the functions F (z, y) satisfying the conditions:

(a) F (z, y) is an entire function of exponential type by z having the adjoint
diagram (iα−1(y), ia) where α−1(y) corresponds to the curve L (2);
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(b) the inequality
b∫

0

dy

∫

R

dz|F (z, y)|2 < ∞

takes place. Denote this Hilbert space by W 2
L. The Wiener–Paley and Plancherel

Theorems [4, 5] imply that the transform Fx (47) defines the unitary isomorphism
between the spaces L2

ΩL
(3) and W 2

L.
Calculate the Fourier transform (44) of the operator Ã (4),

Fx

(
Ãf

)
(x, y) =

1√
2π

a∫

α−1(y)

eizxi

a∫

x

f(t, y)dtdx =
i√
2π

a∫

α−1(y)

dtf(t, y)

t∫

α−1(y)

eizxdx

=
i√
2π

a∫

α−1(y)

dtf(t, y)
eizt − eizα−1(y)

iz
=

1
z

{
F (z, y)− eizα−1(y)F (0, y)

}
.

Thus, the operator Ã (4) in the space W 2
L acts as follows:

(
ÂF

)
(z, y) def=

1
z

{
F (z, y)− eizα−1(y)F (0, y)

}
, (45)

where F ∈ W 2
L. The Fourier transform (44) maps the space G (6) onto the space

G̃
def=

{
eiza − eizα−1(y)

iz
f(y) : f ∈ L2

(0,b)(λ(y)dy)

}
. (46)

Taking into account (11) and (44), we obtain that the orthoprojector P
G̃

in the
space W 2

L on G̃ is given by

(
P

G̃
F

)
(z, y) def=

√
2π

eiza − eizα−1(y)

izλ(y)
F (0, y). (47)

The operator ϕ̂, which is unitarily equivalent to ϕ̃ (12), is equal to

(ϕ̂F )(z, y) def=
√

2π
F (0, y)
λ(y)

. (48)

It is obvious that the adjoint operator ϕ̂∗ acting from L2
(0,b) (8) into W 2

L is given
by

(ϕ̂∗f)(y) =
√

2π
eiza − eizx(y)

iz
f(y). (49)
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Thus, we obtain the colligation

∆̂ =
(
Â,W 2

L, ϕ̂, L2
(0,b)(λ(y)dy), σ̃

)
, (50)

where the spaces W 2
L and L2

(0,b)(λ(y)dy) are defined above and the operators Â,
ϕ̂, and σ̂ are given by (45), (48), and (10), respectively.

Theorem 9. Let A be a linear completely non-selfadjoint dissipative operator
acting in a Hilbert space H, the spectrum of which is concentrated at zero, σ(A) =
{0}. Then

(1) the operator 2AI restricted on H1 = AIH has a simple spectrum filling the
segment [0, a], 0 < a < ∞, and its spectral function σ(λ) is absolutely continuous
and has the AC0-property (20);

(2) for all z ∈ C, z 6= 0,
[
PH1(A− zI)−1PH1 , AI

]
= 0 takes place, where PH1

is the orthoprojector on H1.
Then the operator A is unitarily equivalent to the operator Â

(
ÂF

)
(z, y) =

1
z

{
F (z, y)− eizα−1(y)F (0, y)

}

in the space W 2
L, where the curve L (2) is given by the function α−1(y), λ(y) is

the function inverse to y(λ) from (21).
Theorem 9 can be proved for the case of the domain ΩL considered in Sections

III, V.
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