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1. Introduction and Main Results

Let D={z€ C: |z| <1}, D(¢,p) = {z € C: |z = (] < p}. The symbol C(-)
stands for some positive constant depending on the values in the parentheses not
necessarily the same in each occurrence. Let H* be the Hardy class of bounded

analytic functions in ). Let B be a Blaschke product

, 0< <1,neN.
H \an] 1—a z) [an] "

For a fixed 6y € R the following theorem of O. Frostman ( [7,12]) gives the
necessary and sufficient conditions for the existence of the radial limits of B and

its derivative.
Theorem A. (i) Necessary and sufficient that

lim f(re'®) =1L,

r—1-0

© I. Chyzhykov and Yu. Kosaniak, 2017



I. Chyzhykov and Yu. Kosaniak

exist and |L| =1 for f = B, and every subproduct of B, is that

o0

1 — |ay|
Z |67,90 — an ’ < 0. (2)
(i) Necessary and sufficient that

lim B(re?) =L, lim B'(re) =M

r—1-0 r—1-0

exist and |L| =1 is that

1 — [a,|
Z |6190 — an, |2 < 0. (3)

Note that condition (2) is often called Frostman’s condition.

Theorem A was generalized and complemented by many authors (e.g., G.
Cargo ( [5]), P. Ahern, D. Clark ( [1,2]), K.-K. Leung, C.N. Linden ( [13])
and others). Since the proof of the necessity of Theorem A is based on the
estimates of the argument, one may expect to describe the local behavior of
arg B(z) in terms of Frostman’s type conditions. In [6], one can find necessary
and sufficient conditions for the local growth arg F', F' € H™, in terms of the
generalized Frostman’s condition. The relations between conditions on the zeros
of the Blaschke product B and the membership of arg B (ew) in 7,0 <p < o0
were studied in [14].

It is known that every function ' € H*, F(0) # 0, |F(z)| < 1, z € D, can be
represented in the form ( [7,9])

F() = B(2) exp ( - [5F Zdw)) , (4)

et — 2
—T

where p is a non-decreasing function on [—m,7|. We use the same letters to
denote the non-decreasing functions on [—m, 7] and the Stieltjes measures on 0D
associated with them.

Let p, ps be finite Borel measures on 0D. We write that p, < p if p. (M) <
p(M) for an arbitrary Borel set M C 9D. We say that Fi is a divisor of F' € H™
if F, € H* and if there exists a function G € H* such that ' = GF,. Note
that Fy is a divisor of F' if and only if u. < @ and the zero set of F} is a subset
of that for F.

P. Ahern and D. Clark proved the following theorem ( [1]).

Theorem B. Let f € H™ be of the form (4), and N € N.
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(1) Suppose that N is even, and u({z}) = 0. Necessary and sufficient that
F*(N) (re’®) be bounded as r — 1 — 0 for every divisor F, of F is that

0o 2

1 — [ay| dp(t)
Z €T — | NH1 +/ |eit — eie|N+1 <0 (5)
n=1 0

hold.
(11) Suppose that N is odd. Necessary and sufficient that
lim FU)(rei®) = L;

r—1-0
exist for j =0,...,N — 1, that F(N)(rem) be bounded as r — 1 — 0 and that
lim FY(Re™) = L;
R—140
for 0 <j <N —1 is that (5) hold.

Note that the set of points e such that (5) is satisfied with N = 1 is often
called the Ahern-Clark set. This notion has many applications, see, e.g., [3], [8,
Chap. IX]. In particular, a function F of the form (4) is said to have an angular
derivative F'(§) at & € D ( [4]) if there exist lim,_,1_o F(r§) € 0D and F'(§) :=
lim, 1o F'(r§) € C. By [2, Theorem 2],

27
, 1—anl? du(t
FOI= Y vz [
= 0

so (5) with N = 1 and Carathéodory’s theorem ( [4, Sec. 298-299]) (cf. (3))
provide the existence of the angular derivative.

In order to formulate the next results, we need some information on fractional
derivatives. For f € L(0,a), the Riemann-Liouville fractional integral of order
a > 0 is defined by ( [15, Chap. I, p. 33])

T

Df(r) = I‘(loz) /(r C 2 f(@)dz, 1 e (0,a)
0

D) = S(r),  DUF) = o ADTU ), ac (- LplpeN,

where I'(«) is the Gamma function.
The Stolz angle with the vertex ( is defined by

Se(Q)={z€D: |1 -2 <a(l—-]2])}, o>1.
We denote S%(€) = Sy(£) N D(&, 3).
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Theorem C [6]. Let 0 < vy < 1,0 € R, and F € H*®. Necessary and suffi-
cient that for every divisor Fy of F' and every o > 1 there exist a constant K =
K(v,0,F) > 0 such that

sup |D Varg Fi(z)| < K, (6)
2€8%(et?)
and that
— |an|
Z ‘eze_a ’1 'y ’ezt_ezﬁ‘l 0% < 0 (7)
hold.

In view of Theorems B and C the following questions arise:

(i) Does a counterpart of Theorem B for fractional derivatives hold?

(ii) What are the necessary and sufficient conditions for the boundedness of
D%arg F(z) for F € H*®?

In this paper we give partial answers to these questions.

Let us denote i
et + 2
G@%=wp<—/?ﬁ_;w®>, (8)

—Tr

The following theorem yields the necessary and sufficient conditions for the
local growth of arg G in terms of local properties of the boundary measure.

Theorem 1. Let 6 € R, 0 > 1, a« > 0. Given G (8), the value
|D® arg G (re'%)| is bounded in the Stolz angle Sy(e) for each divisor G of
G if and only if

/ ‘ezﬁ ezt’l—&—a < 0. (9)

Corollary 2. Let a > 0. Given G (8), supj,j«; |[D¥arg G«(2)| < oo for
each divisor Gy of G if and only if

Sup / |€zt 619|1+o¢

For an analytic function f in D, we set
fll(re’?) = D*(r*f(re’?)), @ >0,r>0.
This definition provides that fl®(z) is analytic in I ( [8, Chapter IX]).
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Theorem 3. Let o € (0,1). Let F € H*> be defined by (4). If

— lan|
Z ‘619 —ay, ’1-1-04 |626 _ ezt’l—&—o& < 00, (10)

then for every divisor Fy of F, |F£a](z)| is bounded in S,(e'?).

Corollary 4. Let F € H*®, a > 0. If

o0
— |an|
SI;P{Z |eif — an\1+0‘ ’€Zt — €Z9‘1+a < 00, (11)
n=1

then for every divisor Fy of I, sup,cp |Fla](z)| < 00.

Note that in the limit case o = 0, the assertion of Theorem 3 would be a bit
weaker than a generalization of the sufficiency part of Theorem A ( [1, Lemma
3]), we have the boundedness in the Stolz angles instead of the existence of the
radial limit. On the other hand, similarly to Theorem B, in the case a = 1,
we would have boundedness of F’(z) but in the Stolz angles as well. It seems
plausible that the converse statement to Theorem 3 is true, but we were not able
to prove it. Nevertheless, we show that the statement of Theorem 3 is sharp in
Example 1.

2. Proof of the Theorems

Proof of Theorem 1. Sufficiency. Without loss of generality, we may
assume that 6 = 0. Let us denote

, et + ret®
o\
S(re'¥) = T
Then o)
. onleilt—
S (re#) = — e n € N.

(ez(tfgo) _ r)nJrl’

According to the definition of G, we have

arg G.(2) = —Im< / ZZ = dpt >> (12)

—T

where . < p.
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For f®) € L(0,1), the following equality holds ( [8, Chapter IX, p. 572], [15
Chapter I, p. 39]):

T

p—1

i SO ooy L [ pypmomi 0

Dt Zofl—l-k—a +F(p—a)/<$ t)? FP(t)de, (13)
0

p—l<a<ppelN.
Applying (13) to arg G, we obtain

p—1
2k!sink(p —t) ,_,
D% arg G, (e’ Z;) F1+k:—a)r
1 f o T 2p!ei(t"p)
_ _ \p—a—1 I
o m<(ei(t_@_x)p+l (1),
0 —T

p-l 2% Irk—a

‘D arg G (re'? ‘ Tl+k—a)

M

k=0

p a—1
L(p—a) //’ez(t x’pﬂdﬂ*(t)dx.

In order to finish the proof, we need the following lemma.
Lemma A [10]. Let 0 < v < a < oo. Then there ezists a constant C(~, )
such that
1 Cla,7)

D™ <
[1—rgl* = [L=rgle’

ceD,0<r<l.

Using Lemma A and the fact that z € S,(e?), we obtain

P—l e lph—a / d,u*
F —|—k?—0é ‘el(t —'r|a+1

k=0

M

‘ arg G ( re

T
+ C / |620 _ €1t|a+1 < 0.

Necessity. Since ,t‘ is bounded outside [—¢, ], we consider the integral (9)

1—e|
only on the interval [0, €], where ¢ > 0 will be specified later. Convergence of the

integral on [—¢, 0] can be shown in a similar way. Let us estimate

N 2nleit=+)
arg Sﬁ )(re ?) = arg ((@i(t—w) - 7")”+1>’ n € N.
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. 42nt1)° 2
and [e® —1| < $. Let 0 < t < . By the construction,

We consider z = re’? € D such that arg(l — z) = o9 € ((4n+1)7r E). We choose

T

€ > 0 satisfying € < IO TT)
we have
oo < arg(e’ —re'¥) < T4 E,
2 2
thus

00 — ¢ < arg(e't=?) — 1) < g + g — .

Since z € S,(e*) for some o > 0, we have

p=argz=0(1—|z]) = ¢~ (r—1)tanog, z — 1,arg(l — z) = 0y.

So we can assume that =5 < ¢ < 0 as r — 1 — 0. Then, denoting

n+1
Y(t) = Y (t) 1= arg (e79)) — (n+ 1) arg (e'79) — 1), (14)
we obtain .
9% — og(n +1) > y(t) > —(n+1)(§+5). (15)

Due to the choice of og and € for n =2k, k e N, n — 1 < a < n, we get
(— (n+ 1)(% +€),2£— (n + 1)00) € (—m(k + 1), - k).

Forn=2k -1,k e N, n—1 < a <n, we consider

A 1)1ei(t—9)
arg S (1e'?) = arg (Q(n + e ), n € N.

(ez(t—cp) _ T)n+2
Using the similar estimates, we obtain

Ynsr(t) € ( —(n+2) (g n 5) (26— (n+ 2)00) € (—n(k + 1), —7k).

It follows from the previous inclusion that sin~y(t) keeps the sign for ¢ € [0,¢].
Let xg be the characteristic function of a set E. Let us denote p. = px[o,. We

deduce
Y 2n'ez(t_(p)
tm </ (ei(t—sﬁ’) — )l dﬂ(t)) ‘
0

3
2n! .
> [ e sl ),
0

|arg e (re'?) | =

We consider the function

Gn(z) = efn) Pu(2)=ao+aiz+... +a,_ 12" ag,...,a,_1 €C. (16)
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Since D®arg G,(2) is uniformly continuous on D and, consequently, bounded,
without loss of generality, we can consider

G«(2)
Gn(z)

instead of D®arg G.(z). Applying (13), we obtain

D% arg

= D%arg G.(z) — D% arg Gy (2) (17)

1>
D® axg 7). G*W s / P asmp (t — ¢)du(t)
T( )”0‘16 onlei(t—¢)
r-x) nle!t— 4
. / Tl-a) /Im<(ei(t—¢) _ $>n+1)dﬂ(t)d$ — D“ImP,(re'?)|.
0 0
We choose the coefficients ag, ..., a,_1 such that
) n—1 & 2plrP~ aslnp t — )d/«L(t)
e / T(1+ : (18)
p= p—a)
Since ) »
T Y-
pr( )= . .
I(l+7) I'(l+y—a) Y (19)

it is easy to check that

€
0, =2 / =Pt dyu(t) (20)
0
is a solution of (18). Thus,

G (re?)

D~ —_—
‘ arg Gn(rew)

T &€

1 o1 2nleit=+)
= —_— —_— n a— I T
‘F(n — /(7« x) / m((ez(t P du(t)dz
0

1 1 2n's1n7
_ n oa— du(t)dx
0

> =

In order to estimate the inner integral, we may assume that |1 — z| < %. Since
e — 1| < &, we have r > 2|z —€”|,t € [0,]. For r —z < 2|re’® — e'|, we deduce

|we’? — e[ < [re'? —xe'?| 4 [re'? — e < |r—x| 4 [re’? — et < B|re’? —e|. (21)
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Using (21), we obtain
G (re?)
D~ —_—
‘ arg Gn(rew)

e r—|etlt=®)_p|

C(a) / / (r — x)"*Ldadu(t)

|eilt=—9) — p|nt1

0 r—2leit—¢) —p|

> C(a) / du(t)

|ei(t—¢) — plat1

Tending z to 1, using Fatou’s lemma and the boundedness of D arg G.(z), we
conclude that

[ du(t)
0

For n =2k — 1,k € N, we set
Gn(z) =) Pa(z) = 3 a2, (22)

where a, are defined by (20). Integrating (13) by parts, we get

T

p
sy = O DO _pay 1 J@—ore s

P (1+k—a) Fp—a+1)
=0 0
Then A
G (re'?)
D~ -
‘ arg Gn(rei#)
I8 &€
(r—a)"e / 2(n + 1)!sin i1, (1)
= I . ’ .
/ I'(n—«) o |ei(t=¢) — g|n+2 du(t)de
0 0
The rest of the proof repeats that for the case n = 2k. ]

Proof of Theorem 3. Let (a},) be the zero sequence of F;. Let us calculate
the derivative of r®F,(re')

™

B . 1 , - 2¢eiPelt
SHOTR(re) = ar ) <1 Ere) [

m.(t)

—T
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1— ‘an*‘Q
(re® — a,*)(1 — a,*ret®)’

o
+7F, (re') Z

n=1

Using (13) with p = 1, we obtain

: 1 :
DY(rFy(re'?)) = T —a) /(r —x)  “Fy(ze'?) <ax°‘_1
0
™
2eiPeit > 1 — |a,*|?
x / (elt _ xezgp)Q m ( ) + X ; (xe“p _ an*)(l _ an*weup)

—T

Since F, € H*, we have

\Fla} (rew)\ < F(lC ] (/(r — x)*aaaﬁo‘*ldw
—
0

A oo 1 ’; *‘2
_ Q. _ -/
+/(7’ x) %z E T =G, e 2d:c>.
0

ro Cu 1— |an*|2
— ——d
I'1l-a) /(T z) Z |1 — @y *xet?|? v
0 n=1
We have
‘ 1 . . .
|1 —a,re'?| = r‘; — ane'?| > r|l —aye?| > rla, —e¥|,0 <r < 1. (23)

Using the fact that z € S, ('), (23) and applying Lemma 1, we deduce

o] i axe 1= an?
|Es (re'?)| < C + Cla)r E i
n=1

— pFretv |l

Cla) g~ 1= lan’| 1
<C+— Zlyewan*yua<°°’2§r<1‘
o

116 Journal of Mathematical Physics, Analysis, Geometry, 2017, Vol. 13, No. 2



Asymptotic Behavior of Fractional Derivatives of Bounded Analytic Functions

For r < % the boundedness is obvious. [
Example 1. Letae€ (0,1),y > 1. We show that the statement of
Theorem 3 is sharp. Let p be an absolutely continuous measure with the density

WPt <
p(t :{
®=1 o0, it € (. 7.

We prove that if
du(t)
| 24

-7

is divergent, then !G’[O‘](z)} is unbounded, where G is of the form (8). Without
loss of generality, we may assume that § = 0,¢p = 0. Since |e? — 1| ~t ast |
0, the integral (24) is divergent for v < 1 + «. Let us calculate the derivative of
reG(r),

5‘7"( G(r)) = ar® 1G(r) — r*G(r)y 5[t L.

\M:l

N

Using (13) with p = 1, we obtain

D* (T‘O‘G(T‘)) = 7F(1 1_ ) /(r —x) *G(x) <o¢xa_1

0

(67

(2(1 + 2%) cost — 4w — 2i(1 — z?)sint)|[t|7 " dt
] dzx.

\Mﬂ

I

Since p(t) is continuous at 0, we get ( [11, Chapter IX, p. 369])
|G’(r)| — exp{—2mp(0)} =1, r—1-0.

Using (19), we deduce

INHE

a(yo 2sint(1 — 2?7 1dt
’D G(r ‘_Fl_a/r—:ﬂ / o — ot x
0
r 1—a i
. #dt
—C’(a)>C(a,’y)/(r—x) (l—x)/ = )4dq:—C(a)
0 0
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(r—z) %dx / dz

> C(a,7) / (1_24)2_7 — C(a) =2 C(a,7) / A= gt C(a)
0 0

>

M%_Ca v<l+a
Clnﬁ—C, y=1+4+o.

Thus, !G[a](z)‘ is unbounded for v < 1+ a.
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