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Closed and non-closed (with planar edges) strictly convex surfaces with
continuous curvatures are considered. Upper and lower bounds are obtained
for the Gaussian curvature under various restrictions imposed on integral
parameters of a surface: the diameter and width of the surface, the volume of
the enclosed body, the maximum area of planar cross-sections of the enclosed
body, the radius of a circumscribed or inscribed ball, the height of non-closed
surface and the area enclosed by the planar boundary of the surface.
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In the geometric theory of stability of shells, the question of determining the
critical external pressure for a strictly convex closed (or rigidly fixed along the
edges) shell is reduced to finding the minimum for the Gaussian curvature of
its median surface [1, 5]. While modeling thin-walled structures, where only a
few restrictions on the dimensions of the shell (non-canonical form) are given, a
priori estimates for the critical pressure might be useful. Thus, it is important to
obtain estimates for the Gaussian curvature of strictly convex surface depending
on the restrictions imposed on its integral parameters. In this paper, in Theorems
1–3, several possible restrictions are considered and upper and lower bounds
of the Gaussian curvature are obtained both for closed surfaces and for non-
closed surfaces with flat edges. The estimates are obtained for the surfaces with
continuous principal curvatures, i.e., for the surfaces of class Ck(k ≥ 2).

Notice that in a certain sense the considered problem is inverse to the problems
where the impact of Gaussian curvature on the local shape of a surface [3] and
on its integral parameters [2] is studied.

Theorem 1. Let K be the Gaussian curvature of a closed strictly convex
surface F with continuous principal curvatures, which bounds a body L whose
diameter is not less than D0. If one of the following conditions is fulfilled:

1) the volume of the body L is not less than V0, where

V0 ≤ πD0
3/6; (1)
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2) for the points P and Q on the surface F , the distance between which is equal
to the diameter of the body L, the maximum area of the sections of L crossed
by the planes orthogonal to PQ is not less than σ0, where

σ0 ≤ πD0
2/4; (2)

3) the surface F contains a ball whose radius is not less than R0, where

0 < R0 ≤ D0/2, (3)

then the following estimate holds

min
(F )

K ≤ K0, (4)

where the minimum is taken over all points of the surface F ; K0 ≡ const is the
Gaussian curvature of a closed convex (spindle-shaped) surface of revolution F0

such that its diameter is D0 and either a volume of the body bounded by F0 is
equal to V0 (in the first case) or the area of the equatorial circle of F0 is equal to
σ0 ( in the second case), or the radius of the equatorial circle of F0 is equal to
R0 (in the third case). In (4) the equality holds true if F0 is a sphere.

Remark 1. If the equality occurs in one of the inequalities (1)–(3), then, in
the relevant case considered in the theorem, the surface F0 is a sphere, and in
this case the equality can be obtained in (4), taking a sphere F0 as a surface F .
If the inequalities (1)–(3) are strict, then (4) is strict as well. In this case, K0 is
the exact upper bound of the values minK, which can be approached arbitrarily
close if one takes the surface F sufficiently close to F0 (for example, by rounding
F0 in neighborhoods of its two singular points).

Proof. Let Theorem 1 be false, i.e., suppose that there exists a surface F̃
which satisfies the conditions of the theorem and whose Gaussian curvature K̃
satisfies

K̃ ≥ K0, (5)

where the inequality is strict if F0 is a sphere.
Let P̃ and Q̃ be points on the surface F̃ , the distance between which is equal

to the diameter D̃. By using the Schwarz symmetrization, transform the body
L̃ bounded by the surface F̃ into the rotation body L′ with the axis of rotation
passing through the points P̃ and Q̃. Then, by using the Steiner symmetrization,
transform the body L′ into the rotation body L symmetric relatively to a plane
α which is orthogonal to the segment P̃ Q̃. The diameters D̃, D′ and D and the
volumes Ṽ , V ′ and V of the bodies L̃, L′ and L, respectively, will coincide [2]:

D = D′ = D̃, V = V ′ = Ṽ . (6)

The surface of rotation F bounding the body L , as well as the surface F̃ ,
satisfies the conditions of the theorem, and its Gaussian curvature K is continuous
and bounded below [2]:

min
(F )

K ≥ min
(F̃ )

K̃ ≥ K0. (7)
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Similarly to any strictly convex surface of rotation, which is symmetric rel-
atively to the equatorial plane and whose Gaussian curvature is continuous, the
radius R of the equatorial circle of the surface F and its Gaussian curvature K
have to satisfy the following inequalities:

1/
√

max
(F )

K ≤ R ≤ 1/
√

min
(F )

K,

therefore, by (7), we get

R ≤ 1/
√
K0.

The last inequality allows us to introduce a spindle-shaped surface of rotation
F0 of constant Gaussian curvature K0 with the same radius of the equatorial
circle R. Specify a Cartesian coordinate system (x, y, z) taking the plane α as the
coordinate (x, y)-plane and the rotational axis of the surface F as the coordinate
z-axis. The surface F0 is obtained by rotating its meridian y = 0 around the z-
axis. Write the equation of the meridian in the parametric form as follows [2, 6]:

x = R cosu, z =

∫ u

0

√
1

K0
−R2

sin2 vdv, y = 0, | u |≤ π

2
, (8)

where u = l
√
K0, l is the arc length of the meridian.

The spindle-shaped surface F0 is convex closed. If R <
√
K0, then it has

constant Gaussian curvature K0 everywhere except two singular (conical) points
u = ±π/2 located on the axis of rotation. If R = 1/

√
K0, then the surface of F 0

is a sphere.
The surface F has the same axis of rotation and equatorial circle as the surface

F 0, and its Gaussian curvature K is not less than the Gaussian curvature K0 of
F 0 by (7). Therefore, see [2], the surface F is contained in the surface F 0 and its
diameter D is less than the diameter D0 of the surface F 0:

D < D0 if R < 1/
√
K0,

D ≤ D0 if R = 1/
√
K0. (9)

Let us show that the radius R of the equatorial circles of the surfaces F 0 and
F is less than the radius R0 of the equatorial circle of the spindle-shaped surface
F0:

R < R0. (10)

Let D0 and D0 be the diameters of the spindle-shaped surfaces F 0 and F0,
respectively. Then, by (8), one gets

D0 = 2

∫ π/2

0

√
1

K0
−R2

sin2 v dv, D0 = 2

∫ π/2

0

√
1

K0
−R2

0 sin2 v dv.

If R > R0, we have D0 < D0. Then (9) can be written in the form

D ≤ D0 < D0.
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If R = R0 < 1/
√
K0, we have D0 = D0. Then (9) takes the form

D < D0 = D0.

Since D̃ = D in view of (6), in both cases the surface F̃ has a diameter D̃ <
D0, which does not satisfy the conditions of the theorem.

If R = R0 = 1/
√
K0, then we have D0 = D0, hence the surfaces F 0 and F0

coincide and they are spheres. By (6) and (9), we have

D̃ = D ≤ D0 = D0.

But, by the conditions of the theorem, the diameter D̃ of the surface F̃ should
be not less than D0, therefore

D̃ = D = D0 = D0.

The surfaces F and F 0 have the same diameter only if their Gaussian curva-
tures are equal [2], i.e., if K = K0. But then (7) implies the equality min K̃ =
K0 which contradicts (5) (in our case F0 is a sphere). Thus, the inequality (10)
is proved.

Now, let the surface F bounds a body whose volume is not less than the
volume V0 of the body bounded by the spindle-shaped surface F0 (this is the first
version of the restrictions imposed on the integral parameters of the surface F
in question). The surface F̃ bounds a body L̃. In view of (6), its volume Ṽ is
equal to the volume of the body L, which is not greater than the volume V 0(R)
of the body L0 bounded by the surface F 0, because the body L is contained in
the body L0. Namely, we have

Ṽ = V ≤ V 0(R) = 2πR
2
∫ π/2

0
cos2 u

√
1

K0
−R2

sin2 u du.

This implies the following:

Ṽ < V 0(R0) = V0

because V 0(R) grows monotonically with increasing R and, moreover, R < R0

by (10). Therefore the surface F̃ , whose Gaussian curvature satisfies K̃ ≥ K0

by (10), bounds a body with the volume Ṽ which is less than the volume V0 of
the body L0. Hence, F̃ does not satisfy the assumptions of the theorem. Thus,
Theorem 1 is proved for the first version of restrictions imposed on the surface F .

Next, let σ̃ be the maximum area of the sections of the body L̃ crossed by the
planes orthogonal to the segment P̃ Q̃. Let the plane, where the maximum area
is achieved, be chosen as the plane α used above for the Steiner symmetrization
of the body L′. Under the Schwarz and the Steiner symmetrizations, the area of
the sections of corresponding bodies crossed by the plane α remains the same [2].
Hence the symmetrization of the body L̃ results in the body of rotation L with

the area of the equatorial circle πR
2

equal to σ̃. On the other hand,

σ̃ = πR
2
< πR2

0 = σ0,
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because R < R0 by (10), and hence the maximum area σ̃ of cross-sections of
the body L̃ is less than the area σ0 of the equatorial circle of the surface F0.
Therefore, the surface F̃ with the Gaussian curvature verifying K̃ ≥ K0 by (5)
does not satisfy the assumptions of the theorem. Thus, Theorem 1 is proved for
the second version of the restrictions imposed on the integral parameters of the
surface F .

Finally, suppose the surface F̃ contains a ball with the radius R̃. Applying the
symmetrization as above, we obtain a surface of rotation F which also contains
a ball with the radius R̃. In this case, R̃ is not greater than the radius R of the
equatorial circle of the surface F [2]. Therefore, we have

R̃ ≤ R < R0.

Hence, by (5), the surface F̃ with the Gaussian curvature verifying K̃ ≥
K0 cannot contain a ball with the radius R̃ ≥ R0, i.e., it does not satisfy the
assumptions of the theorem. Thus, Theorem 1 is proved for the third version
of the restrictions imposed on the integral parameters of the surface F , and this
completes the proof.

Remark 2. Hereinafter the height of a convex surface F with a flat edge ∂F is
defined as the distance between the plane containing the edge ∂F and the support
plane to F that is parallel to the plane containing ∂F . Besides, a segment of a
closed strictly convex surface F is defined as a part of F that is cut off by a
plane. If a segment of a strictly convex surface with planar edge can be uniquely
projected on the plane containing the edge, then this segment is called a cap,
otherwise it is called a dome.

Let F ′ be a surface which has the largest Gaussian curvature K0 among all
the spindle-shaped rotation surfaces of constant Gaussian curvature containing
an axially symmetric segment of height h and base radius r. Denote the above
segment of the surface F ′ by F 0. If H ≤ r, then the segment F 0 is a spherical
cap Fs with the radius R = (r2 + H2)/(2H) and the Gaussian curvature K0 =
1/R2. If H > r, then the segment F 0 is a dome of the surface F ′ and K0 > 1/R2.
We claim that the following statement holds true.

Theorem 2. Let K be the Gaussian curvature of a simply connected strictly
convex surface F with continuous principal curvatures, whose height is H and
whose planar edge bounds a planar region of area S. Then the following estimates
hold:

min
(F )

K ≤ K0 if H ≤
√
S/π,

min
(F )

K < K0 if H >
√
S/π, (11)

where the minimum is taken over all points of the surface F , and K0 ≡ const is
the Gaussian curvature of the segment F 0 described above, whose height is h =
H and base radius is r =

√
S/π. For H ≤ r, there is the equality in (11) if F
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coincides with Fs. For H > r, there is a strict inequality in (11) which can be
arbitrarily close to an equality if we chose F to be sufficiently close to F 0.

Proof. Assume that the stated theorem is false, i.e., there exists a surface F̃
which satisfies the assumptions of the theorem, but whose Gaussian curvature K̃
satisfies the converse of (11):

K̃ > K0 = 1/R2 if H ≤ r,

K̃ ≥ K0 > 1/R2 if H > r, (12)

i.e.,

K̃ > 1/R2

for any value of H/r.
Let the plane α contain the edge of F̃ . Introduce a Cartesian coordinate

system (x, y, z) by choosing the plane α as the coordinate (x, y)-plane and placing
the origin of coordinates inside the planar domain bounded by the edge F̃ . Let
the coordinate z-axis be oriented towards the surface F̃ .

Consider the convex body L̃ bounded by the surface F̃ and the plane α. The
Schwarz symmetrization applied to the body L̃ results in a body of rotation L
which has the coordinate z-axis as the axis of rotation. It is bounded by the
plane α and a strictly convex surface of rotation, which will be denoted by F .
Clearly, the height of the surface F is equal to H. The edge ∂F is a circle of
radius r =

√
S/π which is located in the plane α. The Gaussian curvature K of

F is continuous and satisfies the following inequalities, (see [2], (12)):

min
(F )

K ≥ min
(F̃ )

K̃ > 1/R2. (13)

Similarly to the surface F , consider a spherical segment Fs whose height is
equal to H and base radius is equal to r. Place F and Fs so that they have the
same axis of rotation, the coordinate z-axis, and the same edge ∂F = ∂Fs. Then
the surfaces in question will have the same vertex Os, where they are tangent to
each other. Let CS and C be the meridians of Fs and F determined by y = 0.
Represent the curves CS and C in parametric forms, x = xs(τ), z = zs(τ) and
x = x̄(τ), z = z̄(τ), respectively. Moreover, specify τ to be the angle between the
coordinate x-axis and the straight lines tangent to the curves such that τ = 0 at
the vertex Os. For x ≥ 0, one has τ ∈ [0, π].

Let us show that the following inequality holds true for any 0 < τ ≤ π/2:

x̄(τ) < xs(τ). (14)

For this purpose, consider the segments of the surfaces Fs and F , obtained by
rotating the arcs of the curves Cs and C, corresponding to τ ∈ (0, π/2], around
the z-axis. To these segments, apply orthogonal projection onto the coordinate
plane α and evaluate the areas of the obtained planar domains:

π[xs(τ)]2 =

∫∫
R2 cos τ dω,
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π[x̄(τ)]2 =

∫∫
cos τ

K
dω, (15)

where dω is the area element of the spherical image of the surface, and the
integration is over the corresponding segments of spherical images. Comparing
the right-hand sides in (15) and taking into account (13), one verifies (14) for any
0 < τ ≤ π/2.

For the curvature radii, ρ̄(τ) and ρs(τ) ≡ R, of the meridional curves C and
Cs of F and Fs, respectively, the following inequality holds true at τ = 0 due to
(13):

ρ̄(τ) < ρs(τ).

Due to continuity, it remains valid in a sufficiently small neighborhood of τ =
0, i.e., the curve C is tangent to the curve Cs at Os from within such that the
neighborhood of the point τ = 0 in the curve C is within a region Ms bounded
by the curve Cs and the x-axis. We claim that the whole curve C is not located
inside Ms and not tangent to the curve Cs at the points τ > 0 different from the
vertex Os. Indeed, if C is tangent to Cs at some point τ = τ ′ > 0, then, in view
of (13), the segment τ < τ ′ of the surface F is contained in the segment τ < τ ′

of the surface Fs [2], and hence the surfaces F and Fs are not tangent to each
other at τ = 0. Therefore the curve C can intersect the curve Cs at some point
τ = τ̄∗ so that an arc τ < τ̄∗ of the curve C is located inside Ms. Let P ∗ ∈ C
be the point of this intersection and τ∗s be the value of the parameter τ on Cs
corresponding to the point P ∗. Then τ̄∗ < τ∗s does not hold for τ∗s ≤ π/2, and
thus xs(τ̄

∗) < xs(τ
∗
s ) = x̄(τ̄∗) which contradicts to (14).

Thus, the curve C can not intersect the curve Cs for τ∗s ≤ π/2. Consequently,
if H ≤ r, then the edge of the spherical segment Fs can not be the same as the
edge of the surface F whose Gaussian curvature satisfies restriction (13), and this
completes the proof for the case H ≤ r.

Now consider the case H > r. Let C meet the edge ∂F at a point P ∗∗ with
τ = τ∗∗ such that x̄(τ∗∗) = r. We claim that τ∗∗ > π/2 and hence the surface F
is a dome.

Indeed, let τ∗∗ ≤ π/2. Consider a spindle-shaped surface of revolution F̃0

with the following properties: the coordinate z-axis is the axis of rotation, the
intersection of F̃0 with the coordinate plane z = 0 is the equatorial circle of
radius r, the Gaussian curvature is equal to 1/R2. Let x = x̃0(τ), z = z̃0(τ) be
the parametric representation of the meridional curve C̃0 obtained by intersecting
F̃0 with the coordinate plane y = 0. Then, in view of (8), the diameter D̃0 of F̃0

is expressed and estimated as follows:

D̃0 = 2

∫ π/2

0

√
R2 − r2 sin2 σ dσ < 2(R+

√
R2 − r2) = 2H. (16)

Indeed, the equality holds in (16) for r = R. Then, by using asymptotic
expansions for elliptic integrals (see [4]), it is easy to see that (16) holds true for
0 < 1− r/R� 1. For r < R, we have

∂(2H)

∂x
= − 1√

R2 − x
, (x ≡ r2),
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∂D̃0

∂x
= −

∫ π/2

0

sin2 σ√
R2 − x sin2 σ

dσ > −
∫ π/2

0

sin2 σ√
R2 − x

dσ = − π

4
√
R2 − x

,

and hence

∂(2H)

∂x
<
∂D̃0

∂x
< 0.

Therefore, if r decreases, then the diameter D̃0 grows more slowly than 2H,
and this implies inequality (16), q.e.d.

Inequality (16) can be verified directly by calculating the involved integral.
Notice that the body L is contained inside the body L̃0 bounded by the surface

F̃0 and the plane containing the edge ∂F . If τ∗∗ = π/2, then this statement
follows from Blaschke’s theorem [2, IV, §25]. The statement is obvious if τ∗∗ is
less than the angle τ̃0 corresponding to the point where the meridian C̃0 meets
the coordinate z-axis (at the conical singular point of the surface F̃0, we have
x = x̃0(τ̃0) = 0). For the case τ̃0 < τ∗∗ < π/2, we consider the strips of the
surfaces F and F̃0 obtained by rotating the arcs of C and C̃0 corresponding to
τ ∈ [0, τ̄∗∗]. Apply the orthogonal projection onto the plane z = 0 so that the
strips are mapped onto two planar ring-like domains. Comparing the areas of
these domains, we get

π(r2 − x̄2(τ)) =

∫ τ̄∗∗

τ

cos τ

K
dω̃ <

∫ τ̄∗∗

τ
R2 cos τ dω̃

<

∫ π/2

τ
R2 cos τ dω̃ = π(r2 − x̃0(τ)), (17)

where dω̃ = 2π sin τdτ is the area element of the spherical image. Consequently,

x̃0(τ) < x(τ), τ < τ∗∗.

Therefore, see [2, IV, §25], the curvature radii, ρ̃0(τ) and ρ(τ), of the merid-
ional curves C̃0 ⊂ F̃0 and C ⊂ F , respectively, satisfy the inequality

ρ̃0(τ) > ρ(τ), τ < τ∗∗.

Let h̃0(τ) and h(τ) be the support functions of the curves C̃0 and C with
respect to the point P ∗∗. Then, for τ < τ∗∗, we have, see [2, IV, §25]:

h̃0(τ) =

∫ π/2

τ
ρ̃0(σ) sin(σ − τ) dσ,

h(τ) =

∫ τ∗∗

τ
ρ(σ) sin(σ − τ) dσ,

h̃0(τ)− h(τ) =

∫ τ∗∗

τ
(ρ̃0(σ)− ρ(σ)) sin(σ − τ) dσ +

∫ π/2

τ∗∗
ρ̃0(σ) sin(σ − τ) dσ > 0.

Therefore, if τ̃0 < τ∗∗ < π/2, then the curves C̃0 and C intersect at the point
P ∗∗ only, and hence the body L is contained inside the body L̃0. In view of (16),
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this implies that the height of the surface F is less than H, but this contradicts
the assumption of the theorem. Consequently, τ̄∗∗ > π/2 holds along the edge
∂F , and thus the surface F is a convex dome.

Denote by R the radius of the equatorial circle of the surface F and consider a

spindle-shaped surface of revolution F
0
, which has the same equatorial radius R

and contains an axisymmetric segment ¯̄F 0 with the base radius r and the height

H. Let K
0

be the Gaussian curvature of F
0
, which is determined according to

(8) from the equations

r = R cos v, H =

∫ π/2

v

√
1/K0 −R2

sin2 u du, −π/2 < v < 0.

In view of the assumptions of the theorem and the restrictions (12) and (13),
we have

K
0 ≤ K0 ≤ K,

where K
0 ≡ const and K0 ≡ const. Consider two possible cases.

1. Let K 6≡ const. Then F lies inside the surface ¯̄F 0, see [2, IV, §25], therefore
the height of F (as well as the height of F̃ ) is less than H.

2. Let K ≡ const. Since the surface F is regular, it is a spherical segment of
radius R̄ < R due to (13). Therefore F is inside the spherical segment Fs,
and hence the height of F is less than H.

Thus, if the assumption (12) is true, then the surface F (and the surface
F̃ ) do not satisfy the assumptions of the theorem. Hence (12) is false, and this
completes the proof of Theorem 2.

Finally, consider the width of the convex surface F which is defined as the
minimum of the distances between parallel supporting planes of F [2].

Theorem 3. Let F be a strictly convex closed surface F with continuous
principal curvatures. Assume that the width of F is not greater than ∆ and,
moreover, F is located in the ball whose radius is not greater than R, where R ≥
∆/2. Let F00 be a convex surface of rotation with constant Gaussian curvature
K00 ≡ const, whose width is equal to ∆ and equatorial radius is equal to R. Then
the following estimate for the Gaussian curvature K of F holds true:

max
(F )

K ≥ K00, (18)

where the maximum is taken over all points of F . Besides, if R = ∆/2, then F00

is a sphere and the equality is achieved in (18) provided that F coincides with
F00. If R > ∆/2, then inequality (18) is strict and K00 is the infimum of values
of maxK, which can be approached arbitrarily closely by choosing the surface F
to be sufficiently close to F00.
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Proof. Assume that the stated theorem is false, i.e., there exists a surface F̃
which satisfies the assumptions of the theorem, but whose Gaussian curvature K̃
satisfies the converse of (18):

K̃ < K00 if R = ∆/2,

K̃ ≤ K00 if R > ∆/2. (19)

Transform the surface F̃ into a center symmetrical surface of rotation F which
still satisfies the assumptions of the theorem. For this purpose, take the support
function H̃(ϕ,ψ) of the surface F̃ , find the function

˜̃
H(ψ) =

1

2π

∫ π

−π
H̃(ϕ,ψ) dϕ,

by averaging H̃(ϕ,ψ) with respect to ϕ, and then construct a surface
˜̃
F with

the support function
˜̃
H(ψ), see [2, IV, §26]. It is assumed here that ϕ and ψ

are the longitude and the latitude of the geographical coordinate system on the
unit sphere centered at a point inside F̃ so that the polar axis α is chosen to be
orthogonal to a pair of parallel planes tangent to F̃ , the distance between which
is equal to the width ∆̃ ≤ ∆ of the surface F̃ . After that consider the function

H(ψ) =
1

2
˜̃
H(ψ) +

1

2
˜̃
H(−ψ)

and construct a surface with the support function H(ψ); this is just the desired
strictly convex closed surface of the rotation surface F which is center symmet-
rical, see [2, IV, §26]. Moreover, F is located inside a ball of radius R and has
a symmetry plane which is orthogonal to the axis α. Besides, the Gaussian cur-
vature K, the width ∆ and the equatorial radius R of F satisfy the following
estimates (see [2, §26] and take into account (19)):

max
(F )

K ≤ max
(F̃ )

K̃ < K00 if R = ∆/2

max
(F )

K ≤ max
(F̃ )

K̃ ≤ K00 if R > ∆/2, (20)

∆ = ∆̃, R ≤ R. (21)

We claim that in view of (19) the widths of the surfaces F and F̃ are greater
than ∆.

Indeed, since the surface F is strictly convex and center symmetrical, then its
continuous Gaussian curvature K and the radius of the equatorial circle R have
to satisfy the inequality

R ≥ 1/
√

max
(F )

K.

Therefore, by virtue of (20), we get

R ≥ 1/
√
K00. (22)
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Similarly to the proof of Theorem 1, consider a surface of rotation F 00 with
constant Gaussian curvature, which has the following properties: the axis of
rotation of F 00 is the straight line α, the radius of the equatorial circle of F 00 is
equal to R. Denote by K00 the Gaussian curvature of F 00. Introduce a Cartesian
coordinate system (x, y, z) by choosing the plane containing the equatorial circle
of F 00 for the coordinate (x, y)-plane and the axis of rotation α for the coordinate
z-axis. The surface F 00 is obtained by rotating its meridional curve y = 0 around
the z-axis. This curve can be represented parametrically in the following form,
see [2, 6]:

x = γ(ψ), z = δ(ψ), |ψ| ≤ π/2,

where

γ(ψ) =

√
R2 − 1/K00 sin2 ψ,

δ(ψ) = 1/
√
K00

(∫ ψ

0

√
K00R2 − sin2 u du−

−(K00R
2 − 1)

∫ ψ

0

du√
K00R2 − sin2 u

)
,

ψ is the angle between the normal vector to the surface F 00 and the equatorial
(x, y)-plane. The equality in (22) implies that F 00 is a sphere. If (22) is a strict
inequality, then

x = γ(±π/2) =

√
R2 − 1/K00 6= 0,

and hence the surface F 00 is not closed. Make it closed by adding two discs of

radius

√
R

2 − 1/K00 placed at the planes z = δ(±π/2). The resulting closed

surface of rotation resembles the head of cheese, therefore F 00 will be referred to
as “cheese-shaped” following the terminology of [2, IV, §26]. Notice that if R >
∆/2, then F00 is also “cheese-shaped” [6], and in this case one gets

R > 1/
√
K00. (23)

Since K ≤ K00 due to (20), then F contains a “cheese-shaped” surface F 00,
see [2, IV, §26]. Therefore, the width ∆ of the surface F is not less than the
width ∆00(K00, R) = 2δ(π/2) of the surface F 00, i.e.,

∆ ≥ ∆00(K00, R) if R = 1/
√
K00,

∆ > ∆00(K00, R) if R > 1/
√
K00. (24)

Notice that if R = R, then F 00 and F00 coincide, hence

∆00(K00, R) = ∆. (25)

The width of a “cheese-shaped” surface monotonically decreases when the
radius of its equatorial circle increases [2, IV, §26]. Therefore,



14 V.I. Babenko

∆00(K00, R) > ∆00(K00, R) = ∆ if R < R. (26)

Consider the cases depending on the structure of the surface F . We have the
estimates (21)–(26) and the inequalities R ≥ R ≥ 1/

√
K00.

1. Let

R > 1/
√
K00. (27)

Then inequality (24) is strict, hence

∆̃ = ∆ > ∆00(K00, R) ≥ ∆00(K00, R) = ∆. (28)

2. Let

R = 1/
√
K00 < R. (29)

Then inequality (26) is strict, hence

∆̃ = ∆ ≥ ∆00(K00, R) > ∆00(K00, R) = ∆. (30)

3. Let

R = 1/
√
K00 = R. (31)

In this case, the surfaces F 00 and F00 coincide and are spheres whose width
(diameter) is equal to ∆00 = ∆ = 2R, so R = ∆/2. Therefore, inequality (19)
is strict, i.e., K < K00 by (20). The surface F and the sphere F 00 contained
inside F can not be tangent at a point located on the axis of rotation, see [2],
therefore ∆ > ∆00(K00, R). Then we obtain

∆̃ = ∆ > ∆00(K00, R) = ∆00(K00, R) = ∆.

Thus, due to (27), (29), and (31) the width of the surface is greater than the
width ∆ of the surface F00. This means that the surface F̃ does not satisfy the
assumptions of the theorem, hence the assumption (19) leads to a contradiction.
This completes the proof of Theorem 3.
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Оцiнки гаусової кривини строго опуклої поверхнi
та її iнтегральнi параметри

В.I. Бабенко

Розглядаються як замкненi, так i незамкненi з плоским краєм строго
опуклi поверхнi з неперервною кривиною. Одержано оцiнки зверху та
знизу для гаусової кривини в залежностi вiд заданих обмежень на деякi
iнтегральнi параметри поверхнi, такi як: дiаметр або ширина поверхнi,
об’єм тiла, яке обмежує поверхня, максимальна площа “поперечного”
перерiзу тiла, радiус описаного чи вписаного шару, висота незамкненої
поверхнi та площа областi, яку обмежує плоский край поверхнi.

Ключовi слова: строго опуклi поверхнi, гаусова кривина, iнтегральнi
параметри.
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